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SUMMARY

This paper extends the author's prior development of a general abstract
representation for the design sensitivities of Green's functional for linear
structural systems to the case where the structural stiffness vanishes at an
internal location., This situation often occurs in the optimal design of
structures. Most optimality criteria require that optimally designed beams be
statically determinate. For clamped-pinned beams, for example, this is
possible only if the flexural stiffness vanishes at some intermediate location.
The Green's function for such structures depends upon the stiffness and the
location where it vanishes. A precise representation for Green's function's
sensitivity to tne location of vanishing stiffness is presented for beams and
axisymmetric plates.

INTRODUCTION

This paper is concerned exclusively with the linear self-adjoint differ-
ential equation, represented in abstract form by

Lu = T*

ET u = f in Q (1a)
Here T and T* are operators which are Ly(&) adjoints of each other, E is a
stiffness operator which is symmetric with respect to the Lp(Q) inner product,
u is the response function and f is a specifiec disturbance. The open region
& ¢ RD is bounded by 23%.

Appropriate mixed inhomogeneous boundary conditions are appended to
equation (la). These are

BY u

g on 3%

(1b)
B*Y*ET u

|

h on 2

where ofi1 Udfip = 98 and an1r\ 9o = ¢. The operators Y and v* map functions in
the domain of L into functions defined on 9Q¢ and 9Qp, respectively. And the
operators B and B* map functions defined on 9§y and 9%y, respectively, into
functions defined on 9Qq and 90». Examples of the operators appearing in

equations (la) and (1b) can be found in reference 1 for a number of specific
applications.
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The stiffness operator & frequently depends upon one or more design parame-
ters, which are collectively denoted by S. The operators T and T* are gener-
ally differential operators which are independent of the design. The boundary
operators may or may not be design dependent. There are two important classes
of problems for which the boundary operators depend upon S. One class of such
problems is usually referred to as shape optimization problems. Here, the
boundary is the design variable, and consequently the boundary operators are
necessarily design dependent. The other class of such problems occurs in
structural optimization theory whenever optimality requires that the stiffness
vanish somewhere in the interior of Q. In this case, equation (1b) must also
include an internal boundary where certain jump and/or continuity conditions
are specified. This latter class of problems is the primary concern of this
paper.

GREEN'S FUNCTION AND FUNCTIONAL

Ocen and Reddy (ref. 2) have shown the operator P, which consists of the
spatial operator of equation (la) and the boundary operators of equation (1b),
will be self-adjoint if the following integration by parts formula is satisfied

(Tu,ETV), = (u,TYETv) = (vu,B*Y*ETv) = - (Bvu,Y*ETv) (2)
Q Q 392 Ql
for every u and v in the domain of P. In equation (2), (.,.) denotes the usual
Lo inner product and the appended subscript the domain of integration. Thus,
for example, (-,*) Q denotes the Ly (92 ) inner product. In the remainder of
this paper, it wil? be assumed that the operators specified in equations (la)
and (1b) do indeed satisfy equation (2).

The solution to equations (la) and (1lb) can now be obtained in terms of
Green's function G, corresponding to the operator P, i.e.

oo . * Cnpe
u (f',(x)Q + (g,Y ETG)aQI + (n,\b)agz (3)

Equation (3) may be routinely derived by noting that G(x,y) satisfies
™ ETG(.,y) = 6y 1in @ (La)
and boundary conditions

BYG(-,y) = 0 on 239;

%% (4b)
B*Y'ETG(-,y) = 0 on 3@

where éy represents the Dirac distribution with a singularity at the location y.
Upon taking the Lo(Q) inner product of both sides of equation (l4a) with u and
integrating the result twice by parts according to equation (2), equation (3)
immediately follows. Several illustrations of equation (3) have been derived

by Roach (ref. 3) for specific operator equations.

Green's function G(x,y) is defined on the Cartesian product space Q x Q
and is generally singular when x=y. If any of the operators appearing in
equation (4) depend upon the design variable(s) S, then G is a functional of
the design S. Reiss (ref. 4) recently presented a compact formula for the
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design derivative of G when E is the only operator appearing in equations (la)
and (1b) that depends upon the design S. For, in this case, let S and S + AS
denote two designs and define AG by

AG(x,y;S,A8) = G(x,y;S+AS) - G(x,y,S) (5)

It immediately follows from equations (4a), (4b) and (5) that

T*ETAG = F in @

BYAG

[}

0 on 93 (6)

B*Y*ETAG

[}

H on 9%

where

1

F = - T*AET(G+AG)

(7)

H = - B*Y*AET(G+AG)

A cursory comparison of equation (6) with equation (1) shows that the so-
lution for AG is immediately specified by equations (3) and (7); thus

AG = = (T*AET(G+AG),05

- (B*Y¥AET(G+AC), YG) (8)
3y
After applying the integration by parts formula (2), the variation AG simpli-
fies to

AG = - (TG, AET(G*AG))Q (9)

Equation (9) is an integral equation for 4G. Considerable simplification re-
sults if E is Gateaux differentiable with respect to the design. In this case,
by restricting the design variation AS to be infinitesimal, AE is also infini-
tesimal and equation (9) may be linearized, i.e.,

8G = - (TG,6ETG)Q (10)
In equation (10), the symbol A has been replaced by & in order to signify

linearization. Equation (10) represents the design sensitivity of Green's
functional.

SINCULAR DESIGNS

Beams

As stated at the outset, the primary focus of this paper is on designs
whose stiffness vanishes somewhere in the interior of Q. For beams whose
boundary conditions are specified by (1b), the stiffness vanishes, at most, at
two internal locations. Let Xo denote the typical location for which S(x4) = 0.
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In terms of conventional notation for beams, the internal boundary con-
dition at X, is the prescription of zero moment, while the matching condition
is zero jump in both the shear force and the response. Thus

S(X) Gyx(X,¥3%g) | y=x = 0 (11a)
(6]
[[(S(X)GXX(X’y;XO))X]JX=XO = 0 (11b)
[LG{x,yix5)1]yax =0 (11e)
o]

where the subscripts denote partial differentiation with respect to the
indicated arguments, and [[- 1] denotes the jump in the quantity within the
double brackets. In addition, at the extremities of the beam, G must meet the
static and kinematic boundary conditions specified by equation (4b).

If the neighboring design S + 65 also vanishes at x5, then &S is specifiec
by equation (10). If, however, S + &S vanishes at x5 + 8x,, then 8G depends
explicitly upon 8xq as well as 8S. Since the sensitivity of G with respect to
8§S is determined by equation (10), it remains to investigate the sensitivity of
G to variations in x,.

With x, treated as the design variable, the counterpari to equation (5)
becomes

0G(X,YiXg,0%g) = G(X,y,Xg*dXs) = G(X,y;Xg)
which, upon linearization, simplifies to

8C = Gy (X,YiXg) 6Xq (12)

(o]

It is important to note that G will generally have a slope discontinuity at xg,
but G + 6G will have a slope discontinuity at x4 + 8x5. It follows from
equation (6) that &C satisfies

(S8Gyx)xx = © 0 < x<Xg, Xo <x<0L (13)
plus appropriate homogeneous boundary conditions at x=0 and L. Due to the
shift in the internal boundary x,, care must be taken in determining the in-

ternal matching conditions for 8G. While G satisfies eguations (11ia), (11b)
and (llc), G + 8G must satisfy

S(C+8C)xx | x=x + gx = 0 (1ka)
(o] (o)
[[(S(G+6G)XX)X]]X=X + Sxo =0 (lub)
o]
[([G+6G))gux + 6x =0 (l4e)
(o] (o)

lNext, SGyy is expanded in a Taylor series about Xo to get

SG + (SG_) 8x

xx]xo + 6x0 N SGxx|x=x0 XX xlx o

which, by virtue of equations (lla) and (1l4a), becomes

- 566
B R L0 (15a)




Similarly, by expanding (SGyy)y and G about x = X5, and making use of equations
(11b), (l1e), (13), (1i4b) and (lic), the following jump conditions are ob-
tained:

[[Sécxx)x]]x=x = 0 (l5b)
(o]
EEGG]]X=XO = = [[Gx]]szoéxo (150)
The sensitivity 6GC is completely specified by equations (13), (1l5a),
(15b), (15c) and the boundary conditions at x=0C and x=L, After multiplying

both sides of equation (13) by G and integrating the result over the domains
0 < x < xp and X5 < x < L, it is found that

[

§G(z,y) L[G(x,z)(S(x)GGxx(X,y))x]]xzxo

[[Gx(x,z)s(xmcxx(x,y)]JX._.XO

+

[[S(x)Gxx(x,z)GGx(x.y)J]x=xo

LLCS(x)Gyxx(x,2) )4 6G(x,y) Mgy (16)
o]

Equation (16) can be considerably simplified by making use of the jump con-
ditions (1la,b,c) and (15a,b,c). The first term on the right hand side of
equation (16) vanishes by virtue of equations (llec) and (15b); the third term
also vanishes as a consequence of eguation (lla). Now, substitution of

{

\

’
1b) AanAd (1TEAY intn the

viey !l £y N O S R T P I I PURE Sy S gy AmA An~viand T AnA 1
equaltion \idd) LNLto uie SeCONU Lelll, atiu cyuacviunos L0 anad V«_-C, 14auvle LA

fourth term yield
8G(y,z) = - {[[Gx(x.z)]]xzxo Qlxg,y)
+ [LOx(x,¥) Mgy, Glx0,2) }6xo (17)
where Q (xq,y) is the shear force at x5 due to a unit load at y. Thus
Axg,ry) = = (8(x) Gxx(x,y))x\x=xo (18)

The design derivative of Green's function, obtained from equations (12) and
(18), becomes

aG(x,y;xo)/on == [[GX(X’Z)]JX“XO C(xoyy)

- [[Gx(x,y)]]X=xo AUxp,2) (19)

Axisymmetric Circular Plates

Thin isotropic elastic plates, like the elastic beams considered above,
obey the fundamental equations (4z) and (4b). Consequently, the sensitivity of
Green's function with respect to changes in the plate stiffness (thickness)
must satisfy equation (10). For simplicity, only ciruclar plates subject to
axisymmetric loads and boundary conditions are considered. The plates may be
full or annular, and the inner and outer boundaries of the plate will be de-
noted by a and b, respectively. For full plates, a=0. If the stiffness of the
plate vanishes over a circle of radius r, and this radius is also a design pa-

rameter, then the sensitivity of G with respect to ry also must be determined.
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At a circle of vanishing stiffness, the radial bending moment vanishes,
and both the shear force and the response are continuous. Thus the counter-
parts to equations (1la), (11b) and (1lle) are, respactively,

S(r){rGpp(r,ziry) + vCp(r.C;Po)}|r=Q)= 0

Lr(S(r)(rGpp(r,zirg) + VGp(r,zirg)))y (20)
= S(r)(Gp(r,z;rg) + errr(r,c;ro))]]p=C) =0

[[G(r,c;ro)]]rz,«o =0

where v is Poisson's ratio. And, of course, Green's function must still satis-
fy the mixed boundary conditions (Lb).

Since ro 1s now the design variable, equation (12) is replaced by
8G = Gp (r,g;ryl)éry (21)
o

where d8rg denotes the infinitesimal shift in the location of vanishing stiff-
ness.

It is desired to obtain an explicit representation for ¢G, analogous to
equation (17). Toward this end, it is noted that &G satisfies L8G=0 and there-
fore

(8(r&Gpp + v86Gp))pp = (S(r~16Gp + V8Gpp))p = U (22)

for a<r<rgy and ro<r<b. Also §G satisfies the same boundary conditions at a and
b as does G.

Before considering the jump conditions for §8G at r=rqs, some notational
simplication can be obtained by noting that G(r,z;ry) represents the response
at the circle of radius r due to a unit load distributed along the circle of
radius ¢. Accordingly, let M (r,g;irg) and Q (r,z;ry,) denote, respectively, the
radial bending moment and shear force per unit length along the radius r due to
the same unit load acting along the radius ¢. Thus equations (20) simplify to

rM (r,c;ro)lr=r0= 0 (23a)
[[5(r,c;r0)]]r=po = 0 (23b)
[[G(r,c;ro)]]pzq) =0 (23c)

For the sake of completeness, it is noted that I and Q are related to G through
rM = - S(rG + G )
rr r
re = = r(S(rG_ + vG )) (24)
rr r
+ 5(G + vwrG )
r rr

For the varied design whose stiffness vanishes at ro * ér , the jump con-
ditions analogous to (23a), (23b) and (23e¢) are, respect1vely,
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r& (Y’,C;ro) + r‘éf‘_”.(r‘.ﬁ;r‘o)lp=p + 80 = 0 (253)
[o) o]
[[r‘é(r‘,c;ro) + ré@(rsc;ro)]]p—_-rz) +6r\o= 0 (25b)

[[G(Y‘.C;r‘o) + (SG(P’C;Po)]]p:r +§p = ¢ (25¢)
(8] (o]
By expanding rﬁlr=r +opy T r=r +¢&p and G| p=p +gp 1n Taylor series about
r<rg, and simplifying the result using equations €5af, (25b) and (25¢), the
Jjump conditions

réﬁ]rzro « = (PH)p| pop_ 67 (26a)
[[réQ]]pzpo-k (Sr\o= 0 (26b)
[[6G]]p=ro = = [[Gr]]p:r\o Gro (260)

are readily obtained. The quantities &M and 65 are implicity defined through
equations (24). Thus

| r&M = - S(réGpp + v8G,)
réC = = r(S(réGpp + v&Gp))p (27)

+ S(8Gp + vréGpp)

The sensitivity ¢G may now be determined explicitly by multiplying both
sides of equation (22) by G and integrating the result from r=a to r=b, Thus

| §G(z,&) = + [[rQ(r,z)66(r,&)1]pap
‘ (o)
- [[rﬁ(r.C)dGr(r,E)]]pzn)
+ [LGp(r,g) réll(r,e) 1lp.p
o
= [[G(rtc)réQ(rtg)]]rzro (28)
The second and fourth terms on the right hand-side of equation (28) vanish bty
virtue of equation (23a) and equations (23c) and (26b), respectively. Moreover,
equations (26c) and (26b) transform the first term into
- rQ(r,2)| pap [LGp(r,6)13pap org
(o] (o]

while the third term, obtained from equation (26a) and the equilibrium
equation, becomes

= PQ(P,€)|r=r\ ?[GP(F’C)]]P:P 61"0
(o] o]
Therefore, the design derivative 0G/ors is given by

P0(88i0) 300 = - {rolrg, )L Lop(r,6) 1 . s
o

+ roQ(rg, ) [Gplr )V per, | (29)
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APPLICATIONS TO OPTIMAL DESIGN

The usual method of obtaining structural optimality criteria associated
with specific cost functionals relies on developing an appropriate variational
formulation of the field equations (la) and (1b). Moreover, each cost
functional requires a different variational formulation. In contrast to the
historical approaches, the design derivatives specified by equations (10) and
(17) or (29) can be used directly to determine the optimality criteria associ-
ated with any cost functional without the need of a variational formulation.

In order to illustrate the foregoing claim, structural optimality criteria will
be derived for two different cost functionals: minimum response and minimunm
compliance.

The optimality criteria associated with the design of a fixed-weight
structure for minimum response at a specified location is considered first.
Boundary conditions and loads are assumed known., It is desired to obtain a
complete description of the design variable S including its singular points
(locations of vanishing stiffness). Shield and Prager (ref. 5) obtained the
optimality condition for this problem only after discovering the principle of
stationary mutual potential energy. They did not address the guestion of locat-
ing the singular points. However, at least one author (ref. 6) incorrectly
assumed that such points can be obtained by requiring the response to be con-
tinuously differentiable everywhere.

Attention is now directed toward equation (la) and (lb) with g = h = 0.
According to equation (3), the solution for the response is

u= (f, G}
Let the location y be specified and u(y) be a minimum. Thus

uly) = (£ (), G(+,y))q (30)
whence

su(y) = (f(.), 6G(-,y))Q (31)
For the moment, it will be assumed that S is not singular anywhere. After sub-

stituting equation (10) into equation (31) and changing the order of the resul-
ting double integration, equation (31) becomes
suly) = - (Tu, & §STG(.,y) >
u y = Uy, as 6 (1(-,}’ )BQ (3 )

The volume constraint may be easily handled through a Lagrange multiplier. Let
v(S) denote the specific volume and A a Lagrange multiplier. Then the con-
dition éu(y) = C for all designs consistent with the constant volume constraint
requires that the augmented functional

. 9E i LAY
- (Tu, 55 OSTG (-,y))Q * A (1,335 8S)g =0
for all variations §S. Thus the optimality condition
JE

u. 98, . =\ v
Tu. oS TG(.,y) = A 7S (33)
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follows immediately. For beams, the equivalent to equation (33) was obtained
in reference 5. The constant A appearing in equation (33) can be determined
from the fixed-volume constraint.

It was stated earlier that, in many applications, there can be no solution
to the optimality and field equations unless a singular point occurs within the
structure. In this case it is not possible to determine the location of the
singularity from the optimality condition and field equations. This location
must. be considered on additional design variable, and consequently its location
will be determined from an additional optimality condition.

For simplicity, it will be assumed that the structure is a beam. In this

case, equation (17) is substituted into equation (31), and the resulting double
integrals are evaluated by reversing the order of the integrations. Thus

éu(y) = - Q(XO)[[GZ(Z’y)]]Z=XO 6x0
- Q(Xo.y)[[UZ(Z)]]zzxo GXO (34)

Since the specific volume v is independent of x,, the optimality condition to
determine x, is obtained directly from equation (34). Thus

Qxo)([64(2,¥) Vxax,
+ 5(x0y>£[uz<z)33x=xo = 0 (35)

Next, consider the problem of minimizing the compliance of a structure.
The compliance C is defined to be the work done by the external loads. Thus

C = (u’f)ﬂ
whence
§C = (8u,f)g (36)
Substitution of equation (32) into equation (36) yields
JE
6C = - (Tu, 5§'58Tu%2

Consequently, the optimality conditon for prescribed volume becomes
oE av
Tu. 55 - Tu = A 33 (37)

Equation (37), in its various specific forms, has been derived by many authors
for specific structures. In virtually all instances, the principle of minimum
potential energy has been an ingredient necessary to the derivation.

The location of any singular points may be determined in the same way that
it was done for the minimum response design. In this case, equation (34) is
substituted into equation (36) to yield

§C = - 2Q(XO)[[UZ(Z)]]z=X 6Xg
o
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The optimality condition to determine x,, therefore, is
[{uy(2)]]guy =0 (38)
(o)
As a final remark, it is pointed out, without elaboration, that the
approach taken in this paper is easily generalized to transient structures.
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