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ABSTRACT 

This research represents the third and final phase of a project on 

general-purpose, interactive color graphics postprocessing for 

three-dimensional computational mechanics. Three general tasks are 

accomplished. First, the existing program (POSTPR03D) is ported to a 

high-resolution device. In the course of this transfer, numerous 

enhancements are implemented in the program. The performance of the new 

hardware is evaluated from the point of view of engineering 

postprocessing, and the characteristics of future hardware are 

discussed. 

Second, interactive graphical tools are implemented to fac . tate 

qualitative mesh evaluation from a single analysis. 

surveyed and a bibliography compiled in this area of research. 

Qualitative mesh sensors are examined, and the use of two-dimensional 

plots of unaveraged responses on the surface of three-dimensional 

continua is emphasized in an interactive color raster graphics 

environment. 

The literature is 

Finally, a new postprocessing environment is designed for state-of- 

the-art workstation technology. Modularity, personalization of the 

environment, integration of the engineering design processes, and the 

development and use of high-level graphics tools are some of the 

features of the intended environment. 
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CHAPTER 1 

INTRODUCTION 

The advance of powerful digital computers has drastically increased 

the complexity of problems that the engineer can analyse. 

increased complexity of analyses, postprocessing has become a necessity. 

In recent years, fast color graphics that is not prohibitively expensive 

is beginning to make interactive color three-dimensional postprocessing 

feasible. 

of the behavior of the structure besides allowing the analyst easy 

access to relevant numerical information. 

With the 

Graphical postprocessing facilitates a better understanding 

The effort to close the preprocessing-analysis-postprocessing design 

loop has inspired much research in the area of automatic mesh 

refinement. This has led to the introduction of a new postprocessing 

function - mesh quality evaluation. 

solutions to a real problem. Properly formulated numerical solutions 

have been shown to approach asymptotically the "exact" ones as 

discretization is indefinitely increased. There is a tradeoff between 

cost-effectiveness and the degree of error. Thus, an important 

Numerical analyses are approximate 
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postprocessing function is to indicate to the analyst the quality of the 

analysis being examined. 

At the start of this research, the capacity to view multiple- 

material, stepwise nonlinear or multiple loadcase analyses and to create 

subobjects existed on a Lexidata System 3400 frame buffer. 

resolution of this device is 512 x 640. The frame buffer supported a 

The 

12-bit in, 8-bit out, pseudo-color, one-channel color look-up table with 

a 16-bit depth buffer and 4 white, hardwired overlays. Rendered 

polygons are automatically depth-buffered at scan conversion and the 

capability to depth buffer three-dimensional vectors drawn in an overlay 

plane allowed interesting use of grids of lines in the subobject 

extraction process. The analyst was able to choose one of six color 

maps and interactively change the scale of the map from linear to 

nonlinear or to specify upper and lower limits. A single light source 

existed and could be interactively "moved" to illuminate the object as 

the analyst required. The lack of sufficient speed in the rendering of 

boundary polygons necessitated the use of outlines during the rotation 

of the structure [l]. 

This thesis describes the third year of development of 

three-dimensional color postprocessing techniques. The crux of this 

research lies in the enhancement of the existing environment. The 

interactive postprocessing implemented to date has been used for the 

evaluation of finite difference, finite element and boundary integral 

equation results. 

on the implementation of finite element mesh quality evaluation and the 

Emphasis during the third year of research has been 

enhancement of the existing environment, partially through the 

exploitation of high-resolution, fast raster graphics displays. The 
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availability of more cost effective and faster computing facilities has 

made possible the numerical solution of increasingly larger problems. 

This has led to the need to modify and improve the postprocessing 

capabilities to permit the evaluation of the results of these large 

analyses. 

capabilities and during the port of the computer program, as well as new 

directions, in both sofware and hardware, are discussed. Based on the 

experience gained from over three years of research in this area, a new 

CAD environment has been designed. This environment exploits the 

advanced features of state-of-the-art, high-level raster graphics 

workstation technology. 

Problems incurred during the development of these new 

1.1 Background 

The main role of any postprocessing system is to provide the user 

with an interactive graphical environment that facilitates the 

evaluation of behavioral responses. The interpretation of these 

responses graphically will be referred to in this thesis as "response 

viewing." This is an essential tool in the design process and allows 

the engineer to gauge the behavior of the design quickly and 

interactively. 

stressed during the design of the program. 

menus are used as the user-interface. No feature that would take more 

than a few seconds to be implemented is provided to the user. This, in 

certain cases, limits the funtionality available to the user and 

necessitates the use of state-of-the-art raster graphics workstations. 

These are high resolution devices with high-powered geometry engines for 

shading, depth-buffering, transforming and, finally, rendering polygonal 

User interactivity and flexibility are the features 

Tablet-driven on-screen 
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information in real time. 

A relatively new field of research is that of finite element mesh 

quality evaluation and "errorf1 computation. This research is inspired 

by the drive to create self-adaptive design programs with automatic mesh 

refinement capabilities. The need to refine the mesh is expressed in 

the form of qualitative or quantitative error or mesh quality sensors. 

Qualitative error sensors provide the user with initial insight into the 

accuracy of the solution in localised regions of the mesh and, hence, 

the need to remesh locally. 

One of the important objectives of postprocessors is to provide the 

user with the ability to obtain an initial "feel" for the quality of the 

analysis under review. When an engineer has performed the approximate 

numerical analysis of a complex system, the first questions that he 

should consider are, "How accurate is the approximation?" and "Is there 

a need to re-analyze the problem with a refined model?" Ideally, one 

would prefer to utilize a computer program which automatically begins to 

answer these questions by, say, self-adaptive refinement, [2-4). In 

addition, if a sequence of analyses with successfully refined meshes has 

been performed, it is possible to estimate errors quantitatively and to 

apply extrapolation techniques to obtain improved approximations, [5-71. 

However, most analysis systems now used in practice do not include 

capabilities for such advanced concepts as self-adaptation, 

error-estimation, or extrapolation. Instead, the analyst attempts to 

develop an adequate analytical model and performs an initial analysis. 

Answering the above questions for the initial and subsequent analyses 

then becomes a question of judgment tempered by tradeoffs between 

feasible analytical effort and the accuracy desired. The assessment of 



1 
1 
I 
I 
8 
c 
I 

R 
i 
c 
8 
ff 
I 
I 
t 
1 

a 

5 

accuracy is often subjective. In the worst extreme, those who misuse 

numerical methods neglect to perform even subjective assessments. This 

could be attributed primarily to naivety but also to the lack of 

effective tools to facilitate critical evaluation. 

To facilitate answering the result-interpretive questions posed by 

the analyst -- "What is the behavior of the analysed system?" and "What 

are the optimal results to be drawn from the numerical analysis?" -- 

smoothing of response parameters is necessary. If the questions 

regarding accuracy posed above are as important as the 

result-interpretive questions of postprocessing, the engineer who uses 

typical postprocessors may face a dilemma as the tools available may not 

adequately permit him to answer both sets of questions. In particular, 

the smoothing of computed responses may mask the information needed to 

assess the quality of the analysis. On the other hand, standard 

graphical interpretation tools can be used to convey some types of 

analysis accuracy information if available; e.g., if continuous 

quantitative error estimates are available, the usual contouring methods 

can be used to display them. 

1.2 Objectives 

Numerical analyses typically create volumes of numerical results 

that have to be sifted by the analyst. This data contains, embedded 

within it, the answers to both sets of questions posed above. 

Typically, smoothing techniques would result in the loss of the 

analysis-accuracy information. Thus, it is necessary to store the 

unsmoothed results as well. 

The main objective of this research is to create an environment 
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within the existing postprocessor that would enable the analyst to 

examine the results of a single analysis from the perspective of mesh 

quality evaluation and error sensing. 

reaching an initial decision on the "quality" of the analysis. 

would also indicate the need to perform a more refined discretization of 

local subdomains of the structure. The thrust is toward evaluation of a 

single analysis and is qualitative in nature. Research is on-going in 

the area of quantitative error measures, and developments to date will 

be briefly discussed in Chapter 4 of this thesis. 

The tools developed would enable 

They 

Also included in the current research is the enhancement of the 

existing graphical, color postprocessing environment by improving the 

performance of existing functionality, adding new features, and by 

porting the program t o  a high-resolution device. 

Finally, the experience gained in the process of the port is 

consolidated in the form of suggestions and the design of an integrated 

CAD environment for workstations. 

There are a number of specific objectives which this research aims 

to address: 

(1) Mesh quality evaluation. 

(2) Enhancement of the existing postprocessing functionality. 

( 3 )  Port of the software to a high-resolution device. 

( 4 )  Design of a highly modular, new CAD environment for 

workstations. 

(5) Increasing the modular nature of the code and using, as much as 

possible, a device-independent graphics package that would 

facilitate portability and future modification of the code 

during research in this area. 
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(6) The expansion of the operating database to include unaveraged 

responses at each of the nodes on the boundary of the structure. 

(7) Enhancing the translation facilities for the postprocessor. 

1.3 Scope 

A large number of minor refinements have been implemented in the 

existing system, and these are too numerous to list here. The major 

enhancements are listed and described in this thesis. 

A new feature of the program allows the user to plot responses along 

a line on the surface of the structure. Unaveraged responses at the 

boundary nodes are used to extract response values along the plot line. 

The presence or absence of inter-element discontinuities is used as a 

qualitative mesh quality sensing device. 

line interactively and can also create a file containing the plot 

information. Smoothed responses, too, can be graphed on the screen. 

The high resolution obviates the need for anti-aliasing vectors in most 

cases. 

The user can define the plot 

The capacity of the postprocessor to handle large problems has been 

It has been set up to handle problems of up t o  2,500 increased. 

elements, 15,000 nodes and 4,000 boundary faces. Creation of subobjects 

by material type has been made visual with the use of color maps to 

render the structure. Unaveraged boundary response information is now 

stored in the database to facilitate mesh quality evaluation. The 

ability to generate this information for subobjects has been 

implemented. 

the main display window on the raster scope before storing the image for 

hardcopy creation. 

The program now has the capability to add annotation t o  
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The translator programs have been improved. The extrapolation 

technique used to obtain nodal response values for 15-noded 

isoparametric ( 3 - D  wedge) finite elements was inadequate in regions of 

high stress gradients. A standard least-squares technique using the 

shape functions of the linear wedge element as an interpolant is now 

employed to extrapolate gauss point responses to the nodes. A new 

translator program to salvage the linear elastic information from the 

first linear step of an erroneous nonlinear analysis has also been 

written. 

The code has been made more modular. Low-level graphics calls have 

been isolated. In approximately half the cases, a device-independent 

package has been used. 

support the required functionality, calls have been made to the graphics 

library supported by the Rastertech frame buffer -- Onelib. These calls 

have been isolated in a layer of code that can easily be modified in the 

future, if necessary. 

maps, although slowing down some of the functionality, are features that 

improve portability of the program. The move from the one-channel 

Lexidata system to the three-channel Rastertech system necessitated many 

of these changes in the program design. 

In those cases where the package does not 

The use of software overlays and software color 

The accessing and allocation of virtual memory during run-time 

becomes a natural problem area as the size of the program and as the 

size of problems evaluated by the program increase. The manner in which 

memory is acquired has been streamlined as far as possible in the 

postprocessor, as well as in the boundary and outline extractor 

programs. As the program grows larger, this is a problem that will need 

to be tackled from a different perspective, most appropriately through 
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the re-design of the database. 

A new CAD environment has been designed. This design is being 

implemented at the Program of Computer Graphics, Cornel1 University. 

High-level graphics tools are used in the design. 

approach simplifies maintainance and the addition of graphical 

functionality. Device and database independence, and the creation of a 

personalized postprocessing environment are some of the main goals of 

the design. 

A highly modular 

1.4 Organization of the Thesis 

Chapter 2 discusses the new hardware and software environments 

created for the postprocessor during the third year of research. The 

necessity for a hardware change is stressed, and the performance of the 

new frame buffer is evaluated. The algorithms that have been 

re-designed due to the hardware change are described. Future hardware 

trends are proposed. The drive to create a modular, portable and 

flexible program is discussed. 

Chapter 3 enumerates the enhancements made to the existing 

postprocessing environment. Material extraction (the process of 

interactively creating a "subobject" based on material types) has been 

made more visual. 

software color maps, and unaveraged boundary response information. 

Additional response parameters can now be viewed. 

smoothing technique for 15-noded 3-D wedge isoparametric finite elements 

has been improved. 

allows the analyst to add annotation like text, circles, arrows, etc., 

to an image. 

The existing database has been expanded to include 

The response 

A new Annotation menu page has been added -- this 
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Chapter 4 discusses the main drive of this research - mesh quality 

evaluation. A literature search is documented and the use of inter- 

element response discontinuities as a qualitative mesh quality sensor is 

demonstrated. 2-D plotting of unaveraged response parameters is used as 

a qualitatile mesh sensor. Algorithms used to develop interactive plot 

loop and plot line definition on the surface are described. 

problems are used to demonstrate the efficacy of the suggested measures. 

Example 

Chapter 5 details the principles of the design of a new 

postprocessing environment. The advantages of the modular design are 

discused in detail. Suggestions are made for the integration of the 

design process, and the improvement of the database structures used. 

Chapter 6 summarizes this research to date and suggests future 

research areas and trends in the field of color graphical 

postprocessing. 

Appendix A outlines the file management scheme used by the 

preprocessing, analysis, and postprocessing programs in use at the 

Program of Computer Graphics in Cornel1 University. Finite element and 

boundary element applications are treated separately. The contents of 

relevant data files generated by these programs are briefly listed. 

Appendix B deals with the memory problems associated with the size 

of the analyses evaluated by the program. The mainframe-host 

environment is compared to the high-powered graphics workstation 

environment. Suggestions for efficient memory management are made. 



CHAPTER 2 

NEW COMPUTING ENVIRONMENTS 

An inevitable feature of any research environment is constant 

evolution. This feature is especially apparent in areas that involve 

the use of computers and computer graphics. 

continuous improvement of the cost/performance ratio due to rapidly 

improving technology. Concomittantly, software must evolve with the 

hardware. The new features of the graphics hardware -- improved 

resolution, faster polygon rendering speeds, hardware transformations 

and lighting calculations etc. -- need to be exploited by corresponding 

changes in the software. Fortunately, as more graphics functionality 

is absorbed into hardware, the software which uses these functions 

becomes simpler. 

There is an almost 

This chapter deals with the evolving computing environment, both 

hardware and software, and the accompanying changes to the existing 

postprocessing environment. The performance of the new hardware is 

analysed and compared to that of the existing hardware. 

11 
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2.1 Hardware and Firmware 

The Lexidata System 3400 represents early 1980's technology while 

This the Rastertech Model One/380 represents the technology of 1984. 

sections compares and contrasts two technologies in a "changing- 

technology" situation with respect to engineering postprocessing as 

viewed by the author and his colleagues. 

The initial hardware consists of a System 3400 color raster display 

monitor with a 12-bit frame buffer, a 12-bit depth buffer, and 4 

hardwired overlay planes, and is produced by Lexidata Corporation. The 

screen resolution is 640 x 512. The frame buffer is driven by a host 

VAX 111780 computer on a time-sharing basis. 

features of this hardware that make it suitable for engineering 

postprocessing. The single-channel, pseudo-color look-up table is ideal 

for the simple 3-D shaded images that are required. Three-dimensionality 

of viewing is maintained by simple cosine shading that is done in 

software. Hardwired overlays with a higher color intensity prove to be 

visible over any contoured images and are fast. Depth buffering of 3-D 

vectors drawn in any of the overlays is a useful feature in the 

subobject extraction process and when displaying the displaced shape 

There are a number of 

111 

Figure 2.1 shows the hardware configuration and Local Area Networks 

in the Program of Computer Graphics in Cornel1 University. The 

Rastertech model One/380 frame buffers and the Hewlett-Packard Series 

9000/320 workstations are the available raster graphics devices. 

2.1.1 Necessity for a Hardware Change 

Although the Lexidata monitor and frame buffer were suitable in many 
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ways, the 640 x 512 resolution was not sufficient for a number of 

features that were to be added to the program. The quality of the 

image, especially for lines and curves, leaves much to be desired. To 

facilitate rendering speed, a simple cosine diffuse shading law is 

incorporated. This requires higher resolution if clear and sharp images 

are desired. The low resolution of the Lexidata make the implementation 

of multiple viewports infeasible. 2-D plots of unaveraged reponse 

parameters is used as a qualitative measure of the performance of the 

mesh. This feature, too, requires higher screen resolution. 

A present goal of computational analysis software is the real time 

simulation of complex analyses -- to be able to use a,n intelligent 

workstation as a viewing window into a transient or nonlinear solution 

of a problem. The attainment of this goal must be viewed from many 

angles. From the perspective of the viewing mechanism, the bottlenecks 

usually lie with rendering capabilities of the frame buffer. Hardware 

transformations, shading, hidden surface removal and scan-line 

conversion have improved the rendering capabilities of modern raster 

graphics workstations. The speed of the Lexidata permits the rotation 

of only the wire-frame representation. Faster polygon rendering speeds 

would allow real time rotation of the polygonal representation of the 

structural model. As a step in this direction, it was decided to 

transfer the postprocessing software to a newer, high-resolution device 

with faster rendering capabilities. 

The hardware change would enhance the quality of the image and 

This change would also serve as a improve rendering capabilities. 

test-bed for the next phase -- the complete redesign of postprocessing 

software on the H.P. Series 9000/320 workstations. 
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2.1.2 The Rastertech Model One1380 

The Rastertech Model One1380 is based on the latest technology of 

the time of its release. 

x 1024 color monitor and a 40-bit frame buffer. The frame buffer is 

This system consists of a high resolution 1280 

configured as a 3-channel, real-color system with 8 bits of information 

for each of the three red, green, and blue channels. It also contains a 

16-bit depth buffer used for hidden surface removal during scan-line 

conversion. Frame buffer commands are buffered and executed when either 

the buffer is filled or a "buffer-dump" is generated. 

The display list can be segmented and has the capacity to store one 

megabyte of infdrmation. This feature of the new hardware could not be 

taken advantage of as the display list of the larger problems needed far 

more than the available one megabyte of storage space. Thus the 

hardware shading and transformations, which could only be performed on 

the display list, were not used and had to be done in software. 

2.1.3 Performance of the New Hardware 

In general, the performance of the new hardware with respect to the 

particular engineering postprocessing features that have been found 

useful in this and earlier research is disappointing. Besides 

performance inadequacies, frequent hardware problems occurred. The 

following section compares the new Rastertech frame buffer (RT) with the 

Lexidata (LD) frame buffer from the point of view of engineering 

postprocessing. 

1 )  1-Channel vs 3-Channel Color Graphics Systems: The LD has a 

1-channel, pseudo-color look-up table whereas the RT has a 3-channel, 
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real color system. If only 6 color maps, each of 10 base colors, are 

desired, and if the maximum of 256 shades of each of the base colors of 

the currently used map are to be stored, then it can be seen that the 

4096 colors that could be simultaneously displayed on the LD monitor are 

more than adequate. The 1-channel system allowed for rapid execution of 

such useful features as "changing color scales" or "contrasting" [ BCB] . 
An informal survey of program users showed that these features are 

constantly used. On the LD, these were performed almost instantaneously 

by reloading the color look-up tables. The 3-channel system on the RT 

does not allow the rapid execution of these features. Both features are 

now much slower and the algorithms involved were much more complex 

(Section 2.2.3 describes the new algorithms). Large numbers of polygons 

are now redrawn, whereas in the 1-Channel system, the color look-up 

tables were merely reloaded to accomplish the same result. 

less important feature that has been affected is the ability to change 

the orientation of the "light sourcev1. The user could interactively 

"move" the single light source around to illuminate the structure 

suitably. This feature has now been removed from the RT version as it 

is no longer interactive. 

Another, 

2 )  Hard-wired overlays: Most interactive graphics, engineering 

programs make use of overlays. Hore specifically, the existing 

postprocessor makes use of overlays for many essential functions. 

Often, use is made of two and sometimes three overlays at the same time. 

The LD has four hard-wired overlays. The RT system has none. Software 

overlays are used in the RT version of the program. 

The important features that make use of overlays are [1,8]: 

a) Display of tables. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 

16 

b) Movement of "grids" used in the element extraction process for 

the creation of subobjects. 

c) Display of displaced shapes in the form of deformed meshes and 

undeformed meshes. 

d) Display of element and node numbers in the Attribute Viewing 

Page. 

e) The new Line-Plotting feature -- to draw plot loops and lines on 

the surface of the structure, display meshes and the actual plot 

itself. 

Often, many of the above features are needed simultaneously; hence 

the need for multiple overlays that can be individually written into or 

cleared. 

The advantages of hard-wired overlays over "software overlays" are 

many and it is the belief of the author that hard-wired overlays are a 

necessity for an efficient engineering postprocessing environment for 

the following reasons: 

a) Hard-wired overlays operate faster. 

b) The overlays in the LD have 125.0% intensity levels and are, 

hence, bright. 

'overlayed' by a mesh, which has to be brighter than the background to 

be visible. 

most cases (Section 2.2.1.2). Often it is found necessary to have to 

"thicken" vectors that are drawn in a soft overlay to make them more 

visible. This further slows down the process. Also, from an 

applications programmer's point of view, it is a lot easier to develop 

computer code for a frame buffer that has hard-wired overlays built into 

the system. The software overlays of the RT system necessitated the use 

This is necessary as a contoured image is often 

The RT version uses software overlays and these are dim in 
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of the device independent RAG package developed at the Program of 

Computer Graphics in Cornel1 University. 

"layer" of routines and was found to reduce the speed of execution of 

the program. 

This forms an additional 

3 )  Phantom-Write Feature of the Lexidata: This is a useful feature 

that is built into the LD graphics library. When switched on, it allows 

the automatic depth-buffering of vectors drawn into an overlay. 

ensures that those parts of a vector that lie "behind" existing 

polygons, (in the image plane), are not drawn. It is found t o  be a 

useful feature when grids drawn in an overlay are "passed through" the 

structure interactively. The intersection of the grid plane with the 

structure then becomes obvious to the user who can position the it 

appropriately with respect to the structure. This feature is used 

extensively in the process of subobject creation, an important function 

of the existing postprocessor [l] .  The RT does not allow vectors to be 

depth-buffered. Thus, the process of visually positioning a grid of 

lines with respect to the structure is now difficult. 

This 

4 )  Speed of Rendering Polygons: The RT has 4 times the number of 

pixels when compared to the LD, but its published speed of rendering led 

the author to believe that a better performance would be obtained. This 

was not found to be the case. The RT frame buffer is faster than the LD 

frame buffer by approximately 4 times; but as there are 4 times as many 

pixels, there is no gain in rendering speed. 

5 )  Reading Depth Values out of the Depth-buffer: The LD allowed the 

program to read screen depth values out of the depth buffer for a given 

pixel location. This useful feature made the important "hit-testing" 

function relatively fast and simple (81. The fact that this is not 
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possible using the RT makes hit-testing more complex, algorithmically. 

Most frame buffers manufactured today do not allow the access of depth 

information partly because "scratch" space is used to store this 

information and its retrieval is slow. 

to present workstation and frame buffer standards. 

Thus, the new algorithm conforms 

6 )  Screen Resolution: The resolution of the LD system is 640 x 512 

and that of the RT system is 1280 X 1024. This added resolution makes 

the images on the RT look significantly better and sharper. Also, the 

2-D line-plotting feature that has been added to the new RT version, 

(described in detail in Chapter 4 of this thesis), could not have been 

effectively implemented using the lower resolution. The vectors used to 

plot the responses would have been far too jagged, and this defeats the 

purpose of the line plots which is to study inter-element response 

discontinuities. 

requires the higher resolution of the RT monitor. 

The future implementation of "multiple viewports" 

Summarizing, the overriding disadvantage of the new RT system seems 

to be the fact that it is unreliable and is prone to breakdown without 

warning. The higher resolution is the sole feature that redeems this 

system. The loss of some of the postprocessing functionality mentioned 

above and the lower rate of performance of others are direct 

consequences of the characteristics of the system. 

seems to have been designed for static, realistic-image synthesis and 

not for the more dynamic, and interactive, engineering functions of the 

postprocessor. The move to this system is to be viewed as a valuable 

exercise in preparation for the more important complete redesign of the 

postprocessor on the H . P .  Series 9000/320 workstations. 

The RT frame buffer 
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2.1.4 Future Considerations 

Present trends indicate that the rendering speed of raster devices 

will keep increasing for a while. 

postprocessing functionality that now hinders interactivity and is 

nevertheless essential will be performed almost instantaneously. 

next step is real time rotation of the boundary polygonal representation 

of the geometric model. Contouring is a function that is not only 

computationally intensive, but requires rapid rendering capabilities. A 

networked environment of workstations and high-speed super-computers may 

be the solution to this problem. 

In the forseeable future, certain 

The 

Real time simulation of transient-dynamic, and nonlinear problems 

require supercomputing power and super-workstation rendering 

capabilities for the front-end user interface. This would necessitate 

changes in hardware design, networking, and the use of asynchronous 

program environments. 

2.1.4.1 Latest Technology 

The new H.P. Series 9000/320 systems represent the state-of-the-art 

in raster graphics workstation technology. These new systems improve 

rendering capability by orders of magnitude. 

in virtual memory and hence its size is governed by the virtual memory 

capacity of the workstation. Segmentation of the display list is a 

feature that allows editing and manipulation of specific parts of the 

image display list. 3-D transformations, and simple diffuse and 

specular shading are done in hardware. 

is 1280 x 1024. The frame buffer is a 3-channel, real-color system 

which can be configured as a 24-bit single buffer or 2 12-bit image 

The display list is stored 

The resolution of the monitors 
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planes for double buffering. 

surface removal. 

A 16-bit depth buffer is used for hidden 

One of the important features of this machine is the existence of a 

hardware "transform engine" to drive the 3-D transformations of the 

display list. This speeds up polygonal rendering. Rotation of complex 

polygonal environments is now possible using double buffering to smooth 

out the process. Some of the disadvantages of a 1-channel system are 

negated with higher rendering speeds. 

now be fast even if a number of the polygons have to be redrawn. 

A s  shading calculations are done in hardware, it will be possible to 

Contrasting of base colors would 

allow the user to interactively re-orient one or more light sources to 

illuminate the object as required. The "worst-case-scenario" of the 

process of changing the color map is redrawing all the boundary 

polygons. As this is now an interactive process for complex 

environments, changing the light source, too, could conceivably be as 

fast as it was on the 1-channel Lexidata frame buffer. 

Dithering is a relatively new concept that is used to artificially 

improve the quality of an image with a small number of allowable pixel 

values. It deceives the eye into perceiving a much larger number of 

shades than actually exist by a process of statistical averaging over an 

area. This would allow the programmer to configure the 24 bits of image 

memory as a dithered, 12-bit double buffer with 4-bits of Red, Green and 

Blue image information per pixel per buffer, giving all the advantages 

of a 1-channel system with minimal sacrifice of image quality. 

A s  the problems being solved increase in size and complexity, the 

rendering capabilities of the workstation, too, must improve. It is the 

belief of the author that the basic configuration of the Lexidata frame 
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buffer, with a few modifications, is ideal for engineering 

postprocessing -- a 1-channel, pseudo-color look-up table with hardwired 

overlays. 

3-channel system. 

This can be substituted by the use of dithering in a 

2.1.4.1 Expected Evolution 

Future trends will use the intelligent workstation as a window into 

a real time simulation of a transient problem with, possibly, changing 

topology -- for example, crack propogation through a continuum. 

Changing topologies introduce other possible bottlenecks like boundary 

extraction. 

to minimise this problem by recognizing the geometrically localized 

nature of the changing topology. 

An efficient database and database management system ought 

Analysis would be a parallel process run either on a supercomputer 

or on a network of main frames (9). Memory for the storage of data 

would become a concern as the size of problems increases exponentially. 

Common shared databases would minimise storage requirements and maximise 

the efficiency of accessing the information. Display would be handled 

by the workstation using Local Area Networks (LANs) to access a common 

database. All transformations, hidden surface removal, clipping, 

shading calculations and scan-line conversion will be done in hardware. 

Many hard lessons have been learned in the last ten years of 

computer graphics software development. An obvious problem is the lack 

of high level "tools" that almost every graphics applications programmer 

needs. 

reinventing countless (software) wheels -- windowing, menu managing, 

perspective and other transformations etc. These functions ought to be 

Every programmer spends a disproportionate amount of time 
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offered to the programmer as system services to be used when required. 

This will ease the load of much redundant programming and allow the 

structural engineer to concentrate more on engineering research than on 

graphics applications programming [lo]. 

2.2 Software Design 

Evolving hardware necessitates changes in software design 

philosophy. Basic algorithms change and the increased rendering speeds 

improve postprocessing functionality offered to the analyst. The range 

of this functionality varies not only as the capabilities of the device, 

but also inversely as the size of the problem being displayed. Certain 

features that are interactive for small problems may not be for larger 

problems. The postprocessing environment must be intelligent enough to 

make this decision. For example, the contrasting feature loses much of 

its importance for very large problems. As postprocessing of these 

problems becomes unwieldy, the aim is primarily to get a first, quick 

"feel" for the behavior of the structure and to identify critical design 

regions. A more thorough examination of the structure is done by 

extracting a subobject containing these critical regions. 

2.2.1 Flexibility and Portability 

There are numerous problems associated with creating large graphics 

programs that are portable. In a research environment, hardware and 

software requirements change continuously. 

fully anticipate the software requirements of such an evolving 

environment. Thus, it is important to design flexible and modular code 

that can be easily modified when necessary. 

It is almost impossible to 

Postprocessing all types of 
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engineering analyses using a single program is a difficult task. 

Changes in hardware and its capabilities make this task more difficult. 

It requires proper design, careful planning at the initial stages and a 

code-development philosophy that stresses modularity. 

2.2.1.1 Modularity of Graphics Code 

Flexibility is a feature of graphics code desired by both users and 

future researchers who plan to modify it for their own specific uses. 

A modular design allows the "hooks" to be installed for the addition of 

functionality. This design philosophy also allows more than one 

researcher to work on the overall task of creating such a postprocessing 

environment. 

for all kinds of research-type engineering analyses, it is important to 

build into it the capability to process any database. The researcher 

would design a database to suit his own purposes and use the existing 

framework to view the reults of analyses -- communication is through a 
set of database modifying and querying routines. 

easy as possible will save research time in the future. 

As a postprocessor ought to serve as a viewing front-end 

Making this task as 

An attempt has been made to further modularize the postprocessor. 

The changes made are too numerous to list here. 

calls have been seperated from the main body of the applications code. 

Redundant segments of code have been converted into subroutine calls. 

An important feature of modular programming is the proper use of program 

parameter values. Overlays are referenced symbolically according to the 

task they perform -- for example, the use of variables like MESH - OVERLAY 

allow the programmer to easily experiment with the visual impact of 

changing the overlay in which the mesh is displayed. This also creates 

Low level graphics 
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he analyst to select 

overlays for the display of specific high-level graphics objects like 

the mesh, outline, displaced mesh, 2-D plots, etc. 

2.2.1.2 Software Overlays 

One of the changes necessitated by the move to the Rastertech system 

was the use of "software overlays." The RT does not contain any 

hardwired overlays. A software overlay is code that controls the 1/0 

into the desired bit plane of  the image memory that searves as an 

overlay. 

used. 

Low level READ - ENABLE, WRITE - ENABLE, and DISABLE calls are 

The Rastertech image memory consists of 3 8-bit planes for Red, 

Green and Blue video gun intensities. For the implementation of 

software overlays on this device, the 8th bit in each of the 3 channels 

is used, enabling 3 overlays -- a red, a green and a blue. As these are 

not hardwired, speed is reduced. Also, the intensity of the colors is 

the same as that of the image plane. Thus if the red overlay is used to 

display an object over a red image, it is not visible. The intensity of 

the hardwired overlays on the Lexidata and the new H.P. Series 9000/320 

systems is raised by 10-25% over that of the image plane and ensures, 

for example, that a white overlay is visible over a white object in the 

image plane. 

As the code controlling the overlays has been modularized, a change 

to a system with hardwired overlays is simple. 

dependent low-level calls will need to be modified. 

Only the device 
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2.2.1.3 Use of a Device Independent Graphics Package 

It is essential to install a layer of device-independent graphics 

code between the applications code and the device-dependent code. This 

improves the portability of the program. 

The program has been modified to make use of an in-house, device- 

independent graphics package called RAG, (RAster Graphics). This 

package allows device-independent programming of frame buffers and 

includes a subset of operations common to most of them. Soft (virtual) 

frame buffers are supported as data holding devices. 

functions (cursor, zoom, overlay - on) can be called, but will have no 

effect on the soft frame buffers. High level graphic data routines 

provide for the writing of certain graphics primitives including pixels, 

vectors, rectangles, and polygons. Polygons and vectors may be 

Display-type 

antialiased. All pertinent configuration information is kept in a 

descriptor whose address is used as a handle. First the descriptor is 

allocated, then filled with pertinent information depending on the 

specific frame buffer and the configuration desired. Then the frame 

buffer is initialized. Once the frame buffer has been allocated, all 

attribute setting operations are invalid. It is necessary to deallocate 

it first, then change the attributes before re-allocation. This allows 

the applications programmer to configure the frame buffer as required 

using high level graphics calls. Cursor, zoom, and overlay routines are 

provided by RAG. 

Use is made of RAG'S capabilities to set up software overlays. This 

marginally reduces the portability of the program. If moved to another 

environment, there will need to be a device with hardwired overlays, or 

a similar package supporting high level calls to control soft overlays. 
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2.2.2 Translator Programs for the Postprocessor 

Changes are made to the existing finite element translator program. 

The technique used for response smoothing in 15-noded wedge 

isoparametric elements is changed (Section 3 . 4  discusses the new 

algorithm). The existing database stored only the smoothed (averaged) 

response values at the nodes in the structure. Now, unaveraged response 

information at the nodes on the boundary of the structure are stored in 

the database. A file containing the Gauss point responses for all the 

elements is also created in the translator and used if a subobject is 

created. This is detailed in chapter 4 .  

2.2.2.1 Suggestions for Future Translator Programs 

The existing finite element translator program is an example of 

'lpatchworktt code. As the database of the postprocessor grew in size and 

complexity, the translator program began to reflect these changes. This 

kind of interface design, (with the developer of the postprocessor also 

writing the translator programs), has a number of problems associated 

with it. The most crippling is that it restricts the analysis 

researcher t o  the format that the "current version" of the postprocessor 

requires. Smoothing of discontinuous responses is performed during the 

translation phase and the format of the data used is hardcoded. Various 

researchers might require one or all of a number of smoothing schemes to 

be implemented and compared. I t  has also been found that the 

introduction of new response types is a tedious process. 

Thus, any changes made to the  databases of either the analysis 

programs or the postprocessor itself requires changes to be made in the 
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translator programs. 

format on both the postprocessor and the analysis code. 

to allow researchers to design their own databases and, hence, develop 

their own translator and database querying subroutines. 

allows the researcher to build a postprocessing environment based on 

specific requirements -- one of the ultimate goals of a flexible, 

research-oriented postprocessing environment (chapter 5 . )  

This reduces flexibility and forces a certain 

It is necessary 

This procedure 

2.2.3 Algorithms Redesigned Due to the Hardware Change 

The port of the program from the Lexidata to the Rastertech system 

with its different hardware characteristics necessitated changes in a 

number of basic algorithms. 

maps. 

A number of these are associated with color 

2.2.3.1 The Hit-testing Algorithm 

This is a database querying algorithm whose purpose is to return to 

the program characteristics of the ''hit'' pixel like its color, the 

boundary polygon it belongs to, the "hit" element number, the closest 

node, a response value at a node, etc. The Lexidata frame buffer 

allows read and write access of the depth buffer. The previous 

algorithm made use of the depth information of the "hit" pixel. 

Rastertech frame buffer does not allow read access to depth information. 

Thus, the algorithm had to be redesigned. 

begin algorithm 

The 

1) The X SCREEN and Y SCREEN "hit" pixel screen coordinates are - - 
computed from the returned tablet coordinates. 

2)  The coordinates of each of the vertices of each boundary face 
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are transformed to screen coordinates using the total 

transformation matrix (TOT TRANS MAT). - - 
3 )  An X and Y "Box Test" is done on all the boundary faces to 

check if the hit pixel lies within the box created using the 

maximum and minimum X and Y screen coordinates of each 

boundary face. A list of all such polygons is obtained. 

If only 1 polygon passes the Box Test go to step 6. 

4 )  Cull this list to remove all back-facing polygons. 

If only 1 polygon passes this test go to step 6 .  

5 )  Pass the remaining polygons through the Surrounder Test to 

check to see if the pixel lies inside the polygon. (Note 

here that a polygon could pass the Box Test and fail this.) 

6 )  Solve for the plane equations of the remaining polygons (note 

that these equations are in screen space). 

7) Solve for the Z - SCREEN value of the hit pixel by substituting 

the X - SCREEN and Y - SCREEN values in each of these equations. 

If only 1 polygon has passed all the tests go to step 9 .  

8)  Now select the minimum of the 2 - SCREEN values computed in 

step 6 (i.e. the one closest to the viewer). Store the 

number of the "hit" boundary polygon. 

9 )  X SCREEN, Y SCREEN and 2 - SCREEN are transformed to X,  Y and Z - - 
coordinates in untransformed object space by using the 

inverse of TOT TRANS - MAT. - 
end algorithm 

Now that the position of the "hit" pixel, and the boundary polygon 

it belongs to are known, database dependent calls are used t o  extract 

additional information as required. Although the new algorithm has more 
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computations, there is no loss of interactivity. It is also more 

general to assume that the depth buffer cannot be "read-enabled", 

enhancing the portability of the program. 

2.2.3.2 Contrasting Specific Base Colors 

The function of this algorithm is to allow the user to change a 

specific base color to a dark grey, so that all the polygons drawn using 

this color can be differentiated on the contoured image of the 

structure. This is a useful feature, allowing the user to quickly gauge 

those parts of a structure that lie in a response range of interest. In 

a 1-channel system, this is easily and rapidly accomplished. Only those 

Color Look-Up Table (CLUT) values that correspond to this base color and 

its shades need be changed to grey and its corresponding shades. 

polygons drawn using these as indices instantaneously change color. It 

must be noted that no polygons are redrawn. This simple procedure is 

not possible on a 3-channel system. Changing a section of the CLUT 

values would affect a random number of colors. 

All 

begin algorithm 

1) While the response is being contoured, the boundary polygon 

information is stored. These are arranged according to the 

base color used for each. There are a maximum of 10 such 

sets (1 for each of the 10 base colors in the contour color 

map). Along with the screen coordinates of the vertices of 

these polygons, the number of vertex points, and the angle 

between the normal to each polygon and the unit vector 

representing the light source are stored. 
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2) When the user selects a base color to be contrasted, all the 

polygons stored under this base color, if any, are redrawn in 

grey (or in the specific base color if "uncontrasting" is 

desired. ) 

end algorithm 

This algorithm is much slower than the one on the Lexidata. This is 

one of the problems of a 3-channel system and cannot be circumvented. 

Besides being slower, a large amount of memory is required to store the 

boundary polygons and their associated attributes. 

becomes impractical for very large problems. 

problem with 4,000 boundary faces. 

polygons and that the problem is analysed using 20-noded brick elements. 

Each face is first broken down into 8 triangles. Each of these 

triangles are broken down into smaller polygons, each of a single base 

color. 

smaller polygons. 

of a specific base color. The memory needed t o  store this information 

is approximately 5 megabytes. 

This procedure 

For example consider a 

Assume that 3,000 are front facing 

Assume that on an average, each triangle gets broken down into 3 

This gives a total of 72,000 boundary polygons, each 

The same procedure would be possible using segments for the display 

list. The reason this is not done on the Rastertech frame buffer is 

that there is a limit of one megabyte of memory for the display list. 

Larger problems needed far more than this. 

it is possible to use segments as the display list can be as large as 

the amount of virtual memory available on the machine, which is atleast 

32 megabytes. In this case, the transformations and lighting 

computations are handled by the hardware and the process is speeded up 

tremendously. 

On the H.P 9000/320 systems, 
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2.2.3.3 Changing the Color Maps Used for Contouring 

This feature is necessary as the visual perception of different 

users with respect to color differentiation varies. The existing 

postprocessor allowed the user to choose one of six available color 

maps. 

If a different color map is chosen in the Lexidata version, the 

change is seen almost instantaneously as the only process is the 

reloading of 2560 values in the CLUT. No polygons are redrawn. For the 

reasons mentioned above, this is not possible on the 3-channel, 

Rastertech system. The complete structure needs to be redrawn. The 

algorithm is the same as the one used to contrast specific base colors. 

In this case, the polygons of all base colors are redrawn using the 

corresponding new base color from the new color map. 

redundant rendering, a record is kept of those colors that have been 

contrasted. The polygons corresponding to these are not redrawn (as 

they would be the same color, grey, even f o r  the new color map). 

This process will benefit by the use of internal segments of the 

To reduce 

frame buffer. The H.P 9000/320 system will permit the use of this 

feature even for very large problems. 
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CHAPTER 3 

ENHANCEMENTS TO THE EXISTING ENVIRONMENT 

This chapter discusses various enhancements made to the existing 

postprocessing environment. Some of these are necessitated by the 

hardware change. 

material types has been made more visually interactive. The existing 

database has been expanded to include information useful for the 

qualitative evaluation of finite element meshes. It is also possible, 

to contour additional response parameters such as pore water pressure. 

The process of subobject extraction by specific 

The response smoothing technique used for 25-noded 3-D wedge 

isoparametric elements has been improved. Finally, a new section of the 

program allows the user to add annotation to any image; this feature 

permits the postprocessor to serve needs of both demonstrations and 

design reports. 

3.1 Material Extraction 

Material extraction is a process by which the user can create a 

subobject of a multiple-material parent structure based on material 
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types. 

extracted. 

All elements of one or more user-specified material types are 

In the existing postprocessor, the user was required to choose 

material types from a table consisting of the numbers corresponding to 

the materials in the structure. No material information -- parameters 

like moduli or spatial location within the structure -- was provided. 

The process is now not only visually interactive, but information 

about the materials in the structure can be obtained. On entering the 

Material Extraction menu page, the structure is redrawn using a 

different color for each material. 

numbers with the colors used to differentiate them. This gives the user 

visual feedback of the spatial location of the different material types 

in the structure. Material information can be obtained by "pointing" to 

either the image in the main view or to the appropriate color on the 

color map. The required material types may also be selected in the same 

manner. Figure 3.1 shows the image of a dam and its foundation. The 

various materials are shown, each in a different color. The material 

corresponding to the "arch" portion of the dam is interactively selected 

and the elements belonging to this material type are redrawn using a 

dark grey to contrast them from the rest of the structure. Flexibility 

is maintained by allowing the user to "unselect" any selected material 

types before asking the program to extract the subobject. 

the button to initiate the extraction process and the program 

creates a set of data files for the subobject. 

of the extracted subobject. 

surface. 

A color map associates material 

The user hits 

Figure 3.2 is an image 

Strain energy density is contoured on its 
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Implementation : When the structure is initially redrawn according to 

material type, a software display list of all the boundary polygons, 

segmented by material type, is maintained. This speeds up the 

contrasting procedure as only the appropriate boundary polygons are 

redrawn using a different color. 

Rastertech frame buffer is not used due to the fact that memory space is 

limited to only one megabyte. 

The internal display list of the 

The same procedure can be made faster by using the internal display 

list and segmenting capabilities of the HP Renaissance systems. A 

second display list of boundary polygons sorted according to material 

type can be generated the first time the user enters the Material 

Extraction menu page. This list can be stored in virtual memory for the 

complete duration of the interactive session. The fact that the display 

list of the Renaissance resides in virtual memory allows the second list 

to be stored without creating problems with regard to memory space. The 

expected performance reduction due to memory "page faulting" will need 

to be studied. 

3.2 Changes to the Existing Database 

The features of greatest importance to a user of postprocessing 

programs is flexibility, a wide range of functionality and interactive 

response time. This poses a dilemma to the designer of a database for 

engineering postprocessing. It can be stated as the tradeoff between 

the use of additional memory, and the loss of interactivity due to page 

faulting or computations done on the fly. 

database becomes difficult to handle and slow to manipulate, and on the 

other, too many computations done during the interactive session reduces 

On the one hand, a large 
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interactivity. Thus the designer of the database must make crucial 

decisions that determine what is to be computed before the interactive 

session and stored in the database, and what is to be computed during 

the session. 

A decision has been made to store more information in the existing 

database. This information relates to color maps, gauss point response 

values for all the elements, and unaveraged response values at nodes on 

the boundary of the structure. One of the consequences of this change 

is a larger database with the accompanying problems associated with 

size. Response to database querying commands has not become noticeably 

slower, but it now seems appropriate to redesign the database. This 

question is addressed in greater detail in Chapter 5 .  

3 . 2 . 1  Software Color Maps 

The Lexidata frame buffer is configured as a one-channel system with 

pixel values that are indices into a 12-bit color look-up table (CLUT). 

As the Rastertech frame buffer cannot be configured in this manner, the 

256 shades of each of the 10 base colors of the current color map are 

now stored in the database. This acts as the software equivalent of the 

CLUT in the Lexidata frame buffer. The three channels of the Rastertech 

frame buffer are each loaded linearly with values between 0 and 255 and 

are left unchanged during the interactive session. 

Consider the case of a polygon that has to be rendered. The base 

color of the polygon has been computed depending on the response values 

in that region of the structure relative to the global maximum and 

minimum values. The angle that the normal to the polygon makes with the 

unit vector representing the direction of the light source is computed 
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the base color, as an RGB triplet, 

is extracted from the CLUT stored in the database. This is now used to 

index into the three Red, Green and Blue channels before sending the 

polygon down to the frame buffer for rendering. This software mapping 

simulates a 1-channel system while utilizing the larger color pallette 

of the 3-channel system. 

The use of software color maps has a number of advantages. Coupled 

with dithering, it could artificially increase the number of "allowable" 

shades of colors that may be represented on the screen. This would 

improve the quality of the image without necessitating a larger pallette 

of colors or higher resolution. For example, the programmer may require 

a pixel to be colored with an RGB triplet (200.5, 50.75, 146.3). The 

Digital to Analog Converters (DACs), used to convert color index values 

to voltages for the guns, allow only integer values between 0 and 255. 

The dithering software would first detect that this color lies between 

(200, 50, 146) and (201, 51, 147). It would then use a statistical 

distribution of allowable pixel values in a certain region of pixels 

around this one. The effect is to fool the observer into perceiving the 

required shade at that location. The HP Renaissance systems do the 

dithering computations in hardware during scan conversion. 

up the process considerably. 

This speeds 

Another advantage of using software color maps is an increase in the 

portability of the graphics code. 

interface with both one and three-channel systems easily. Hence, i f  the 

program needs to be ported between two such systems, only the device- 

dependent code requires modification. 

The postprocessor can now be used to 
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3 . 2 . 2  Unsmoothed Response Information at the Boundary Nodes 

The existing database stores averaged responses at each node in the 

structure. 

results in different values of the same response at nodes which have 

more than one element framing into them. These values are averaged, 

resulting in the forced creation of single-valued responses at each 

node. 

indication of the quality of the analysis in that region. Unaveraged 

response information is used to create 2-D plots along any line on the 

surface of the structure (refer to Chapter 4 for details.) If only the 

averaged values are stored, information regarding the quality of the 

analysis is lost. 

Element by element extrapolation of gauss point responses 

The ranges of each of the response values at a node serve as an 

The new version of the database stores unaveraged responses at the 

nodes of each boundary face. This information is not stored at the 

internal nodes as the memory requirements would be large, and the use of 

this information is low. These values would be used only when the 

structure is sectioned or when a subobject is created. 

All computations and data management for the unaveraged responses of 

the parent structure is done in the translation phase. Unaveraged 

values of the strain energy density, pore water pressure (if it exists 

in the analysis), six Cartesian stress components and six Cartesian 

strain components are stored for the nodes of each boundary face. 

Principal stresses and strains, the tensor invariant quantities, and 

effective stress and strain are computed, if required, during the 

interactive session. 

The alternative to storing the unaveraged values is to store the 

gauss point responses for each element and to do the extrapolation on 
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the fly. 

less), but would not be interactive. To be able to extract the 

information to create 2-D plots of unaveraged responses interactively, 

it is necessary to store the unaveraged values in the database. 

price is paid in the form of memory space. 

that storing unaveraged response information increases memory 

requirements up to 50% in problems with large surface area to volume 

ratios. It must be noted that if a boundary node has 'n' boundary faces 

framing into it, 'n' values of each response - extrapolated from the 

gauss points of each of the corresponding 'n' elements - must be stored 

for the node. This accounts for the dependancy of the memory 

requirement on the surface area to volume ratio. 

This would require less memory space (though not significantly 

The 

Typically, it has been found 

3.2.3 Subobject Creation 

This is an interactive process by which the user can extract a part 

of the parent structure and create a new object, called a subobject, 

that can be individually viewed. The criterion for the extraction may 

be a cutting plane or a spatial enclosure, or may depend on material 

attributes. 

To be able to render 2-D plots of unaveraged responses on the 

surface of subobjects, either unaveraged responses at all the internal 

nodes or the gauss point response values of the elements should exist in 

the database of the parent during subobject creation. For the reasons 

discussed in section 3.2.2, the unaveraged values at the internal nodes 

are not stored. Hence it is necessary to maintain a copy of the 

responses at the gauss points of all the elements of the parent. This 

is done during the translation phase. A file containing the gauss point 
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values of the elements of the parent is created. This is the 

"problem - name". GPV file. 

The existing element extraction algorithm did not "compute" any 

response values for the subobject database. Each internal node was 

associated with single-valued (averaged) responses. 

response database was a subset of the parent response database. In the 

new version, unaveraged response information at the nodes on the newly 

The subobject 

formed boundary surfaces does not exist in the parent database. These 

values have to be computed using the gauss point values of the elements 

that form the outer layer of the subobject, obtained from the .GPV file 

of the parent. For each of the boundary faces, responses are 

extrapolated from the gauss points of the associated element to the 

nodes on the face. This information forms part of the subobject 

response database and may be used to generate 2-D plots of unaveraged 

responses on its surface. A llsubobject - name".GPV file containing the 

gauss point responses of the elements of the subobject is created. This 

file, a subset of the corresponding file of the parent, is used if a 

subobject of this subobject is extracted. 

Although the additional computations necessary during subobject 

extraction make it slower, the process is interactive for the size of 

problems being postprocessed. At present, these computations are done 

on the fly and the user cannot proceed with the session until the 

extraction is complete. As the size of problems being analyzed 

increases, that of subobjects becomes correspondingly larger. This 

would mean that subobject extraction would no longer be an interactive 

process. This process would then have to be submitted to the host in a 

batch environment, thereby allowing the user to continue with the 
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session without interruption. On completion of the batch process, the 

subobject database could be drawn into working memory to be viewed 

individually. 

3.2.4 New Response Parameters for Display 

The addition of new parameters into the postprocessor is not as 

simple as it could have been with a different approach to programming 

practice. In large graphics programs, it is necessary to build 

flexibility and the "hooks" for future functional expansion into the 

code. There are a number of sections of the postprocessor that need to 

be coded dynamically; especially in a research environment, the 

requirements of users change often. Sufficient foresight is necessary 

to ensure that atleast these sections of the code can be easily modified 

or extended. The manipulation of lists of character strings is a 

typical postprocessing function that demonstrates the need for a 

flexible programming style. For example, the "names" associated with 

response parameters, and the types of parameters available for display 

can change. The existing postprocessor has the names of responses 

hard-coded into the program. The new design of the postprocessor 

(Chapter 5) solves this problem by making use of a generalized list 

processor to process any list of strings. 

of strings, are stored in a data file created by the analyst. Changing 

a response name or adding a new response becomes the simple task of 

editing this file. Similarly, messages to the analyst, connected with 

specific response names, are now hard-coded into the program. 

list of the existing response names, (character strings), would solve 

this problem elegantly. 

Response names, in the form 

A dynamic 
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well designed to accomodate 

display. The numbers of scalar, 

the database contains form part of 

the input data. 

database a simple task. 

This makes the addition of new responses into the 

New Parameters : On-going research in the analysis of drilled concrete 

shafts in soil necessitated the inclusion of pore water pressure as a 

scalar response parameter that can be handled by the postprocessor. 

finite element translator program is modified t o  read the pore water 

pressure response file created by the analysis. Also, the postprocessor 

now offers this scalar quantity as a response that can be contoured, 

when applicable. 

The 

The existing boundary element analysis program generated only 

displacements and tractions as output and the postprocessor displayed 

these response parameters. It is often easier to understand the 

behavior of a structure when the tensor stress components can be 

contoured on its surface. Thus, this analysis program has been modified 

to compute Cartesian tensor components of stress from the tractions. To 

be able to display these values, the boundary element translator program 

and the postproprocessor have also been modified . Averaged and 

unaveraged stress information is stored for each of the nodes of the 

boundary elements in the modified database. The unaveraged response 

values facilitate the use of the plotting feature (refer to Chapter 4 

for details). 
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3 . 3  Annotation 

As the postprocessor is used as visual and graphical display of 

computational mechanics research, there exists a need to add simple 

forms of annotation to an image. 

images during demonstrations, and in technical papers or reports. 

This is useful for reproduction of 

An Annotation menu page has been added to the postprocessor. In 

this page, a user may add annotation to the image in the main view 

window. Text, arrows and circles can be added in overlay. Annotation 

may be erased from the entire screen, or from a part of it, defined by 

"rubber-banding" a rectangle interactively. These are basic features, 

but serve the purpose temporarily. Figure 3 . 3  shows an example of 

annotation in the green overlay, added to a contoured image. 

An existing feature of the postprocessor that complements the 

addition of annotation to an image is the Snap feature. The Lexidata 

version of the postprocessor allows the user to store an image by 

creating a file of the pixel information. 

reproduced on the screen. The low resolution and fast 110 to and from 

that frame buffer makes both these processes interactive. On the 

Rastertech, higher resolution and slower frame buffer I/O makes this 

process non-interactive; it takes as long as 10-15 minutes to store an 

image and up to 5 minutes to reproduce it. It must be noted that the 

information necessary to store a 1280x1024 24-bit image is 8 times more 

than that for a 640x512 12-bit image. The Snap feature has been 

temporarily deactivated and will be revived in the HP version of the 

program. 

This image can later be 
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3.4 Response Smoothing - 3-D Isoparametric Wedge Elements 

The existing technique for the extrapolation of responses from the 

14 gauss points to the nodes of 15-noded, 3-D isoparametric wedge 

elements is inaccurate in regions of high response gradients. 

3.4 shows the spatial location of the 14 gauss points. 

assumed that these planes may be approximated to spatially coincide with 

the "end" planes of the wedge element. This implicitly assumes that the 

variation of responses along the longitudinal axis of the element is 

negligible. 

end plane," to the nodes on that plane. 

a, b, c, d, e, f, and g are extrapolated to the 6 nodes on the face 

directly, using the shape functions of a 6-noded planar isoparametric 

triangular element. The same applies to gauss points h ,  i, j, k, 1, m, 

and n. The responses on each of the end planes is uncoupled during the 

extrapolation process. The inaccuracy of this assumption increases as 

the variation of responses in the longitudinal direction of the element 

increases. 

Figure 

The technique 

The extrapolation is done from the 7 gauss points, "on each 

The responses at gauss points 

The extrapolation procedure implemented in the new version of the 

postprocessor makes more general assumptions about the variation of 

responses within the element. A linear least squares extrapolation 

technique is used to solve the overdetermined system -- 14 known gauss 
point response values and 6 unknown vertex nodal values. 

of this linear transformation is detailed below [ll]. The shape 

functions of the 6-noded, linear wedge element are the interpolating 

polynomials for the least squares fit. The final values obtained are at 

the 6 vertex nodes of the element. Midside nodal values are obtained by 

simple averaging of the computed values at adjacent vertex nodes. 

The derivation 
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The linear least squares transformation may be described as, 

in which 

{ X = (6x1) vector of unknown vertex response values 

[ T ] = (6x14) concatenated form of the transformation matrix 

{ G } = (14x1) vector of known gauss point values 

For the given gauss point configuration, [ T 1 is a constant matrix 

for any 15-noded isoparametric wedge element. The components of [ T ] 

have been precomputed and hard-coded into the program for speed of 

execution. The elements of [ T ] are computed by solving the 

overdetermined Linear Least Squares problem defined as the minimization 

of the Euclidian norm, 

(3.2) 

in which 

[ N ] = (14x6) matrix of shape functions of the 3-D, linear, 6-noded 

wedge element evaluated at the 14 gauss points of the 

element 

[ N ] is not the interpolating shape function matrix used in the 

finite element solution of the 15-noded wedge element. In this case, 

the interpolant acts between response quantities which are functions of 

the first derivatives of the basic displacement degrees of freedom. 
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Hence, linear shape functions are used as the interpolants. 

The problem given by equation 3 . 2  can be restated as computing { X ) 

such that the following expression is minimized, 

Expanding ( 3 . 3 ) ,  one obtains 

Differentiating (3.5) with respect to ( X ) and equating the result to 

a null vector, one obtains 

[ A I = I [NTl [NI 1 - 1  

is substituted into ( 3 . 7 ) ,  one obtains 

[ A I - 1  X 1 = [ NT I ( G 1 ( 3 . 9 )  
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Premultiplication of both sides of the equation by [ A ] yields, 

or 

in which, 

(3.10) 

(3.11) 

(3.12) 

T Note that [ A ] can be explicitly computed because [ [ N I [  N 1 ] 

is a 6x6, square matrix. [ T ] is the required 6x14 transformation 

matrix. 

linear wedge element, evaluated at the 14 gauss points of the 15-noded 

element. The explicit form of [ T ] is documented in Appendix C. 

Its components depend on the shape functions of the 6-noded 

A s  [ T ] has been explicitly coded into the program, the 

extrapolation process is fast. Use of this technique improves the 

accuracy of the extrapolation in regions of high response gradients as 

the responses are linearly extrapolated along the longitudinal axis of 

the element rather than just within the triangular end planes of the 

element . 

3.5 Default View Specification 

The primary feature of the View Specification menu page is the 

interactive control of the processes that allow the analyst to rotate 
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It and spin the structure to the most convinient position for viewing. 

has been found that the analyst periodically positions a given structure 

in the same location. A new feature now allows the analyst to store and 

modify a desired default position. 

If an analyst desires to store a default position, a button - "STORE 

DEFAULT POSITION1' - is hit. 

contains the 4x4 transformation matrices that form the total 

concatenated transformation matrix. When a structure is selected for 

postprocessing, the program checks the directory for the existence of 

this file. If it exists, the default transformations stored in it are 

read, and used to  position the structure. A new .POS file can be 

This creates a "file - name".POS file that 

created by repeating the operation. 



OfllGlNAL PAGE IS 
OF POOR QUALtTY 

Figure 3.1 Material Extraction - material 1 is selected 

Figure 3.2 Material 1 extracted - contours of strain energy density 

49 



50 

Figure 3.3 Annotation menu page - image with annotation 
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Figure 3 . 4  Gauss point locations for a 15-noded wedge finite element 
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CHAPTER 4 

MESH QUALITY EVALUATION 

Research in the area of mesh quality evaluation has shown that the 

most useful evaluators are those computed a posteriori. This chapter 

outlines current research in the area of a posteriori finite element 

error estimation from a single analysis, and describes the graphical 

implementation of some qualitative error sensors in POSTPR03D. The 

objective of this section of the research is t o  provide an analyst with 

interactive graphics tools to facilitate the qualitative evaluation of a 

finite element analysis. The algorithms used are described and their 

efficacy is demonstrated with the use of example problems. 

lysis, there i 

4.1 Definitions 

In the literature on a steri ri error an a 

profusion of terminology used to label similar error quantities. 

Although the terminology differs, the basis for classification is 

generally uniform and is the "cause" or source of the error. 

The development of the finite element method so far shows that it is 
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especially suited for the solution of positive definite, self-adjoint, 

elliptic systems of partial differential equations. The method leads to 

discretization equations that are solved using a digital computer with 

finite wordlength. The numerical solution over the domain is never 

exact -- except in the case of trivial problems like constant stress 
states of simple configurations like patch tests. An infinite 

degree-of-freedom system is reduced to a finite degree-of-freedom system 

so that it can be processed by the digital computer. Mathematical 

idealizations, necessary for further simplification, introduce errors. 

The finite wordlength of digital computers result in the round-off of 

decimal values and the truncation of values when numbers of dissimilar 

magnitude are added or subtracted; therefore, the solution of the linear 

or nonlinear simultaneous equations is inexact. 

4.1.1 Error Quantities 

Before error sensors are described, it is essential to define some 

of the terms encountered in the literature that characterize various 

types of error quantities. 

4.1.1.1 Local Error Quantities 

These are error quantities that are computed at any nodal location 

in the domain of the solution. 

Total Error: Assume that careful measurements of the actual response of 

a structure to a set of external forcing functions are made. Let these 

"exact" measured responses be denoted by uE(x,t) and the computer 

solution by uC(x,t). 



Then, the Total Error, eT(x,t), is given by: 

erp,t) = UE(X,t) - uc(x,t) 

This error is the sum of the various errors defined below. 

Mathematical Modelling Error: 

that are unique to each and probabilistic in occurrence -- material 

properties, flaws, geometrical irregularities, and external loading. 

These are not only difficult to model mathematically, but, if modelled 

accurately, would drastically increase computational expense. So a 

number of simplifying idealizations are normally made. 

that part of the Total Error called the Mathematical Modelling Error. 

Let u,(x,t) be the "exact" response of the idealized continuum at the 

nodal locations. 

given by: 

Real structures always contain features 

These result in 

Then the Mathematical Modelling Error, eM(x,t), is 

Discretization Error: This error quantity, though not necessarily the 

largest portion of the Total Error, is of most interest to structural 

analysts. It is a natural consequence of the reduction of an infinite 

degree-of-freedom system (the real structure) to a finite 

degree-of-freedom system (the discretized model). Unless the order of 

the interpolating functions used to describe the behavior of the finite 

elements can exactly represent the structural response, this reduction 

introduces a Discretization Error into the computed response parameters 
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at every point in the structure. 

the discretized mathematical model. Then, the Discretization Error, 

eD(x,t), is given by: 

Let uD(x,t) be the "exact" response of 

Roundoff and Truncation Error: The finite wordlength of digital 

computers compels the truncation of values after a certain number of 

decimal places. 

computations; the cumulative truncations and roundoff result in a 

Roundoff Error being introduced into the solution. The Roundoff and 

Truncation Error, eR(x,t), is given by: 

The solution process involves a large number of 

Solution Error: The Solution Error is the sum of the Discretization and 

Roundoff Error quantities. It can also be expressed as the Total Error 

less the Mathematical Modelling Error. This is the error in the 

solution assuming that the "exact" structural response is that of the 

continuum described by the mathematical model (with its simplifying 

assumptions). The Solution Error, eS(x,t), is given by: 

(4.5a) 

( 4 . 5 b )  

4.1.1.2 Global Error Quantities 

Global error quantities attempt to characterize the overall quality 
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of the solution as a single scalar value. Rather than compute an error 

quantity such as e(x,t), some norm of these values, Ilel I, is computed. 

Error norms used follow the usual vector norm rules: 

Positivity Rule: IlelI L 0.0 (4.6a) 

( I le1 I = 0.0 iff e(x,t) i ( 0 )  ) 

Homogeniety Rule: For any arbitrary scalar A, 

Triangle Inequality: If el + e2 = e,  then 

(4.6b) 

(4.6~) 

Utku and Melosh [12] give a brief description of error norms. 

4.1.2 Hierarchical Finite Elements 

In the finite element method, convergence is obtained by using 

either the h- or the p-convergent methods. Both involve an increasing 

number of degrees-of-freedom, but use different techniques to introduce 

them into the discretized model. Hierarchically defined finite elements 

are used in p-convergent methods. 

These are finite elements over whose domain interpolating 

polynomials of any arbitrary order may be defined. They are constructed 

such that inter-element continuity requirements -- even between elements 

that have interpolating polynomials of differing order -- are exactly 
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This process is accomplished by condensing or constraining satisfied. 

the stiffness matrix of the element with the higher interpolating order. 

An important feature of the element formulations is that the stiffness 

matrix of an order n element is a subset of the stiffness matrix of an 

order (n+l) element. This implies that the addition of a single 

degree-of-freedom in an element leads to the introduction of a row and a 

column to the global stiffness matrix. 

triangularized matrix, this fact is exploited to make the re-solution 

process inexpensive. 

Making use of the previously 

The characteristics of these finite elements make them ideal for a 

p-convergent method of adaptive refinement. 

user-prescribed tolerance may be obtained when coupled with a global 

error estimator. Gago, Kelly, and Zienkiewicz [13,14] give a detailed 

description of the use of hierarchical finite elements and global error 

norms for error analysis and adaptive mesh refinement for 2-dimensional 

elasticity. 

A solution with a 

4.2 Mesh Quality Sensors 

Mesh quality sensors are scalar quantities computed for each finite 

element subdomain. They attempt to characterize the quality of the 

solution locally and are functions of the computed response parameters 

and their gradients. Knowledge of the way some of the responses, such 

as strain energy density, behave as the solution tends to the exact one 

is also used. 

Primarily, mesh quality sensors must lead to absolute or relative 

estimates of the discretization error and, when accuracy is inadequate, 

indicate regions of the mesh that require refinement. They must be 
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locally stable, i.e. they must converge as the local solution converges 

to the exact one. It is also desirable that they are computationally 

inexpensive; otherwise, it might be cheaper and simpler to re-analyse 

the model with a higher number of degrees-of-freedom. 

[15] list various sensors proposed in the literature and briefly compare 

their performances. 

To increase the efficiency and reduce the cost of the design 

Helosh and Utku 

process, postprocessing software tools must display the results of 

analyses in a user-friendly, flexible, and detailed manner. An 

important function is to indicate to the analyst those regions of the 

mesh that require refinement, if any. 

task. 

redesign, that is, a process which aims at generating a solution of 

desired accuracy while minimizing computer time in the search for the 

optimal mesh. 

Mesh quality sensors perform this 

They may also be used as the criteria for automatic mesh 

4 . 3  Literature Survey 

This section briefly discusses the progress of research in the field 

Key papers of a posteriori error analysis for finite element solutions. 

are referenced; the bibliographies of these papers are extensive. 

Energy-based methods are emphasized. 

4.3 .1  General Research-Review Papers 

There are some papers in the literature that have surveyed this 

field in detail. Shephard [ 2 ]  presents a review of the progress made in 

the area of finite element grid optimization in the 1970's. 

Melosh and Utku [12] examine finite element technology and the 
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processes which bear on designing efficient meshes. 

error sensors are discussed and their characteristics compared. The 

conclusions contain guidelines for choosing appropriate element types 

and grid arrangements that minimize the error in the solution. 

Discretization 

Utku and Melosh [15] survey the state-of-the-art of various aspects 

of finite element error phenomena such as the quantification of its 

basic components, the understanding of their propagation, and the 

estimation of the errors present in the computed response. 

4 . 3 . 2  Energy Basis for the Evaluation of Errors 

The most widely used mesh quality sensors are energy-based. The 

reasons for this become clear on examination of the functions that a 

sensor must preform. A useful sensor must be a locally stable scalar 

quantity that characterizes the complex behavior of a structure. The 

strain energy density, at various points in the structure, satisfy these 

criteria exactly. The real structure is idealized as a finite 

degree-of-freedom system. This "stiffens" the structure and reduces its 

strain energy absorption capacity. As the number of degrees-of-freedom 

increase, the model becomes more flexible and is allowed to absorb more 

strain energy. 

model indicates overall convergence of response values like 

displacement. Thus, strain energy and its gradient are efficient and 

intuitive mesh quality sensors. 

A convergence of the total absorbed strain energy in the 

The search for an efficient sensor has resulted in a bifurcation of 

research efforts: 

1) Existing mathematical theory of error analysis for the numerical 

solution of partial differential equations is used to compute error 
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norms that attempt to bracket the global discretization error in as 

narrow a range as possible. 

2) Strain energy density and its associated gradients and 

differentials are used to qualitatively and quantitatively characterize 

the error locally, over the finite element sub-domains of the structure. 

4.3.2.1 Energy Norms 

Energy norms constitute a mathematical approach to error estimation. 

They are used to characterize the discretization error globally. 

Consider the following partial differential equations: 

L (u} + p '  = ( 0 )  in R 

Pl (u) + r = (0 )  in r 

(4.7a) 

(4.7b) 

in which, 

R = the domain of the differential equations 

r = the boundary of the domain 

(u) = the desired set of responses at the nodal points 

L, H = linear differential operators 

p = a forcing function (say loads on a structure) 

r = any arbitrarily defined set of boundary conditions 

The approximate solution is obtained by assuming a trial function 

expansion of the kind 

M * 
am Nm U = E  

m= 1 
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If u is the exact solution, then, 

* 
error, E = ( u - u ) ( 4 . 9 )  

The energy norm is defined as, 

( 4 . 1 0 )  1 / 2  IIEII = I, B L E  dQ 1 

This norm represents the "correctness" with which the function is 

modelled by the approximation ( 4 . 8 ) .  

Let R be the domain residual given by 

* 
R =  L ( u }  + p # ( 0 )  (4.11) 

Then it can be shown by the Galerkin method that 

lIE1I2 = - I, E R d Q  ( 4 . 1 2 )  

This residual, R, is computed by substituting the solution into the 

differential equation. The energy norm, ( 4 . 1 2 ) ,  is then computed. This 

method has some obvious disadvantages. First, the explicit form of the 

differential equations being solved must be known and often i t  is not. 

Secondly, ( 4 . 1 2 )  is a volume integral over the entire domain of the 

equations and is expensive to compute. 

The mathematical theorems associated with research in this area and 

their proofs are proposed and derived by Babuska and Rheinboldt 14, 

16-19]. Proofs for the one-dimensional case are detailed and the 

extension to two and three dimensions is outlined. The approach is 
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based on the use of energy norms in the estimation of the discretization 

error. Babuska applies the error norm to the finite element solution of 

the Laplace Equation over an L-shaped domain. 

benchmark problem in discretization error analysis research. The error 

involved in one- and two-dimensional elasticity problems has been 

closely bracketed. 

This has since become a 

Zienkiewicz and Morgan [20] define the discretization error and 

describe the use of an energy norm to estimate it in a p-convergent 

technique. Kelly, Gago, Zienkiewicz, -- et al. [13,14] give a detailed 

description of the practical application of this method in a computer 

program, and solve example problems in one and two dimensions to 

demonstrate the efficiency of the method for error sensing and adaptive 

mesh refinement. Unfortunately, this energy norm when coupled with 

hierarchically defined finite elements is not always reliable. 

Zienkiewicz [20], referring to the energy norm computed by using the 

domain residual and a hierarchic description of elements, says, "It has 

to be noted that this estimate is only valid in some asymptotic sense as 

'h' (the characteristic mesh size) tends to zero, and is not reliable on 

finite meshes.. . '' 
The limitations of the energy norm approach are twofold. First, 

research in this area has produced limited results in actual 

applications due to a number of reasons. 

mathematical and computationally expensive. 

efficiently implemented only with the use of hierarchical finite 

elements, but this tends to make the error quantity unstable both 

locally and globally. 

are restricted to 1- and 2-dimensional elasticity. 

The approach is highly 

This scheme can be 

Second, all the research and applications so far 

The extension of the 
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theory to 3-dimensional structures has not been achieved. 

4.3.2.2 Strain Energy Density 

Section 4.3.2.1 discusses the theoretical basis for the use of 

strain energy density as a mesh quality sensor. Research in the area of 

automatic redesign of finite element meshes began with the use of strain 

energy and its gradients. 

Among the first to study the gradient of strain energy density as an 

error sensor were Melosh, Killian, and Marcal [21,22]. This sensor is 

called the Backward Energy Difference. 

4.3.2.2.1 Theoretical Basis for Energy Difference Methods 

In the limit, as a characteristic mesh size tends to zero, each 

element could be imagined to reduce to a single point with a single 

value of stress, strain, and hence, strain energy density. From this 

can be deduced that the signs of a converged or converging solution 

include: (a) The change in the total strain energy absorbed by the model 

after the introduction of an additional degree-of-freedom is negligible. 

(b) The change in the strain energy absorbed by each finite element 

after the introduction of an additional degree-of-freedom is negligible, 

i.e., the strain energy absorbed by each of the elements tends towards a 

constant value (a different constant for each element) as the solution 

approaches uD(x,t) -- the "exact" solution of the mathematically 

idealized, discretized structure. Criterion (b) can be used to 

ascertain whether an element has reached convergence or not. 

Another qualitative measure of convergence, also based on strain 

energy, is a study of the rate of change of this value within an 
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element. If the variation is rapid, then the region specified by the 

element has not attained its final strain energy absorption capacity. 

This is a useful visual aid in the process of evaluating the quality of 

the solution and is discussed further in section 4.4.1.  

4.3.2.2.2 Research in Energy Differential Techniques 

Melosh and Marcal [ 2 2 ]  proposed the use of the Backward Energy 

Difference as a mesh quality sensor. It was suggested that this value 

could be approximated by taking the difference between the strain energy 

density at the "center" of the element and at any other point (say a 

Gauss point). This approximate value is called the Specific Energy 

Difference and its use is demonstrated with some simple examples. 

Peano and Riccioni [ 3 ]  demonstrated the limitations of the above 

method and, along similar theoretical lines, proposed the Forward Energy 

Difference sensor. Hierarchical finite elements are used to introduce 

degrees-of-freedom in locally defined areas of the mesh. This method, 

in conjunction with fracture mechanics techniques, is applied to the 

solution of real problems [23-251 and has been found to be successful. 

Shephard, -- et al. (26-271 used linearly spaced, strain energy density 

contours as mesh quality indicators for the automatic generation of 

near-optimal meshes. 

4.3.3 Residuals of Governing Differential Equations 

Carey and Humphrey [28-301 suggested the use of equation or domain 

residuals as error estimators. 

made for one-dimensional cases and, "...the extension to higher 

dimensions, though posing more technical programming difficulties, has 

The applications and derivations are 
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been indicated." The authors mention that for higher dimensions the 

problems of inter-element continuity and the use of constraints or 

Lagrange multipliers to force inter-element compatibility into the 

governing functionals complicate the issue. 

equations need to be known and the method is computationally expensive. 

The explicit differential 

4 . 3 . 4  Errors for Specific Differential Equations 

Some researchers have mathematically derived discretization error 

bounds for specific types of partial differential equations solved 

numerically using the finite element technique. The most common of 

these is the Poisson's Equation which governs a variety of so-called 

"field" problems, including torsion and steady-state heat and fluid 

flow. Error bounds based on the solution of this equation using the 

finite element method can be found in the literature [ 3 1 - 3 4 1 .  

Reference [ 3 4 ]  is the solution of an error bound for the Poisson's 

Equation using a least squares finite element solution criterion. 

Element residuals are used as a measure of error. The author states, 

"...while the relative changes of the above residuals for increasing 

numbers of elements or degrees-of-freedom will indicate convergence, 

they will give no absolute measure of the error in the solution. Thus 

the idea of error measures is introduced." 

4 . 4  Qualitative Evaluation of Meshes Using Graphics 

Some of the main techniques available in the literature for a 

posteriori error estimates of discretization error have been presented 

in the previous section. This section discusses some qualitative 

sensors that may be used in interactive graphics postprocessors and the 
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implementation in POSTPR03D. 

implementation of inter-element response discontinuities as mesh quality 

sensors. 

Emphasis is given to the use and 

A qualitative sensor indicates to the analyst, in an overall 

behavioral sense, the accuracy of the solution. A study is made of 

unsmoothed response values computed from the solved displacements at the 

nodal locations. These sensors give the analyst an initial "feel" for 

the quality of the solution and indicate the need for further accuracy 

checks. To some degree, the experience of the analyst is called upon to 

compare the variation of response parameters over the domain with 

previous cases and to make a judgment about the quality of the solution. 

4.4.1 Strain Energy Density Contours 

The theoretical basis for the use of strain energy density contours 

has been discussed in section 4.3.2.2. The effectiveness of this 

measure as an error sensor is demonstrated by Shephard [26]. 

This qualitative measure has been found to be useful. Consider a 

case where the discrete color map used for the color contours contains 

ten discrete ranges between the global maximum and minimum response 

values. Any element that attempts to simulate a variation of strain 

energy density that is a significant portion of the global range (say 

more than 3 of the discrete colors of the map) would need to be 

subdivided if a more accurate representation of responses in the region 

is required. The example problems in section 4.4.3.2.3 discuss the use 

of strain energy density contours in conjuction with 2-D plots of 

unaveraged responses as mesh quality sensors. 
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4.4.2 Known Surface Tractions 

A qualitative mesh sensor used by analysts to get an initial "feel" 

for the quality of the analysis is the comparison of the tractions 

extracted from the finite element solution with the values of the 

tractions on those surfaces of the structure that have specified 

traction boundary conditions. For example, a structure may have a 

"free" surface along which normal and shear stresses are zero. 

deviation of the numerical solution from the known values is an 

indication of the quality of the solution in the vicinity of the 

boundary. Note that the absolute deviation cannot be used as a measure. 

It must be compared with a characteristic value of that response 

elsewhere within or on the boundary of the domain. 

The 

The effectiveness of this sensor is limited. If the structure has a 

large volume to surface area ratio, large parts of the mesh lie away 

from the boundary. The error in the solution near the boundaries, 

indicated by this sensor, does not allow the analyst to draw any 

conclusions about the performance of the mesh in the interior of the 

structure. Also, this technique relies strongly on the use of an 

accurate method to extract tractions on the boundary. It is well known 

that the values of responses obtained at points away from the sampling 

points in an element depend largely on the extrapolation technique used. 

Thus, this sensor may be used to get an initial feel for the analysis in 

conjunction with other reliable ones. 

Often, the errors found in surface tractions are due to the 

inadequacies of the element displacement shape functions to extrapolate 

Gauss point responses to the boundary. 

that the response gradients close to boundary surfaces are usually high. 

This is reinforced by the fact 
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Haber [ 3 5 ]  suggests a new technique to extract accurate surface 

tractions from a finite element displacement solution. The method uses 

the solved stresses at the Gauss points of the elements along the 

boundary and the Principle of Virtual Displacements. It involves the 

re-solution of a set of simultaneous equilibrium equations involving the 

elements along the boundary of interest. 

this new coefficient matrix reduces computational expense. The 

tractions at the surface nodes are the unknowns in this set of 

equations. 

case of abrupt discontinuities in surface tractions or singularities. 

The implementation of this method ensures that the error in the 

tractions is due to the discretization process in the vicinity of the 

boundary and not due to the use of inaccurate response-extrapolation 

techniques. 

The tightly banded nature of 

The method is found to be accurate and reliable even in the 

4 . 4 . 3  Inter-element Response Discontinuities 

The solution of any structural problem by the stiffness method (the 

most common FE approach) is achieved by solving a set of simultaneous 

equations formed in an attempt to satisfy the conditions imposed by 

equilibrium and compatibilityand by the traction and displacement 

boundary conditions. 

degree to which some or all of these conditions are satisfied over the 

entire domain of the continuum. The displacement boundary conditions 

are imposed on the solution as data input. The enforcement of 

single-valued displacements at the nodal locations ensures the 

satisfaction of compatibility at these discrete locations, and for 

conforming elements, compatibility is satisfied everywhere. But intra- 

The "exactness" of the solution depends on the 
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and inter-element equilibrium is not necessarily satisfied, nor is 

boundary equilibrium. One signal of a converged solution, however, is 

that equilibrium is approached everywhere. 

During the translation phase of postprocessing with POSTPR03D, 

stress and strain responses sampled at interior points of elements are 

extrapolated to the nodes. 

elements connected to it. As equilibrium is not locally satisfied, the 

values of a particular response at one such node -- obtained by the 

extrapolation process applied to each of the elements attached to it -- 

are not identical. In the real structure, each point in the continuum 

must have single-valued responses. This deviation from single-valued, 

pointwise, reponses is an indication of a lack of equilibrium locally, 

and hence, of the relative magnitude of the local discretization error. 

As an alternative to extrapolation, nodal values in each element 

can be obtained by direct application of the response-nodal displacement 

equations at each node [36]. However, this calculation is significantly 

more time consuming in 3-D and would reduce interactivity. 

it is not implemented in POSTPR03D. 

A single node usually has a number of 

Therefore, 

The ratio of the difference between the maximum and minimum response 

values at a node and the "exact" response value at that node is an 

indication of the relative magnitude of the response discontinuity in 

that region of the mesh. If these response rrjumpsll are large in a 

particular region of the mesh, then the solution can be estimated to be 

far from converged in that region. 

error is exploited graphically in POSTPR03D. 

discuss its implementation -- interactive graphical algorithms involved 

and example problems to demonstrate its use in mesh quality sensing. 

This qualitative measure of solution 

The following sections 
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4 . 4 . 3 . 1  The Energy Error Quantity 

An attempt was made to quantify a measure of "response jumps". 

The lcjumpsll for each of the six Cartesian stress and strain components 

at every node are combined into a single scalar quantity called the 

Energy Error Quantity, E, given by, 

in which, at a node, 

- 0 .  1 ('ij ,max ij,min 

( 4 . 1 3 )  

and 

N E . . )  = (Eij,max - E . .  ij,min ) 
13 

represent the magnitude of the l'jumpsll of each of the 6 Cartesian stress 

and strain components. E is analagous to the strain energy density of 

the ccjumpsll in the extrapolated values of the responses at a node into 

which more than one element frames. This measure of response 

discontinuities has four major problems: 

energy measure in a material nonlinear analysis in which plastic 

yielding occurs. 

"plastic work" of the response discontinuities -- if the 1/2  . multiplier 
is removed. 

elastic, the two measures can not be compared. 

(a) It is no longer a strain 

In this case it can be considered a measure of the 

Another problem is that if part of the structure remains 

(b) At any node which 



71  

I 
1 
1 
D 
I 

1 
I 
I 
I 
I 
I 

a 

1 
I 
I 
1 
I 
I 
I 

belongs to a single element, the measure breaks down as, 

&(u.*) = & ( E . . )  p 0.0 , 
1J 1J 

and this implies that E E 0.0,  regardless of the accuracy of the mesh in 

this region. (c) Interfaces between different material types are 

regions of real response discontinuities. At these locations, no 

response averaging can be done and the measure breaks down as an 

estimator of discretization error. (d) Finally, there is a problem of 

scale -- relative magnitude of the rrjumpsr' with respect to the actual 

values of the responses at the node. 

Consider a node at which the actual strain energy density is close 

to zero. The exact stresses and strains are also close to zero. An 

inexact finite element solution gives responses that oscillate about 

zero, as it attempts to model an average value close to zero. This 

gives relatively large values of &(u..) and & ( E . . ) ,  and hence, E. If 

the Energy Error Quantity is normalized -- dividing it by the averaged 

strain energy density at the node -- meaningless ratios above 1.0 are 
obtained. 

results (for normalization) proved equally fruitless. 

1J 13 

Use of the maximum strain energy density in the computed 

For the reasons outlined above, the Energy Error Quantity is 

unacceptable as a measure of mesh quality at all locations in a finite 

element mesh. 

4 . 4 . 3 . 2  2-D Line Plots of Unsmoothed Responses 

Abel, Panthaki, and Wawrzynek [ 3 6 ]  discuss the use of 2-D plots as 

mesh quality sensors, and demonstrate this technique using a 2-D example 
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problem. Extensions to 3-D problems and the use of interactive, color 

computer graphics are discussed in this and the following sections. 

Section 4.4.3.2.4 summarizes the results, and discusses the limitations 

of this approach. 

In this section, it is shown heuristically, by means of example 

problems, that a 2-D plot of an unsmoothed response is a locally stable 

mesh quality sensor that approaches a "steady state" after the region 

has achieved convergence. Also described are the computer algorithms 

used to implement this measure in POSTPR03D. 

This qualitative sensor is found to be an accurate indication of the 

regions of the mesh that require additional degrees-of-freedom and those 

that have achieved convergence -- convergence can be reached locally, in 

certain parts of the domain. The local stability of this sensor is 

demonstrated by the fact that the infusion of additional degrees-of- 

freedom in a region that has converged does not affect its behavior. 

This is a necessary characteristic of a mesh quality sensor. 

4.4.3.2.1 Extraction of Responses Along a Plot Line 

Smoothed or averaged response data are needed for the purposes of 

discrete color contouring on the surface of a structure. But this data 

masks the information that is a necessary part of visual error sensing. 

Unsmoothed response data must be used to generate 2-D response plots if 

these are to be used as mesh quality sensors. This necessitates the 

storage of both smoothed and unsmoothed information for rapid access. 

The existing database contained only averaged response information. 

To render the 2-dimensional plots interactively, it is necessary to also 

store unsmoothed response information at the nodes on the surface of the 
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structure. The database has been modified to contain the unaveraged 

strain energy density, pore water pressure (if it exists in the 

analysis), and six Cartesian stress and strain components at the nodal 

locations of each of the boundary polygonal faces. The unaveraged 

responses are stored only at the surface nodes to reduce the memory 

requirement. The details of this addition to the existing database are 

discussed in section 3 . 2 . 2 .  

Assume that the analyst has defined a plot line on the surface of 

the structure along which it is required to plot various response 

parameters. The extraction algorithms create a list of line segments 

that describe the position of the plot line on boundary faces -- each 

boundary face that the plot line lies on has a 3-D line segment 

associated with it and the plot line is composed of these line segments 

connected in space. It is required to interpolate the known, unaveraged 

response values at the nodes of each of these boundary faces to the line 

segments for generating the response plot. 

plot as a mesh quality sensor depends on the accuracy of the magnitudes 

of the inter-element response discontinuitues. It is thus important to 

use an accurate and consistent interpolation technique to extract the 

response values along each of the 3-D line segments that compose the 

plot line. 

The efficiency of the 2-D 

There is a particular problem associated with curved isoparametric 

finite elements. Section 4.4.3.2.2 discusses the algorithms used to 

extract the 3-D line segments. 

faces that are planar, but approximate for curved boundary faces. A 

curved face of an isoparametric finite element is defined using the 

shape functions in natural coordinates and is given by 

The method used is exact for boundary 
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* z =  E ( Ni * Zi) 
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in which, 
T { C } = Cartesian coordinates of the point = L X Y Z J 

{ Cn } = 

( N. } = Shape functions evaluated at the point 

Cartesian coordinates of the nodes of the element 
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(4.14) 

(4.14a) 

(4.14b) 

(4.14~) 

The definition of the face in Cartesian coordinates is nonlinear in 

L X Y Z 1. 

intersection of the user-defined cutting plane and this boundary face. 

The solution of this nonlinear problem is iterative and expensive. 

Thus, an approximate scheme is chosen for curved elements. 

The required line segment (a curve in 3-D space) is the 

The algorithms used for the extraction of line segments assume that 

the boundary face is planar. When the face is curved, the extracted 

line segment will either lie inside (for concave outward curvature) or 

outside (for convex outward curvature) the element. The algorithm 

computes the natural coordinates of points along the segment in 
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3-dimensional natural space, L R S T A. But it is known that the 

"realvv line segment lies on a plane that has a constant value 

of one of the three natural coordinates, i.e., R or S or T = +1 or -1. 

The algorithm finds the natural coordinate that has the constant value 

on the boundary face and assigns the appropriate value to i t ,  Step 3 of 

the following algorithm. The point is "projected" onto the boundary 

face orthogonally, in the direction of the natural coordinate that has a 

constant value on the face. The coordinates of the projected point in 

2-D natural coordinates (this point is on the boundary face) are now 

known, and the unaveraged response values at the nodes are interpolated 

to it using appropriate shape functions, Step 4 of the following 

algorithm. 

Algorithm for Extracting the Response Value at a Point: 

Consider the case of a single boundary face and the line segment 

associated with it. It is required to extract the response values at 

points along this segment of the plot line. 

The algorithm used to extract the response value at any point along 

the line segment is outlined below. It is repeated at each of the 

points on the segment at which the response value is desired. 

The input data to the algorithm includes: (a) The type of finite 

element the face belongs to -- 20-noded brick, 15-noded wedge, etc. 

(b) Coordinates of the nodes on the face in world space. ( c )  Unaveraged 

response values at the nodes. (d) Coordinates of the end points of the 

line segment in world space. 
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begin algorithm 

Step 1: The world coordinates of the point are 

L P WORLD J = L X POINT Y POINT Z POINT - - - - 

computed 

Step 2: An iterative technique is used to compute the natural 

coordinates of this point, 

L P N A T J  - = L R  S T J  

a) Start with an arbitrary guess of the natural coordinates 

L NAT GUESS J = L R GUESS S GUESS T GUESS J - - - - 

b) Compute the Shape Function matrix, [N], using these natural 

coordinates. 

c) Use [N] and the world coordinates of the nodes to compute the 

world coordinates corresponding to these natural coordinates - 

L P GUESS J = 1 X - GUESS Y - GUESS 2 - GUESS J - 

d) Compute the derivatives of the Shape Functions at this point. 

e) Compute the 3x3 Jacobian matrix [J], its determinant IJI and 

inverse [ ~ 1 - l .  



f) Compute a new guess of the natural coordinates, 

1 NAT - GUESS = 1 DIFP [ J 1-l 
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(4.15) 

in which, 

1 NAT GUESS J = R GUESS S GUESS T GUESS J - - - - 

~ I F F J  = L P GUESS J - 1 P WORLD J - - 

= [(X GUESS-X POINT) (Y GUESS-Y POINT) (2 GUESS-2 P0INT)J - - - - - - 

g) Check a tolerance value t o  see if convergence has been attained. 

h) If the tolerance is not satisfied, repeat Steps b to g using the 

new guess for natural coordinates. Else, continue to Step i. 

i) 1 P NAT J = 1 NAT GUESS J - - 

Step 3: As described above, it is known that the line segment lies 

on one of the boundary faces of the element. Use the connectivity 

of the element and that of the boundary face, find the natural 

coordinate that has a constant value on this face. Assume that on 

this boundary face, T = -1. Then 

L P N A T J =  - L R  S - 1 1  

Thus, for the purposes of the least squares technique, it is assumed 

that the point lies on the face, T = -1, and the natural coordinates 
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of the point in 2-D natural space are given by, 

L P N A T J =  - L R  S J 

This is equivalent to projecting the point (that lies inside or 

outside the element) onto the boundary surface. 

Step 4: The information that now exists includes the natural 

coordinates of the point on the boundary face and the unaveraged 

responses at the nodes of that face. 

interpolate the nodal values to this point. 

Shape functions are used to 

* If the face belongs to a 20-noded brick, the shape functions of 
a 4-noded quadrilateral element (Q4) are used. 

* If the face belongs to a triangular facet of a 15-noded wedge 

finite element, the shape functions of a 3-noded triangular element 

(T3) are used. 

Step 5 :  Check to see if the response value is required at other 

points along this line segment. 

If <MORE - VALUES - REQUIRED> then 
go to Step 1 

else 

exit from the algorithm 

end if block 

end algorithm 

The response values extracted along the plot line are obtained in a 

manner consistent with the formulation of the finite elements along 
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which it lies. As the stresses and strains are functions of the 

derivatives of the displacements, the interpolants used are the shape 

functions of elements one order lower. 

element boundaries. 

element mesh used to model an arch dam. 

curved surface of the dam. The line joining these points (along the 

surface) is the user-defined plot line along which responses are to be 

plotted. 

Z direction, the "gravity direction" for the dam) from A1 to B1. The 

vertical "jumps" seen in the plot are the inter-element discontinuities. 

The analyst can visually compare the magnitude of these "jumps" with the 

No averaging is done at inter- 

Figure 4.1 shows the boundary surface of a finite 

A1 and B1 are two points on the 

Figure 4.2 is the plot of Epsilon 2 (the strain in the global 

"average" value of the response in the region. It is this comparison, 

and not the absolute values of the r'jumps" that is useful as a sensor of 

local mesh quality. 

4.4.3.2.2 Interactive Tools Implemented in POSTPR03D 

Three new menu pages have been designed and implemented in POSTPR03D 

to facilitate interactive mesh quality sensing. The analyst can move 

rapidly between these menu pages and extract 2-D plots of unaveraged 

responses along any line on the surface of a structure. 

density can be contoured on the surface. 

Strain energy 

Figure 4.3 is the layout of the MESH QUALITY PAGE (MQP). On this 

page, the analyst interactively selects a scalar mesh quality sensor -- 

strain energy density or energy error quantity -- and displays its 

distribution using smoothed, discrete contours on the surface of the 

structure. The functions on the MQP are almost exactly the same as 

those on the RESPONSE VIEWING PAGE (RVP). The analyst has easy access 
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to the Load Specification Page and may increment or decrement load steps 

in a nonlinear analysis. 

Figure 4 . 4  is the layout of the SELECT PLOT LINE PAGE (SPLP). On 

this page the analyst defines a cutting plane by selecting three 

non-collinear points in space. (These points do not need to lie on the 

surface of the structure.) The cutting plane is used to find the plot 

loops on the surface of the structure (these represent the intersection 

of the cutting plane and the surface.) Flexibility and speed of 

execution are emphased. Both tablet/pen-controlled and terminal data 

input modes are allowed. The analyst can also access the Coordinates 

Page (to get the world coordinates of nodes), or the Rotate Page (to 

change the view specification of the structure, background color, etc.). 

On extracting the plot loops the analyst must enter the SELECT LINE 

END POINTS PAGE (SLEP) -- Figure 4.5 shows a schematic layout. On this 

page, the analyst interactively defines the plot line on the surface of 

the structure along which 2-D plots of unsmoothed responses are to be 

generated. The plot line can be on any of the plot loops. 

Figure 4 . 6  is the layout of the PLOT RESPONSES PAGE (PRP). The 

analyst moves down to this page to select and plot responses along the 

plot line defined in the SPLP. 

density, or any of the Cartesian or principal stress and strain 

quantities to be plotted. The increment (or decrement) feature allows 

"stepping through" a nonlinear analysis with automatic re-plotting. 

Color contours of smoothed responses can also be displayed. 

must return to the SPLP to be able to change the end points of the plot 

line or to define a new plane for plot loops extraction. 

The analyst can select strain energy 

The analyst 



81 

Extraction of Plot Loops 

The definition of a plot line on the surface of an arbitrary 

3-dimensional solid appears deceptively simple. 

points of the plot line, and a constraint that restricts its length to 

the shortest possible, are sufficient data to extract the line in space. 

But this is an expensive, nonlinear optimization problem which is not 

interactive for arbitrary geometries. To make the extraction process 

simpler, the analyst is required to input additional data. 

Knowledge of the end 

The analyst defines a "cutting plane" using three points that are 

not collinear on the surface. 

either using the hit-testing process (tablet/pen driven) or by typing in 

the world coordinates at the terminal. The hit-testing procedure finds 

the closest node on the surface. Flexibility is emphasied -- the 

analyst can change one or all the selected points before initiating the 

extraction of the plot loops. To facilitate terminal input of 

coordinates data, the Coordinates Page can,be accessed from the Select 

Plot Line Page (SPLP). The analyst can obtain coordinates information 

in this page. 

These points are interactively input by 

A plot loop is a closed, 3-D loop that lies both on the defined 

cutting plane and on the surface of the structure. More than one such 

loop can exist for a particular orientation of a cutting plane through a 

structure with "holes." Each loop is a collection of connected 3-D line 

segments in space. Each line segment is the intersection between a 

boundary face and the cutting plane. Algorithms have been designed to 

extract these plot loops rapidly for arbitrary orientations of cutting 

planes and arbitrary geometries. Figure 4.7 shows the simulation of a 

wrench. The analyst has selected three points that define the cutting 
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plane. 

the figure. 

plot line on any of the extracted loops. Figure 4.8 is the plot of 

unaveraged strain energy density along a user-defined plot line on plot 

loop 1. 

along a user-defined plot line on plot loop 2. 

represent inter-element discontinuities of the plotted response. 

The program extracts and displays the two plot loops shown in 

The analyst can interactively select the end points of a 

Figure 4.9 is the plot of unaveraged strain energy density 

The vertical "jumps" 

Algorithm For the Extraction of Line Segments: 

The algorithm used to extract line segments is described below. 

(Parts of the algorithm are explained using Fortran-like pseudo-code.) 

The input data to the algorithm includes: (a) Connectivities of the 

boundary faces -- the node numbers are used to get the coordinates in 

untransformed world space. (b) Screen coordinates of the 3 user-defined 

points on the surface of the structure. 

begin algorithm 

Step 1: Check to see if the 3 points are collinear. 

If <NOT - COLLINEAR> then 

go to Step 2 

else if <COLLINEAR> then 

inform user 

abort extraction process 

wait for next user command 

end if block 
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Step 2: Use the hit-testing algorithms (Section 2.2.3.1) to compute 

the untransformed world coordinates of the 3 points. 

Step 3: Compute the coefficients, h B C D], of the plane equation 

on which these points lie, 

A1x + B1y + C1z + D 0.0 1 =  (4.16) 

Step 4 :  Step 4 is performed for each boundary face. 

do BOUND - FACE - COUNT + 1, NUM - BOUND - FACES 

a) Obtain the untransformed world coordinates of the nodes on 

the boundary face. 

b) Check to see if the cutting plane cuts the face. (This 

condition is passed even if the plane lies along an edge of 

the face.) 

If <FACE IS CUT> then - -  

proceed with the following steps 

else 

go to the end of this processing loop 

end if block 

c) Compute the plane equation that defines the boundary face, 



A x + B2y + C z + D2 = 0.0 2 2 
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(4.17) 

d) Compute the coordinates of the end points of the line 

segment -- these are computed as the intersection of the 2 

planes given by equations (4.16) and (4.17). 

end do block 

end algorithm 

The information that has now been extracted from the raw input data 

is the spatial locations of a set of 3-D line segments. At this point 

in the extraction process, no information about the connectivity of 

these segments exists. The next task is to sort these line segments 

into coherant, connected, 3-D loops (or a single loop). 

Algorithm For Sorting the Line Segments into Coherent Plot Loops: 

The algorithm used to sort the line segments is described below. 

(Parts of the algorithm are explained using Fortran-like pseudo-code.) 

The "matching" of these line segments in space to form closed plot 

Simple sorting procedures loops can be achieved in a number of ways. 

can be used to reduce the CPU time taken to match the segments in space. 

One such sorting procedure is briefly outlined below. 
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begin algorithm 
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Step 1: The "global spread" of the coordinates of the end points of 

the segments in each coordinate direction is computed, 

LSPREADJ=L(MAX X - MIN - X) (MAX - Y - MIN - Y) (MAX-Z - MIN - Z)J (4.18) - 

where, 

MAX - M = max of (coordinate values of all end points in 

global M direction ) 

MIN - M = min of (coordinate values of all end points in 

global M direction ) 

Step 2: For highest efficiency, the direction of "maximum spread" 

is selected as the first so r t  direction. 

Assume that this is the global X direction. 

Step 3: Sort the line segments in ascending order of global X 

coordinate values. 

Care is taken to eliminate identical segments. It is possible to 

have these segments if the cutting plane passes along edges shared 

by pairs of boundary faces. 

Step 4: Now use the X-sorted list to match Y and Z coordinate 

values. 

end algorithm 
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For the sizes of problems that are currently analysed, the maximum 

number of line segments does not exceed a few hundred. It is found that 

for sorts of this size, the ."brute force" method suffices to achieve 

interactive speeds. This is the technique that is implemented in 

POSTPR03D. 

Algorithm to Match A List of Line Segments to Form Plot Loops: 

One of the problems encountered in this algorithm is "matching" two 

points in 3-D space. Round-off and truncation, and the methods used to 

compute the coordinates of the two points affect the accuracy of the 

"match." A suitable tolerance -- to account for these factors -- was 

arrived at by trial and error. 

The input data to the algorithm includes: (a) The number of line 

segments that need to be sorted, NUM - SEGMENTS. (b) Untransformed world 

coordinates of the end points of the set of line segments obtained from 

the first part of the extraction process, SEG - COORDS. 

begin algorithm 

Step 1: Start by using the first unprocessed segment. 

MATCH - SEGMENT c <FIRST - UNPROCESSED - SEGMENT> 

Step 2: It is required to find the segment that matches the second 

end point of MATCH - SEGMENT. 
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do SEARCH SEGMENT 6 1, NUM - SEGMENTS - 
Step 3: Check to see if this segment has already been processed 

or if this is the segment whose match is required to be found. 

If <PASSES - ABOVE - TESTS> then 

go to the end of this processing loop 

else 

proceed with Step 4 

end if block 

Step 4 :  Check to see if SEARCH - SEGMENT matches an end point of 

MATCH - SEGMENT. At this point a check is also made to detect and 

eliminate identical segments. 

if <MATCHED> then 

if <NOT - IDENTICAL> then 

MATCH - SEGMENT 6 SEARCH - SEGMENT 

begin from Step 2 using the new MATCH - SEGMENT 

else 

eliminate SEARCH - SEGMENT from database 

go to the end of this processing loop 

end if block 

else 

go to the end of this processing loop 

end if block 

end do block 
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Step 5 :  Check to see if the last matched segment llclosesl' on the 

first segment of this loop. 

If <LOOP - CLOSES> then 

proceed to Step 6 

else 

proceed to Step 2 and find the next matching segment 

end if block 

Step 6 :  Check to see if there are any remaining unprocessed 

segments -- the case of multiple plot loops. 

if <ALL - SEGMENTS - PROCESSED> then 

exit the algorithm 

else 

repeat Steps 1 to 6 

end if block 

end algorithm 

The algorithm extracts one or more plot loops from the input data 

consisting of randomly oriented line segments. For the size of 

extraction problems tested to date (upto a few hundred line segments) 

execution time is rapid. Figure 4.10 shows an interactive session in 

the SELECT PLOT LINE PAGE. 

The analyst has selected three points on the surface of the structure 

(these are highlighted in the red overlay.) The plot loop is extracted 

and is drawn in the green overlay. 

The problem being viewed is an arch dam. 
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Additional Interactive Features 

There are a number of additional interactive features that have been 

implemented into POSTPR03D. 

emphasized. 

Flexibility and speed of execution are 

The interactive step following the extraction of the plot loops is 

the selection of the end points of the plot line. The user can enter 

the coordinates of the desired end points at the terminal, or use the 

pen to "pointtf to the screen. The program finds the line segment 

end-point (at an element edge) that is closest to the "hit" point. The 

algorithms used in this process are straightforward. A box test around 

all line segments generally reduces the number to be processed down t o  a 

few segments. The closest segment end point is then easily computed. 

As in the definition of the cutting plane, flexibility is emphasized. 

The analyst can change the selection as often as desired before pushing 

the EXTRACT PLOT LINE button. 

end points of the plot line on the plot loop shown in figure 4.10 -- the 

selected plot line is drawn in the blue overlay and the rest of the plot 

loop is in the green overlay. 

Figure 4.11 shows the selection of the 

The toggle function allows the analyst to view plotted information 

along the entire plot loop -- from A to B or from B to A (proceeding in 

the same direction). This function can be activated in both the SELECT 

PLOT LINE PAGE and the PLOT RESPONSES PAGE (PRP). The active plot line 

is rendered in the blue overlay, while the rest of the plot loop is in 

the green one. 

Finally, to plot a response along the selected plot line, the 

Figure 4.12 shows the table on the PRP that analyst must go to the PRP. 

allows the analyst to choose the response for plotting along the plot 
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line (shown drawn in the green overlay.) 

In the case of nonlinear, load-step or time-step analyses, the 

analyst can "step" through the various load-steps using the Increment 

feature. Assume that the major principal stress is plotted for 

load-step n. The Increment feature clears the old plot, swaps the new 

response set into the working database (set (n - 1) or (n + 1) depending 

on whether the - or + side of Increment is activated), and plots the 

major principal stress for the new set along the same plot line. 

To obtain a hard-copy of a plot, the CREATE PLOT FILE option creates 

a file containing the relevant plot information, including the plot 

title, abcissa and ordinate values, and labels. This file is read into 

a graphing program run on a vector device (e.g. an Evans and Sutherland 

Picture System). The graphs shown in this thesis are created in this 

manner. 

It is useful to be able to view color contours of smoothed responses 

and 2-D plots of unsmoothed responses simultaneously. 

of the visual picture of the behavior of the structure and the extent of 

the response discontinuities in critical regions of the structure helps 

in the qualitative evaluation of the mesh. 

access to the RESPONSE VIEWING PAGE for contouring. 

The combination 

The analyst has direct 

4.4.3.2.3 Example Problems 

Two 3-D problems are examined to demonstrate the use of 2-D plots of 

unaveraged responses as a mesh quality sensor. 

values is done at 5 points along each line segment (dividing each into 

four equal parts.) 20-noded isoparametric brick finite elements are 

used for each of the analyses discussed below. 

Sampling of response 
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1) ANGLE: 

of an angle. 

structure. 

directions fixed, and along the Z direction, free. A surface pressure 

is applied to the opposite face in the negative X direction. The 

section parallel to X-Y containing point B is a plane of symmetry 

(displacements are fixed in the 2 direction, and free in the X and Y.) 

The analysis is performed using material nonlinear (elastic-perfectly 

plastic) constitutive equations for the finite elements. There are 4 

load steps in the analysis. Step 0 is a linear elastic analysis -- the 

results are scaled to induce incipient yield at one (or more) Gauss 

points. Steps 1 to 3 are nonlinear load steps, each with increments of 

20% of the initial yield load. The yeild criterion used is a Von Mises 

criterion with a yield stress of 60.0 units. However, values higher 

than 60.0 units may be obtained in contours or plots of the Von Mises 

stress because results are extrapolated from the Gauss points at which 

the yield criterion is applied. 

Figure 4.13 shows a finite element mesh used in the analysis 

Figure 4.14 shows the boundary conditions applied to the 

Edge AB has displacements along the global X and Y 

Two analyses are performed -- the second has a more refined finite 

element mesh than the first. Figures 4.15 and 4.16 show plan and 

sectional views of the coarser of the two meshes containing 72 elements 

and 521 nodes. 

the refined mesh containing 440 elements and 2477 nodes. 

4.17, is the first plot line used for plotting unaveraged responses 

while A2B2, figure 4.18, along the free edge is the second plot line. 

The coordinates of the end points of AlBl and A2B2 are the same for each 

of the two meshes. Figure 4.19 shows the refined finite element mesh in 

the green overlay and the displaced mesh in the blue overlay. 

Figures 4.17 and 4.18 show plan and sectional views of 

AlB1, figure 
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Figures 4.20 to 4.23 are the plots of the unaveraged first stress 

invariant (INV-I -- hydrostatic pressure) along AlBl for load steps 0 to 

3. The observations drawn from these plots include: (a) ANGLE-fine 

shows lower INV-I values than ANGLE-coarse. As the mesh is refined, the 

structure becomes more flexible, reducing the stresses, while 

deformation increases towards the exact solution. (b) The region of the 

largest difference between the responses of the two meshes is also the 

region of the highest INV-I and greatest INV-I gradient. (c) In 

general, ANGLE-coarse has more prominent inter-element discontinuities 

and kinks (differences in slopes at inter-element boundaries). (d) As 

plasticity spreads through the structure -- highest for step 3 -- the 

kinks and discontinuities become more pronounced for ANGLE-coarse. 

Figures 4.24 to 4.27 are the plots of unaveraged INV-I along A2B2 

for load steps 0 to 3. 

(a) As the mesh is refined, INV-I reduces. (b) For the linear elastic 

analysis (figure 4.24) the central surface of the angle is approximately 

the neutral axis. ANGLE-coarse has only two elements through the 

thickness. Thus the inter-element boundary lies close to the neutral 

axis. At this boundary, the analysis can be considered to be "equally 

inaccurate" on either side; thus, no inter-element tIjumptt is seen, but 

there is a "kink." As the mesh is refined in this area (ANGLE-fine has 

5 elements through the thickness) the kink vanishes. (c) The elements 

closer to A2 begin to plastify first and the plasticity spreads towards 

the neutrl axis. As this occurs, the difference between the results 

increases. In ANGLE-coarse, the single element in this region attempts 

to partially plastify, but the formulation of the element does not allow 

this -- instead, the complete element plastifies (figure 4.27). As the 

The observations drawn from these plots include: 
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neutral axis moves towards the top surface, away from the mid-surface of 

the angle, inter-element rcjumpslr begin to appear (figures 4.26 and 4.27 

-- load steps 2 and 3 ,  respectively). 

Plots of other responses, such as effective stress and major 

principal stress, have also been examined along the same plot lines. 

These yield essentially the same observations as above. 

2 )  PLATE WITH A HOLE: 

central hole. Face ABCD 

has a tensile pressure in the X direction, and an out-of-plane moment 

applied to it. The applied surface tractions on ABCD are shown in the 

figure. Face EFGH is a plane of symmetry - displacements in the X 

direction are fixed, and in the Y and Z directions, free. For 

stability, edge EH (not including the boundary of the hole) is fixed in 

the Z direction. 

The second example problem is a plate with a 

Figure 4.28 shows the geometry and loading. 

The analyses are linear elastic. 

Figure 4.29 is the boundary of the coarser of the two finite element 

meshes used to analyze the problem -- PLATE-coarse. The finite element 

mesh consists of 72 elements, 447 nodes, and 3 elements through the 

thickness. Figure 4.30 is the boundary of the refined mesh -- 

PLATE-fine. This mesh consists of 1280 elements, 6293 nodes, and 8 

elements through the thickness of the plate. 

Figure 4.31 shows the color contours of SED on the surface of a 

subobject of PLATE-coarse (a few elements around the hole are extracted 

to create this subobject). A similar subobject is extracted from 

PLATE-fine; figure 4.32 shows the contours of SED on its surface. As 

the mesh is refined, the volume of material with high SED and SED 

gradients decreases. This arises directly from the fact that SED tends 

to converge from above the exact solution whereas displacements tend to 



94 

converge from below. The neutral axis is clearly seen in the refined 

analysis as a color band representing values of SED near zero. 

Figure 4.33 shows the locations of the two plot lines -- AlBl and 

A202 -- along which unaveraged responses are plotted. Figures 4.34 to 

4.36 are plots of SED, effective stress, and sigma-x (the stress in the 

global X direction) along AlB1. 

include: (a) The "kinks" and inter-element discontinuities occur in the 

region of high SED and SED gradient. 

through the thickness of the plate. 

spans a third of the thickness. The boundary that this element shares 

with the next one (along AlB1) is far from the region of high SED and, 

hence, almost no kink or jump is seen here. On the other hand, 

PLATE-fine has 8 elements through the thickness. Thus the first 

inter-element boundary (along AlB1) is close to Al. Hence, the solution 

of the refined mesh shows jumps at this boundary. (c) Through the rest 

of the thickness of the plate, a fairly good solution is obtained even 

with the coarser mesh. 

The observations drawn from these plots 

(b) PLATE-coarse has 3 elements 

The element that contains point A1 

Figures 4.37 to 4.39 are plots of SED, effective stress, and sigma - x 

along A2B2. 

SED and SED gradients at the corner of the hole. 

associated with the location of the first plot line (AlB1) are avoided 

here. The observations (a), (b), and (c) made on the plots along AlBl 

for the ANGLE problem can also be made in this case. Again, the plots 

are seen to be symmetric about the center of the plot line. A sharp 

kink is seen at this point for PLATE-coarse. PLATE-fine attempts to 

equalize response slopes on either side of this plane of symmetry. 

the top and bottom edges of the plate (at A2 and B2) 3-D edge effects 

This plot line is far from the concentrated region of high 

The problems 

Near 
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and the proximity of the corners create discontinuities in both the fine 

and coarse analyses; but these are smaller for the fine analysis. It is 

evident that refinement near the corner is necessary to capture these 

edge effects more accurately. 

4.4.3.3 Summary 

A number of heuristic conclusions are drawn from the observations 

made above, and from experience with a variety of small and large 

problems analyzed with the displacement method. In general, 2-D plots 

of unaveraged responses on the surface of structures can be used as a 

qualitative indication of the validity of the analysis under review. 

They appear to exhibit local stability in the senses that 

discontinuities tend to vanish with local convergence and that the 

addition of degrees of freedom does not result in a change in the 

behavior of the sensor in regions that have attained convergence [36]. 

The effectiveness of this sensor in an interactive computer graphics 

postprocessing environment has been demonstrated, wherein visual 

explorations can be performed rapidly and subjective evaluations quickly 

achieved. The subjectivity is useful because the engineer can choose to 

accept or reject apparent discretization errors provided convergence is 

evident in the particular zones of interest. 

low-stress zones can be ignored; these may be quantitatively large in a 

local sense but trivial in the larger context. 

Jumps and kinks in 

A flexible, interactive environment has been developed in POSTPR03D 

for the rapid extraction of 2-D plots along any line on the surface of a 

structure. The emphasis is on speed of execution and flexibility rather 

than on the use of the most accurate method for the extraction of values 
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along plot lines. The interpretation of the plots is subjective; hence 

the desired accuracy must be viewed in this light. More "exact" 

extraction of values along a plot line will render the process non- 

interactive in the case of general, curved 3-D continua. 

There are cases where caution must be exercised in interpreting the 

2-D plots from the point of view of the quality of the analysis. 

plots of unaveraged responses along many directions on the surface of a 

structure are found to be smooth, then the analysis can be said to have 

attained convergence. Isolated cases of smooth plots, or plots with 

discontinuities and kinks cannot be effectively used to gauge the 

quality -- local or global -- of the analysis. 

symmetry, kinks and not inter-element jumps are seen. (c) At a corner 

or sharp edge of a structure (where only a single finite element exists 

the 2-D plot offers no answers t o  the question of quality as there is no 

inter-element boundary. (d) If a single finite element spans a large 

section of the structure encompassing a region of high SED gradient, 

nothing can be said about the quality of the analysis within this 

element -- see observation (b) on the plots along AlBl for the PLATE 

problem discussed in the last section. Within the element, the 

extracted values of the response can only be smooth; this is the 

assumption on which the formulation of all finite elements is based. 

However, the existence of a high SED gradient within an element is a 

well established indicator that refinement is necessary in the region 

spanned by the element. 

(a) If 

(b) At planes of 
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Soil Abutment 

Modulus of Elasticity 

Figure 4 . 1  Arch Dam - Boundary of  the f i n i t e  element mesh 
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Figure 4 . 3  The MESH QUALITY menu page 
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Figure 4 . 4  The SELECT PLOT LINE menu page 
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Figure 4.5 The SELECT LINE END POINTS menu page 
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Figure 4 . 6  The PLOT RESPONSES menu page 
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Figure 4.7 Wrench:- Extraction of multiple plot loops 
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Figure 4.11 Arch dam:- Selection of plot line end points 
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Figure 4.12 Arch dam:- Selection of responses for  plotting 
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Figure 4.13 ANGLE:- Geometry 
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Figure 4.14 ANGLE:- Boundary conditions and loads 
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Figure 4.15 ANGLE-coarse:- Plan view 
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Figure 4.16 ANGLE-coarse:- Sectional view 
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Figure 4.17 ANGLE-fine:- Plan view and plot  line AlBl 
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Figure 4.18 ANGLE-fine:- Sectional view and plot line A2B2 
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Figure 4.19 ANGLE:- Finite element mesh and displaced shape 
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Position along Plot Line --> 

Figure 4.26 ANGLE:- Plot of INV-I along A 2 B 2  - L o a d  Step 2 
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Figure 4.29 PLATE-coarse:- Boundary of the finite element mesh 
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Figure 4.32 PLATE-fine:- Contours of SED on a subobject 
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Figure 4.37  PLATE:- P l o t  of SED along A2B2 
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CHAPTER 5 

DESIGN OF A NEW POSTPROCESSING ENVIRONMENT 

The eventual developments that may emanate from a research project 

that spans a number of years are difficult to forsee at its inception. 

But the experience gained from the effort normally enables the 

researcher to envision a new or different path at the conclusion of 

research which is quite different than that which would have been 

conceived at the outset. As this is the final year of a three-year 

research program in the area of engineering postprocessing, there now 

exists a clearer picture of how the required user-functionality can be 

re-designed in a way to facilitate a more powerful, flexible, 

user-friendly database and device independent environment. This chapter 

discusses the design features, and suggested scope and functionality of 

a new postprocessing environment. 

philosophy that are suggested here reflect the experience gained over 

three years of development of postprocessing techniques and code. 

suggestions are made for use of new graphics tools as a "Graphics 

The basic changes in design 

Also, 
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Manager" that can form the basis for the integration of the engineering 

design process. 

The new design is now being implemented at the Program of Computer 

Graphics in Cornel1 University. The H.P. Series 9000/320 raster 

graphics workstations are the target display devices (Section 2 . 1 . 4  

discusses the hardware specifications and the performance of these 

devices). 

5 . 1  The Necessity For a Redesign 

There are a number of motivations for the design of a new 

postprocessing environment. The existing program has begun to 

experience problems that stem from the implicit limitations of its 

design (see Appendix B for a discussion of memory associated problems). 

Also, it is not suitable for achieving the new objectives discussed in 

the following paragraphs. 

The existing program uses translators to convert finite element, 

boundary element, and finite difference analysis databases to a single 

postprocessing database. 

analysis database, a translator program must be written. This is a 

tedious and expensive process. It is also restrictive in a research 

environment generating continuously evolving analysis databases that 

need to use the same postprocessing capabilities. Further, database 

independence is essential to the process of integrating engineering 

design -- one of the long-term objectives of this research. 

To be able to view the contents of a new 

The advanced features of the new generation of high-level raster 

graphics workstations need to be exploited. These features -- 3-D 

transformations, diffuse and specular shading, and hit-testing (all done 
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in hardware); and the existence of overlay planes, double buffers for 

"smootht1 transformations, depth buffers and automatic scan-line hidden 

surface algorithms, dithering, and segmented display lists in virtual 

memory -- can now be considered a standard part of the hardware of new 

graphics workstations. In the existing program, these functions are 

software driven and, hence, much slower. 

At present, the design of menu layouts and the grouping of functions 

on a menu page are done by the applications programmer. The program 

takes care of formatting the buttons, highlighting and unhighlighting 

them, and controlling the flow of the program. It is desirable to have 

a flexible environment that allows the analyst -- by means of a Menu 

Description Language -- t o  dynamically define menu layouts and 

associated functionality. Similarly, it is desirable to allow the 

analyst the option to change and create new color maps and define the 

"names" of response parameters being viewed. These features are 

hard-coded into the present program. 

Recent years have witnessed a rapid increase in the computational 

speed of serial digital computers. But the speed of these machines is 

theoretically limited by the finite speed of light and the serial 

execution of commands (a single instruction is executed during each 

machine cycle) on a single processor. 

multi-processor, parallel architectures to exploit the greater power of 

parallel computations. 

modularity built into it. But it is not suited for a multi-processor 

environment. A much higher degree of modularity needs to be built into 

the program if the individual modules are to be placed in the different 

processors of a multi-processor machine and linked over a local area 

Future devices will have 

The existing code has a certain degree of 
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network. 

The development of large graphics engineering programs is time 

consuming. A disproportionate percentage of this time is spent in 

developing basic graphics tools. The use of general, high-level 

graphics software tools reduces this significantly. At present, the 

program is in complete control of the flow of information to and from 

the database, the electronic tablet and pen, and the display device. It 

is desirable to relinquish this to an external "manager." Also, 

software tools that process and manage lists, potentiometers, and 

sliders are useful. These are functions that are now handled explicitly 

by the postprocesor. The use of these tools, in addition to streamlining 

graphics applications programs, reduces their development time. 

Finally, the present program has not been suitably designed to 

accomodate an indefinite increase in the size of analyses problems or 

the continued enhancement of postprocessing functionality. 

suitable global memory allocation and management has resulted in 

unforseen problems with memory intensive processes like the sectioning 

of large structures. The speed of execution of some important 

postprocessing functions -- like contouring and rotation -- leaves much 

to be desired. Appendix B discusses these problems in greater detail. 

The lack of 

5.2 Basic Objectives of the New Environment 

The new environment aims at solving the problems outlined above. To 

facilitate this, some general design philosophies are proposed. 

The overriding design principle is one that believes that the 

personal preferences of each analayst must be supported. 

of a Personalized Postprocessing Environment governs the design. The 

This concept 
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analyst must have the freedom to define and maintain a unique 

environment that is flexible and simple to modify. The new design also 

aims at simplifying the process of the addition of new postprocessing 

functions. Display-oriented tasks that are database independent 

(contouring, hit-testing, selection of points on the object surface, 

etc.) are handled by an Application Independent Data-Processing Module 

that can be accessed by all databases. 

Another important feature is database and device independence. 

Database structures and the hardware charactersitics of display devices 

are constantly evolving, and their evolution must not be restricted by 

the lack of flexible postprocessing capabilities. 

layout of the new design is seen in Figure 5.1. The main modules of the 

program are described in Section 5.3. 

The new environment makes use of high-level graphics tools. 

The basic modular 

A Menu 

Manager assumes control of the program and takes over the tedious task 

of menu formatting. It also allows simple and efficient user-defined 

menu redesign. 

functions of the Menu Manager. A List Processor is used to maintain and 

interactively control lists of information. One of the important 

advantages of graphics tools like these is that they can be used by any 

graphics applications programs. 

Control of the color maps and potentiometers are other 

Strings defining the "names" of response parameters, and the colors 

of the discrete color maps used by the program are user-defined and can 

be modified simply. 

environment. The "Display Options" of each of the parameters, too, are 

user-defined; e.g. it would be possible to specify that the displaced 

shape can be viewed using the displaced mesh as well as a shaded image 

This gives the analyst greater control of the 
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of the displaced structure. 

Finally, it is proposed to create eventually a graphics environment 

that contains the various stages of the design process -- preprocessing, 

analysis, postprocessing, and mesh redesign. The creation of a Graphics 

Manager will facilitate the integration of these various stages. 

5.3 A Modular Design. 

All the features of the new design depend upon the strict 

maintainance of modularity. This feature is essential for a number of 

reasons. 

Maintainance is a necessary part of large graphics applications 

programs. It involves not only rrbugll fixing anf porting of the program 

to other devices but also the addition of new functionality. 

tasks are facilitated by modular coding. 

is determined not only by the differences between the devices, but also 

by how modular it is. 

These 

The portability of a program 

One of the objectives of the new design is to be able to exploit the 

speed of parallel architectures. This is more feasible if the various 

sections of the program are modularized. It is important to be able to 

control the information paths between modules and to ensure that no 

memory is shared by them. This scenario allows each module to be placed 

on a seperate processor. Intensive data processing tasks -- sectioning, 

updating a contoured image -- can then be performed in the "background" 

while the user continues with other design functions. Besides the use 

of parallel architectures, a similar conceptual use for the modular 

design is that of "pipelining" of information between processes (a UNIX 

feature). In a serial computer operating in a U N I X  environment, each 
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module can be a seperate process connected by "pipes" to the other 

processes. These pipes act as information buffers; while data are being 

fed into one end, the module at the other end can begin operating on the 

data stream leaving that end of the pipe. 

possibly get to asynchronous operations on a serial machine and can 

improve the speed of execution of data and display intensive tasks. 

The contents of the various modules of the program are outlined 

This is as close as one can 

below. 

Application Independent Data Processing (AIDP): 

Independent Data Processing Module contains code that is database and 

application independent. It communicates between the database, the Menu 

Manager, and the Device Independent Graphics 110 (DIGI). This is the 

device and database independent "Graphics Manager." The AIDP handles 

tasks that are not database specific -- for example, the interactive 

selection of points on the structure, the creation of nonlinear color 

maps, etc. It controls and maintains the display list -- creating new 

segments, switching segments on and off, clearing the image plane or 

overlays, etc. The routines of the AIDP can be used by any graphics 

applications program. It is envisioned that the AIDP will form the 

control core of the integration of the design process (see Section 5.7  

for details). 

The Application 

Application Dependent Data Processing (ADDP): 

Data Processing Module contains database dependent code. 

functions include extracting information from the database, converting 

it to an appropriate form, and transferring information back to the 

The Application Dependent 

The basic 
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These are the database-specific querying and modifying routines. AIDP. 

Each database will have its own ADDP code. Subroutines that perform 

common utility functions will be kept in a shared ADDP Library that can 

be accessed by various databases; this prevents unnecessary 

proliferation of code. 

contouring, sectioning, material extraction, etc. will depend on the 

structure of the database and the efficiency of the ADDP. 

The speed of execution of functions like 

View-Specification Module (VSM): The View-Specification Module is a 

sub-module of the AIDP and controls all aspects of view specification. 

This is one of the most important aspects of graphical postprocessing 

(or any other graphics applications program) . This module communicates 

with both the AIDP and the ADDP -- for example, the current concatenated 

transformation matrix can be sent to the ADDP upon request. Object 

transformations, controlling the display list, switching on and of f  

objects, changing the background and light sources, and switching on and 

off object display modes (shaded image, wireframe outline, etc.) are the 

tasks handled by the VSM. 

Device Independent Graphical 1/0 (DIGI): 

Graphical I/O Module serves as a buffer that communicates between the 

AIDP and the graphics library supported by the target display device. 

This module contains two sections: a device independent section of code, 

and device dependent drivers consisting (code that calls the graphics 

library supported by specific target display devices). 

section acts as a "buffer zone" between the first and the Device 

Dependent Graphical 1/0 Module -- figure 5 . 2  is a schematic 

The Device Independent 

The second 
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When porting the program to another display representaion of the DIGI. 

device, the design of the first section of the DIGI ensures that the 

AIDP, ADDP and VSM code that communicates with the DIGI remains 

unchanged. 

to match the graphics library of the new device. 

The device specific calls in the second section are changed 

Device Dependent Graphical I10 (DDGI): 

I10 Module is the graphics library supported by the specific display 

device. In the case of the H.P. workstations, the library is called 

Starbase. 

The Device Dependent Graphical 

Menu Manager (MM): 

tool under development at the Program of Computer Graphics in Cornel1 

University. When used, it assumes control of any menu-driven graphics 

package. Menu-layout formatting, keeping track of the cursor, drawing 

the menus on the screen, associating function calls with specific 

buttons, and the control of tools like list-processors and valuators 

(potentiometers and sliders) are some of the functions performed by the 

MM. The MM controls the peripheral user-interface devices like the 

tabletlpen, mouse, dials, terminal, etc. Menu Manager functions can be 

called by the other operating modules -- e.g. menu buttons and menu 

pages may be activated or deactivated, and menu buttons may be renamed. 

The Menu Manager is a high-level graphics software 

5.4 Database Design f o r  Numerical Analysis Applications 

The speed of execution of an engineering graphics applications 

program depends mainly on: (a) the characteristics of the display 

hardware and (b) the efficiency of the database modifying and querying 
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The functions of any graphics program can be generalized to routines. 

be: (a) operations on a graphics database and display of its contents 

interactively using the graphics database and (b) interactive 

modifications to the model and computational databases. The important 

common aspect is interactivity. As the computational and display 

complexity of the operations increases, speed, and hence interactivity, 

decreases. The analyst generally has no control over the 

characteristics of the display hardware but rather influences the design 

of the application database. Hence, the design of the database 

structures and the querying routines that extract information from the 

database is an important aspect of any graphics-oriented engineering 

program such as the postprocessor. 

5.4.1 The Existing Database 

The existing program uses translators to convert analysis databases 

to a single postprocessor database (PostD). The PostD consists of two 

packed strings of contiguous information -- the first, the {A} array, 

contains integer data, and the second, the [B} array, contains floating 

point data. Pointers delineate the start of various segments of the 

data [1,8]. At any given moment, the PostD contains response 

information for a single response set. If the analyst desires t o  view a 

different response set, the response data of the previous set is removed 

and that of the new set is explicitly "read" into the PostD. 

One of the problems related to the PostD is the efficiency of 

extraction of information. There are database management routines that 

handle the tasks of inserting and deleting whole segments of the {A} and 

{B} arrays, but no routines whose primary function is the extraction of 
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information from the database. At present, information is extracted 

from the database by using pointers as in the following example: 

DESIRED NODE = NODE NUMBER - - 
POINTER = PBSNODAL - COORDINATES + (DESIRED - NODE-1) * 3  

DESIRED - -  X COORDINATE = B(PO1NTER +I) 

DESIRED - -  Y COORDINATE = B(PO1NTER +2) 

DESIRED - -  2 COORDINATE = B(PO1NTER +3) 

in which 

PBSNODAL - COORDINATES is a global pointer to a segment of the (B} 

array that contains nodal-coordinate information. 

Assignment statements like these are randomly distributed throughout the 

menu control, display, and data processing sections of the program. 

This implies that changes to the database structure would necessitate 

changes throughout the program. This is an undesirable aspect of the 

present database organization. 

A second problem with the PD is the lack of nodal, element, edge, or 

The PD stores element data in the boundary face contiguity information. 

form of nodal connectivities. There is no concept of linked or doubly 

linked lists t o  provide local proximity information. This information 

is useful in functions like hit-testing for surface information, 

creation of plot loops and plot lines on the surface, extracting 

response information along a plot line, extracting node numbers, element 

numbers and material properties, and sectioning the structure. As the 
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size of the problems being analyzed increases, the potential improvement 

in the speed of execution with the use of proximity information becomes 

more apparent. 

A third problem concerns database management. At present, the 

translators convert analysis data into the five postprocessor files -- 

.OUL, .BOU, .COR, .PAR, .GPV (refer to Chapter 1 for details). At 

run-time, there is a further translation phase to read these files into 

a form that fits into the (A} and (B} arrays. Thus "reading" in a 

problem can take up to 10-15 seconds depending on the size. 

can be eliminated if data is stored in a form that all the applications 

programs can directly access. 

This time 

5.4.2 Suggestions For a New Database 

The new database design aims at solving the problems associated with 

the existing PD. 

by a set of querying and modifying routines. 

attempts to remove the data translation phases that now exist between 

the various programs. Data will be put into a form that all the 

applications programs can directly use. Pointers into the database 

obviate the need to "read in" the information into a specific 

postprocessor format. 

Data management will be an explicit function handled 

The new environment 

The above changes deal with the management of data. Though the 

database structure affects the performance of the querying routines, 

these changes are essentially independent of it. 

geometrical contiguity information is a problem that is more difficult 

to solve and involves the entire structure of the database. 

The lack of 

At present, the origin of the llcontiguity problem" for 3-D finite 
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elements lies in the preprocessing program that generates the initial 

geometric data. Although this program uses contiguity information for 

generating meshes during the lofting process [37], the output data -- 

the .GEO, .INP, .DAT files -- do not contain it. At the postprocessing 

stage, this information can be generated from the nodal connectivity 

data but this is an expensive process. This problem must be solved 

during the preprocessing stage. 

Extensive research has been conducted in the area of boundary- 

representational graphical databases. 

database structures that contain elemental contiguity information of the 

There are a number of existing 

form discussed above. Linked and doubly-linked lists are the basic 

format of these'structures. One such database is the Winged-Edge 

Database (WED) and modifications of it (38-401. This database structure 

has been found to be useful for 2-D problems [41] but would need to be 

modified if it is to be efficiently used for 3-D structures. 

5.5 Personalizing the Postprocessing Environment 

Personalization is one of the main design features of the new 

environment. 

shown that the requirements of individual analysts vary. Also, the 

development of graphics code is time consuming. 

for an environment that allows analysts to satisfy individual 

requirements with minimal effort. 

environment would grow as the needs of the user-group grow. At the same 

time, as it is to be implemented on workstations, each executable image 

of the program (one on each of the workstations) could be different -- 

adapted to the particular analyst's database design and requirements. 

Experience in the area of engineering postprocessing has 

Hence there is a need 

The resulting postprocessing 
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5.5 .1  Database Independence 

There has been extensive research in the area of device-independent 

graphics languages, but the area of database independence has not 

received sufficient attention. 

programs that facilitate rapid viewing of engineering analysis data. 

The final communication with the display device is a visual 

representation of data and is always a set of polygons, vectors, or 

text. The nature of the database does not alter these graphics 

primitives. Thus, a postprocessor is potentially database independent. 

The AIDP has no concept of how the database is structured. The 

Postprocessors are essentially graphics 

designer of the database must also design a set of querying and 

modifying routines that "operate" on the database. 

querying calls are the same for all databases as the information needed 

by the AIDP (if the functionality remains unchanged) is the same. Each 

database would have its own implementation of these calls in the ADDP. 

Common utility modules may be built into an ADDP Library shared by 

different databases. 

The set of necessary 

This feature has a number of advantages, especially in a constantly 

evolving research environment. A new database can use all the 

functionality of the postprocessor. The only programming task that the 

analyst faces is the development of the database querying and modifying 

routines. Also, a researcher can modify the structure of an existing 

database with no effect on a large part of the program -- only certain 

ADDP routines directly linked to the modified part of the database would 

need to be rewritten. 
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5.5.2 String Parsing 

At present, the names of the responses, analysis types and other 

analysis-specific "string" data like element types, response types, 

etc., are hard-coded into the program. The new design eliminates this 

restrictive design. 

A text file containing information about response parameters is 

created by the analyst. 

names of all the response parameters that can be viewed using a 

This file contains the "strings" that are the 

particular database. 

informs the AIDP about which "display modes" are allowed for the 

parameter. Examples of diplay modes are discrete contouring, smooth 

contouring, smooth shading, and vectors. At present, each response 

parameter is associated with a single display mode that is hard-coded 

into the program. This is overrestrictive. For example, the analyst 

may decide to view principal stresses as either discrete contours, 

smooth contours or vectors. This would be a simple task in the new 

environment provided the AIDP supports these rendering modes. As new 

applications create the need for different display modes, these can be 

incorporated into the AIDP and become available to the other databases. 

A second text file created by the analyst contains information about 

Associated with each of these is a code that 

the kind of elements with which a particular database deals. This file 

also contains data on the number of nodes, and the number of degrees of 

freedom at each node of the elements. At present, the postprocessor 

supports four element types -- 6-noded wedge, 8-noded brick, 15-noded 

wedge and 20-noded brick finite elements. 

be incorporated into the postprocessor database, especially if it has a 

variable number of degrees of freedom at its nodes -- which is the case 

A new element cannot easily 
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in some shell elements. The new environment allows the analyst to 

introduce new elements of any kind into the program without affecting 

the code -- only this text file needs to be modified to introduce the 

elements . 

5.5.3 Color Map Design 

A third file contains the color maps. At present, there are six 

color maps (each containing 10 colors) that the user can choose from. 

These are hard-coded into the program. The visual perception of users 

can differ; it is useful to be able to build suitable color maps 

according to individual needs. This file contains default color maps 

that may be retained if necessary. 

number of possible maps the user may build into this file or the number 

of colors each map contains. Information for smooth contour maps would 

also be stored in this file. 

There is no restriction on the 

5.5.4 Menu Layouts and Evolving Functionality 

The use of the Menu Manager and a Menu Description Language 

facilitate the easy design and redesign of menu-layouts. 

the ADDP are modular and allow the analyst to "move" individual 

postprocessing functions between menu pages. This removes the tedious 

task of menu design and formatting from the applications programmer, and 

allows individual analysts the freedom to change the menu structure. 

The use of the List Processor and Valuators further simplify the task of 

the programmer. 

used by any graphics applications program. 

The AIDP and 

These high-level software tools are general and can be 

The Menu Description File, written in the Menu Description Language, 
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allows the designer to name buttons, specify their type -- prompt, 

potentiometer, message box, etc. -- and location, and associate a 
function call with each. 

these buttons in a given space or may specify their exact locations. 

The modularity of 

the ADDP and AIDP, and the simple structure of the Menu Description File 

ensure that this is a simple task. Any new postprocessing feature that 

is a useful, general tool becomes available to all users through the . 

AIDP. 

The designer may leave it to the MM to format 

New functions can easily be added to a menu page. 

5.6 The Display List 

The Rastertech Model One1380 has a segmented display list that uses 

a fixed section of the memory of the frame buffer whose size is 

restricted to one megabyte. In contrast, the H.P. workstations retain 

the display list in virtual memory, and thus the size is restricted only 

by the virtual memory capacity of the system, a minimum of 30 megabytes, 

and may be as large as 4 gigabytes. 

technology can be expected to configure display lists in this manner. 

Current and future workstation 

There are a number of advantages to this configuration. The large 

size is an obvious advantage. Separate segments can contain the mesh, 

the outline, a shaded view, a contoured image and any other high-level 

graphics primitives like plot lines, plots, etc. Individual segments 

can be switched on or off without necessitating recomputation. 

Transformations on these segments can now be controlled by the hardware. 

One of the advantages of a segmented display list is that selected 

segments can be transformed without affecting others. At present, for 

example, every time the user desires to switch on the mesh, the 
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coordinates of all the vectors composing the mesh are extracted from the 

database and "sent" to the display device. 

geometric information of high-level primitives like the mesh, can be 

stored in the dynamic display list every time a new problem is "read 

in." 

interactive session, the segment containing it can be switched on and 

off. This would improve interactivity. 

In the new envirqnment, 

This information will not change for the given problem; during the 

The AIDP maintains control of the display list. The ADDP 

communicates with the AIDP using Display ID'S (DID) to identify the 

segment of interest. The ADDP maintains a view status of the various 

segments. This status keeps track of what high-level graphics 

primitives have been sent to the device, where they are displayed (image 

plane or overlays), and whether the segment is currently on or off. 

(Both the ADDP and the AIDP can control switching segments on and off.) 

As the AIDP handles all viewing operations and transformations, the 

"view" information needs to be sent to the ADDP in the form of the 

transformation matrices. 

5.7 Future Integration of the Engineering Design Process 

At present the design process is usually fragmented into its 

individual components. Each stage can only accept input data in a 

specific form and generates output data in another form. 

programs are used to convert output data from one program into the input 

format that the next program can accept. This is a wasteful and 

expensive approach which could be alleviated if all the programs were 

integrated through use of the same database and if the design concepts 

for the new postprocessing environment were applied to the entire design 

Translation 



I 
1 
I 
I 
I 
I 
I 
I 
1 
I 
I 
1 
I 
I 
8 
I 
I 
1 
I 

151 

and analysis process. As more information is generated, the overall 

design database is modified. 

task, while database querying routines perform the task of extracting 

information from the database. 

Database modifying routines perform this 

Figure 5.3 shows the envisioned integrated design environment. The 

Menu Manager is used to manage the flow of control for all the 

applications programs. For a given analysis type, say finite element, 

all the programs share a common database. There are no translation 

phases between the various segments of the design process. The 

geometric information is built during the preprocessing stage. 

analysis phase adds response information to the database. 

Postprocessing includes mesh quality evaluation and is then tied-in with 

preprocessing for mesh redesign. This environment would realize the 

goal of creating a true “design loop.” 

The 
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Figure 5.3 Integrated CAD environment 



CHAPTER 6 

CONCLUSION 

The purpose of this research is to develop new techniques to 

facilitate color postprocessing, including the development and design of 

new postprocessing environments using high-speed color graphical 

workstations. Graphical tools for interactive finite element mesh 

quality evaluation from a single analysis are also developed. 

This chapter summarizes work during the third and final year of 

research and speculates on future software and hardware environments 

that will affect the nature of graphical postprocessing. 

6.1 Summary and Conclusions 

The general design objectives stated during this three-year project 

[1,8] have been achieved -- generality of application, control of image 

manipulation, complete response and attribute viewing, interactive 

graphical capability, and potential for transportability of software. 

New computing environments have necessitated modifications to some of 

these, and have added new objectives. The detailed objectives for this 

155 
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phase of the work stated in section 1.2 have been achieved during the 

course of this research. 

The existing postprocessing program is ported from the 

low-resolution Lexidata System 3400 frame buffer and monitor to the 

high-resolution Rastertech Model One/380. 

these devices necessitated the redesign of the following algorithms: (a) 

hit-testing (b) contrasting specific base colors using the color maps, 

and (c) changing the color map used for contouring. 

Hardware differences between 

The minor refinements made to the existing program are too numerous 

to detail or list here. 

features added to the program include: (a) The process of "Material 

Extraction" is made more visual. Each material is assigned a different 

color and the analyst can interactively choose materials from a color 

map or the main view window of the display screen. ( b )  An Annotation 

menu page is added. Here, the analyst can add annotation to an image. 

This is useful for reproduction of images during demonstrations, and in 

technical papers or reports. (c) The existing database is modified. 

Unaveraged boundary response information for rapid qualitative error 

analysis is included. Software color maps are stored in the database to 

simulate a one-channel color look-up table. Pore water pressure is a 

new response parameter that can be viewed using the program, and it is 

now possible to contour Cartesian stress quantities for boundary element 

problems. (d) An improved technique for response smoothing for 15-noded 

wedge isoparametric elements is implemented. 

An important postprocessing task is the evaluation of the quality of 

The most significant new postprocessing 

the mesh -- "How valid is the analysis?" A literature survey is 

conducted in the area of a posteriori error analysis for finite element 
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meshes, and a bibliography compiled. The efficiency of various mesh 

quality sensors is discussed. 

boundaries are used as a qualitative measure of the accuracy of the 

mesh. Interactive graphical tools are developed to facilitate 2-D plots 

of unaveraged responses along any user-defined line on the surface of 

the structure. Multiple plot loops can be extracted and the analyst can 

select plot-line end points on any of the extracted loops. Also, the 

use of strain energy density contours as a qualitative mesh sensor is 

discussed. Example problems are used to demonstrate the efficacy and 

limitations of these qualitative techniques. 

Response discontinuities across element 

Experience with the use of 2-D plots as mesh quality sensors has led 

to the following conclusions: (a) they are useful as a good initial feel 

for the local and global quality of the analysis under the limitations 

described in section 4 . 4 . 3 . 3 ,  (b) the sensor is found to be more 

efficient in 2-D than in 3-D, ( c )  it does not give a quantitative 

estimate of error, and (d) its efficiency as a mesh quality sensor 

depends on the method used to extract responses along plot line. For 

automatic mesh redesign, an energy-based quantitative measure (such as 

the energy norm suggested in [ 4 4 ] )  is recommended. 

Many engineering computing environments of the future will consist 

of networked color graphical workstations around a supercomputer core. 

Postprocessing, as any other graphics-oriented computational task, is 

affected by the advent of high-performance workstations. 

examines the effect of the new hardware on engineering postprocessing. 

A new postprocessing environment is designed to exploit the enhanced 

features of these workstations such as high-level graphics tools. 

Suggestions are made for the use of other geometric and computational 

This research 
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databases that are more efficient from the point of view of the 

integration of the engineering design process. 

6.2 Suggestions for Future Research 

Rapidly evolving hardware allows the analyst to examine problems of 

increasing complexity. Postprocessing techniques that are not 

interactive with existing technology would become feasible. With the 

advance of supercomputing and networks with higher bandwidth, graphics 

workstations will be used as windows that can monitor analyses in real 

time. Graphical tools such as multiple viewports -- that allow the 

visualization of multiple views of a single problem or different 

problems -- enhance postprocessing capablilities. 

not only shaded polygonal images but also contoured images would be 

possible as rendering speed improves. 

Real time rotation of 

The third year of research has advanced postprocessing capabilities, 

and raised a number of questions about the existing techniques and 

algorithms in the light of advancing hardware environments. The 

following is a brief list of the major areas that require further 

research. 

Mesh Quality Evaluation: The error measures that are implemented 

are qualitative. It is necessary to quantify error to be able to 

close the design loop automatically. Other appropriate error quantities 

would need to be implemented and tested. Hierarchical elements and 

p-type mesh refinement procedures are an intriguing alternative to 

h-type refinement principles, and would need to be examined. Research 

in the area of 3-D error measures is ongoing. 

Integration of the Design Process: Section 5.7 contains suggestions 
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for the use of a unified geometric, computational, and postprocessing 

database to facilitate the integration of the design process. Research 

in the area of database design -- for efficient databases with element, 

edge, and nodal contiguity information, useful in the case of problems 

with changing topologies -- needs to be conducted. This would be 

essential for efficient integration of the design process. 

Multiple Viewports: Existing monitors have the required screen 

resolution to facilitate the implementation of multiple viewports. This 

is a feature that would significantly enhance the ability of the analyst 

to examine the behavior of a structure, and to be able to study 

different analyses that are related -- say, mesh refinement studies of 

the same structure, separate parts of a machine component, etc. 

Transparency: This is a useful feature that can facilitate viewing 

the "inside" of a structure. The analyst can select a desired reponse 

value and contour an "equi-value," single-color surface through the 

volume of the structure. Coupled with animation techniques, this would 

aid in the study of the propagation of elastic waves, or plastic 

surfaces in a structure over time. 

Response Animation of Time-dependent Problems: As rendering speeds 

of workstations increase, response animation of time-dependent (or 

pseudo-time dependent) problems becomes feasible. This feature would 

enable the analyst to visulize the variation of responses over the 

domain through time. Essential factors would be speed of rendering, and 

computational efficiency. Efficient database and database querying 

routines will be necessary for rapid evaluation and "sifting" of 

analysis information in real-time. 

Enhancement of "Sectioning" Techniques: The existing techniques to 
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extract and view a portion of the structure are slow and inadequate. 

New techniques need to be designed and implemented. These would allow 

the analyst to specify a combination of a range of different "sectioning 

criteria" -- including arbitrarily oriented enclosures, use of a 
response range (a 3-D analogue to contrasting), a response range coupled 

with materials and enclosures (for example, "...extract all elements in 

this enclosure that have effective stress values between 'x' and 'y' and 

belong to material type Extraction by element index values or 

along mesh-lofting lines could also be implemented. 

be efficient enough to allow these operations to be conducted on the 

fly. At present, massive duplication of data occurs when a subobject is 

The database must 

"extracted" from a parent object. If the new techniques can be 

performed on the fly, only the parent data needs to be stored at any 

time. "Learning" functions would allow the analyst to return to a 

defined status at any time; a view status is stored in the form of a 

"path", and data is not duplicated. 

Parallel Processing: Research is necessary in the area of the 

application of parallel processing to postprocessing. There are a 

number of computationally intensive processes that may be executed 

asynchronously while the interactive session proceeds. Also, the 

various modules of the program may reside on different processors of a 

parallel machine (this aspect is discussed in Section 5.3.) 

Database Design: An efficient database design is vital for the 

implementation of most of the features described above. This is an area 

of research that requires immediate attention; it affects all sections 

of the design process from pre- to post-processing. The key aspects are 

the data structures and the database management system employed to 
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extract information from the database. 

would define the geometry -- thus "freeing" it from being tied to the 

discretization information (the mesh). 

A geometric modeling system 



APPENDIX A 

DATA FLOW AND FILE MANAGEMENT SCHEMES 

The computer programs mentioned in this appendix have been developed 

and are in use at the Program of Computer Graphics, Cornel1 University. 

The BOUNDARY EXTRACTOR, OUTLINE EXTRACTOR and translator programs for 

POSTPR03D use information from the preprocessor (PREPR03D) and analysis 

programs (FACS, ALICE, or GNOME for finite element solutions, and BEM3D 

for boundary element solutions). This appendix describes the flow of 

data between these programs. 

A . 2  for finite element and boundary element analyses, respectively. 

This flow is indicated in Figures A.l and 

A.l Description of Relevant Data Files 

The following is a brief description of the important contents of 

A detailed the data files generated by the programs mentioned above. 

record-by-record description of the important files is available in 

internal documentation. 

162 
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1) Finite Element Applications: 

Preprocessing: PREPR03D is a general-purpose, 3-D finite element 

preprocessor [37]. 

GEO : 

* Coordinates of the nodes of the structure 

INP : 

* Analysis type 
* Parameters controlling non-linear analyses 
* Number of nodes, elements, load cases, etc. 
* Nodal fixities 
* Material data -- thicknesses, properties, etc. 
* Element data -- element type, material type, connectivities, etc. 

Analysis: A number of analysis programs are used -- FACS [37], ALICE, 

and GNOME (this program is under development at the Program of Computer 

Graphics in Cornel1 University.) 

DSP : 

* Three Cartesian displacement components at each node 
STR : 

* Gauss point data -- number of points, coordinates, etc. 
* Six Cartesian stress and strain components for each load case or 
non-linear load step, at each gauss point of each element 

PWP : 

* Number of gauss points per element 
* Pore water pressure f o r  each load case or non-linear load step, at 

each gauss point of each element 
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Translator1 (TRANSl): TRANSl is the first of the two translator 

programs for POSTPR03D. 

coo : 

It is used only for finite element analyses. 

* Number of materials, nodes, elements, etc. 
* Coordinates of the nodes 
* Nodal connectivities and material type of each element 

Boundary Extractor: This is a program that extracts the boundary faces 

from the finite element connectivities. The MAP and MAT files written 

only if the problem is a subobject or if there is more than one material 

type -- in these cases, there is a renumbering of some nodes. 

MAT : 

* Number of new nodes 
* New element connectivities 
* New node numbers and coordinates 
* The node map - that maps the new node numbers to old ones 

MAP : 

* Number of nodes 
* The node map - that maps the new node numbers to old ones 

BOU : 

* Number of boundary faces 
* Face connectivities, element number, materila type, etc. 
* Face normals 

2) Boundary Element Applications: 

The program used is BEM3D. This is a 3-D boundary element 
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preprocessor, analysis, and postprocessor (postprocessing is performed 

on vector refresh Evans and Sutherland devices, and capabilities are 

limited [43]) 

BEM : 

* Coordinates of the nodes 
* Element connectivities 
* Applied displacements and tractions (boundary conditions) 
* Material information 

DTS : 

* Computed displacements and tractions at the nodes 
STR : 

* Cartesian stress and strain components at the nodes 
SIF: 

* Stress Intensity Factors (for all modes) along the crack fronts. 

3) Programs Used by Finite/Boundary Element Applications: 

Outline Extractor: The OUTLINE EXTRACTOR extracts the outline for a 

given structure. The outline is used by POSTPR03D to "rotate" the 

structure. 

OUL : 

* Number of outlines 
* Nodal connectivities 
* Angle between adjacent faces 

Translator2: TRANS2 is the second of the two translator programs for 

POSTPR03D for finite element analyses. (TRANS - BEM is the translator 
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used for boundary element analyses -- Figure A.2 shows the flow of data 

for boundary element analyses.) The output files of these translators 

are the POSTPR03D files -- COR, PAR, and GPV. 

COR : 

* General analysis-type data 
* Number of scalar, vector, and tensor responses 
* Number of nodes, elements, materials, load cases, etc. 
* Non-linear analysis data 
* Coordinates of the nodes 
* Element data -- element type, material type, connectivity, etc. 
* Node-number maps that connect orginal numbers to POSTPR03D numbers 
* Element-number maps 
* Renumbered nodes’ data 
* Parent data (for sub-objects) -- number of nodes, elements, etc. 
* Material data -- types, properties, etc. 

PAR : 

* Number of scalars, vectors, tensors, load sets, materials, etc. 
* Scalar response data for all load sets 
* Vector response data for all load sets 
* Tensor response data for all load sets 
* Unaveraged response data at the nodes of each boundary face for 
all load sets 

GPV : 

* Number of elements 
* Element gauss point response data - number of gauss points, and 
Cartesian stress and strain tensor components for all load sets 



167 

A.2 File Management Schemes 

Figure A.l shows the file management scheme for finite element 

applications (only those files relevant to this discussion are shown in 

the figure.) 

are deleted after being read by the OUTLINE EXTRACTOR and TRANS2, 

respectively. TRANS1 and TRANS2 are the two translator programs that 

convert data files from PREPR03D, and the analysis programs to the final 

POSTPR03D data files -- OUL, BOU, COR, PAR, and GPV. These POSTPR03D 

data files have the same format for every problem, irrespective of the 

type of analysis used in the solution process. 

The MAP and MAT files created by the BOUNDARY EXTRACTOR 

Figure A . 2  shows the file management scheme for boundary element 

applications. In this case the elements constitute the boundary and, 

hence, the BOUNDARY EXTRACTOR is not used. The displacements and 

tractions stored in the DTS file are used to compute Cartesian tensor 

quantities at the nodes; these are stored in the STR file. If the 

problem has cracks embedded in it, the stress intensity factors are 

stored in the SIF file and read into the Boundary Element Translator 

(BEM - TRANS). 

Section A.l outlines the contents of the data files. There is a 

significant duplication of data because each of the programs uses a 

different database. An integrated CAD environment with a common shared 

database would eliminate this problem -- this is discussed in section 

5.7. 
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Figure A . l  File management scheme for finite element analyses 
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Figure A . 2  File management scheme for boundary element analyses 



APPENDIX B 

MEMORY ALLOCATION AND RELATED PROBLEMS 

A lack of sufficient memory space is one of the problems of most 

interactive graphics applications programs. 

program execution and database management decisions; there is always a 

trade-off between the amount of information stored in a database (i.e. 

the amount of memory space required for the database) and the 

interactive performance of the program. Even if the machine has a large 

amount of addressible virtual memory, an excessively large database 

results in page faulting that drastically slows down interactive 

performance. On the other hand, a skeletal database (most required data 

are computed on the fly) relies on the computational power and 1/0 

efficiency of the workstation for interactivity. This is a dilemma 

faced by most graphics applications programmers, and it is unfortunate 

that its solution depends mainly on machine characteristics and 

configuration. 

Interactivity governs 

The existing postprocessor has begun to experience problems that are 

"memory-based." As a program grows in application, so does its size. 

POSTPR03D is written in VAX Fortran (specific to the VAX/VMS operating 

170 
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In system run on machines manufactured by the Digital Equipment Corp.) 

all versions of Fortran, there is a distinct difference between 

statically and dynamically declared memory. Variables "local" to a 

subroutine are normally statically declared -- especially if they are 

scalars or small arrays. As the number of subroutines increases, the 

statically declared portion of the memory also increases. At present, 

there are 403 subroutines in the program. 

scalars and small arrays. 

of Computer Graphics in Cornel1 University in a minicomputer-host/ 

frame buffer environment, with approximately 2.5 gigabytes of 

addressible virtual memory space. But it is a time-sharing environment 

with various dynamic and static memory, and page faulting quotas -- a 

common computing scenario. For example, the statically declared memory 

quota for an interactive program is 2 . 5  megabytes; and the program has 

now run into problems associated with this quota. A trivial solution is 

to increase the memory quota available to each interactive program; this 

has a potential impasse as there is always a finite amount of available 

memory. This is a poor temporary solution to a problem that can be 

solved from a program-design point of view. 

Each has statically declared 

The program is currently used at the Program 

At present, the large amount of memory required by the program to 

store the {A} and {B) arrays, the contrasting information [Section 

2.2.3.21, and "scratch" space for on-the-fly computations is dynamically 

declared. Local "scratch" variables are statically declared. This 

local memory must be controlled and managed by a central Memory Managing 

Module; no statically declared memory must exist. At program start-up, 

a block of virtual memory is allocated for local scratch variables. The 

Memory Manager takes control of allocating this memory, upon request. A 
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similar approach is used by Gattass [ 4 2 ]  in the development of a program 

for large displacement, dynamic analysis of steel frames. In this 

manner, memory is used efficiently -- space no longer needed is 

"reclaimed" by the Memory Manager for re-use by other subroutines. 

The Fortran concept of ''volatilet1 memory can be exploited. By 

default, statically declared memory is preserved; volatile memory is 

re-usable by other subroutines -- decisions to re-use llvolatile'l memory 

are made by the operating system. But usually, more memory is volatile 

than needs to to be preserved; so the default ought to be "volatile" and 

not preserved memory. 

In a single-user workstation environment, this problem is less 

severe. 

memory becomes less distinct -- the advantage of the latter being that 

it can be re-used when necessary. In this environment, the problem of 

page faulting becomes important. At present, hardware used for memory 

access off hard disks in workstations is usually inferior to that used 

on the larger disks attached to mainframes or mini-computers. Thus 1/0 

with these disks is slow and excessive page faulting drastically reduces 

interactivity. As processors become faster, it is advantageous to store 

less information in the database, and compute more of the required data 

on-the-fly. 

The differentiation between statically and dynamically declared 

An problem associated with these suggestions is that the choice of 

the solution depends on the characteristics of the computing 

environment. This is a consequence of the fact that hardware 

environments lack sufficient standards. High-level graphics workstation 

manufacturers now recognize this problem, and it is reasonable to expect 

more hardware standards for these machines in the future. 
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