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Abstract

This paper discusses the numerical simulation
of three-dimensional transonic flow about propel-
ler blades. The equation for unsteady potential
flow about propellers is given for an arbitrary
coordinate system. The small disturbance form of
the equation is then derived for a new helical
coordinate system. The new coordinate system is
suited to propeller flow and allows cascade bound-
ary conditions to be straightforwardly applied.

A numerical scheme is employed which solves the
steady flow as an asymptotic limit of unsteady
flow. Solutions are presented for subsonic and
transonic flow about a 5 percent thick bicircular
arc blade of an eight bladed cascade. Both high
and low advance ratio cases are given, and include
a lifting case as well as nonlifting cases. The
nonlifting cases are compared to solutions from

a Euler code.

Nomenclature
A function relating periodic helical
coordinates to Cartesian
coordinates

coefficients of small disturbance
equation, Eq. (51)
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E) undisturbed fluid velocity vector
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ag nonnegative constant, £q. (38)
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0y special difference operator in
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E damping function in helical
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blade chord

radially dependent Mach number
of free-stream

Mach number of propeller tip at
r =R

circumferential Mach number of
propeller tip at r = R

number of ADI iterations
number of blades in cascade
perturbation velocity
radius of propeller

radius from axis of rotation;
second helical coordinate

radius from origin

time

maximum thickness of blade
helical velocity

perturbation fluid velocities in
X,Y,z-directions

advance velocity of propeller;
relative velocity between iner-
tial and rotating frames

Cartesian coordinates in inertial
frame

Cartesian coordinates in rotating
frame

Cartesian coordinates correspond-
ing to x,y,z

helical coordinates corresponding
to y,r,t

angle of attack

circulation function

helical coordinates

uniform computational coordinates
inérement operator

ratio of maximum blade thickness
to chord Tength, § = tpax/t



Sys8yysesersbpg finite difference operators

c inverse of blade aspect ratio,
e = ¢/R

€4 streamwise switching operator

ik permutation symbol

] circumferential angle about axis

A advance ratio, x» = V/(aR)

£m half the distance between neigh-
boring blades

€ £ as measured from nearest
blade

) total velocity potential

@ perturbation velocity potential

Q rotational speed of propeller

® frequency of airfoil motion

Subscripts and superscripts:

1,J,K nodal indices of computational
mesh

i,J,k indices for tensor quantities

L.E. leading edge

n,n+l value at time step n and n+l

T.E. trailing edge

* value at first intermediate time
step

¥* %k

value at second intermediate
time step

derivative of quantity

Introduction

Computational fluid dynamics (CFD) has become
a powerful tool in the analysis of complex fluid
flows. Coinciding with the arrival of increasingly
powerful CFD methods, renewed interest has emerged
in propellers which offer large performance
improvements for aircraft that cruise in the high
subsonic speed range. This paper presents results
of the numerical simulation of the flow about pro-
peller blades operating with tip speeds in the
transonic regime. These results were obtained
using an ADI finite difference procedure to solve
the low frequency form of the three-dimensional
small disturbance equation. Expressing the small
disturbance equation in terms of novel helijcal
coordinates significantly facilitates the numeri-
cal solution for propeller flow.

Recent propeller research programs have
introduced turboprops which differ considerably
from their low-speed turboprop counterparts. The
most notable changes are the use of eight to ten
thin, highly swept, small-diameter blades instead

of two to four longer, thicker and unswept conven-
tional blades. These changes allow propellers to
operate efficiently in the transonic flow regime.
However, they require sophisticated computational
methods in order to predict and calculate their
aerodynamic characteristics. This is mainly due’
to the increased three dimensionality of the flow
field encompassing these low aspect ratio blades
and to the rise of mathematical nonlinearity in
the flow model which is associated with their
transonic tip speeds. Also, their thin structural
design makes them prone to flutter. This is a
source of unsteadiness which must be considered in
addition to the inherent unsteadiness of the tran-
sonic regime.

Many examples of both steady and unsteady
flows of practical interest are well approximated
by various forms of the governing equations of
fluid mechanics. The recent marked advance in
computer capabilities and the rapid growth of
efficient and accurate numerical methods have
allowed a number of previously untenable problems
to be examined. The use of numerical methods
offers the the ability to handle complex equations
with intricate geometries such as exist in the
case of simulating flow about rotating propeller
blades. However, as with any method, limits exist
on the capabilities. These limits involve the
speed and memory size of the computers and the
availability of efficient algorithms as well as
considerations of robustness and affordability.
For a given problem, judgement dictates the trade-
of f between the suitability of a particular model
and the feasibility of the calculation. A number
of numerical codes are currently being developed
to calculate propeller flow. These solve either
the full potential or Euler equations. Ailthough
these equations accurately model the flow, they
are computationally more expensive and more com-
plicated to numerically code than the small dis-
turbance equation.

A numerical code was deve1oped1"4 to simulate
the flow over blade-tips of helicopter rotors.
This code solves the small disturbance equation
appropriate to a helicopter in forward flight. In
particular, results were obtained that showed the
code was able to track the development of a shock
and its subsequent propagation upstream. The suc-
cessful application of the small disturbance code
in this manner indicated that the same approach
could be applied to the propeller problem.

The fact that turboprops operate at high sub-
sonic cruise speeds means that at least the tip
region of each blade will be embedded in a tran-
sonic helical flow. Shocks may likely exist ahead
of or on the blades, depending on the flight speed
and propeller design. Shocks of high strength
indicate large shock wave drag. Efficient flight
dictates that only weak shocks are acceptable,
which implies little entropy generation. The
potential formulation should provide a good approx
imation to the Euler equations as long as the
shock strengths are less than that of a normal
shock with an upstream Mach number less than about
1.3. Presently, turboprops that have helical Mach
numbers slightly less than one at the hub to about
1.12 at the tip are being designed. It is reason-
able to expect that the shock strength is suffi-
ciently weak near the blade tips, where three-
dimensional relief effects occur, so that the
potential formulation is adequate. Furthermore,




the use of a perturbation potential in place of a
full potential significantly simplifies the formu-
lation of the problem.

Although many similarities exist between the
equations developed for the helicopter rotor and
the propeller problem, fundamental differences
exist between the two. These differences demand
special consideration be made in accurately treat-
ing each type of flow. For example, in the case of
the helicopter rotor, the flow field as observed
in a coordinate system attached to the blade
remains unsteady even if blade flutter is ignored.
However, when the axis of rotation for a propeller
coincides with its flight direction, a steady flow
results with a blade-attached coordinate system.
This allows the steady problem to be examined
separately from the flutter or gust problem. With
the goal of using the numerical algorithm devel-
oped for the rotor code to the propeller problem,
several concerns need to be addressed. Many of
these concerns are naturally handled by using a
suitable coordinate system.

The key to simplifying the potential formula-
tion of the propeller problem is the use of the
helical free-stream direction as the primary direc-
tion. This provides an accurate primary flow upon
which a perturbation can be superposed. The use
of a helical flow, which inherently captures the
flow curvature, results in a marked improvement
over using an axial flow as the primary flow. The
optimum flow to base a perturbation about is the
exact flow; helical flow much more closely approxi-
mates the exact flow about a rotating and advanc-
ing propeller than does axial flow.

Since the helical flow direction captures the
fundamental properties of propeller flow, rela-
tively few terms are needed in the resulting dis-
turbance equation to provide accurate modeling of
the flow. In fact, no more terms are needed than
when using Cartesian coordinates for the rotor
problem. In addition, due to the similar nature
of the two problems, the terms in the two sets of
disturbance equations correspond identically except
for their coefficients. Thus, the propeller equa-
tion is amenable to the same potential solver as
developed for the helicopter code. This is quite
advantageous since much effort has been expended,
both in making the potential solver efficient and
in verifying its operation.

While the helical flow direction is an ideal
choice for the primary flow direction, other con-
siderations must be taken into account in order
to provide a satisfactory coordinate system. These
considerations hinge on the desire to include cas-
cade effects and the employment of small disturb-
ance boundary conditions near the blade surfaces.
Proper specification of the helical coordinates
permits the straightforward treatment of annular
cascade flows while maintaining orthogonal proper-
ties near the blade locations. The helical coor-
dinates given in this paper allow both of these
requirements to be met.

These helical coordinates are analytically
defined in terms of basic propeller parameters
through simple transformations to Cartesian coor-
dinates. Thus, they automatically adapt to the
cascade configuration for any number of blades
and blade twist, which itself is a function of

the propeller advance ratio. The helical coordi-
nates enter the problem in terms of the metric
tensor. The components of the metric tensor are
readily evaluated in a separate subroutine. The
Jacobian of the transformation is particularly
simple and provides a means to determine if a
given transformation is valid.

Obtaining accurate solutions for steady, yet
alone unsteady, three-dimensional transonic flows
presents a difficult challenge even for the most
advanced computational methods. The present work
assumes a steady state flow exists as ohserved in
a reference frame attached to the propeller system
which is rotating with a constant angular velocity.
This is considered a necessary step to be com—
pleted before undertaking the unsteady problem.

In addition, the fluid will be regarded as being
inviscid in an irrotational flow field which is
expressible in terms of a potential formulation.
The solution is sought in terms of a disturbance
potential. This disturbance potential is the
potential associated with the reduced velocity
obtained by subtracting both the free-stream
velocity and the rotational velocity, resulting
from the transformation to a noninertial reference
frame, from the total velocity. This solution
should be valid for lightly loaded blades.

This paper presents the governing equation
for the three-dimensional small perturbation
potential and its derivation from the potential
equation valid for a rotating reference frame.
This is given in general tensor form applicable
to any suitable coordinate system, which need not
be orthogonal. An original helical coordinate
system is then specified which aligns with the
mean undisturbed flow and provides for easy
application of periodic boundary conditions as
well as providing appropriate surfaces on which
to enforce the small disturbance boundary
conditions. The small disturbance form of the
equation is then presented in terms of these
coordinates which are scaled by the relevant
transonic scaling parameters. A generalized form
of the Douglas-Gunn algorithm is given which
allows for additional cross-derivative terms to
be included in the potential solver. However,
for the flow cases presented here, these terms
had little effect on the solution, and, hence,
for the results of this effort they were omitted
from the governing equation.

Solutions are presented for an annular
cascade consisting of eight bicircular arc blades
with a maximum thickness of 5 percent. These
blades are run for two geometric operating
conditions: a high advance ratio case where the
advancing speed is large compared to the rotational
speed of the propeller tip, and a Tow advance
ratio case where these two speeds are equal. For
the high advance ratio case, the helical free-stream
Mach number relative to the blade tip is Mp = 0.8.
For the low advance ratio case, results for two
values of the free-stream Mach number are
presented - a subsonic free-stream case of
Mgp = 0.8, and a transonic case of My = 1.1
which is representative of a turboprop. In
general, the results are for zero angle of attack;
however, a 1ifting case is presented for the low
advance ratio and high free-stream condition. The
nonlifting cases are compared with results from an



Euler code. In the discussion and results sections,
the abbreviation HSD will be used to denote the
helical small disturbance computations.

Governing Equation

This section presents the potential equation
and the development of an approximation to it
which is valid for small disturbance flow about
thin propeller blades which are 1lightly loaded.
First, the potential equation in rotating coor-
dinates will be given as developed for a coordinate
system attached to a helicopter blade. Following
this, the equivalent tensor equation valid for any
curvilinear coordinate system will be presented
for an accelerated system. Finally, the small
perturbation equation for generalized helical
coordinates will be given.

Potential Equation in Noninertial System

The potential equation can be expressed in
vector form® as
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opy * 2x(v6)2 + 3 veru(v0)° -
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where ¢ is the velocity potential, c,
upstream speed of sound and #
specific heats.

is the
is the ratio of

The potential equation can be expressed in
an xyz coordinate system which is both trans-
lating with an arbitrary constant velocity V
away from the inertial frame, and rotating with
an arbitrary constant rotational velocity @ x7.
The angular velocity vector © (with magnitude
@) has the direction of the axis through the
origin about which xyz are rotating, and 72 is
the position vector in this system. The relation-
ship between the two coordinate systems is shown
in Fig. 1. Although both V and @ are general
vectors, they will soon be restricted to a common
axial direction.

A potential equation can also be established
in the noninertial frame. This is initiated by
defining a perturbation potential ¢ which
separates the contribution of the free-stream from
the total potential. The free-stream contains
both the uniform flow and the bulk rotational
flow, and

q' = ve =g - (V+9x2) (2)

represents the irrotational perturbation velocity.
The gradient operator is invariant with respect to

choice of Cartesian coordinate systems. The com-
ponents of the perturbation velocity G' are
defined as
v _ 39 v _ 80 ¢ _ 30
UW=3x V=39 Y =33 (3)

The transformation of thg potential equation has
been carried out by Isom? for a coordinate system
translating and rotating with constant, but
otherwise arbitrary, Vand o. The potential
equation in the noninertial system is given as

+
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where a 1is the negative of the vector sum of the
translational velocity and the rotational velocity
as seen by an observer in the rotating frame. Thus,
for such an observer, @ can be simply written as

T=-(V+oax1) (5)

1t should be pointed out that in the trans-
formation from the potential Eq. (1) for an iner-
tial reference frame to Eq. (4) for a noninertial
frame, the cubic term, the last term on the left-
hand side of Eq. (1), was dropped. Otherwise,
Eq. (4) remains an exact equation. The introduc-
tion of the perturbation potential does not, in
itself, imply any approximations.

Potential Equation in Noninertial Curvilinear

Coordinate System

The application of Eq. (4) to the propeller
problem can be carried out by further simplifica-
tion in much the same manner as was done in deriv-
ing the small disturbance equations for the
helicopter problem. However, since the helical
coordinate systems which will be used for the pro-
peller problem are nonorthogonal, the potential
Eq. (4) is more tractable if expressed in invariant
tensor form. The tensor form of Eq. (4) is
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+ ' S gt 2222 ) _ )t - (£-1) [—— +a —
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ay' ayd ay'ay’  4fg ay
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for a translational velocity V which is independ-
ent of time. In this equation al and aj
represent the contravariant and covariant compon-
ents of the general velocity vector a defined by
Eq. (5). The quantities g'J are the contra-
variant components of the metric tensor for the
transformation between the curvilinear coordinates
y' and our orthogonal Cartesian coordinates. The
quantity g is the determinant of the correspond-
ing covariant components of the metric tensor gj;
which do not qpﬁear explicitly in the equation.
The symbol 73X s the permutation symbol which
equals zero for repeating values of 1i,j,k, unity
for cyclic (even) permutations of 1,2,3, and neg-
ative unity otherwise.




Potential Equation in Helical Coordinates

Equation (6), expressed in terms of a rotating
coordinate system, can be simplified considerably
by choosing one of the curvilinear coordinates to
be in the direction of the vector 3. From Eq. (5),
this is seen to be the direction opposite the
vector sum of the translational velocity and rota-
tional velocity which we now take to be orthogonal
such that V 1is aligned with the axis of rotation,
as shown in Fig. 2, With this arrangement the
vector @ 1is in the direction of the free-stream
velocity vector as it appears to an observer whose
frame of reference rotates with the blade. In this
instance the magnitude of @ will be designated
by U, such that in matrix form

U
a=1]0 (7)
0
and
2 = (ar)? + VP (8)
where r is the radial distance as measured from
the axis of rotation. Equation (6) then simpli-
fies to

39 UZ 3 ¢ + 2 3 o 1 02 2 30
- 17 B S y —%
at (ay”) ay at z 3y

ij a7 1 3 ij\ 2o
[ ay'ayl 45 oy 2y’
Approximate Potential Equation in Scaled Helical
Coordinates

Equation (9) is exact in that it is equivalent
to Eq. (4), but expressed in a blade-fixed refer-
ence system. However, this equation is much too
complicated to be solved efficiently. Therefore,
a systematic simplification is necessary to arrive
at an approximation which retains the nonlinear
features of the problem and which is valid for
small disturbances about the mean flow. Starting
from Eq. (4), such a procedure was carried out by
Isom® using Cartesian coordinates for flow about
the tip region of a helicopter blade. Following
the development of the approximate equation for
the helicopter problem, a similar process is

applied to Eq. (6) for the case of a propeller
blade using helical coordinates. The use of hel-
ical coordinates introduces the metric tensor into
the approximate equation and allows representation
of flow curvature.

The derivation of the approximate equations
for flow about a propeller is based on considera-
tion of the following parameters: the free-stream
axial Mach number M,; the thickness ratio &; the
ratio of the chord & to the blade-tip radius R,
which is the inverse of the aspect ratio, e¢; and
the advance ratio a. For true unsteady problems
the reduced frequency would enter; however, since
we are examining only steady solutions, the reduced
frequency need not be introduced. Also, for cas-
cade solutions, a parameter representing the block-
age of the flow, say solidity, would normally enter;
here the blades will be considered far enough apart
that variations in solidity will not be important.
For an advanced turboprop, typical values of the
paraTeters are M, =0.8, § = 0.02, ¢ = 0.3, and
A =1,

The lateral direction y3, which lies essen-
tially normal to tT? blade, is scaled by dividing
it by the value & 3. This could b& done for the
radial-like or spanwise direction y%, also since
the physical justification for scaling is to trans-
form the lateral dimensions to account for the
weak diminution of disturbances in these directions
in comparison to the streamwise direction. How-
ever, Isom chose to scale the spanwise direction
differently by introducing e. This is accom-
plished by normalizing the steamwise_direction
y* along with the already Ecaled y° direction
by &, while normalizing y< by R. Since these
two methods of scaling the y' result in the
same final approximation, either can be used. The
latter choice is made here and the directions are
scaled such that the original coordinates trans-
form to the dimensionless ones, as given by

1 o~ 2 ~2 3 ¢ =3
=Ry, ¥ =73y (10)
é

where the tilde denotes the dimensionless coordi-
nates. In addition, time and the disturbance
potential are nondimensionalized as follows:

62/3

N © = ORs o

(11)

The use of the tilde is for clarification only,
and in the following equations it will not be
used.

By defining

M-l
o

on

(12)




and introducing a constant Mach number character-
istic of the rotational speed of the propeller
tip which is defined by

M= (13)

the perturbation equation can be derived and is
given in scaled coordinates as

M e 2Me
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For low frequency or steady problems, it is
admissible to delete the second derivative with
respect to time. This gives the final form of
the equation in terms of the scaled variables as
being
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Equation (15) is the small disturbance equation
which is solved numerically by the ADI Douglas-
Gunn algorithm,

Boundary Conditions

Wall Tangency Condition for Blade Surfaces

The small disturbance boundary condition to be
applied at the blade surfaces will now be estab-
lished. This necessitates returning to the
unscaled variables momentarily.

In blade-fixed coordinates, if the equation

for the surface of a blade moving in a time-
dependent manner is

F(Vl,)’z,y3,t) = O’ (16)

then the vanishing of the fluid velocity component
normal to the surface brings

Dt F(y »y sy Wt =S5t (a + ve)evF =0 (17)

where
1
F=F,ly Yoyt -y - hu(yl,yz,t) =0 (18a)

on the upper (suction) blade surface from the lead-
ing edge (L.E.) to the trailing edge (T.E.), and
(y 1 2 3

F=F ,y,y ,t) =y

1 2

0 - hO(‘y s Y at) =0 (18b)
on the lower (pressure) blade surface. Here, h is
the profile parameter. This follows the convention
used for wing surfaces. The coordinates are aligned
as shown in Fgg. 3, where y* 1is nearly along the
mEan chord, y> is nearly normal to the chord, and

lies in the spanwise direction.

One of the key developments of this work is
the generation of coordinafs systems possessing
the characteristic that g2~ 0 at the blade
surfaces. For these coordinate systems, the
unsteady boundary condition at the blade surface
is simplified.

The general time-dependent boundary condition
which allows the profile parameter to include
pitching, bending, and twisting is given in scaled
variables as

30 1 ah . M 3h
2. € — * — (19)
ay3 33 < at MT a_yl'>

This time dependence is included mainly for any
future efforts which consider flutter. It is
interesting to_note thgt in digensiona] Cartesian
coordinates (y* = x, y = z), this is the
familiar

3 ., 3h, y2h (20)

Finally, the steady scaled boundary condition
is simply

39 . 1 _M__Bh (21)
o ey

This boundary condition is not actually applied

at the airfoil surfaces but rather at two surfaces
separated slightly such that they straddle the
mean chord surface which itself lies on, or near,

the y? = 0 surface. Thus, at the upper surface
ah
3 1 M
2, ~mw 1 (22a)
Wydoe 9T

and, at the lower surface

ah
2 PO N R (22b)

Flow Field Boundary Conditions

The upstream boundary condition on the pertur-
bation potential is

0o =0 (23)




This merely states that the free-stream condition
prevails sufficiently far upstream.

In the downstream direction, the perturbation
potential is not known, but at large distances the
condition

L1 =0

oy

is reasonable and is used as the downstream bound-
ary condition.

(24)

At the hub or inner spanwise boundary, the
condition

(25)

;;? =0

is used, and the outer spanwise boundary condition
is simply

o =0 (26)
Although yz is not strictly a radial direction,

it closely approximates it for the coordinate
systems employed here,

Above and below the blade, cascade-type peri-
odic boundary conditions are applied such that

1 2 1 2
@(y Y 9t) 3 upper = ¢(y sy ,t) 3 lower
| “surface “surface
{(27)

is satisfied over the boundary surfaces which are
chosen to lie at the midchannel between the blades.
This, in return for straightforward application,
requires a coordinate system which provides nodal
coordinates having azimuthal periodicity. Such
periodic coordinate systems are discussed in
another section.

It remains to discuss the boundary conditions
in the vortex wake. Rollup of a wake is ignored
and, furthermore, the resulting vortex sheet is
approximated as lying between the downstream
extensions of the helical surfaces upon which the
blade boundary conditions are imposed. The
strength of the vortex sheet is assumed to be
preserved as it convects downstream. In addition,
the direction of the vortex vector is assumed to
be "parallel" to the free-stream direction. Since
the vortex sheet is a free surface, it cannot sup-
port a pressure difference. The boundary condition
at the trailing edge can be written in terms of
the scaled coordinates as

lol; ¢ = T(y51) (28)

where T

is the circulation around the propeller
blade, and

[w] = (w) 3 (29)

y=0+‘ (‘P) 3

y =0~

is the jump in the perturbation potential across
the wake.

Periodic Helical Coordinate System for Cascades

This section contains the development of spe-
cial periodic helical coordinates suitable for
propeller problems which include cascade effects.
The coordinate transformation between this system
and an orthogonal Cartesian system is specified
so as to provide simple periodic boundaries, and
also orthogonal properties at the blades surfaces.

The helical coordinate system used here pro-
vides natural surfaces in the form of helicoids
which pass through the mean blade locations. This
gives convenient surfaces essential to the direct
application of blade boundary conditions. Pre-
scribing a second coordinate so as to make it
intersect the mean blade surfaces orthogonally,
and yet be axially periodic in the circumferential
direction, allows both accurate specification of
blade boundary conditions and straightforward
application of blade periodicity. A third coor-
dinate lies essentially in the radial direction.
The helical coordinate system is thereby composed
of"a coordinate aligned with the mean flow direc-
tion, a radial-like coordinate and a coordinate
in a circumferential-like direction. Thus, only
in the case of the first coordinate direction are
the coordinate curves helices. An example of the
coordinate system in relationship to a Cartesian
one is shown in Fig. 4

The main advantage of these coordinates is
that the undisturbed flow direction can he aligned
with the helical coordinate direction y!. These
streamwise helices are constructed such that the
helices of greater radii have smaller advance
ratios, i.e., the smaller the radius the steeper
the spiral, exactly characterizing the mean pro-
peller flow.

To provide circumferential periodicity, the
y3 coordinate must be constructed such that, in
a periodic fashion, it repeats it§ axial locations.
The simplest choice is to make y> the circumfer-
ential direction, forcing it to be independent of
the axial value, i.e, identical to the angular
coordinate of the familiar circular cylindrical
coordinate system. The drawback in doing this is
that the y° direction would no longer be normal
to the streamwise direction. Orthogonality in these
two directions is an important quality, especially
near the surfaces of the blades. To provide
ogthogonality at the mean blade locations, the
y? direction must be perpendicular to the stream-
wise helices, at 1§ast near the blades. Away from
the blades, the y° coordinate should reverse its
axial direction so as to bend back and regain its
original axial station. This must be repeated in
a periodic fashion about the axis so as to conform
to the locations of the blades.

The coordinate direction y2 which serves to
measure the radial value is not, in general, a
straight line. This coordinate direction is only
a straight line at its coordinate axis, which was
chosen to align with the leading edge of one blade,
and at the leading edge locations of the remaining
blades in the cascade and at lines midway between
the leading edges. Only at the leading edge is
the coordinate system truly orthogonal. A notable
characteristic is that, for high advance ratios,
they tend toward orthogonal cylindrical coordi-
nates. This can be easily seen by inspecting the



metric tensors for thi; transformation which are
provided in Appendix A/,

A set of helical coordinates which has these
properties is given by the following transforma-
tion to the Cartesian coordinates x!.

xl = y2 sin s (30)
x2 = y2 cos o (31)
S Rt LItk (32)

where 8 1is the circumferential angle measured
as shown in Fig. 4, and which is related to the
helical coordinates by

3
A = y1+=z?-

y

(33)

oot £=

The total helical velocity U
function of the radius.

is, of course, a

It is convenient to make the following ass;gn—
mints whi%h are cgnsistent with Appendix A of:
X+ = X, X¢ =y, x> =_z for the Cartesian coordi-
nates and yl' = y, y2 = r, y3 = £ for the helical
coordinates. Using these replacements the next
section will discuss the proper choices for A(r)
and B(g).

Tailoring the Periodic Helical Coordinates

The functions A(r) and B(f) are used to
tailor the helical coordinate system to two sets
of the streamwise helical sheets. The two sets
of sheets of constant & are illustrated in
Fig. 5. They are evenly spaced in the circumfer-
ential direction. The first set of these sheets
will contain the mean position of uncambered,
symmetric, twisted blades. These correspond to
the advance helicoids. The second set of helical
surfaces are similar and are chosen such that each
sheet lies midway between two neighbors of the
first set, thus forming an alternating arrangement
of periodically spaced helicoidal surfaces. The
boundary conditions for the airfoil surfaces are
applied very near members of the first set,
whereas the periodic conditions are enforced on
the second. It should be mentioned that for asym-
metrical blades or blades with camber, the mean
blade position will not quite coincide with a
helical sheet. The mean blade positions are
assumed to lie near the first set of helical
sheets so that small disturbance boundary condi-
tions can be accurately applied.

As mentioned, the helical sheets are surfaces
of constant &£. It is desirable for satisfactory
application of blade surface boundary conditions
that the £-coordinate be orthogonal to the mean
blade surface. In addition, simple handling of
periodicity requires that there be no net change in
axial distance when traversing a f-coordinate
line from one periodic boundary to another. These
two objectives can be met by properly choosing the
functions A(r) and B(t).

Recall that the functions A and B enter
the transformation through the relationship given
in Eq. (32) which is now written as

2=y + Ar)B(E) (34)
This specifies the axial coordinate in terms of
the helical variables. It will be shown that, by
choosing suitable forms for A and B, two of the
metric tensors g13 and gp3 become equal to
zero concurrently at special values of &. The

vy and & curves will be orthogonal where gi3 =0
and, likewise, the r and & curves will be
orthogonal where gp3 = 0. When these are both
zero, the £ curves will be normal to the sur-
faces of constant &. The first objective is to
arrange this to occur for those helical sheets
containing the mean positions of the propeller
blades. To assure that these surfaces are period-
ically spaced in the circumferential direction,
B(t) is expressed as the product of two functions

of ¢ 1in the form
*m 3
B(g) = E(¢&) - sin =" (35)
m
where E is a damping function and ¢, is a

positive constant establishing the period and is
exactly half the distance between the blades.

Meeting the conditions of orthogonality
requires the inspection of the functional depend-
ence of g13 and g¢23. This will reveal what the
final forms of A and B must be. First, the
metric tensor g13 will be discussed, and then
gp3 where additional constraints will be imposed
on the axial velocity V(r).

From Appendix A,7 we have

Q v
93 = & -7 ArB'(e) (36)
where the prime indicates differentiation with

respect to the indicated argument. By using
Eq. (35), this becomes

g
2 .
913 = Uﬁﬁ'%"(") [E'(E) 0 sin <E?m ")

+ E(f) cos (%— >] (37)
m

As mentioned, E is a damping function and is
needed to assure a valid coordinate transformation.
A useful form is E = exp(-ag!€/ept). The signi-
ficance of the over-bar above & in the exponen-
tial argument will be discussed later.

The derivative E' is

a -
E' = % ?0— exp <—ao -Z—-D (38)
m m

where the minus (plus) sign relates to positive
{negative) values of «¢.

By substituting the expressions for E and
E' into Eq. (37), we obtain




£ £

- ) [cos (zm )

*':_o sin ( 1:)] (39)
m

£
with the same meaning as above attached to the
sign notation appearing before the last term.

' ar vV
913 =7 R -7 Alrlexp ('ao

™M

~

The periodic significance of & is now
determined by introducing Ng as being a posi- -
tive integer and allowing the value of e/ey to
range from -1/2 Ng to 1/2 Ng; here, Ng signi-
fies the number of blades in the cascade and may
be either even or odd. Since the value &p is
half the distance between neighboring blades, the
blades will be located at intervals of twice &y,
The total distance from -1/2 Ng to 1/2 Np
equals one transversal around the cascade. By
arbitrarily specifying one blade to be positioned
at ¢ = 0, the blade locations take on the
following values of &/egp.

NB odd

m 0, %2, #4,....., *(NB ~-2), NB 3 NB even

€ 0, *2, *4,....., *(NB -1) 3

[=~}

ol

(40)

where the subscript B denotes a blade location.
Also, at this point, the meaning of the over-bar
above ¢ 1is made clear by defining T to be
the value of £ as measured from the nearest
blade. Thus the extremes of & will be =y,
With these definitions Eq. (39) for the metric

tensor can be written
W\l (e
; l?os T
m m

£ 59 sin (;g ;>] (41)
" m

for values at the blade stations. However, since
tg = 0 from the definition of ¥, and since
cos(w £g/gn) = 1 and sin(wx £g/ey) = 0, the
value o? the metric tensor g13 for the Ng
blade stations reduces to

v
93] =T R"U A(")e’“’(‘ao

913 Qr%"%‘\(r) (42)

U
E=fg

Therefore, g13 can be forced to equal zero at
these periodic positions by simply prescribing
that

Ar) = 2 () (a3)

The expression for the axial coordinate can

now be explicitly written as
£ £ £
sin (-— (44)
‘m

2
v moR r 3
4 =_YU+-"—V_-R_2-eXp<—a0—

m

As mentioned above, the exponential factor serves
as a damping function to guarantee that the coor-
dinate transformations are well behaved; i.e., the
coordinates should not fold nor should the Jacobian
of the transformation vanish anywhere within the
region of interest. In this regard, the quantity
ag 1s a non-negative constant which increases in
magnitude as the ratio V/oR = decreases. For
a given A, the larger the damping the more the
g-coordinate is forced to assume a purely
circumferential direction.

The expression for the metr;c tensor g3

can be written from Appendix A/ as
__arr U'(r)y VU'(r) V'(r)
%3="T R *[(U o

+ A'(r)B(£)] A(r)B'(E) (45)

From Eq. (35) and the values of £p, the term
A*(r)B(t) = 0 at the Ng blade locations.
Furthermore, since g¢13 is zero at these
positions, inspection of Eq. (36) indicates that
AB'"= (aR/V)(r/R)? at the blades also. Then,

for this case, the metric tensor g23 reduces
to
] 1 ] 2
- _grr Uy (VW VE ﬂ(ﬁ)
923 TTURTU 2 "0 )Y VR
=EB U

EE T e

Requiring V to be a constant is sufficient to
render gz3 = 0 since then V' = 0. We are in
this way able to make gp3 as well as q;
equal to zero at the blade stations defineg in

.Eq. (40).

Thus the g-coordinate lines will be orthogo-
nal to the helical sheets containing the mean camber
locations of the blades provided that A(r) and
B(t) are defined as above and that the axial
velocity—V—is a constant. This is no great
restriction since a constant value of V is the
most reasonable case and the one of most interest.

The second objective is the requirement that the
axial distance be the same for corresponding points
at each periodic boundary. This is easily verified
as being satisfied by inspecting the transformation
of z on the helical sheets lying midway between
successive blades. From Eq. (44) it is seen that

v
Zpp =2} _ = -y (47)
PB E—EPB 1]
when
£ EBE . %], *3,...,*(NB - 2), NB; NB odd
'n tm ], *3,...,*(NB -1); NB even

where the subscript PB denotes "periodic bound~
ary." This relation shows that the net axial dis-
tance is not changed upon complete traversal via

a tg-coordinate line from any periodic sheet to
any other. In fact, moving a value of twice &
along any ¢-coordinate restores the original
axial location. That this is true can be seen by




inspecting Eq. (44). The consequence of this is
that any set of sheets separated by a value equal
to the blade spacing 2gy could be used as
periodic boundary sheets.’

Final Form of the Periodic Helical Coordinates

For convenience, the t{ansform5t1on of _the
helical coordinates vy
Cartesian coordinates x = xl, y = x2 z = x° is
given in terms of the nonsuperscr1pted variables

X = r sin (% v+ é) (48)
y = r cos (% v+ %) (49)

2 =N\
v m oR r £ inl&
U+TTTeXP<aoh>S‘"<zm> (50)

This is the set of coordinates which is used in
the solution of the small disturbance equation.

Various other cases of these coordinates couid
have been specified. For example, if either A(r)
or B(t) of Eq. (32) were chosen equal to zero,

then the £-curves become circles about the
z-axis. As another special case, if B(r) = is
chosen, then the £-curves are helices. On each

g-helix the coordinate value varies as the arc
length divided by the value of the radius at which
that given helix lies. This distinguishes them
from the streamwise helices which measure as the
arc length. The metric tsnsors are given in the
latter part of Appendix A/ for these special
cases.

Numerical Approach

This section presents a general description of
the numerical approach used to solve the small
disturbance £q. (38). For the sake of conven-
ience, the small d1s&urbance equat1on wi]% be
rewritten letting y' =1y, ¥y r, and y° =
in the last section. With th1s notation Eq.
can be written

£, as
(38)

2 2 2 2
39 _ 3 39 39 30 30
M ayat — a3y [62<é7> * A ay] thy oy * A ar
2 2 2
F K 3¢ 3 o
* A6 ayar * A7 3YdE * A8 arac (51)
where
2MMTe
Ay = —;?73- (52a)
1
Ay = -3 (£+ 1)megt! (52b)
11 MZ
A3 = 573 (52¢)
s
2 2
€ 22 3
fa=2;39 =3 (52d)

to the
" 3
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Ag = (52e)
Ag = ﬁz%g“ (52f)
A7=:I%§gl3 (529)‘
Ag = —6—1-57?923 (52h)

In transferring the two terms on the left-hand
side of Eq. (38) to the right-hand side in

Eq. (51), they have been lumped togethf{ with the
understanding that the variation of ¢ with
respect to y is small; recall that M is only

a function of r and, therefore, the onl{ depend-
ence of A or A3 on y is through g

It is convenient to define the two bracketed
terms above by F so that

3 aqu
F,o=2- (A, (ﬁ) + Ay 22 (53)
Equation (51) is then written as
2 2 2 2
3 ¢ [ 3 0 3 0 3
A, ——=F + — +t AL — +t A ——
1 ayat Y A4 ar2 5 aE2 6 3yar A7 Jyar
azw
* A8 3rat (54)

Except for the addition of the last two terms
above, this equation hag the same form as the
equation solved in Isom? where an ADI method
based on the Douglas-Gunn algorithm was used to
solve the finite difference form of the equation
for flow about helicopter rotors. The additional
cross-derivative terms will be handled by general-
izing the Douglas-Gunn algorithm. With modest
changes this allowed the numerical code developed
for the helicopter problem to be used for the
present work.

It should be pointed out that Eq. (54) remains
expressed in terms of unstretched physical vari-
ables. No mapping of the coordinate system has
been carried out so as to produce a nonuniform
grid. For simplicity, the numerical algorithm
will be presented for the case of no coordinate
stretching. Following this, the method of intro-
ducing coordinate stretching will be explained.

ADI Douglas-Gunn Algorithm

For three dimensions the ADI technique involves
splitting the given equation into three separate
finite difference equations which can be solved
successively to complete one time-step increment.

A curreqt estimate of ¢, say, ¢" 1is advanced
to o through two intermediate values, which
will be denoted by o* and o**, to complete

a single stage of iteration.

To begin an iteration at time step n, of
advanced to o* by solving the first equation
with only the y-direction being differenced
implicitly; this is called the y-sweep. Next, in
the r-sweep, o* 1is advanced to o** by solving

is




the second equation with only the r-direction
being implicit. Finally, in the t-sweep, o**
advanced to o by solving the third equation
with the g-direction being the only imptlicit
direction.

is

The three equations for the respective sweeps
are given for a uniform grid as

v-SWEEP:
A
1 n n n
at 57(¢* ~e) = DyFI T AgSppe T Mgl 0
+ Assyr‘p" + A75YE¢" + Ags,0 (55a)
r-SWEEP:
A A
1 4 *%
at GY(w** -9 = D.Fr* 7 Spplo # o") + A55z5°n
AG ** n n n
+ 7 6‘1" (o6 *to)+ A76YE¢ + A85Y‘E° (55b)
E~-SWEEP:
A A
1 n+l n 4 *x n
at &y (6 " -9) = DyFI *5 8. (o 9 )
A A
5 +1 6 *k
M i ("4 M+ 78 (o ¥ o")
A A
7 +1 8 +1
e e e 7+ ™ (55)
where D. is a special difference operator to be

explained below and é,, Sppaeess Spp
difference operators in the indicated directions.
Here, F represents the bracketed terms of Eq. (51)
which correspond to the flux in the y-direction,
and D,F1 gives the finite difference approxima-
tion to aF/ay at the ITH-node for each set of
values of J and K. The nodal values 1, J and
K are associated with the y, r and & direc-
tions, respectively. The three directions, have
uniform step-sizes Ay, ar and Ae, which may

be distinct.

An example of how the difference operators in

Eq. (55) are defined in terms of difference approx-
imations is

wn - 1 wn _ an . wn

rr (Ar)z 1,J+1,K 1,J,K 1,3-1,K
(56)

An analogous expression holds for Sge.  In the

case of the mixed second order operators the fol-
lowing is used:

n_ 1 n n n n
Svr® = Tyar GI,J**I,K T1L,0,K T CI-1,34,K T °1-1,J,K)

(57)
Corresponding expressions hold for 8yr and  &pg.
_ The nonlinear term contained in D Fy is
Vinearized by averaging at the n and * time

levels by defining

are standard

1

n
Frery2 = A2 (“,“’1,.1,;() (%"T,J,K)

1 n
* 3 A8, ("I,J,K * "”I',J,K) (58)

to be the flux at the midpoint of the ITH cen

on any node line given by J and K. The Murman-
Cole type-dependent differencing scheme is intro-
duced to provide stable differencing by defining

O F1 =2y [‘I(Flﬂlz - I:1-1/2) * (1 - e1-1)
x (Fra2 - I:1-3/2)] (59)
where
1, V. >0
€ = 3 ¢ (60)
0, VC <0
aﬁd
Vo= Ay 22+ Ag (61)

This switches the difference equations at each
grid point according to whether the flow field at
that point is subsonic, sonic, supersonic, or a
shock .

A more convenient set of equations for numer-
ical computations is obtained from the set (55)
by subtracting Eq. (55a) from Eq. (55b), and
Eq. {55b) from Eq. (55c), giving, with some
rearrangement, the following set:

y—SWEEP:
A
1 n n n
at 67(”* -9 - DYFI = Rgbppe ¥ Agdye
n n n
+ Aﬁser + A7sYE¢ + A85rz¢ (62a)
r-SWEEP:
A A A
1 4 6
<ﬁ Sy "7 Srr 7T S ("** - "*)
A A
4 6 n
=<—§ Grr -3 6yr> (o* - 0) (62b)
£-SWEEP:

A A A
1 5 7 8 n+l
(E S "7 % "7 ST %:) (w - "-’**)

A A
N T I

The Eq. (62) are in the so-called de’ta form
where the unknowns on the left-hand sides are
expressed as differences in the potential. This
form has superior numerical properties as compared
to Eq. (55). The solution to the above set of
equations involve no more than solving tridiagonal
matrices, except in the case of a shock point where
a quadridiagonal matrix occurs in the y-Sweep.




The potential at time level n + 1 can be found -
from the potential at level n by adding the solu-
tions for the delta differences from all sweeps

to o as .

n+l
(p =

+
o (g% = @) + (g% = o) + (o 1. p**)

(63)

As is common in ADI methods, the time step is
varied from iteration to iteration over the course
of the calculation from some maximum value Atpay
to some minimum value atpip. This is done to
improve the convergent rate of the calculation.
The geometric sequence

i~1
Atmax
at

Aty = atpig

i=1,2,3,...N (64)

min

is used for N iterations (N = 8) and then
repeated until the total number of iterations has
been reached. The total number of iterations is
determined by a preset value for the maximum num-
ber of iterations, or by either satisfying a con-
vergence criteria or exceeding an error bound.
The range in the time step for the sequence of
iterations addresses both high and low frequency
components of the error. In general, the range
of atpin and atgax must be determined by trial
and error and is strongly influenced by the size
of the computational mesh.

Grid Stretching

Up until now the mesh has been considered to
be a uniform grid. However, it is preferable to
have the grid points clustered in regions of high
gradients and sparsely distributed in regions of
low gradients. Grid stretching is a means of
accomplishing this. It is used here to distribute
the physical coordinates near the airfoil with the
greatest concentrations near the leading and trail-
ing edges. The grid is smoothly stretched from
the airfoil surfaces to a coarse grid at the outer
boundaries of the flow field. The stretching is
performed in all three coordinate directions. It
is defined in a general sense as a mapping of the

physical space vyr& to a uniform computational
space YFE by
y=v(y,7), r=r(r), £=r(E) (65)

It should be noted that the physical coordinates
r and ¢ are stretched by their respective com-
putational coordinate. However, y 1is a function
of both ¥ and 7. the added dependence of
on ¥ is necessary to accommodate swept wings.

The coordinate stretching is introduced
through the familiar chain rule formulas. By
replacing the various partial derivatives in
Eq. (51) with those obtained by the chain rule,
this equation is generalized to stretched grids.
The use of coordinate stretching complicates, but
does not change, the basic form of the ADI
algorithm.

Niscussion and Results

This discussion focuses on the results obtained
for flow surrounding a single blade of an eight
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bladed cascade. As explained in the introduction,
the blades of this cascade are simple bicircular
arc profiles with a maximum blade thickness of
five percent. Furthermore, the planform of the
blades is rectangular with the required spanwise
twist made about the leading edge. This produces
a blade of constant chord length. The aspect
ratio of the blades is defined as the ratio of
the blade-tip radius, as measured from the axis,
divided by the chord length. A11 the results
here are for an aspect ratio of 4:1. The hub of
the propeller system is placed at a radius of
0.375 R, where R 1is the tip radius; this gives
an effective aspect ratio of 2.5 for a blade
length measured from the hub, rather than from
the axis.

The following flows were computed: (1) high
advance ratio a = 100 with a helical free-stream
Mach number at the blade tip of Mg = 0.8 and
an angle of attack a = 0.0"; (2) advance ratio
A = 1 with My =0.8 and a = 0.0"; (3) advance
ratio A =1 with Mg = 1.1 and « = 0.0, and
(4) advance ratio a = 1 with My = 1.1 and
a =2.0. The first three cases were compared
against results from an Euler code.

’

Before discussing the results of these cases,
the grids used in the computations for the helical
small disturbance (HSD) code and the Euler code
will be discussed.

Mesh lines for the HSD computations are shown
(for the case a = 1) in Fig. 6 where, for clarity,
only every third line is included from the leading
edge to the trailing edge. A uniform grid is used
over the blade surface, and a stretched grid is
used in the following regions: from the leading
edge to the upstream boundary, from the trailing
edge to the downstream boundary, from the blade
tip to the outer radial boundary, and from the
blade surface to the periodic boundary. The grid
contained 31 points along the blade in the stream-
wise direction and an additional 11 grid points
both before and after the blade, for a total of
53 streamwise points. In the radial direction,

22 grid points were used with half of these being
on the blade. In the circumferential direction,
22 points were used from the lower to the upper
periodic boundary. The total grid, therefore,
was 53x22x22.

For the Euler computation, the same unstretched
grid was used over the blade surface. Otherwise,
the grid was stretched as above but with a differ-
ent stretching function and, no stretching was
used in the circumferential direction. The grid
is shown in Fig. 7 for the case of a1 =1. The
position of the blade is indicated by the narrow
opening (visible in Fig. 7(b)) of the grid lines
near the hub. The grid of Fig. 7(c)) illustrates
how the streamwise grid transitions from the axial
direction upstream of the blade to a helical direc-
tion and back again to an axial direction down-
stream. Since the blade-to-blade direction is
purely circumferential, this results in a high
degree of coordinate shearing at axial locations
near the blade. In addition, the chordwise dis-
tribution of grid points is not symmetric front to
back along the blade surface, nor is it symmetric
from the suction to the pressure side; this asym-
metry increases with blade thickness and stagger.
The total grid is 59x21x21 for the case of

x» = 100, and 62x21x21 for the case of A =1,




The above grids are coarse and the computa-
tional solutions given below will be discussed
with the understanding that these are preliminary
results which should be followed by more detailed
calculations.

Case 1) a =100, Mg = 0.8, a =0

This case was chosen to examine what effect
hlade cascading has on the solution. For the
value of a = 100, the flow is essentially an
axial flow. Since the blade is symmetric from
front to back and from top to bottom and a =0,
the solution should reflect this symmetry if no
losses occur in the flow field. For the value of
Mg = 0.8 and the thin 5 percent thick blade, no
shocks occurred in the flow field. This expected
symmetry is noticable in the solutions of both
the HSD and the Euler codes. Figure 8 shows HSD
Mach contours on the blade surface with the mini-
mum contour being 0.75 and the maximum 0.9; the
results are identical for the pressure surface
and the suction surface. The results reveal the
expected drop-off in Mach number with increasing
radius. Similar results are shown in Fig., 9 where
identical contour values are plotted for the Euler
code. The contour shapes obtained from the two
codes are very similar with the only essential
differences being that the Mach number produced at
a given blade location is higher for the HSD code.

Similar symmetry is shown for Mach contours in
cross section planes given in Figs. 10 and 11 for
the HSD and Euler codes, respectively. Again, the
shapes are similar between the two codes, with the
HSD results showing more flow acceleration through
the passage. The similarity in shapes indicates
that qualitatively the HSD solution is being cal-
culated correctly within the interior region of
the flow as well as at the blade surfaces.

The solutions on blade-to-blade surfaces are
given in Figs. 12 and 13 for the HSD and Euler
codes respectively. In each case Mach contours
are shown for three different span stations along
the blade. The minimum contour value is 0.8. The
values of the maximum contours are as follows:
1.0 for Fig. 12(a); 0.92 for Fig. 12(b); 0.86 for
Fig. 12(c); 0.88 for Fig. 13{a); and 0.86 for
Figs. 13(b) and (c). The results are symetric
and support the above finding that the HSD code
predicts flows that agree with the Euler code
except in magnitude, at least for subsonic axial
flow.

Case 2) 2 =1, Mp = 0.8, a = 0°

This case is presented to isolate the effect
of blade rotation. The free-stream axial Mach
number is only 0.5657, although Mg = 0.8. The
effect of operating at a low advance ratio is seen
in Figs. 14 and 15 which give Mach number contours
on the blade surface, again for the HSD and Euler
computations, respectively. These contours are
given for a range of 0.6 to 0.8 in each case.
Other than the expected resuit that the flow Mach
number would increase toward the blade tip, the
Euler contours are asymmetric with the pressure
surface being nearly the inverted image (left to
right) as compared to the suction surface. This
might be the result of blade stagger which would
give an inverted image for a symmetric blade; for
the case of isentropic flow, the Mach number on
the pressure surface, at a given chord location,
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would be the same as that on the suction surface
if its location was measured from the opposite end
of the blade. To give an example, the maximum
Mach number might occur at 60 percent chord, for
a given span station, on the pressure surface; it
would then have to occur at 40 percent chord on
the suction surface. The reason for the observed
difference in the magnitude between the pressure
and suction contours for the Euler case is not
known but, may in part be due to the grid asym-
metry. While the results of the HSD contours are
shown to be symmetric, there is no reason that
the maximum Mach number must be at midchord.

The blade-to-blade contours for this case are
shown in Figs. 16 and 17. The HSD results are
given for the following range of Mach contours:
0.6 to 0.66 for Fig. 16(a); 0.66 to 0.71 for
Fig. 16(b); and 0.75 to 0.78 for Fig. 16{c). The
Euler results are given for the same respective
range of Mach contours. The primary difference
between the two sets of contours is that the Euler
contours more closely resemble contours about
isolated blades. In the case of the HSD contours,
they tend to shift upstream on the pressure side
and downstream on the suction side of the blade
so as to gradually join together at midchannel.

Case 3) » =1, My =1.1, a = 0O°

This repeats the previous case except that
now the free-stream Mach number is increased so
that it has a value of 0.7778 on the axis and a
helical free-stream value of 1.1 at the blade tip.
The Mach contours on the blade surface are given
in Fig. 18 for the HSD computation. The contours
are shifted toward the trailing edge on both the
pressure and suction surfaces, which show identi-
cal contours. Near the tip and trailing edge a
very weak shock may exist. In the case of the
Euler computations, the rearward shift of peak
Mach number is more pronounced. A weak shock
probably exists on the suction surface where
larger gradients than on the pressure side are
indicated.

The blade-to-blade contours for this case are
shown in Fig. 20 for the HSD computation and in
Fig. 21 for the Euler computation. For both sets
of results, the contour levels range from: a)
0.82 to 1.0; b) 0.87 to 1.06 and, ¢) 0.99 to 1.16.
It is not clear that any shock exists for the HSD
computation. However, a weak shock is observable
in Fig. 21(c) of the Euler computation; it origi-
nates near the trailing edge of the suction sur-
face and extends outward to a position upstream
of the neighboring blade.

Case 4) 2 =1, My =1.1, a =2"

As a final case, the HSD code was used to
recalculate the above case except that a spanwise
uniform angle of attack of 2° was used. The Euler
code was not used for this case. The Mach contour
plots are given in Fig. 22 for the blade surfaces
and in Fig. 23 for the blade-to-blade surfaces.
The effect of imposing an angle of attack to the
blades resulted in a difference between the pres-
sure and suction contours in the expected direc-
tion, i.e., the fluid velocity is now higher on
the suction side. The blade-to-blade contours
reveal that larger regions of the fluid are accel-
erated on the suction side. Although a weak shock




may exist on either surface, no shock is noted to
extend into the fluid from either surface of the
blade. :

Concluding Remarks and Future Work

The above test cases indicate that although
both the HSD and the Euler codes give reasonable
solutions, enough differences exist between the
two sets of solutions to warrant further investi-
gation. Any future effort should focus on resolv-
ing the difference between the two codes in the
values of the Mach contours, particularly for
case 1. Similarly, the difference between the two
for the blade-to-blade contours, with A =1,
needs to be explained. As noted above, the mesh
used in these calculations was coarse. In addi-
tion to the coarseness of the mesh, variations in
mesh characteristics exist between the two. Some
of the computational differences between the two
codes may be resolved if a common mesh is used,
and a finer mesh should provide more detailed and
accurate computations. As a means of providing a
common mesh, a new helical coordinate system is
currently being developed which conforms to the
blade shape. This means that the small disturb-
ance boundary conditions will be able to be
replaced by the actual blade surface boundary
conditions. The new coordinate system should
also be readily adaptable to the Euler code.

This will allow identical grids to be used for
both sets of computations. An increased effort
will then be invested into exploring areas such
as proper specification of the farfield boundary
conditions, especially those needed for accurate
unsteady caiculations.
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