FINAL REPORT

REPORT OF THE LSPI/NASA WORKSHOP ON LUNAR BASE METHODOLOGY DEVELOPMENT

(LARGE SCALE PROGRAMS INSTITUTE)
FINAL REPORT

REPORT OF THE LSPI/NASA WORKSHOP ON
LUNAR BASE METHODOLOGY DEVELOPMENT

August 26-30, 1985
La Jolla, California

Editors:
Stewart Nozette
and
Barney Roberts

NASA Grant NAG9-116

RELEASE DATE 11/19/85
TABLE OF CONTENTS

SECTION I. Introduction

SECTION II. Methodology Development: Top Level Philosophy

A. Strategic Planning Objectives
B. Upper Level Model Description
C. Interrelationship Matrix

Figure II-1a: Upper Level Flow Diagram
Figure II-1b: Upper Level Functional Description
Figure II-2: Detailed Model Flow
Figure II-3: An Example of the Interrelationship Matrix
Figure II-4: Contents of Matrix Box 5,2
Figure II-5: Example of a Temporal and Spatial Plot of Lunar Base
Figure II-6: Example of a Cost and Schedule Plot
Figure II-7: Typical Goal Performance Parameters

SECTION III. Model Users, Features, Descriptions, Computer Implementation and Management

A. The User Community
B. Model Features
C. Model Descriptions
D. System Implementation
E. Model Management

Figure III-1: Economic Analysis of Lunar Propellant Production
Figure III-2: Optimization Option—Later Years Model Relationships

SECTION IV. Plan for Future Action

A. Initiating and Furthering the Modeling Process
B. Definition of Detailed Architecture

Figure IV-1: Lunar Base Modeling Working Group
Figure IV-2: Lunar Base Modeling Working Group Schedule
Figure IV-3: Lunar Base Model Architecture
Figure IV-4: Lunar Base Executive Module Sample Inputs/Outputs

Page
I-1
II-1
II-2
II-4
II-5
II-6
II-7
II-8
II-9
II-10
II-11
III-1
III-1
III-4
III-8
III-9
III-10
III-11
IV-1
IV-2
IV-3
IV-4
IV-5
IV-6
APPENDIX A. Introduction
APPENDIX B. Organization
APPENDIX C. Suggested Reorganization of Lunar Base Elements
 Figure C-1: Lunar Base Elements
APPENDIX D. Initial Utilization
APPENDIX E. Model Growth and Expansion
APPENDIX F. Habitat
APPENDIX G. Power System Alternatives Modeling for the Lunar Base Supporting Elements
 Appendix G Supplement: Detailed Models
APPENDIX H. Element: Surface Transportation/Construction Equipment
APPENDIX I. Space Transportation System Modeling for the Lunar Base and Supporting Functions
APPENDIX J. Example Estimate of Lunar Oxygen Production Plant Mass
 Lunar Hydrogen Extraction
 Performance Uncertainty
APPENDIX K. Communications, Command, and Control
APPENDIX L. Mining
APPENDIX M. Manufacturing on the Moon
APPENDIX N. Element--Geochemical Laboratory
 Element--Life Science Laboratory
APPENDIX O. Roster of Workshop Participants
SECTION ONE: INTRODUCTION

The workshop on Lunar Base Methodology Development was convened on August 26-30, 1985 by the Large Scale Programs Institute and co-sponsored by the NASA Johnson Space Center. The purpose of the workshop was to explore the feasibility of developing a computer based methodology to analyze alternative strategies for establishing and operating a lunar base. The workshop participants represented a broad-based group of NASA experts in space transportation, space power, life support, and surface infrastructure, combined with professional operations research workers and computer programmers. Previous studies have been limited by model dependent conclusions and have not provided alternative plans and recommendations for NASA planners. Furthermore, the large number of interdependent systems involved in an advanced program include interactions that are difficult to model. Although the workshop was aimed at the development of lunar base development models, sufficient flexibility may be built into the models to allow for application to additional programs (e.g., a manned Mars mission), as well as the interactions of several programs.

The workshop laid the groundwork for computer models which will assist in the design of a manned lunar base. The models, herein described, will provide the following functions for the successful conclusion of that task:

A. Strategic Planning

Models should involve identification and assessment of strategic variables such as investment schedules, production and service requirements with various mixes of objectives even when the latter are not necessarily consistent with each other—e.g., minimize delays at minimum cost and investment. Highlighting such inconsistencies along with alteration and improvement can improve the selection of optimum strategies for lunar base program design.
B. Sensitivity Analyses

By varying the assumptions of system and subsystem performance, the impact and relative importance of technological and operational alternatives may be evaluated. These analyses will expose the most effective system strategies, and will establish priorities for technology development.

C. Impact Analyses

Variations in performance parameters and system elements may be analyzed to determine the support requirements of specific elements. Suitably arranged models may be used to document and communicate the nature of the lunar base program. Such documentation should include the current status, of course, and it should also incorporate updates as the program develops. The models should also allow testing and predictions with accompanying tests of sensitivity to data to identify the degree of confidence that might be placed in the model (and the program it represents) as well as to suggest improvements in data or alternatives in model details.

D. Documentation

The models will establish a method to document and disseminate information describing the current state of development of a lunar base. This will involve documented, user friendly "executive models" which can be run on personal computers.
SECTION II: METHODOLOGY DEVELOPMENT: TOP LEVEL PHILOSOPHY

A. Strategic Planning Objectives

The principal objective is the development of computer based models that will enable NASA to effectively and efficiently examine the impacts of various long range options for future space missions which interact with the moon. The desired models should be able to provide: (1) a graphic representation of the evolution (in both time and space) of advanced space missions that may interact, (2) investment, cost, and schedule estimates for developing lunar bases, and (3) identify and highlight performance parameters against which a set of possible program goals can be compared. Such models should also provide quantitative evaluation of tradeoff possibilities so that it will be easy to analyze the effect of: (1) alternative space missions, (2) alternative lunar base objectives, (3) alternative technologies, (4) alternative elements or subsystems, and other factors such as learning, alternate priorities, and possible contacts with other programs—including international cooperation. The results of these analyses can then be used to develop long range plans for NASA. Near term impacts can be determined for space station, orbit transfer vehicle, and earth-to-orbit delivery vehicles. Recommendations may be developed for prioritization of technology developments. To accomplish all of this, a practical general purpose tool for NASA will also advance the state of the art in both modeling and in strategic planning. Hence, components of the models and techniques developed will have application to other large scale program planning activities in NASA and elsewhere.

Model development and implementation will probably need to go through several stages. A first stage will consist of defining the problem in adequate detail and initiating the assembly of data in conjunction with the NASA staff. A second stage will consist of analytical formulations accompanied by small numerical prototypes. This will permit testing and evaluation in a manner readily understood
not only by the modelers but also by the planners and decisionmakers. The development of a full-scale model should be undertaken at the next stage. If substantial communication and review is incorporated into the process, implementation and placement will follow the modeling activity in a natural and easy manner. If this is not done in an adequate manner, there is likely to be a great deal of frustration and possible failure of the modeling effort.

B. Upper Level Model Description: General Characteristics

The inputs to the models will be key specific objectives of the lunar base program as well as lunar base elemental structure with parameters. The models are composed of a set of relations and functions that describe the interrelationships of each lunar base element with every other lunar base element. When solutions are found which satisfy the input objectives, cost and schedules are determined and a set of evaluation parameters are derived. An upper level flow is shown in Figure II-1a. Figure II-1b provides a description of the flow. The model must be interactive to allow many optional schedules, technologies, techniques, or design philosophies to be considered. Figure II-2 shows the flow in greater detail.

C. Matrix Interrelationships

The heart of the model is the matrix of interrelationships generalized in Figure II-3. Each cell contains three sets of functional relationships. The first set is a collection of optional functions that relate the row element to the column element. There can be several functions which are user selected (or capability for new ones to be input by the user) and which assume different technology or design philosophy. The second set of relationships are temporal data which indicate the time phasing of the elements. In general, these data are to be used for the scheduling routines. The third set of functional relationships is data or datasets for input into the cost routines. For example, Figure II-4 is a description of the contents of matrix box 5,2. When the models have completed
Iteration to stable and self-consistent solutions, the design points are output for the next set of calculations. Example outputs are indicated in Figures II-5, II-6, and II-7.
Figure II.14 - Upper Level Flow Diagram

Knowledge

Base

Cost Data

Temporal Data

Elements

Functional Matrix

Interrelationships

Lunar Base

Objectives

Intermediate

Output

Input

Base Elements

Goals to Goals

Performance

Representation of

Schedule

Cost and
Input (Objectives) \(\rightarrow \) Requirements

- Resource Development
- Services
- Increased Knowledge of Solar System
- Generate New Technologies
- Physical Science Research
- Commercial Development
- Extraterrestrial Habitation/R&D

\[\downarrow \]

Lunar Base Surface Elements \(\rightarrow \) Base Definition

- Habitats
- Surface Transport
- Power
- Space Transport
- Space Facilities
- Communications
- Mining
- Manufacturing Plants
- Experiments
- Life Science Experiments
- Material Science Labs

\[\downarrow \]

Output

- Cost & Schedules
- Performance To Goals
 - Comprehensive Security
 - Science
 - Economic Opportunity
 - Human Presence
 - Inspiration/National Pride and Prestige
- Impacts
 - To STS
 - To SS
 - To ETO
 - To OTV
- Technology Dev.
 Recommendations

Figure II.1b - Upper Level Functional Description
Figure 11.2: Detailed Model Flow

Inputs:
- Objectives
 - Science
 - Resources
 - Colonization
 - Tourism

Select Transport Scenario

Select Production and Mining Schemes

Select Optimization for Cost and Time

Select Uncertainty in Cost

Temporal Constraints

Mining and Production Interface Module

Transport Interface Module

Objectives Interface Module

Requirements

Relationship Matrix

Optimized?

Yes

Finished?

No

Key Tech. Definition Parameters:
- Earth Launch Mass
- Total Program Cost
- Subsystem Costs

Schedule

Project Cost

Year

Figure 11.2 - Detailed Model Flow
Figure II-3. An Example of the Interrelationship Matrix

<table>
<thead>
<tr>
<th>HABITAT</th>
<th>POWER</th>
<th>SURF X-PORT</th>
<th>SPACE X-PORT</th>
<th>LOX PLANT</th>
<th>COMMUNICATION</th>
<th>MINING</th>
<th>CONSTRUCTION</th>
<th>MANUFACTURING</th>
<th>EXPERIMENTS</th>
<th>LABORATORIES</th>
</tr>
</thead>
</table>

See Fig. 4.
Matrix Element for Row 5, LLOX Plant, and Column 2, Power Plant

Figure II.4 - Contents of Matrix Box 5,2
Figure II-5: Example of a Temporal and Spatial Plot of Lunar Base
LSR LUNAR SURFACE RETURN

PROGRAMMATIC: RESOURCE UTILIZATION EMPHASIS

Lyndon B. Johnson Space Center

<table>
<thead>
<tr>
<th>Year</th>
<th>Phase</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>PHASE I: SITE SELECTION</td>
<td>Mapper/L2RS Surface Explorer</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: X/Y = (HARDWARE COSTS $B/TRANSPORT COSTS, $B)

PHASE II:
- CAMP, TEMP MANNELED
- BASE, PERM MANNELED

PHASE IV:
- ADV. BASE

TRANSPORTATION ELEMENTS
- MANNED CAPSULE/OTV
- EXPEND LANDER
- EXPEND ASCENT STAGE
- LUNAR ORBITAL FACILITIES

MANNED SORTIES
- OPS COSTS, $B

COSTS $B

HARDWARE = $44B

TRANSPORT = $29B

TOTAL COSTS EXCLUDED = $73B

Figure II-6: Example of a Cost and Schedule Plot
MAXIMUM SIMPLE INCREMENTAL MISSION ("TENTPOLE MISSION")

- **Earth Launch Requirements**:

 Mass = _____, Volume = _____
 Mass/Year = _____ (or a Plot)

- **Total Program Cost**: $_____

- **Cost of Lunar Products**

 - **Raw Material**
 - In LEO = $/LB
 - In GEO = $/LB
 - In L1 (or LLO) = $/LB

 - **Manufactured Products**
 - In LEO = $/LB
 - In GEO = $/LB
 - In L1 (or LLO) = $/LB

- **Science Man Hours Available** = _____

 Cost = ______ $/Man Hour

- **Space Station Impacts**

 - Thruput: LBS, LBS/Year, or Plot
 - Number OTV's Utilized
 - EVA and IVA Man Hours

Figure II.7 - Typical Goal Performance Parameters
SECTION III: MODEL USERS, FEATURES, DESCRIPTIONS, COMPUTER IMPLEMENTATION AND MANAGEMENT

The following section describes (A) the potential user community of the proposed modeling system, (B) the user interface and model features as seen by the various sections of that community, (C) model descriptions, (D) system implementation, and (E) model management.

A. The User Community

Potential users of the lunar base model may be found at three different levels. The top level consists of program managers and their staffs who are interested in determining how the operation of one system, such as a lunar base, interacts with the operation of other potential systems, such as a manned Mars mission.

The second set of potential users consists of project managers and their staffs, outside contractors and researchers interested in analyzing various lunar base scenarios in order to meet specific mission goals and objectives.

A third set of users consists of subsystem experts, primarily outside contractors, but also NASA staff members, who are interested in analyzing different system configurations in a lunar base scenario in order to determine the value of possible technical innovations as part of the process of evaluating specific lunar base system configurations.

B. Model Features

Properties considered desirable for such models by the potential user communities are as follows:

(1) System Accessibility. The modeling system must be easily understood by the entire user community. Potential users should be able to use the model effectively and be able to learn to do so in a reasonable amount of time (e.g., no more than a day or two). It
should not be necessary for outside contractors or university researchers to buy specialized hardware or software or to hire professional programmers in order to use the modeling system and contribute to the model definition.

(2) **System Flexibility.** As new data are generated and as ideas on the nature of the lunar base progress, it will be necessary to add and delete system elements. The structure and parameters of the element characteristics will also change. The modeling system must be able to incorporate these changes without requiring modifications of the core of the modeling system. The model will allow flexibility in the level of detail exercised. For example, one might want to do sensitivity analyses in a limited area, keeping some model elements fixed while looking at variation in others.

(3) **Self-Documenting.** The modeling system must include an on-line help facility that will allow potential users to obtain the sources and to secure explanations of the relationships which are being employed within the model. For example, the definition of Mass Payback Ratio (MPR) used by the model could be called up for inspection. A brief text explanation of the inputs, outputs, and how the formulae were derived should be associated with each system element and each of the subsystems that make it up. These features are particularly important to subsystem experts who will also be using models that describe various system elements and who need a thorough understanding of underlying assumptions in order to draw conclusions and interpret the model. Other members of the user community, such as program managers, will often use the modeling system to derive summary level figures of merit. Further detail on these, too, should be available for display when requested by the user. A listing of standard output products is required.

(4) **Ease of Use.** Because the modeling system needs to be accessible to a wide variety of users, it must be easy to use. The model development must adhere to the basic principles of user-friendly
systems. This implies that the modeling system will be menu-driven
with a heavy graphics interface. Naturally, extensive documentation
(in addition to on-line help facility) will be provided.

(5) Reporting Capabilities. A number of reporting capabilities
should be included in the modeling system. Output from the system
will be used in final reports, proposals, and presentations to other
members of the field as well as the public. This implies that output
from the modeling system must take several forms. Output data in
table, graph, and chart form, pictures of system configurations, and
lists of the assumptions and relationships that describe the specific
scenarios being studied are examples of required formats.

(6) On-line, Interactive User Interface. Users of the modeling
system at upper levels will interact with the modeling system via
interactive, on-line programs. This implies that execution speed must
be reasonable. Overnight runs in order to calculate outputs each time
a system parameter is changed are not acceptable. Some off-line
modeling tools may be provided to aid researchers in model definition.
For example, persons involved in process plant research may require a
separate program to aid in the definition of a base process plant. It
should be possible to service such requests interactively, although
further detail, when required, may be obtained through batch
(overnight) operations.

(7) Identification of Areas of Uncertainty. The "behavior" of
some system elements is better defined than others and some data are
much less certain than other data. When uncertain data or relations
are used, a mechanism should be provided to indicate the level of
uncertainty involved or at least include allowable ranges which the
user can specifically inspect. For example, a researcher analyzing
the system configuration of the space transportation system might
include other system elements in the scenario. Protective safeguards
are also needed. If the calculations defined for these other elements
have a large amount of uncertainty, a flag should be triggered to
alert the user that the accuracy of the output is questionable within certain ranges of values. This feature would let an expert in one system element utilize the current level of knowledge of the experts in another system element without being led astray or having to become an expert in all elements of a lunar base program.

(8) Test Cases. Previous models of lunar propellant production schemes have been developed under the supervision of the NASA Johnson Space Center by Eagle Engineering, Inc., Earth Space Operations, and others.

Figure III-1 illustrates the methodology used by Stump, et al, for a given scheme for returning propellants to LEO with input data being chosen from a variety of options and the results then subjected to a series of increasingly complex "filters" that can eliminate uneconomic schemes. First, best case and average mass payback ratios are calculated. Mass payback ratio is roughly "what you get back (propellant) over what you send out" from LEO in terms of mass. This ratio must be greater than 1.0. Following mass payback ratios, increasingly complex cost calculations are used to compare lunar launched $/Kg cost to Earth launched $/Kg. The completed model is then applied to a variety of scenarios for oxygen delivery to LEO, including some which include lunar hygrogen and advanced propulsion. The propellant production scenario can provide a test case to be used in developing and testing the model.

C. Model Descriptions

This section describes the types of models which will comprise the modeling system. The list is not meant to be exhaustive—other model types may be necessary or desirable. Model type descriptions are sketchy. Further elaboration will be provided later as the methodology matures.

Single Period Scenario Analysis Model. The purpose of this model is to support the steady state analysis of a specified lunar base system. Inputs to the model include:
1. System objectives.
2. System configuration or structure.
4. System parameters.

Outputs of the model are:

1. System operation variables.
2. System performance variables.
3. System cost variables.
4. Sensitivity analyses.

A brief description of these items follow.

Inputs. System objectives must ultimately be expressed in specific numerical terms, e.g., as tons of Lunar LOX to be delivered to LEO per year. These may be input directly by the user, or may be derived from various "markets" which the system is serving, e.g., LEO servicing, LEO space station, SDI, Mars Missions, etc. System configuration or structure is a complete specification of what system elements are included in a particular study and the type of each element. System elements include the surface infrastructure, Earth launch systems, lunar launch systems, and OTV systems. In the case of Earth launch systems, element types include shuttle, SDV, or HLLV. System element models specify the input/output relations of each system element. An example is annual power consumption of lunar LOX plants as a function of annual LOX production. It is important to note that there are two levels of element models: aggregated (or simplified) and detailed. Initially, we will probably use aggregate models, consisting of a few graphs, formulas, or parameters. Detailed models go more deeply into the physics of the various devices and processes, and are much more complex. Outputs of these detailed models will be used to update the aggregate models. System parameters specify these elements in adequate numerical detail to do the required calculations. They include items such as people per habitat, power requirements or habitats and production facilities, and vehicle characteristics such as O/F ratio, specific impulse, and vehicle mass.
Outputs. System operation variables include power consumption, LLOX production, person and cargo trips/year of various vehicle types, etc. System performance variables are either a subset of system operation variables or are easily derived from them. An example is metric tons of lunar oxygen delivered to LEO, mass payback ratios, etc. Costs include transport costs, system lifetime cost, emplacement costs, etc.

Internal operation of this model is straightforward computation of system outputs from system inputs. If there are simultaneous equations, they appear to be few and should not pose a significant computational burden. Given these outputs, it is easy to perform sensitivity studies, either by performing multiple runs with different inputs or by automating this capability, e.g., by stepping a parameter through a range and displaying the resulting outputs, perhaps in graphical form.

Program Planning and Costing Model. This model is closely related to the single period scenario analysis model. Its inputs include:

1. System configuration or structure.
2. System parameters.
3. A list of activities required to create each system element. For each activity, one must specify its immediate predecessors (the activities which must be done before it can be done), its duration, and its cost. This data is sufficient to construct a PERT graph showing the time-phasing of all activities needed to construct the base.

Its outputs include resource requirements and costs for each year in the planning horizon. See Figure III-1 for a description of how the scenario analysis and planning models work together.

Goal Programming or Other Optimization Models. These models are a natural follow-on from the previous two, and use most of the same
inputs. All models in this category will vary certain system parameters (which are assumed fixed in the previous two models) in order to come as close as possible to meeting one or more system goals, or to meet such goals at minimum costs, etc. In any case, the model will compute a best set of system parameters subject to certain constraints. "Best" may mean minimal cost or the constraints may relate to achieving certain levels of performance or some combination of cost and performance constraints could be specified. Alternatively, "best" may mean "minimize the sum of weighted deviations of actual system performance from stated goals." If the only things to be varied by the optimizer are system parameters, which can take on any values within stated limits, there are several optimization software systems which can be interfaced with the single period scenario analysis model that are capable of performing the optimization. Such optimization should be thought of as an automated case study capability. Instead of the model user specifying the next scenario or case to analyze, the optimizer specifies a sequence of cases (really sets of adjustable parameter values), which come closer and closer to optimizing the objectives while satisfying the constraints. There are several ways to deal with multiple, conflicting objectives: goal programming is one such approach. See figure III-2 for a description of how the scenario analysis and optimization models fit together.

Simulation of Base Operations. A simulation model would focus on the details of lunar base system operations over a relatively short period of time, e.g., several days to several weeks. Such a model would simulate all events involved in the daily life of the system, e.g., vehicle landings, orbital rendezvous, transport of lunar rock to manufacturing facilities, etc. Its purpose is to precisely analyze detailed system operation. In this way, bottlenecks can be identified, and costs can be more precisely measured. Such models are commonly used in analyzing flows of jobs through factories, vehicle traffic and queues in ports, etc. There is a wide variety of software available for such simulations, some of which runs on PC's, uses graphic displays, etc.
D. System Implementation

There are two major hardware vehicles for system implementation: personal computers (e.g., Apple Macintosh) and mainframes (e.g., VAX machines). The Macintosh provides excellent user interface and graphics capabilities, and has substantial computational capabilities, surely enough for aggregate versions of the system element models. In addition, interacting with the modeling system on a personal computer provides a level of flexibility for the user community that is highly desirable. Data may be passed between the modeling system and other analysis systems that are readily available and familiar to the user.

On the other hand, a mainframe such as the VAX would allow many users to interact with a large on-line data base. Most NASA employees have access to a network of VAX's. In addition, there is more room for growth if the modeling system ever grew substantially beyond the current expected computational levels.

On the software level, there are several alternatives for implementing the modeling system. Most of the requirements for the upper two levels of the proposed system could be easily implemented using standard decision support software such as IFPS. This software provides a high-level, English-like language for describing a model which would be more accessible to the users than a general purpose programming language (e.g., Fortran or "C"). Excellent data management, graphics, and reporting capabilities are built into such systems. In addition, IFPS has an optimization module and can incorporate user-defined Fortran subroutines. There are mainframe and personal computer versions of IFPS.

An alternative is to develop a customized software program. Such a program could be optimized (in a programming sense, not a modeling sense) to run the required equations more efficiently. By using a standard general purpose programming language such as Fortran, an extra degree of portability is added.
The disadvantage of customized software is that potential model users must either accept the model as defined or hire professional programmers to create new "subroutines" to describe their innovations. Some customized software is necessary in order to meet the user requirements as stated during this workshop. However, writing an entire modeling system from scratch may not be the most efficient use of resources. More design work is needed before a decision can be made as to which requirements are best met by custom software and which by decision support and other analysis packages.

E. Model Management

When the model reaches "maturity" it should go under configuration control. Permanent modifications to the single period scenario analysis model and its associated program planning and costing model will be controlled by a NASA group. Only approved changes will be incorporated into the permanent model. Individual model components can be easily accessed and changed by interested users, but these changes will be temporary until they are thoroughly scrutinized and accepted.

In order to best manage the growth and modification of the core an in-house NASA staff member should have responsibility for participating in the modeling process. As knowledge about the lunar base grows, the types of models and the uses they are put to will grow. In-house modeling expertise could be used to insure that the models used match the requirements of their users.

It is anticipated that, as the model becomes more widely used, researchers utilizing the model will develop new data and potentially new relations, some of which may suggest changes to the model. An archival system for collecting new data, novel uses of the model, arguments for changing the model, etc. should be designed into the program at the start. Along with configuration control, this should help document the development of the model and help avoid duplicative work.
Economic Analysis of Lunar Propellant Production

FIGURE III-1

Input Data
- Projected Market Size
- Surface Infrastructure options: C2 Plant, P2 Plant, Base
- Earth Launch Systems: Shuttle, Small SDV, Large SDV, HLLV
- Lunar Launch Systems: Expen., Reuse, Mass Driver

Formulate Scheme
- Pick Market
- Pick transportation scheme size base and plant(s)
- Simple Mass Payback Ratio
 - Given the base and plants in place - can you get back more than you send out?

Evaluate Scheme
- Ave. Mass Payback Ratio
 - Include base and plant mass, then do you get back more than you sent out?
- Transport Cost Analysis:
 - Does it cost less than Earth launched mass just considering transport costs to bring a KC to LEO or elsewhere?
- Simple Cost Analysis:
 - Total system lifetime costs (including dev.)/Lifetime prop. dev. to LEO, No interest. Is the $/KC less than Earth launched?
- Present value analysis: Consider interest costs: Is the present value positive?
 - No
 - Yes

Request new study, multiply funding x.10.

III-10
Optimization Option - Later Years
Model Relationships

FIGURE III-2
section). The overall schedule for this working group is to be approximately six months with bi-monthly meetings for the total group and more frequently, as needed, by specific sub-groups. The final meeting is expected to assess the needs for more comprehensive models and provide for any follow-on efforts.

B. Definition of Detailed Architecture

It is envisioned that the Lunar Base Model Architecture will be developed during and through the working group activities, but as a point of departure, an example architecture is suggested in figures 3 and 4. Figure 3 delineates the concept of the Executive Model, Summary Technical/Programmatic Modules and Detailed Technical/Programmatic Modules. The Executive Model with the Summary Technical/Programmatic Modules will be the basic operating system for planning and will, as an objective, be compatible with a Macintosh 512K PC or equivalent. A set of typical inputs and outputs from this Executive Model is shown in figure 4. It is the function of the working group to refine the architecture and to decide how/where the Detailed Technical/Programmatic Modules reside. A possible scheme, places Executive and Summaries in a PC and the Detailed Modules reside in a mainframe accessible via modem for detailed trades as required. As a minimum, the total program will be required to be maintained by an appropriate group or individual for the configuration control.
SECTION IV: PLAN FOR FUTURE ACTION

A. Implementing the Modeling Process

Building on the results of the Workshop on Lunar Base Methodology Development, a Lunar Base Modeling Working Group is to be formed to focus technical and strategic or programmatic models toward an overall planning model for Lunar Base development. This working group will assess the feasibility of modeling that will allow integrated lunar base planning and strategic analyses. Models should incorporate technical and programmatic (cost and schedule) modules that describe the parameters and interrelationships among transportation, base habitat, science, manufacturing, power, etc. Sensitivities to technology levels and definition uncertainties can be determined and the results can provide a focus for future studies planning and technology investment strategies.

The proposed organization of the working group is shown in figure IV-1. It is anticipated that this group will meet on a bi-monthly basis for an initial period of six months. During this period, the working group will coordinate the development of both the execution program as well as the technical and programmatic modules, and will continually assess the feasibility of progressing to more detailed model structures. The working group will bring the computer modelers and the technical-programmatic disciplines together to refine interfaces (requirements, inputs, outputs, formats, etc.).

The schedule of activities is shown in Figure IV-2. Formation of the working group is planned to be complete in late September and the first meeting will be scheduled at that time. The general meeting objectives are to assess the overall model architecture and to review proposals for the Executive Model based upon the results of the August 26-30, 1985 La Jolla Workshop. These proposals will be prepared by the computer modeling sub-group and will be accompanied by preliminary specifications for the summary modules (described in the next
Figure 1. Lunar Base Modeling Working Group

Computer Modeling
- Executive
- Summary Technical/Programmatics Modules
- Detailed Technical/Programmatics Modules

Technical Modules
- Transportation
 - Earth Launch
 - Orbit Transfer
 - Lunar Lander
 - Lunar Surface
- Habitation
 - Crew
 - Crew Support
 - Facilities
 - Equipment
- Power
 - Solar
 - Nuclear
- Science
 - Surface
 - Space
- Manufacturing/Mining
 - Metals
 - LOX
 - Glass
 - Other
- Agriculture/Advanced Systems

Test Case Development

Programmatics Modules
- Cost Estimates
- Schedules
Figure 2. Lunar Base Modeling Working Group Schedule

<table>
<thead>
<tr>
<th>1985</th>
<th>1986</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUG</td>
<td>SEP</td>
</tr>
</tbody>
</table>

La Jolla Workshop

Form Lunar Base Modeling Working Group (LBMWG)

LBMWG Milestones

- Executive Module Development
- Summary Modules Development
- Detailed Modules Development
- Test Case Preparation
- Documentation

- Org Mtg
- Status Mtg
- Summary Mtg
- Final Mtg

- Exec Module Proposals
- Summary Modules Initiation
- Test Case Review
- Exec Mod Review
- Summary Mods Rev
- Detailed Modules Initiation
- Test Case Review/Approval
- Summary Mods Staus
- Detl Modules Status
- Scope Remaining Effort
- Documentation
- Plans For Follow-on (If Req'd)
Figure 3. Lunar Base Model Architecture

Executive Model
- Interactive
- PC-Compatible
- Accesses Summary and Detailed Modules
- Routine Opr W/Smry Mods

Transportation
- Earth Launch
- Orbit Transfer
- Lunar Landing
- Lunar Surface
- Reference Char
- Ranges of Options W/Char

Habitation
- Crew
- Crew Size
- Living Quarters
- Support Fac
- Equipment

Power
- Solar
- Nuclear

Science
- Surface
- Resources
- Astronomical

Mig and Mining
- Metals
- LOX
- Glass
- Other Products

Agriculture

Advanced Sys

ELV
- S7S
- STS II
- SDV
- HLLV

OTV
- Grd Bed
- Sp Bsd
- Adv Eng

Lunar Ldr

Lunar Sft
- Battery
- Fuel Cell
- Other

Legend:
- Summary Technical/Programmatic Modules
- Detailed Technical/Programmatic Modules
Figure 4. Lunar Base Executive Module Sample Inputs/Outputs

Inputs

- Select Objectives:
 - Science
 - Resources
 - Colonization
 - Tourism
 - Other

- Select Transportation Scenarios:
 - Lunar LOX
 - Lunar LOX & LH_2
 - No Lunar Props
 - Other

- Select Scheme:
 - Production
 - Mining
 - Other

- Select Costing Parameters:
 - CER's
 - Uncertainties

- Select Constraints:
 - Budget Levels
 - Total Costs
 - Unconstrained
 - Others

Outputs

- Program Cost: $
- Program Schedules:
- Key Technical Parameters:
 - Launch Mass
 - Total Cost
 - Set S/S Cost
 - Other
- Sales Parameters:
 - Product Costs
 - # Scientists
 - $/Manhour
 - Com'l ROI
 - Lbs Thru-put
 - Products
 - Others

- Sensitivity Plots:
APPENDIX A: INTRODUCTION

The purpose of this section of the report is to identify, within the limitations of the talent and time available:

(1) The elements and sub-elements of a lunar base program; most frequently an identifiable, discrete hardware end-item.

(2) The quantifiable requirements for each sub-element which must be specified to the designer of each sub-element before beginning the concept selection and design process. Examples of such requirements are payload, range, reliability and life.

(3) The attributes of the element or sub-element which provide both a physical description of the end-item and the needs which must be supplied from outside the element in order for it to fulfill its function and meet its requirements. Examples would be the mass, volume, unit cost, and fuel consumption rate of an internal combustion engine. The fuel consumption attribute of the engine, once defined, would become a part of the requirements for the fuel supply and distribution element.

(4) The transform relationships which may be used in the modelling process for deriving first order estimates of new attribute values in response to new requirement values. An example of an attribute is the specific mass of a storage battery, expressed in the units of Kg/Watt Hour. Although many transform relationships may be a single constant, others will require a more complex algorithm which may involve multiple constants or non-linear relationships or both.
The essence of the completed lunar base model will be the mathematical relationships linking the "requirements" to the "attributes" of the lunar base "elements" which are required to achieve a specified set of goals. Eleven candidate lunar base elements were defined early in the workshop to provide a starting point for development of such relationships. Regrouping and redefinition of these elements will be a natural outcome of further effort on the lunar base model development project. These early candidate elements are:

1. habitat
2. power
3. surface transportation
4. space transportation
5. lunar liquid oxygen plant
6. communication
7. mining
8. construction equipment
9. manufacturing
10. experiments
11. laboratories

After identification of these elements, a number of major "sub-elements" were defined for each element, to achieve the needed level-of-detail for the model. Principal "attributes" and "requirements" were then identified for each subsystem. A matrix of "transform algorithms" will ultimately be developed for each lunar base sub-element, providing the mathematical link between each requirement and each attribute of each sub-element. As shown in Figure I-la, certain sub-element attributes that are designed to meet lunar base goals (e.g., the power required for production of liquid oxygen) will generate secondary requirements influencing the design of other sub-elements (e.g., the manpower and surface transportation
requirements for establishment and maintenance of the lunar base power system. Therefore, the full identification of total requirements for each element of the lunar base will require iteration to assure that all needs are fulfilled.

Figure B-1 Attributes of lunar base sub-elements will be defined by primary requirements for meeting lunar base goals and secondary requirements for supporting other sub-elements of the lunar base in the achievement of these goals.
APPENDIX C: SUGGESTED RE-ORGANIZATION OF LUNAR BASE ELEMENTS

Before the model architecture is established, it is recommended that further time be devoted to the top-level organization of elements to assure that:

a. All necessary elements are identified and present in the model.

b. No element is entered twice, resulting in inaccurate characterization of the overall lunar base system.
Table C-1

Lunar Base Elements

<table>
<thead>
<tr>
<th>A. Lunar Surface Elements</th>
<th>D. Earth Surface Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Habitat</td>
<td>1. Launch Facilities</td>
</tr>
<tr>
<td>2. Power</td>
<td>2.</td>
</tr>
<tr>
<td>3. Transport (surface)</td>
<td>3.</td>
</tr>
<tr>
<td>4. Communications & control</td>
<td>4. Communications and Control</td>
</tr>
<tr>
<td>5. Scientific experiments</td>
<td>5.</td>
</tr>
<tr>
<td>7. Manufacturing</td>
<td>7. Manufacturing</td>
</tr>
<tr>
<td>8. Mining</td>
<td>8.</td>
</tr>
<tr>
<td>10. Space vehicle basing and operation</td>
<td>10. Space vehicle basing and operation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Lunar Orbit Elements</th>
<th>E. Space Transportation, Lunar Landing & Ascent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Habitat</td>
<td>1. Expendable landers</td>
</tr>
<tr>
<td>2. Power</td>
<td>2. Reusable landers</td>
</tr>
<tr>
<td>3. Local transport</td>
<td>3. Personnel module</td>
</tr>
<tr>
<td>4. Communications and control</td>
<td>4. Support equipment</td>
</tr>
<tr>
<td>5. Scientific experiments</td>
<td>5. Spares</td>
</tr>
<tr>
<td>6. Laboratories</td>
<td></td>
</tr>
<tr>
<td>7. Manufacturing</td>
<td></td>
</tr>
<tr>
<td>8. Propellant Storage</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
</tr>
<tr>
<td>10. Space vehicle basing & operation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. LEO Elements</th>
<th>F. Space Transportation, Lunar Landing & Ascent</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Local transport</td>
<td>3. Reusable electric</td>
</tr>
<tr>
<td>4. Communications & control</td>
<td>4. Advanced concepts</td>
</tr>
<tr>
<td>5. Scientific experiments</td>
<td>5. Personnel module</td>
</tr>
<tr>
<td>7. Manufacturing</td>
<td>7. Spares</td>
</tr>
<tr>
<td>8. Propellant Storage Transfer</td>
<td></td>
</tr>
<tr>
<td>9. Other programs</td>
<td></td>
</tr>
<tr>
<td>10. Space vehicle basing & operation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G. Launch Vehicles</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. STS-I</td>
<td></td>
</tr>
<tr>
<td>2. STS-II</td>
<td></td>
</tr>
<tr>
<td>3. SDV-I</td>
<td></td>
</tr>
<tr>
<td>4. SDV-II</td>
<td></td>
</tr>
<tr>
<td>5. HLLV</td>
<td></td>
</tr>
<tr>
<td>6. Priority LV</td>
<td></td>
</tr>
<tr>
<td>7. P/L support</td>
<td></td>
</tr>
<tr>
<td>8. Other support</td>
<td></td>
</tr>
<tr>
<td>9. Spares</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX D: INITIAL UTILIZATION

Initially, a normalization of the level-of-detail of the sub-element descriptions, requirements and attributes will be necessary. Completion of the definition of the transform algorithms will also be necessary. Much of the data on nominal estimated transform algorithms will be missing and little or no data on the necessary minimum and maximum expected values will be present.

A consistent, non-redundant numbering system must be devised to trace the requirements, attributes, and transforms through the models as they are employed.

The expected run procedure will be to employ "best estimate" statements of requirements developed individually by the person responsible for the element/sub-element.

From the initial run, the "attributes" of each sub-element will be defined and these attributes which impose incremental requirements on other sub-elements will be accumulated by sub-elements and the process completed. Criteria must be established to determine the degree of stability, or convergence necessary to declare that the model has produced a set of sub-elements which meet all requirements, both external to and internal to the lunar base. The accumulator routines will require considerable care to assure that all requirements of all sub-elements are fulfilled once and only once.

Also, it may be necessary to define influence coefficients to expedite system closure and prevent model oscillation.
APPENDIX E: MODEL GROWTH AND EXPANSION

Initial models will attempt only to provide a "snapshot" of the lunar base at it will exist at a single moment of its life cycle.

The real lunar base will, of course, require multi-year activities to establish first a transient fasthold, then a facility which can support life over an extended interval and, eventually a human community which approaches self-sufficiency and produces goods and services for export.

Multiple "snapshots" can give some indication of this pattern of growth but it is expected that refinement of the models will be necessary to permit more realism in describing the growth of the lunar base. Alternative strategies for establishing and growing a lunar base should be examined through the use of the upgraded lunar base model and some application made of optimization subroutines to improve these strategies.

An additional facet of lunar base model growth will be in the consideration of uncertainties. Certainly none of the transform algorithms will be absolutely correct nor will technology remain static. Addition of some standardized "best case" and "worst case" values will be necessary as will some indication of the distribution function across the range of uncertainty (gaussian, triangular, regular, skewed, etc.).

Finally, the completed models must accommodate off-nominal conditions which can be expected in the real world--breakdowns, failures, accidents, etc. must be modelled and their influence on the lunar base determined.

In the summer semester 1985, a case study on comparison of alternative strategies for return to the moon was carried out at the Technical University of Berlin. The study was carried out by a group
of 13 graduate aerospace students and 2 assistant professors with the overall supervision of a full professor. The subject was to compare a "bare bone" strategy, an "exploration" strategy and a "utilization" strategy for return to the moon in terms of costs and benefits. For all three strategies the same set of ground rules was used for the design of the lunar base and the space transportation system. It was assumed that the lunar base will have an operational life cycle of 25 years after 10 years of development and 4-5 years of assembly. It was found that the cost of such programs, assuming crew sizes of 6, 30, and 120 people on the lunar surface will be in order of 56 to 106 billion $1985. The overall system efficiency will be 300 to 3000 times better than the efficiency of the Apollo program in terms of spent man years on earth for one man year on the moon. In the two larger scenarios also LOX production from lunar soil to satisfy the requirements of the space transportation system was assumed.

The NASA-sponsored study, "Economic Implications of Space Resource Utilization Technologies," (EISRUT), was performed by Earth Space Operations (ESO) from December 1984 through April 1985. Michael C. Simon, ESO President, was study manager and principal author of this report. Raymond J. Gorski (ESO Vice President), Thomas L. Kessler (Executive Consultant), and Andrew H. Cutler (Consultant) were also major contributors to this study effort. The principal study objectives were to expand and refine the analyses of space resource utilization initiated during the NASA/CalSpace summer study that was conducted in La Jolla during the period of June through August 1984.

EISRUT study efforts focused on analysis of the baseline space resource utilization scenario that was developed during the CalSpace study. The objective defined in this scenario was to manufacture 1 million kg (1,000 metric tons) of liquid oxygen (LO$_2$) on the Moon each year, and to deliver as much of this LO$_2$ as possible to low Earth-orbit (LEO).

The basis for many of the analyses and trade studies conducted during the EISRUT study was the Space Resource Utilization (SRU) Cost
Model, which calculates lunar LO₂ costs parametrically as a function of fifteen key variables. While the baseline lunar LO₂ costs estimates are all subject to considerable uncertainty, the SRU Cost Model demonstrated with reasonable confidence that the cost of providing lunar LO₂ in LEO will be most heavily influenced by costs associated with logistics support for LO₂ production and delivery to LEO. Among these logistics-related costs, space transportation costs were found to be the most significant factor influencing the cost-effectiveness of providing lunar LO₂ in LEO.

An important issue related to transportation costs is the cost of providing the liquid hydrogen (LH₂) needed on the Moon to fuel the lunar OTVs used to return lunar LO₂ to LEO. At the nominal Earth-to-Moon transportation cost used in this study, the cost of providing the LH₂ required to support the baseline scenario comprises a large portion of total operations costs.

Production of LH₂ on the Moon offers the possibility of eliminating LH₂ transportation costs altogether, but the relatively scarcity of LH₂ in lunar fines raises important questions about the size and cost of the LH₂ production facilities needed to manufacture sufficient quantities of LH₂ on the Moon.
APPENDIX F: HABITAT

<table>
<thead>
<tr>
<th>SUBELEMENT</th>
<th>REQUIREMENTS</th>
<th>ATTRIBUTES</th>
<th>TRANSFORMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Control and Life Support Systems (ECLSS)</td>
<td>Pressure/composition control</td>
<td>Mass</td>
<td>(/pd = /person/day)</td>
</tr>
<tr>
<td></td>
<td>Revitalization/temp control</td>
<td>Volume</td>
<td>lbs/pd</td>
</tr>
<tr>
<td></td>
<td>Water management</td>
<td>Power</td>
<td>ft³/pd</td>
</tr>
<tr>
<td></td>
<td>Waste management</td>
<td>Atmos. Pressure</td>
<td>kW/pd</td>
</tr>
<tr>
<td></td>
<td>EVA servicing</td>
<td>O₂</td>
<td>% O₂</td>
</tr>
<tr>
<td></td>
<td>Support for n crewmembers</td>
<td>N₂</td>
<td>% N₂</td>
</tr>
<tr>
<td></td>
<td>X years lifetime</td>
<td>Water Vapor</td>
<td>% water vapor</td>
</tr>
<tr>
<td></td>
<td>1% reliability</td>
<td>CO₂</td>
<td>max. % contaminants</td>
</tr>
<tr>
<td></td>
<td>No maintenance H₂O</td>
<td>Contaminants</td>
<td>Total per/person</td>
</tr>
<tr>
<td></td>
<td>No maintenance O₂</td>
<td>Atmos. temp</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H₂O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Additional fluids</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solids</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total # people</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Control System</td>
<td>Heat rejection & generation</td>
<td>Mass</td>
<td>Attribute/pd</td>
</tr>
<tr>
<td></td>
<td>Lifetime</td>
<td>Volume</td>
<td>Attribute/ BTU transformer</td>
</tr>
<tr>
<td></td>
<td>Reliability</td>
<td>Power</td>
<td>Attribute/Kw consumed in habitat</td>
</tr>
<tr>
<td>Crew Systems</td>
<td>Provide personal living space and personal computer systems access.</td>
<td>Volume</td>
<td>Attribute/ pd</td>
</tr>
<tr>
<td>Stateroom</td>
<td></td>
<td>Mass</td>
<td>Attribute/p</td>
</tr>
<tr>
<td>Hygiene</td>
<td>Provide for personal sanitary needs.</td>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>Galley</td>
<td>Provide for food prep/cleanup.</td>
<td>Thermal/energy rate</td>
<td></td>
</tr>
<tr>
<td>Housekeeping</td>
<td>Provide for personal equipment/clothing maintenance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wardroom</td>
<td>Provide for recreation and entertainment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrition</td>
<td>Provide food requirements.</td>
<td>Mass</td>
<td>Attribute/ pd</td>
</tr>
<tr>
<td></td>
<td>Provide potable water reqs.</td>
<td>Volume</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Provide adequate nutrient balance.</td>
<td>Fats</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palatability.</td>
<td>Protein</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbohydrates</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minerals</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vitamins</td>
<td></td>
</tr>
<tr>
<td>Radiation Shielding and Detection Devices</td>
<td>Provide radiation protection and monitoring.</td>
<td>REMS to:</td>
<td>Attribute/ day</td>
</tr>
<tr>
<td></td>
<td>Reliability</td>
<td>Skin</td>
<td>Attribute/ ft³ of soil</td>
</tr>
<tr>
<td></td>
<td>Advanced warning capability</td>
<td>Eyes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Germinal Cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blood forming organs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RADS to electrons</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>eV energy level</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GCR radiation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solar event radiation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mass</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volume</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>Healthy Maintenance Facility</td>
<td>% health maintainability</td>
<td>Mass</td>
<td>Attribute/ likelihood</td>
</tr>
<tr>
<td></td>
<td>Patient restraint</td>
<td>Volume</td>
<td>of specific occurrence</td>
</tr>
<tr>
<td></td>
<td>Exercise</td>
<td>Power</td>
<td>of disease or injury</td>
</tr>
<tr>
<td>EVA equipment</td>
<td>Durability</td>
<td>Mass</td>
<td>Attribution/ UR EVA</td>
</tr>
<tr>
<td></td>
<td>Maintainability</td>
<td>Volume</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suit consumables</td>
<td>Power</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX G: POWER SYSTEM ALTERNATIVES MODELING
FOR THE
LUNAR BASE SUPPORTING ELEMENTS

Discussion:

Power System Parameters - and an example explaining their use - are presented for the following Lunar Base Support Elements. Detailed models for all applicable systems are included in the Appendix.

1. Main Base Power
 Early Base (small power requirements)
 Mature Base (large power requirements)

2. Outpost Power

3. Lunar Surface Mobile Power

4. Orbit Transportation Power - Electric Propulsion Cargo Carrier - LEO to LLO.

5. Lunar Transit Vehicle Power (Manned Transit Vehicle)

The power system alternatives considered for application to these elements are:

5. Regenerative fuel cells for Lunar Surface Transportation.

The characteristics of these various power systems are presented in parameter form for those components which make up these various systems. Since the power system configuration is in many cases application/orbit dependent, the component breakdown given here is necessary until better definition of the mission is available. This is especially true of solar based systems which may be highly orbit dependent.

Also a given parameter may be application/installation dependent. As an example, a solar array fixed on the lunar surface may have a smaller (W/KG) or (W/M²) parameter than one that has a sun-following drive. However, in this case the weight and cost of the sun-following drive must be included in the system make-up as a separate component or be explicitly included in the parameter (W/KG).

If better definition of the mission were available - LEO orbits, LLO orbits, transit orbits - lunar surface installation details - these various power system models could be significantly simplified - mainly the number of descriptive parameters for a given power system might be both simplified and reduced. This simplification will be the next step in the lunar mission model formulation.

If a given power system has components which could be manufactured on the lunar surface - as the solar cells for photovoltaic systems - the parameter expressing the weight, (KG/KW) must be omitted when determining the transport weight - i.e., that weight which must be delivered to the lunar surface from the earth. The power systems models given here were structured to be able to handle such
contingencies. Also, if an additional parameter is needed but is not explicit in the various models - it would be a relatively simple task to reformulate the various models to include them - either weight, volume or cost.

The technology alternatives which comprise the various power systems will evolve from those of today, to those anticipated for the future. Example descriptions are given in the following pages for these power technologies as they evolve from the 1990's to the 20xx's.

The following two charts show the applications of the various power system concepts to the lunar base and support functions.
TABLE I

<table>
<thead>
<tr>
<th>ELEMENT: POWER</th>
<th>POWERSYSTEM PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUB-ELEMENTS</td>
<td>SOLAR</td>
</tr>
<tr>
<td>Main Base Power</td>
<td></td>
</tr>
<tr>
<td>Early Base Power (KW)</td>
<td>Photovoltaic Storage: Regen. fuel cell Solar thermal dynamic, (ECS-TBD)</td>
</tr>
<tr>
<td>Mature Base Power (MW)</td>
<td>Photovoltaic Regen. fuel cell storage Solar thermal dynamic, (ECS-TBD)</td>
</tr>
<tr>
<td>Outpost Power (KW)</td>
<td>Photovoltaic Storage*: Regen. fuel cell Solar thermal dynamic</td>
</tr>
<tr>
<td>Transportation - Construction Equip.</td>
<td>Regenerative fuel cells Recharged at base</td>
</tr>
<tr>
<td>Lunar Surface (KW)</td>
<td>Primary fuel cells - refueled at base</td>
</tr>
<tr>
<td>Transportation</td>
<td>Photovoltaic with minimum storage - Regen. fuel cells Solar Dynamic Thermal with minimum thermal storage Coast during Shadow period</td>
</tr>
<tr>
<td>Earth Orbit to Lunar Orbit (KW)</td>
<td></td>
</tr>
<tr>
<td>Cargo Carrier Electric Propulsion</td>
<td></td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
</tr>
<tr>
<td>Lunar Transit Vehicle Power (Manned)</td>
<td>Photovoltaic - Regen. fuel cell Solar thermal dynamic Primary/secondary fuel cells/batteries (recharged at LEO/LLO)</td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
</tr>
<tr>
<td>Earth to LEO OMV - Small OTV</td>
<td>Batteries Primary Fuel cells Primary</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* If required
Power System Parameters:

The various power energy system parameters will be given in the following format.

Note: The parameters which make up a given system must be compatible. Example: The nuclear ECS parameters - Turbine outlet temp must correspond to the radiator parameter for that max radiator temperature and turbine inlet temperature must correspond to reactor loop outlet temperature.

Modeling the Power Systems - Use of the Parameters

Explanatory Example: Solar photovoltaic power system (weights only). (Note: Detailed models of all of the applicable systems are given in the Supplement.)

The weight of a solar photovoltaic power system is the sum of the weights of the constituent parts.

2. Regenerative fuel cell storage
 Power dependent part of storage (W/KG)
 Energy dependent part of storage (W-HRS/KG)

3. Power management and distribution (W/KG)
4. Heat rejection radiators (W/KG), also (m^3/KG)
 PMAD radiators
 Fuel cell thermal control radiators

5. Structural components - For this model we estimate this by
 adding up parts 1 thru 4 and multiplying by FS = 1.1 to
 account for structural items.

Calculation Procedure

Required input:

1. Electric power requirement - Max in orbit = PELEC

2. Efficiencies of components.

3. Orbit Data - For a solar based system, sun-shadow* times are
 needed and the power profiles during these phases - this is
 required to size the storage and solar array.
 (*Note: Detailed models of all of the applicable systems are
 given in the Supplement.)

4. Cost functions of components/systems.

The solar array must be sized to furnish the rated electrical
power during sunlight plus charging the storage to provide the
required power and energy during the shadow period.

Thus, the power in the array is (assuming the same power
for both the sun and shadow period):

\[P_{ARRAY} = P_{ELECT} \left(1 + \frac{\text{Shadow Time}}{\text{Sun Time}} \right) \frac{1}{\eta_{rt}} \frac{1}{\eta_{PMAD}} = (KW) \]

Where \(\eta_{rt} \) is the round trip efficiency of the storage system -
charging and discharging, and \(\eta_{PMAD} \) is the efficiency of the conver-
sion and distribution system.

Power output of storage = \(\frac{P_{ELEC}}{\eta_{PMAD}} \)

Weight of Power Dependent part of storage (Fuel cell modules)
\[
W_{POW} = \frac{P_{ELEC}}{n_{PMAD}} / (W/KG)_{STOR} = (KG)
\]

Weight of the energy dependent part of storage (Tanks – reactants – piping – etc.)

\[
\text{Energy Required of Storage} = \frac{\text{(Shadow Time)} P_{ELEC}}{n_{PMAD} \times n_{DISCHARGE}} = (KW-HRS)
\]

And thus the weight becomes

\[
W_{EN} = \frac{\text{(Shadow Time)} P_{ELEC}}{n_{PMAD} \times n_{DISCHARGE}} / (W-HRS/KG)_{STOR} = (KG)
\]
Weight of the heat rejection - thermal control system - radiators -

There may be two - The PMAD radiator and the fuel cell module radiator

\[W_{RAD} = \frac{P_{ELECT}}{\eta_{PMAD}} \left(1 - \frac{W}{W_{RAD}}\right) = (KG) \]

WEIGHT OF ARRAY = \(\frac{P_{ARRAY}}{W_{ARRAY}} \) = (KG)

The weight of the storage system is made up of two parts: that dependent on the power level and that determined by the total energy delivered during the shadow phase of the mission.

\[W_{FUEL\ CALL} = \frac{P_{ELECT}}{\eta_{PMAD}} \left(1 - \frac{W}{W_{FUEL\ CALL}}\right) = (KG) \]

The weight of the PMAD System is

\[W_{PMAD} = \frac{P_{ELECT}}{\eta_{PMAD}} \left(1 - \frac{W}{W_{PMAD}}\right) = (KG) \]

Thus the total weight of this system is

\[W_{PV} = (W_{ARRAY} + W_{POW} + W_{EN} + W_{RAD} + W_{FUEL\ CALL} + W_{PMAD} + \]

\[W_{PMAD}^{F.S.} = (KG) \]

The weights of the other power systems follow the same procedure. However, since they do not all consist of the same components, care must be taken to sum up the correct components.

In some cases it is also important to know the volume - regenerative fuel cells and their tankage is a major example since they may effect transportation costs and construction costs. Thus the parameter \((W/M^3) \) or \((KW/M^3) \) is also given. Costs - construction, transportation, and maintenance costs are also computed for each system, as appropriate.

G-8
Power System Technologies anticipated to be applicable to the lunar base support function

Reactor Power Systems

1990-2000

Liquid metal cooled reactor technology

1400°K reactor outlet temperature

Refractory alloys

Stirling - potassium Rankine cycles

Heat pipe radiator

7 year lifetime

2000-2010

Graphite core gas cooled reactor

2400°K reactor outlet temperature

Direct Brayton energy conversion

Advanced radiator technology

7 year lifetime

2010-2020

Particle bed and gas cooled reactor technology

3000°K reactor outlet temperature

Ceramic materials - superconducting alternator

Advanced radiator technology

7 year lifetime
Photovoltaic Power Systems

1990-2000 Photovoltaic array – 2 mil silicon

4-6 mil cover glass as needed

H₂O₂ Regenerative fuel cell
Filament wound = metal lined reactant tanks

7 year lifetime

2000-2010

Photovoltaic array – 10M Gallium Arsenide

4-6 mil cover glass as needed

H₂O₂ Regenerative fuel cell
Bifunctional electrodes
High strength filament wound reactant tanks
Higher efficiency catalyst for electrodes

7 year lifetime
Solar Thermal Dynamic Power Systems

1900-2000

Brayton cycle - 1120°K max. cycle temperature

LiF storage medium

Fin tube radiator

7 year lifetime

2000-2010

Brayton cycle - Stirling cycle

MgF2 storage medium

1536°K max cycle temperature

Advanced radiator technology

7 year lifetime
<table>
<thead>
<tr>
<th>ELEMENT: POWER</th>
<th>POWER SYSTEM ALTERNATIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUB-ELEMENTS</td>
<td>SOLAR</td>
</tr>
<tr>
<td>Main Base Power (MW)</td>
<td>Solar Based System Parameters (ECS)</td>
</tr>
<tr>
<td></td>
<td>Power level (Electrical) (W/KG) These will depend (W/M²) on type of surface installation (fixed-sun following)</td>
</tr>
<tr>
<td></td>
<td>Power Management and Distribution (PMAD)</td>
</tr>
<tr>
<td></td>
<td>Voltages</td>
</tr>
<tr>
<td></td>
<td>Currents</td>
</tr>
<tr>
<td></td>
<td>AC-DC</td>
</tr>
<tr>
<td></td>
<td>Components parameters(W/KG) Rejection temps. Transmission lines (KG/M) Component Efficiencies</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiator parameters (W/KG) (W/R/M₁) (High and low temp. radiators)</td>
</tr>
<tr>
<td></td>
<td>Storage System Requirements</td>
</tr>
<tr>
<td></td>
<td>Power-Energy Requirements (W-HRS/KG):(W-HRS/M³):(W/KG) Charge-discharge efficiencies</td>
</tr>
<tr>
<td></td>
<td>Environmental Protection Requirements</td>
</tr>
<tr>
<td></td>
<td>Shielding - area to be protected (KG/M²)</td>
</tr>
<tr>
<td></td>
<td>Process Heat (Direct) Requirements - for solar thermal Thermal buss (W/KG)</td>
</tr>
</tbody>
</table>
TABLE II (CONT.)

<table>
<thead>
<tr>
<th>ELEMENT: POWER</th>
<th>POWER SYSTEM ALTERNATIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUB-ELEMENTS</td>
<td>SOLAR</td>
</tr>
<tr>
<td>Main Base Power (MW) (cont.)</td>
<td>Cost Parameters (System) ($/W) (Solar array, solar thermal (ECS)) ($/m²) Solar array, solar Concentrator ($/W) PMAD equipment ($/W) Thermal control eqpmt Transportation Costs ($/KG) ($/m³) Support requirements: Maintenance-Construction ($/KW) (M-HRS/YR) Requirements Maintenance shop facilities LXHXW Tools: (KG/KW) Shirtsleeve environment</td>
</tr>
<tr>
<td>Early Base Power or Outpost Power</td>
<td>Same as main base power - but at smaller level - no process heat requirements</td>
</tr>
<tr>
<td>Transportation Lunar Surface</td>
<td>Regenerative Fuel Cell Sys. Recharged at main base Mission parameters Range Endurance/No. of occupants Speed Hill climbing profile Mission power profile Vehicle wt/roll resistance These lead to the energy power requirements fuel cell parameters ($/KG) (W-HRS/KG) (W-HRS/m³) Heat rejection requirements ($/KG) Chg-discharge efficiencies</td>
</tr>
</tbody>
</table>
TABLE II (CONT.)

<table>
<thead>
<tr>
<th>Element: Power</th>
<th>Power System Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-elements</td>
<td>Solar</td>
</tr>
<tr>
<td>Power Management and Distribution</td>
<td>Same parameters as outpost base power</td>
</tr>
<tr>
<td>Solar</td>
<td>Cost Parameters</td>
</tr>
<tr>
<td>Power energy for charging (KW):(KW-HRS)</td>
<td>Same as main base requirements</td>
</tr>
<tr>
<td>Garage-housing-maintenance LXHXW</td>
<td>Requirements</td>
</tr>
<tr>
<td>Shirtsleeve environment Tools: (KG/KW)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar Based Systems</td>
<td>Same parameters as for base power for ECS collector</td>
</tr>
<tr>
<td>Power Management and Distribution</td>
<td>Same as for base power except very high voltage system</td>
</tr>
<tr>
<td>Storage System Parameters</td>
<td>Same as for base power systems - but sized to meet only vehicle housekeeping requirement</td>
</tr>
<tr>
<td>Thermal Control</td>
<td>Same as for base power</td>
</tr>
<tr>
<td>Transportation</td>
<td>Reactor Power</td>
</tr>
<tr>
<td>LEO to LLO</td>
<td></td>
</tr>
<tr>
<td>Electric propulsion system power</td>
<td></td>
</tr>
<tr>
<td>Solar power</td>
<td></td>
</tr>
<tr>
<td>systems storage sized only for vehicle functions with coast during shadow periods - rendezvous with lunar descent stage</td>
<td></td>
</tr>
<tr>
<td>ELEMENT: POWER</td>
<td>POWER SYSTEM PARAMETERS</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>SUB-ELEMENTS</td>
<td>SOLAR</td>
</tr>
<tr>
<td></td>
<td>Cost Parameters</td>
</tr>
<tr>
<td></td>
<td>Same as for base power</td>
</tr>
<tr>
<td>Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loading: Cargo and fuel</td>
</tr>
<tr>
<td></td>
<td>at LEO or LLO: (M³),(KG)</td>
</tr>
<tr>
<td></td>
<td>Descent stage to lunar</td>
</tr>
<tr>
<td></td>
<td>surface</td>
</tr>
<tr>
<td></td>
<td>Maintenance at LEO</td>
</tr>
<tr>
<td>Lunar Transit Vehicle Power</td>
<td>Solar Based Systems</td>
</tr>
<tr>
<td></td>
<td>Same parameters as previous but sized to orbital requirements</td>
</tr>
<tr>
<td>Fuel Cells - Parameters</td>
<td>Primary - Refuel at LLO or LEO</td>
</tr>
<tr>
<td></td>
<td>Secondary - Recharge at LLO or LEO</td>
</tr>
<tr>
<td></td>
<td>(W/KG):(W-HRS/KG):(W-HRS/M³)</td>
</tr>
<tr>
<td></td>
<td>Charge-discharge efficiencies</td>
</tr>
<tr>
<td></td>
<td>Heat rejection - PMAD</td>
</tr>
<tr>
<td></td>
<td>Parameters same as for base power</td>
</tr>
<tr>
<td>Batteries - Parameters</td>
<td>Primary - Replace at LEO</td>
</tr>
<tr>
<td></td>
<td>Secondary - Recharge at LEO or LLO</td>
</tr>
<tr>
<td></td>
<td>(W/KG):(W-HRS/KG):(W-HRS/M³)</td>
</tr>
<tr>
<td></td>
<td>Charge-discharge efficiencies</td>
</tr>
<tr>
<td></td>
<td>Heat rejection - PMAD: same as for fuel cells</td>
</tr>
<tr>
<td></td>
<td>Cost Parameters</td>
</tr>
<tr>
<td></td>
<td>Same as Solar based main base systems</td>
</tr>
<tr>
<td>Requirements</td>
<td>Same as for LEO to LLO system, plus (KW-HRS/TRIP) for storage charge</td>
</tr>
<tr>
<td></td>
<td>Same as for LEO to LLO system</td>
</tr>
</tbody>
</table>

TABLE II (CONT.)
<table>
<thead>
<tr>
<th>ELEMENT: POWER</th>
<th>POWER SYSTEM PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUB-ELEMENTS</td>
<td>SOLAR</td>
</tr>
<tr>
<td>Earth to LEO</td>
<td>Batteries/Fuel cells</td>
</tr>
<tr>
<td>Short duration power for launch vehicles</td>
<td>Primary</td>
</tr>
<tr>
<td>OMV or Small OTV</td>
<td></td>
</tr>
<tr>
<td>INPUT REQUIREMENTS</td>
<td>POWER SYSTEM PARAMETERS</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>SOLAR</td>
<td>NUCLEAR</td>
</tr>
<tr>
<td>Power Levels</td>
<td>Base</td>
</tr>
<tr>
<td></td>
<td>Habitat power/energy requirements</td>
</tr>
<tr>
<td></td>
<td>Processing: Power/energy requirements</td>
</tr>
<tr>
<td></td>
<td>Thermal</td>
</tr>
<tr>
<td></td>
<td>Electrical</td>
</tr>
<tr>
<td></td>
<td>These must be given for both sun and shadow periods to size the power and energy storage systems</td>
</tr>
<tr>
<td></td>
<td>Transportation</td>
</tr>
<tr>
<td></td>
<td>Power profiles energy requirements to size power and storage systems</td>
</tr>
<tr>
<td>Costs</td>
<td>Costs for both system and transportation must be given for each parameter. Also cost uncertainties for each parameter would be desirable.</td>
</tr>
<tr>
<td></td>
<td>Same as for solar systems</td>
</tr>
<tr>
<td></td>
<td>Base</td>
</tr>
<tr>
<td></td>
<td>Same as for solar systems to establish power system power requirements, plus transmission line lengths for isolation shielding requirements</td>
</tr>
<tr>
<td></td>
<td>man rated</td>
</tr>
<tr>
<td></td>
<td>instrument rated</td>
</tr>
<tr>
<td></td>
<td>Habitat protection</td>
</tr>
<tr>
<td></td>
<td>Transportation</td>
</tr>
<tr>
<td></td>
<td>Same as for solar systems to establish power levels plus any special shielding or isolation requirements</td>
</tr>
</tbody>
</table>

G-17
SUPPLEMENT TO APPENDIX G: POWER SYSTEM MODELS FOR SUB-ELEMENT APPLICATIONS

Detailed models of the alternative power systems are given here. It is intended that this supplement be a "stand alone" document for the programmer and those who prepare the input.

POWER SYSTEMS ALTERNATIVES MODELS

• SUB-ELEMENT: Main Base Power (Early Base).

Options: Solar photovoltaic power systems
Solar thermal dynamic power systems
Nuclear (reactor) power systems
Isotope power (RTG's). (small bases)

Input Requirements:

a) power profiles \{ Pelec (KW)
 sun period
 shadow period

b) thermal process heat requirements (KW)\text{T}

c) base installation parameters - transmission line distances. (KM)\text{T}

NOTE: No process heat requirements may be specified for solar photovoltaic systems. Process heat requirements are assumed applicable to high temperature systems only.
<table>
<thead>
<tr>
<th>Components</th>
<th>Systems Param.</th>
<th>Cost Param.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Conversion Syst.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar array assembly</td>
<td>$(\text{KW}/\text{KG})_{SA}$</td>
<td>$($/\text{KW})_{SA}$</td>
</tr>
<tr>
<td>Solar array assembly</td>
<td>$(\text{KW}/\text{M}^2)_{SA}$</td>
<td></td>
</tr>
<tr>
<td>Pow. Man. and Distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMAD equipment</td>
<td>$(\text{KW}/\text{KG})_{PM}$</td>
<td>$($/\text{KW})_{PM}$</td>
</tr>
<tr>
<td>Transmission lines</td>
<td>$(\text{KG}/\text{KM})_{PM}$</td>
<td>$($/\text{KM})_{PM}$</td>
</tr>
<tr>
<td>PMAD efficiency</td>
<td>η_{PM}</td>
<td></td>
</tr>
<tr>
<td>Thermal Control System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel cell radiator</td>
<td>$(\text{KW}/\text{KG})_{F.C.}$</td>
<td>$($/\text{KW})_{F.C.}$</td>
</tr>
<tr>
<td>PMAD radiator</td>
<td>$(\text{KW}/\text{KG})^{1/2}{P.M.}:(\text{KG}/\text{M}^2)^{1/2}{P.M.}$</td>
<td>$($/\text{M}^2)_{\text{RAD}}$</td>
</tr>
<tr>
<td>Storage System (Reg.F.C.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel cell pow. module</td>
<td>$(\text{KW})_{F.C.}$</td>
<td>$($/\text{KW})_{F.C.}$</td>
</tr>
<tr>
<td>Reactants, tankage</td>
<td>$(\text{KW} \cdot \text{HRS}/\text{KG})_{F.C.}$</td>
<td>$($/\text{KW} \cdot \text{HRS})_{F.C.}$</td>
</tr>
<tr>
<td>Reactants, tankage</td>
<td>$(\text{KW} \cdot \text{HRS}/\text{M}^3)_{F.C.}$</td>
<td></td>
</tr>
<tr>
<td>Round trip efficiency</td>
<td>η_{RT}</td>
<td></td>
</tr>
<tr>
<td>Discharge efficiency</td>
<td>η_{DIS}</td>
<td></td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PU system (wt related)</td>
<td>$($/\text{KG})_{PV}$</td>
<td></td>
</tr>
<tr>
<td>PU system (vol. related)</td>
<td>$($/\text{M}^3)_{PV}$</td>
<td></td>
</tr>
<tr>
<td>Support, Construct, Maint.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Preparation</td>
<td></td>
<td>$($/\text{M}^2)_{PV}$</td>
</tr>
<tr>
<td>Maintenance support</td>
<td></td>
<td>$(\text{M} \cdot \text{HRS}/\text{YR})_{PV}$</td>
</tr>
<tr>
<td>Tools/spares, equip.</td>
<td>$(\text{KG}/\text{KW})_{PV}$</td>
<td></td>
</tr>
</tbody>
</table>
PHOTOVOLTAIC POWER SYSTEM MASS MODEL

\[
W_{PV} \text{ (KG)} = \left\{ P_{\text{SUN ELEC}} + P_{\text{SHAD ELEC}} \left(\frac{\text{SHADOW TIME}}{\text{SUN TIME}} \right) \frac{1}{\eta_{\text{RT}}} \right\} \frac{1}{\eta_{\text{PM}}} \left/ \left(\frac{\text{KW}}{\text{KG}} \right) \right. \text{SA}
\]

\[
+ \frac{P_{\text{SHAD ELEC}}}{\eta_{\text{PM}}} \left/ \left(\frac{\text{KW}}{\text{KG}} \right) \right. \text{FC} + \frac{\text{SHADOW TIME} \times P_{\text{SHAD ELEC}}}{\eta_{\text{PM}} \times \eta_{\text{DIS}}} \left/ \left(\frac{\text{KW-HRS}}{\text{KG}} \right) \right. \text{FC}
\]

\[
+ \frac{P_{\text{MAX ELEC}}}{\eta_{\text{PM}}} \left(1 - \eta_{\text{PM}} \right) \left(\frac{\text{KW}}{\text{KG}} \right)^2 \text{R} + \frac{P_{\text{SHAD ELEC}}}{\eta_{\text{PM}}} \left(1 - \eta_{\text{DIS}} \right) \left(\frac{\text{KW}}{\text{KG}} \right)^1 \text{R}
\]

\[
+ \frac{P_{\text{MAX ELEC}}}{\eta_{\text{PM}}} \left/ \left(\frac{\text{KW}}{\text{KG}} \right) \right. \text{PM} + \frac{K_{M} \times \left(\frac{\text{KG}}{\text{KM}} \right)}{\text{PM}} + \frac{P_{\text{MAX ELEC}}}{\eta_{\text{PM}}} \left(\frac{\text{KG}}{\text{KW}} \right) \text{PM} \right\} \times 1.10
\]

THE FACTOR 1.10 IS INCLUDED TO INCLUDE STRUCTURAL ITEMS NOT DETAILED IN THE MODEL.

PHOTOVOLTAIC SYSTEMS COST MODEL

SYSTEMS COSTS

\[
C_{PV}^S \text{ ($\text{\$})} = \left\{ P_{\text{SUN ELEC}} + P_{\text{SHAD ELEC}} \left(\frac{\text{SHADOW TIME}}{\text{SUN TIME}} \right) \frac{1}{\eta_{\text{RT}}} \right\} \frac{1}{\eta_{\text{PM}}} \left(\frac{\text{\$}}{\text{KW}} \right) \text{SA}
\]

\[
+ \frac{P_{\text{MAX ELEC}}}{\eta_{\text{PM}}} \times \left(\frac{\text{\$}}{\text{KW}} \right) \text{FC} + \frac{\text{SHADOW TIME} \times P_{\text{SHAD ELEC}}}{\eta_{\text{PM}} \times \eta_{\text{DIS}}} \times \left(\frac{\text{\$}}{\text{KW-HR}} \right) \text{FC}
\]

\[
+ \left\{ \frac{P_{\text{MAX ELEC}}}{\eta_{\text{PM}}} \left(1 - \eta_{\text{PM}} \right) \left(\frac{\text{KW}}{\text{KG}} \right)^2 \left(\frac{\text{KG}}{\text{M}^2} \right)^1 \text{R} \right\} \times \left(\frac{\text{\$}}{\text{M}^2} \right) \text{RAD}
\]

\[
+ \left\{ \frac{P_{\text{SHAD ELEC}}}{\eta_{\text{PM}}} \left(1 - \eta_{\text{DIS}} \right) \left(\frac{\text{KW}}{\text{KG}} \right)^2 \left(\frac{\text{KG}}{\text{M}^2} \right)^2 \text{R} \right\} \times \left(\frac{\text{\$}}{\text{M}^2} \right) \text{RAD} + \frac{P_{\text{MAX ELEC}}}{\eta_{\text{PM}}} \left/ \left(\frac{\text{\$}}{\text{KW}} \right) \right. \text{PM}
\]

\+)

\[
K_{M} \times \left(\frac{\text{\$}}{\text{KM}} \right) \text{PM} \right\} \times 1.10
\]

G-20
TRANSPORTATION COSTS

* \(c_{PV}^{\text{TRANS}} (\$) = w_{PV} (\text{KG}) \times (\$/\text{KG})_{PV} \)

SUPPORT COSTS - SITE PREPARATION

* \(c_{PV}^{\text{SITE}} (\$) = \left(\left(p_{\text{ELEC}}^{\text{SUN}} + p_{\text{ELEC}}^{\text{SHAD}} \frac{\text{SHADOW TIME}}{\text{SUN TIME}} \right) \frac{1}{n_{RT}} \right) \frac{1}{n_{PM}} \left(\frac{\text{KW}}{\text{M}^2} \right)_{SA} \left(\frac{\$}{\text{M}^2} \right)_{PV} \)

MAINTENANCE COSTS

* \(c_{PV}^{\text{MAINT}} (\$) = (\$/\text{M-HR})_{PV} \times \left(\frac{\text{M-HRS}}{\text{YR}} \right)_{PV} \)

SITE REQUIREMENTS

* \(\text{AREA} (\text{M}^2) = 1.25 \left(p_{\text{ELEC}}^{\text{SUN}} + p_{\text{ELEC}}^{\text{SHAD}} \frac{\text{SHADOW TIME}}{\text{SUN TIME}} \right) \frac{1}{n_{RT}} \frac{1}{n_{PM}} \)
Table IB

SOLAR THERMAL DYNAMIC SYSTEMS

<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>SYST'S PARAM'S</th>
<th>COST PERAM'S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy conversion system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conversion equipment</td>
<td>(KW/KG)<sub>ST</sub></td>
<td>($/KW)<sub>ST</sub></td>
</tr>
<tr>
<td>Concentrator</td>
<td>(KW/KG)<sub>ST</sub></td>
<td>($/KW)<sub>ST</sub></td>
</tr>
<tr>
<td>ECS efficiency</td>
<td>(KG/M<sup>2</sup>)<sub>ST</sub></td>
<td>($/M<sup>2</sup>)<sub>ST</sub></td>
</tr>
<tr>
<td>Pow. Man. and Distribution</td>
<td>(KW/KG)<sub>PM</sub></td>
<td>($/KW)<sub>PM</sub></td>
</tr>
<tr>
<td>PMAD equipment</td>
<td>(KG/KM)<sub>PM</sub></td>
<td>($/KM)<sub>PM</sub></td>
</tr>
<tr>
<td>Transmission lines</td>
<td>(PM)<sub>PM</sub></td>
<td>($/PM)<sub>PM</sub></td>
</tr>
<tr>
<td>Thermal Control System</td>
<td>*(KW<sub>R</sub>/KG<sub>R</sub>)<sup>1</sup> : *(KG/M<sup>2</sup>)<sub>R</sub><sup>1</sup></td>
<td>*($/M<sup>2</sup>)<sub>RAD</sub></td>
</tr>
<tr>
<td>ECS radiator</td>
<td>*(KW<sub>R</sub>/KG<sub>R</sub>)<sup>2</sup> : *(KG/M<sup>2</sup>)<sub>R</sub><sup>2</sup></td>
<td>*($/M<sup>2</sup>)<sub>RAD</sub></td>
</tr>
<tr>
<td>PMAD radiator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Storage System</td>
<td>(KW·HRS/KG)<sub>ST</sub></td>
<td>($/KG)<sub>ST</sub></td>
</tr>
<tr>
<td>Storage medium-rec'v'r</td>
<td>(KW·HRS/M<sup>3</sup>)<sub>ST</sub></td>
<td>($/KW·HRS)<sub>ST</sub></td>
</tr>
<tr>
<td>Receiver efficiency</td>
<td>(n<sub>REC</sub>)<sub>ST</sub></td>
<td></td>
</tr>
<tr>
<td>Process Heat Subsystem</td>
<td>(KW/KG)<sub>Buss</sub></td>
<td>($/KG)<sub>Buss</sub></td>
</tr>
<tr>
<td>Thermal busses</td>
<td></td>
<td>($/KG)<sub>ST</sub></td>
</tr>
<tr>
<td>Transportation</td>
<td>(KW/KG)<sub>Buss</sub></td>
<td>($/KG)<sub>ST</sub></td>
</tr>
<tr>
<td>System costs</td>
<td>*($/M<sup>2</sup>)<sub>ST</sub></td>
<td>*($/M<sup>2</sup>)<sub>ST</sub></td>
</tr>
<tr>
<td>Support, Construct, Maint.</td>
<td>(M·HRS/YR)<sub>ST</sub></td>
<td></td>
</tr>
<tr>
<td>Site preparation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maint. support</td>
<td>(KG/KW)<sub>ST</sub></td>
<td>($/KW)<sub>ST</sub></td>
</tr>
<tr>
<td>Tools/spares/equip.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Physical Constant: Solar Flux = 1.37 KW/M² (At 1 AU)
\[W_{ST(KG)} = \left(\frac{\text{SUN} + \text{SHAD} \left(\frac{\text{SHADOW TIME}}{\text{SUN TIME}} \right)}{\eta_{REC}} \right) \frac{1}{\eta_{PM}} \times \frac{1}{1.37} \times \frac{1}{\eta_{ST}} \times \frac{\text{KG}}{\text{M}^2} \]

\[+ \frac{\text{PELEC}}{\eta_{PM}} \left(\frac{\text{KW}}{\text{KG}} \right)_{ST} + \frac{\text{SHAD}}{\eta_{PM} \times \eta_{REC} \times \eta_{ST}} \times \frac{\text{KW-HRS}}{\text{KG}}_{ST} \]

\[+ \frac{\text{MAX}}{\eta_{PM}} \left(\frac{1-\eta_{PM}}{\text{KG}} \right)^2 \times \frac{\text{MAX}}{\eta_{PM}} \left(\frac{1-\eta_{ST}}{\text{KG}} \right)^1 \times \frac{\text{KW_R}}{\text{KG}}_R \]

\[+ \frac{\text{MAX}}{\eta_{PM}} \left(\frac{\text{KW}}{\text{KG}} \right)_{PM} \times \frac{\text{KMT}}{\text{KG}}_{PM} + \frac{\text{KW_T}}{\text{KG}}_{BUS} + \frac{\text{MAX}}{\text{PELEC}} \left(\frac{\text{KG}}{\text{KW}} \right)^1 \times 1.10 \]
SOLAR THERMAL DYNAMIC COST MODEL

\[C_{ST}(\$) = \left\{ \begin{array}{l}
\text{SUN PELEC} + \text{SHAD} \left\{ \frac{\text{SHADOW TIME}}{\text{SUN TIME}} \right\} \frac{1}{\eta_{REC}} \times \frac{1}{\eta_{PM} x \eta_{ST}} \times \frac{1}{1.37} \times \left(\frac{\$}{M^2} \right)_{ST} \\
+ \frac{\text{MAX PELEC}}{\eta_{PM}} x \left(\frac{\$}{\text{KW}_{ST}} \right) + \frac{\text{SHADOW TIME} x \text{PELEC}}{\eta_{PM} x \eta_{REC} x \eta_{ST}} x \left(\frac{\$}{\text{KW-\text{HR}}_{ST}} \right) \\
+ \left\{ \frac{\text{MAX PELEC} (1-\eta_{PM})}{\eta_{PM}} \times \left(\frac{\text{KW}}{\text{KG}} \right)^2 \left(\frac{\text{KG}}{\text{M}^2} \right)^2 \right\} x \left(\frac{\$}{\text{M}^2} \right)_{R} + \left\{ \frac{\text{MAX PELEC} (1-\eta_{ST})}{\eta_{ST}} \times \left(\frac{\text{KW}}{\text{KG}} \right)^1 \left(\frac{\text{KG}}{\text{M}^2} \right)^1 \right\} x \left(\frac{\$}{\text{M}^2} \right)_{R} \\
\times \left(\frac{\$}{\text{KW}} \right)_{PM} + \text{KMT} x \left(\frac{\$}{\text{KM}} \right)_{PM} + \text{KW}_{T} x \left(\frac{\text{KG}}{\text{KW}} \right)_{BUSS} x \left(\frac{\$}{\text{KG}} \right)_{BUSS} \times 1.10 \\
\end{array} \right. \]

G-24
TRANSPORTATION COSTS

\[C_{ST}^{\text{TRANS}}(\$) = w_{ST}(\text{KG}) \times (\$/\text{KG})_{ST} \]

SUPPORT COSTS - SITE PREPARATION

\[C_{ST}^{\text{SITE}}(\$) = \frac{1}{M_{ST}^{\text{SUN}}} \left(\frac{\text{P_{ELEC}} + \text{P_{SHAD}}}{\text{ELEC}} \times \left(\frac{\text{SHADOW TIME}}{\text{SUN TIME}} \right) \frac{1}{\eta_{REC}} \right) \times \frac{1}{\eta_{PM}} \times \frac{1}{1.37} \times \left(\frac{\$}{M^2} \right)_{ST} \]

MAINTENANCE COSTS

\[C_{ST}^{\text{MAINT}}(\$) = \frac{1}{M_{ST}^{\text{M-HR}}} \times (\$/\text{M-HR})_{ST} \]

SITE REQUIREMENTS

\[\text{AREA} (M^2) = 1.5 \left[\frac{\text{P_{ELEC}} + \text{P_{SHAD}}}{\text{ELEC}} \times \left(\frac{\text{SHADOW TIME}}{\text{SUN TIME}} \right) \frac{1}{\eta_{RC}} \right] \times \frac{1}{\eta_{PM}} \times \frac{1}{\eta_{ST}} \]
<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>SYST'M'S PARAM.</th>
<th>COST PARAM.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor Power System</td>
<td>(KW/KG)\text{NR}</td>
<td>($/KW)\text{NR}</td>
</tr>
<tr>
<td>Includes, ECS, radiator, Etc</td>
<td>\eta_{\text{NR}}</td>
<td></td>
</tr>
<tr>
<td>ECS Efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pow. Man. and Districution</td>
<td>(KW/KG)\text{PM}</td>
<td>($/KW)\text{PM}</td>
</tr>
<tr>
<td>PMAD Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission Lines</td>
<td>(KG/KM)\text{PM}</td>
<td>($/KM)\text{PM}</td>
</tr>
<tr>
<td>PMAD Efficiency</td>
<td>\eta_{\text{PM}}</td>
<td></td>
</tr>
<tr>
<td>Thermal Control System</td>
<td>(KW_{\text{R}}/KG){\text{R}}:(KG/M^{2}){\text{R}}</td>
<td></td>
</tr>
<tr>
<td>ECS Radiator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Heat Subsystem</td>
<td>(KW/KG)\text{Buss}</td>
<td>($/KG)\text{Buss}</td>
</tr>
<tr>
<td>Thermal Buss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Shielding</td>
<td>(KG)\text{NR}</td>
<td>($/KG)\text{Shield}</td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
<td>($/KG)\text{NR}</td>
</tr>
<tr>
<td>Support, Maint, Constr.</td>
<td></td>
<td>($/M^{2})\text{NR}</td>
</tr>
<tr>
<td>Site Preparation (Surf)</td>
<td>(M^{3})\text{NR}</td>
<td>($/M^{3})\text{NR}</td>
</tr>
<tr>
<td>Site Prep. (Shielding)</td>
<td></td>
<td>(M-HRS/YR)\text{NR}</td>
</tr>
<tr>
<td>Maint Support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tools, Spares-Equip.</td>
<td>(KG/KW)\text{NR}</td>
<td></td>
</tr>
</tbody>
</table>
NUCLEAR SYSTEMS (REACTOR) WEIGHT MODEL

\[W_{NR} \text{(KG)} = \left\{ \frac{P_{ELEC}}{\eta_{PM}} \times \left(\frac{KW}{KG} \right)_{NR} + \frac{P_{ELEC}}{\eta_{PM}} \times \left(\frac{KW}{KG} \right)_{PM} + \text{SPECIAL SHIELD (KG)} \right\} + KM_T \left(\frac{KG}{KM} \right)_{PM} + P_{ELEC} \times \left(\frac{KG}{KW} \right)_{NT} \times 1.3 \]

NUCLEAR SYSTEMS (REACTOR) COST MODEL

SYSTEMS COSTS

\[C_{NR}^S (\$) = \left\{ \frac{P_{ELEC}}{\eta_{PM}} \times \left(\frac{S}{KW} \right)_{NR} + \frac{P_{ELEC}}{\eta_{PM}} \times \left(\frac{S}{KW} \right)_{MP} + \text{SPECIAL SHIELD} \times \left(\frac{S}{KG_{\text{Shield}}} \right) \right\} + KM_T \times \left(\frac{S}{KM} \right)_{PM} \times 1.10 \]

TRANSPORTATION COSTS

\[C_{NR}^T (\$) = W_{NR} \text{(KG)} \times (\$/KG)_{NR} \]

SUPPORT COSTS - SITE PREPARATION

\[C_{NR}^{\text{SITE}} = \left\{ \frac{P_{ELEC}}{\eta_{NR}} \left(1 - \eta_{NR} \right) \left(\frac{KW}{KG} \right)_{R} \right\} \left(\frac{KG}{M^2} \right)_{R} \times \left(\frac{S}{M^2} \right)_{NR} + (M^3)_{NR} \times (S/M^3)_{NR} \]

MAINTENANCE COSTS

\[C_{NR}^{\text{MAIN}} (\$) = (\$/M-HR)_{NR} \times (M-HRS/YR)_{NR} \]

SITE REQUIREMENTS

\[\text{AREA} \left(M^2 \right) = 2 \times \left\{ \frac{P_{ELEC}}{\eta_{NR}} \left(1 - \eta_{NR} \right) \left(\frac{KW}{KG} \right)_{R} \right\} \left(\frac{KG}{M^2} \right)_{R} \]

S-27
<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>SYSTEMS PARAM.</th>
<th>COST PARAM.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Conversion System</td>
<td>(KW/KG)$_{ISO}$</td>
<td>($/KW)ISO</td>
</tr>
<tr>
<td>RTG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pow. Man. and Distribution</td>
<td>(KW/KG)$_{PM}$</td>
<td>($/KW)PM</td>
</tr>
<tr>
<td>PMAD Equip.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission Lines</td>
<td>(KG/KM)$_{PM}$</td>
<td>($/KM)PM</td>
</tr>
<tr>
<td>PMAD Efficiency</td>
<td>η_{PM}</td>
<td></td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
<td>($/KW)^1_{ISO}$</td>
</tr>
<tr>
<td>Support, Constr.-Maint.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Preparation</td>
<td>K(\text{Factor})</td>
<td>($/M^2)ISO</td>
</tr>
<tr>
<td>Maint Support</td>
<td></td>
<td>(M-HRS/\text{YR})ISO</td>
</tr>
<tr>
<td>Tools, Spares, Equip.</td>
<td>(KG/KW)$_{ISO}$</td>
<td></td>
</tr>
</tbody>
</table>
ISOTOPE POWER SYSTEMS MASS MODEL

\[\dot{W}_{ISO}(KG) = \left\{ \frac{PELEC}{(KG)_{ISO}} + \frac{PELEC}{(KG)_{PM}} \cdot n_{PM} \cdot \left(\frac{KG}{KM}_{PM} \right) \right\} + \frac{PELEC}{(KG)_{ISO}} \cdot 1.10 \]

ISOTOPE POWER SYSTEMS COST MODEL

SYSTEM COSTS:

\[C_{ISO}($) = 1.10 \left\{ \frac{PELEC \cdot (\$)}{(KW)_{ISO}} + \frac{PELEC \cdot (\$)}{(KW)_{PM}} \cdot n_{PM} \cdot \left(\frac{KG}{KM}_{PM} \right) \right\} \]

TRANSPORTATION COSTS:

\[C_{ISO}^{T}($) = \dot{W}_{ISO}(KG) \cdot (\$/KG)_{ISO} \]

SUPPORT COSTS - SITE PREPARATION

\[C_{SITE}($) = K \cdot (\$/M^2)_{ISO} \]

MAINTENANCE COSTS

\[C_{ISO} = (\$/M-HR) \cdot (M-HRS/YR)_{ISO \text{ MAINT}} \]

SITE REQUIREMENTS

\[\text{AREA}(M^2) = K \text{ (to be specified)} \]
SUBELEMENT: Main Base Power (Mature Base)

Options: Solar photovoltaic power systems
Solar thermal dynamic power systems
Nuclear (reactor) power systems

Input Requirements
Same as main base (early) requirements

Power System Models
Same as main base (early) requirements

SUBELEMENT: Outpost Power

Options: Solar photovoltaic power systems
Solar thermal dynamic power systems
Nuclear (reactor) power systems
Isotope power systems (small outposts)

Input Requirements
Same as main base (early) requirements

Power Systems Models
Same as main base (early) requirements
SUBELEMENT: TRANSPORTATION - CONSTRUCTION EQUIPMENT - LUNAR SURFACE

OPTIONS: Regenerative fuel cells - recharged at base
Primary fuel cells - fueled at base

Input Requirements:

a) Vehicle weight (earth referenced). (KG) may have to iterate on weight after determining power system weight to ensure that all equipment is included. (This is fully loaded vehicle weight.)

b) Power profiles - for all but propulsive power (KW vs. time).
 - Environmental system power
 - On board experiments power
 - Housekeeping power
 - Working Power - crane - etc.

c) Range (KM)

d) Vehicle Velocity (KM/HR)

e) Slope climbing requirements
 - Angle of slope (°)
 - % of total range on required slope: K_S

NOTE: Some of these inputs may not be required for all cases depending on function, i.e., "lunar winnebago," tractor, crane, etc.

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>SYSTEM PARAM.</th>
<th>COST PARAM.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Conversion System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Cell Power Module</td>
<td>(KW/KG)_{FC}</td>
<td>($)/(KW)_{FC}</td>
</tr>
<tr>
<td>Reactants-Tankage</td>
<td>(KW-HRS/KG)_{FC}</td>
<td>($)/(KW-HR)_{FC}</td>
</tr>
<tr>
<td>Discharge Efficiency</td>
<td>(\eta_{DIS})</td>
<td></td>
</tr>
<tr>
<td>Power Man. and Distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMAD Equipment</td>
<td>(KW/KG)_{PM}</td>
<td>($)/(KW)_{PM}</td>
</tr>
<tr>
<td>Efficiency</td>
<td>(\eta_{PM})</td>
<td></td>
</tr>
<tr>
<td>Thermal Control System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMAD Radiator</td>
<td>(KW_{R}/KG){R}^{1} : (KG/\text{m}^2){R}^{1}</td>
<td>($)/(M^2)_{R}^{1}</td>
</tr>
<tr>
<td>Fuel Cell Radiator</td>
<td>(KW_{R}/KG)_{R}^{2}</td>
<td>($)/(M^2)_{R}^{2}</td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
<td>($)/(KG)_{FC}</td>
</tr>
<tr>
<td>Support, Constr.-Maint.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maint Support</td>
<td></td>
<td>(M/YR)_{FC}</td>
</tr>
<tr>
<td>Tools/Spares-Equip</td>
<td>(KG/KW)_{FC}</td>
<td></td>
</tr>
</tbody>
</table>

The first step is to calculate the energy - KW-HRS per mission - and the power requirements - This will size the system. To do this we must assume a lunar surface rolling resistance - \(\alpha = .32\) (lunar gravity = 1/6 earth gravity).
ENERGY REQUIREMENTS

To overcome rolling resistance.

\[E_1(\text{KW-HRS}) = W(\text{KG}) \times \text{RANGE (KM)} \times 1.48 \times 10^{-4} \]

To overcome change in potential energy due to slope climbing.

\[E_2(\text{KW-HRS}) = W(\text{KG}) \times \text{RANGE (KM)} \times \left(\frac{1}{\text{TAN} \alpha} \right) \times 4.62 \times 10^{-4} \]

Plus we must add the energy (KW-HRS) requirement from the power profiles. Thus the energy requirements are

\[E_{TOT}(\text{KW-HRS}) = E_1 + E_2 + E(\text{POWER PROFILES}) \times 1.5 \text{ (MARGIN)} \]

POWER REQUIREMENTS

To overcome rolling resistance at \(V(\text{KM/HR}) \)

\[P_1(\text{KW}) = W(\text{KG}) \times V(\text{KM/HR}) \times 1.48 \times 10^{-4} \]

To overcome rate of increase in potential energy during slope climbing phase.

\[P_2(\text{KW}) = W(\text{KG}) \times V(\text{KM/HR}) \times \left(\frac{1}{\text{TAN} \alpha} \right) \times 4.62 \times 10^{-4} \]

Plus we must add the power from the power profiles to determine the max required power. It must be kept in mind that these are not always all additive. E.G. We must take the max requirement - vehicle moving - vehicle stationary.

\[P_{TOT}^{\text{MAX}} = \text{Max Combination Of } P_1 + P_2 + E(\text{Power Profiles}). \]
FUEL CELL POWER SYSTEM MASS MODEL

\[W_{FC}(KG) = \left\{ \frac{P_{MAX}^{TOT}}{\eta_{PM}} / \left(\frac{KW}{KG} \right)_{FC} \right\} + \frac{E_{TOT}}{\eta_{DIS}} / \left(\frac{KW-HRS}{KG} \right)_{FC} + \frac{P_{MAX}^{TOT}}{\eta_{PM}} / \left(\frac{KW}{KG} \right)_{PM} + \frac{P_{MAX}^{TOT}}{\eta_{PM}} (1-\eta_{DIS}) / \left(\frac{KW}{KG} \right)_{R} + \frac{P_{MAX}^{TOT}}{\eta_{PM}} (1-\eta_{MP}) / \left(\frac{KW}{KG} \right)_{R} + \frac{P_{MAX}^{TOT}}{\eta_{PM}} \left(\frac{KG}{M^2} \right)_{R} \right\} \times 1.10 \]

FUEL CELLS SYSTEMS COST MODEL

SYSTEMS COST

\[C^S_{FC}(\$) = P_{MAX}^{TOT} / \left(\frac{\$}{KW} \right)_{FC} + E_{TOT} / \left(\frac{\$}{KW-HRS} \right)_{DIS} + P_{MAX}^{TOT} / \left(\frac{\$}{KW} \right)_{PM} + \left\{ \frac{P_{MAX}^{TOT}}{\eta_{PM}} (1-\eta_{DIS}) / \left(\frac{KW}{KG} \right)_{R} / \left(\frac{\$}{M^2} \right)_{R} \right\} \times 1.10 \]

TRANSPORTATION COSTS

\[C^T_{FC}(\$) = W_{FC}(KG) \times (\$/KG)_{FC} \]

MAINTENANCE COSTS

\[C^{FC}_{MAINT} = (\$/M-HR) \times (M-HR)/YR) \]
SUB-ELEMENT: TRANSPORTATION - LEO TO LLO. (ELECTRIC PROPULSION)

Options: Solar photovoltaic power systems
Solar thermal dynamic power systems
Nuclear (reactor) power systems

* Input Requirements

Same as main base sub-element requirements (no need for thermal buss).

* Power Systems Models

Same as main base sub-element requirements (delete thermal buss item).

Isotope power not applicable there (MW).

SUB-ELEMENT: TRANSPORTATION: MANNED LUNAR TRANSIT VEHICLE

Options: Solar photovoltaic power systems
Solar thermal dynamic power systems
Nuclear (reactor) power systems
Isotope power systems (small vehicles).

* Input Requirements

Same as main base sub-element requirements (no need for thermal buss).

* Power Systems Models

Same as main base sub-element requirements (delete thermal buss).
O SUB-ELEMENT: TRANSPORTATION: EARTH TO LEO OMV OR SMALL OTV

Options: For nonrecoverable vehicles
- Primary batteries
- Primary fuel cells

For recoverable vehicles
- Secondary batteries
- Secondary fuel cells
- Isotope (RTG) power

* Input Requirements

Power profile for mission(s).

* Power systems models

Same as for transit vehicle power (manned) for the fuel cell and isotope power systems.
<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>SYSTEM PARAM.</th>
<th>COST PARAM.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batteries</td>
<td>((KW\text{-}HRS/KG)_B)</td>
<td>(($/KW\text{-}HR)_B)</td>
</tr>
<tr>
<td>Pow. Management and Distrib.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMAD Equipment</td>
<td>((KW/KG)_PM)</td>
<td>(($/KW)_PM)</td>
</tr>
<tr>
<td>(\eta_{PM})</td>
<td>(\eta_{PM})</td>
<td></td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
<td>(($/KG)_{BAT})</td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
<td>(($/M\text{-}HR)_{BAT})</td>
</tr>
</tbody>
</table>
BATTERY POWER SYSTEM MASS MODEL

\[W_{BAT}(KG) = \frac{ENERGY}{(KW-HRS)/KG}_{BAT} + \frac{Pow}{\eta_{PM}} \left(\frac{KW}{KG}_{PM} \right) \]

BATTERY POWER SYSTEMS COST MODEL

- SYSTEM COSTS
 \[C_S($) = ENERGY \times (\$/KW-HR) + \frac{Pow}{\eta_{PM}} \left(\frac{\$}{KW} \right) \]

- TRANSPORTATION COSTS
 \[C_T = W_S(KG) \times (\$/KG)_{BAT} \]

- MAINTENANCE
 \[C_{B_{MAINT}}($) = (M-HRS/YR) \times (\$/M-HR) \]
APPENDIX

SUMMARY:

The numerical data, (values), for the systems and cost parameters which are presented in tabular form for each of the alternative power systems will be given in the form; (where possible),

However, some parameters such as the allocation for tools, spares, etc., (KG/KW) _xx will be presented only as a specific value for each power system.
APPENDIX H: **Element: Surface Transportation/Construction Equipment**

Subelements: Transport vehicles, working vehicles, traffic routes, energy storage and distribution systems, traffic control systems

Subelement A: *Transport vehicles*

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger transportation demand (pas-km/y)</td>
<td>Vehicle unloaded mass (Mg)</td>
</tr>
<tr>
<td>Cargo transportation demand (Mg-km/y)</td>
<td>Vehicle power consumption (KW)</td>
</tr>
<tr>
<td>Heaviest piece of payload (Mg)</td>
<td>Vehicle length (m)</td>
</tr>
<tr>
<td>Max. no. of persons to be transported together (n)</td>
<td>Vehicle height (m)</td>
</tr>
<tr>
<td>Required action radius (km)</td>
<td>Vehicle weight (m)</td>
</tr>
<tr>
<td>Desired life-time (Y)</td>
<td>Propulsion system (electric, combustion, etc.)</td>
</tr>
<tr>
<td>Desired reliability (%)</td>
<td>Mass of energy storage (Mg)</td>
</tr>
<tr>
<td>Desired life support to be given to driver/passengers (pas-h)</td>
<td>Structural materials</td>
</tr>
<tr>
<td>Number of transports to be performed (n)</td>
<td>Min. operational units (n)</td>
</tr>
<tr>
<td>Degree of automatization (%)</td>
<td>Maintenance and repair factor (pers* h/oper.h)</td>
</tr>
<tr>
<td>Vehicle speed (km/h)</td>
<td>Spare parts consumption (%/Y)</td>
</tr>
<tr>
<td></td>
<td>Development cost ($, MY)</td>
</tr>
<tr>
<td></td>
<td>Cost per unit ($, MY)</td>
</tr>
<tr>
<td></td>
<td>Operational cost ($/KM*Mg)</td>
</tr>
<tr>
<td></td>
<td>Propellant assumption (Kg/Mg KM)</td>
</tr>
</tbody>
</table>
Subelement B: Working Vehicles

Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil to be excavated</td>
<td>Mg/Y</td>
</tr>
<tr>
<td>Mass to be moved around</td>
<td>Mg·Km/Y</td>
</tr>
<tr>
<td>Heaviest piece to be moved</td>
<td>Mg</td>
</tr>
<tr>
<td>Max height of piece</td>
<td>m</td>
</tr>
<tr>
<td>Max dia. of piece</td>
<td>m</td>
</tr>
<tr>
<td>Life-time</td>
<td>Y</td>
</tr>
<tr>
<td>Reliability</td>
<td>%</td>
</tr>
<tr>
<td>Desired life support for driver</td>
<td>pers.h</td>
</tr>
<tr>
<td>Number of actions to be performed</td>
<td>n/Y</td>
</tr>
<tr>
<td>Volume of soil being excavated</td>
<td>M³/Y</td>
</tr>
<tr>
<td>Degree of automatization</td>
<td>%</td>
</tr>
<tr>
<td>No. of tasks to be done simultaneously</td>
<td>n</td>
</tr>
<tr>
<td>Vehicle speed</td>
<td>Km/h</td>
</tr>
</tbody>
</table>

Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle unloaded mass</td>
<td>Mg</td>
</tr>
<tr>
<td>Vehicle power consumption</td>
<td>KW</td>
</tr>
<tr>
<td>Vehicle length</td>
<td>m</td>
</tr>
<tr>
<td>Vehicle height</td>
<td>m</td>
</tr>
<tr>
<td>Vehicle width</td>
<td>m</td>
</tr>
<tr>
<td>Propellant consumption</td>
<td>Kg/h</td>
</tr>
<tr>
<td>Mass of energy storage</td>
<td>Mg</td>
</tr>
<tr>
<td>Min. operational units</td>
<td>n</td>
</tr>
<tr>
<td>Maint. or repair factor</td>
<td>Mg/opt</td>
</tr>
<tr>
<td>Spare part consumption</td>
<td>%/Y</td>
</tr>
<tr>
<td>Development cost</td>
<td>$</td>
</tr>
<tr>
<td>Operational cost</td>
<td>$</td>
</tr>
<tr>
<td>Propulsion system</td>
<td></td>
</tr>
<tr>
<td>Structural materials</td>
<td></td>
</tr>
</tbody>
</table>

H-2
Subelement C: Traffic Routes

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>length of route network (Km)</td>
<td>installed mass (Mg)</td>
</tr>
<tr>
<td>traffic speed (Km/h)</td>
<td>width of tracts (m)</td>
</tr>
<tr>
<td>number of transports (n/d)</td>
<td>manpower to build (man·h/m)</td>
</tr>
<tr>
<td>vehicle width (m)</td>
<td>maintenance factor (man·h/y·km)</td>
</tr>
<tr>
<td></td>
<td>cost of routes ($)</td>
</tr>
</tbody>
</table>
Subelement D: Energy Storage and Distribution

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind of powerplant (solar, nuclear, chemical)</td>
<td>mass of installed powerlines (Mg)</td>
</tr>
<tr>
<td>vehicle propulsion system ()</td>
<td>power dissipation (KW)</td>
</tr>
<tr>
<td>vehicle power consumption (KW)</td>
<td>input power (KW)</td>
</tr>
<tr>
<td>vehicle action radius (Km)</td>
<td>PCU mass (Mg)</td>
</tr>
<tr>
<td>length of routes network (Km)</td>
<td>manpower to operate (man)</td>
</tr>
<tr>
<td>degree of automatization (%)</td>
<td>dev. cost ($)</td>
</tr>
<tr>
<td></td>
<td>install. cost ($)</td>
</tr>
<tr>
<td></td>
<td>operation cost ($)</td>
</tr>
</tbody>
</table>

H-4
Subelement E: Traffic Control System

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. of daily transports (n)</td>
<td>mass of control center (Mg)</td>
</tr>
<tr>
<td>degree of automatization (%)</td>
<td>power demand (KW)</td>
</tr>
<tr>
<td>reliability (%)</td>
<td>development cost ($)</td>
</tr>
<tr>
<td></td>
<td>unit/install. cost ($)</td>
</tr>
<tr>
<td></td>
<td>operation cost ($/Y)</td>
</tr>
</tbody>
</table>
Element 3 - Transforms for subelement A:

\[A_{3A1} = (C_1 + C_2 + R_{3A4}) \times R_{3A3E1} \]

\[A_{3A2} = C_3 \times (R_{3A3} + A_{3A1}) \times R_{3A11} \]

\[A_{3A7} = C_4 \times A_{3A2} \times R_{3A5}/R_{3A11} \]

\[A_{3A9} = (R_{3A1}^3 \times 0.75MT + R_{3A2}) \times (2920 \times (R_{3A3} \times R_{3A11})) \]

\[A_{3A10} = C_5 \times R_{3A7} + C_6 \times R_{3A6} \times (1 - R_{3A10}) \times C_7 \]

\[A_{3A11} = C_7 \times R_{3A7} \times R_{3A10} / R_{3A6} \]

\[A_{3A12} = C_8 \times A_{3A1E2} \]

\[A_{3A12} = C_9 \times A_{3A1E3} \]

\[A_{3A14} = C_{10} \times A_{3A15} + C_{11} \times A_{3A2}/(R_{3A3} \times R_{3A11}) \]

\[+ A_{3A11} \times A_{3A14} / (R_{3A1} \times 0.15 + R_{3A2}) \]

\[+ A_{3A10} \times 2920 \times C_{12} / (R_{3A1} \times 0.15 + R_{3A2}) \]

\[A_{3A15} = f (A_{3A6}) \]

nomenclature:

- **Attribute Requirement**
- **No. of attribute or requirement**
- **No. of element**
- **Letter of subelement**

\[
\begin{align*}
C_3 & \left[\frac{\text{kw} \cdot \text{h}}{\text{Mg} \cdot \text{km}} \right] , & C_4 & \left[\frac{\text{Mg}}{\text{kw} \cdot \text{h}} \right] , & C_5 & \left[\frac{\text{Man} \cdot \text{h}}{\text{h of ops.}} \right] \\
C_6 & \left[\frac{\text{Man} \cdot \text{h}}{\text{h of ops.} \cdot \text{Y}} \right] , & C_7 & \left[\frac{\text{Man} \cdot \text{h}}{\text{h of ops.}} \right] , & C_{10} & \left[\frac{\$}{\text{kg}} \right] \\
C_{11} & \left[\frac{\$}{\text{kwh}} \right] , & C_{12} & \left[\frac{\$}{\text{man} \cdot \text{h on moon}} \right]
\end{align*}
\]
Element 3 - Transforms for sub-element B:

\[\begin{align*}
A3B1 &= C_{13} \times R3B3^E4 \\
A3B2 &= C_3 (R3B3 + A3B1) \times R3A13 \\
A3B6 &= f(A3B14) \\
A3B7 &= C_4 \times A3B2 \times 8h \\
A3B8 &= (R3B2 + 0.1 \times R3B7) \times R3B12/(2920 \times R3B3 \times R3B13) \\
A3B9 &= C_{14}/R3B7 + C_6 \times R3B6 + (1-R3B11) \times C_7 \\
A3B10 &= C_{15} \times R3B7 \times R3B11/R3B6 \\
A3B11 &= C_{16} \times A3B1^E5 \\
A3B12 &= C_{17} \times A3B1^E6 \\
A3B13 &= C_{10} \times A3B6 + C_{11} \times A3B2/(R3B3 \times R3B13) \\
&+ A3B10 \times A3B13/(R3B1 \times 0.1KM + R3B2) \\
&+ A3B9 \times 2920 \times C_{12}/(R3B1 \times 0.1KM + R3B2)
\end{align*}\]

\[
C_{14} \left[\frac{\text{man} \cdot \text{h}}{\text{h of ops.}} \right], \quad C_{15} \left[\frac{\text{man} \cdot \text{h}}{\text{h of ops.}} \right]
\]
Element 3 - Sub-element C:

\[A_{3C1} = C_{23} \times R_{3C1} \]
\[A_{3C2} = C_{18} \times R_{3C4} \]
\[A_{3C3} = C_{19} \times C_{23} \times C_{20} \times R_{3C2} \times C_{21} \times A_{3C2} \]
\[A_{3C4} = C_{22} \times A_{3C3} \]
\[A_{3C5} = C_{12} \times A_{3C3} \times R_{3C1} \]

\[
\begin{align*}
C_{19} & \left[\frac{\text{man} \cdot \text{h}}{\text{Mg}} \right], & C_{20} & \left[\frac{1}{\text{km/h}} \right], & C_{22} & \left[\frac{\%}{\text{Y}} \right], & C_{23} & \left[\frac{\text{Mg}}{\text{km}} \right]
\end{align*}
\]

H-8
Element 3 - Sub-element D:

\[A_{3D1} = C_{24} \times R_{3D5} \]

\[A_{3D2} = R_{3D3} \times (1 - C_{25}) \]

\[A_{3D3} = R_{3D3}/C_{25} \]

\[A_{3D4} = C_{26} \times A_{3D3}^{E7} \]

\[A_{3D5} = C_{27} \times A_{3D3}/R_{3C6} \]

\[A_{3D6} = C_{28} \times A_{3D4}^{E8} \]

\[A_{3D7} = C_{29} \times C_{17} \times (A_{3D1} + A_{3D4}) \]

\[A_{3D8} = A_{3D5} \times C_{30} \]

\[C_{24} \left[\frac{\text{Mg}}{\text{Km \ route}} \right] \]

\[C_{26} \left[\frac{\text{Mg}}{\text{KW}} \right] \]

\[C_{27} \left[\frac{\text{man}}{\text{kw}} \right] \]

\[C_{28} \left[\frac{\$}{\text{Mg}} \right] \]

\[C_{29} \left[\frac{\text{Man} \cdot \text{h}}{\text{Mg}} \right] \]

\[C_{30} \left[\frac{\$}{\text{man} \cdot \text{y on moon}} \right] \]
Element 3 - Sub-element E:

\[A3E1 = R3E1 \ast C_{31} \ast R3E2/R3E3 \]

\[A3E2 = R3E1 \ast C_{32} \ast R3E2 \]

\[A3E3 = C_{33} \ast A3E1^{E9} \ast C_{30} \]

\[A3E4 = C_{34} \ast A3E1^{E10} \ast C_{30} \]

\[A3E5 = (1 - R3E2) \ast R3E3 \ast R3E1 \ast C_{35} \ast C_{30} \]

\[C_{37} \left[\frac{\text{Mg}}{\text{No. of transports}} \right] \]

\[C_{33} \left[\frac{\text{man} \cdot \text{y}}{\text{Mg}} \right] \]

\[C_{35} \left[\frac{\text{man}}{\text{No. of transports}} \right] \]

\[C_{32} \left[\frac{\text{KW}}{\text{No. of transports}} \right] \]

\[C_{34} \left[\frac{\text{man} \cdot \text{y}}{\text{Mg}} \right] \]
APPENDIX I: Space Transportation System Modeling for the Lunar Base and Supporting Functions

Introduction:

Space transportation elements will play a major role in the definition and operation of the Lunar Base infrastructure.

These space transportation elements include launch vehicles (earth to LEO), Orbital Transfer Vehicles (LEO to GEO, LEO to LLO), and Lander vehicles (LLO to LS).

The launch vehicles to be modeled in the Lunar Base Model fall into three major categories: 1) the existing Space Transportation System (STS); 2) Shuttle-Derived Launch Vehicle (SDV); and 3) Heavy Lift Launch Vehicles. The payload-to-orbit capability of the three launch vehicle systems increases from 1) to 3) respectively.

The SDV is viewed as an extension of the STS in that certain STS elements will be utilized, as for example SSME's and Solid Rocket Boosters (SRB's). (In this example, the SDV SRB's may use 5-segment filament-wound case SRB's as compared to the STS 4-segment steel case SRB's.)

The HLLV is seen as a new development, with only limited use of existing STS subsystems. The HLLV is also expected to provide the greatest payload to orbit at the lowest cost per Kg.

The OTV will be used to initially deliver the lunar base elements from the LEO space station to Low Lunar Orbit, at which time they will be placed on the lunar surface using a lander vehicle. OTV's will provide manned transportation as well as logistics support for the lunar base, and will carry lunar derived products, such as Lunar LO₂, back to the space station.

It has been shown in recent studies (ESO and Eagle Eng.) that the OTV has a major impact on the economics of a lunar base. Low-cost OTV
operations must be achieved if lunar produced LO₂ is ever to compete with LO₂ delivered to LEO in the SDV.

Because of the importance of the OTV in the Lunar Base Scenario and the extreme sensitivity of Lunar Base economics with respect to OTV operations costs, special attention must be given the OTV when attempting to model it in the overall lunar base scenario.

It is highly probable that no single launch vehicle or OTV design concept will satisfy all the mission requirements that a lunar base will impose. Rather, a family of launch vehicle and OTV candidate concepts will be generated which have unique characteristics and capabilities. As an example, the OTV might initially use chemical propulsion, but as mission requirements intensify, consideration of electric or nuclear propulsion will allow the user to examine the effects of perturbing OTV subsystem elements (i.e., propulsion system) on the total Lunar Base Scenario.

The approach we will take in setting the groundwork for model development is to analyze the role of each "sub-element" of Space Transportation. Examples of space transportation sub-elements include the Lunar Vehicle (STS, SDV, HLLV), the OTVs, OMV, and the lander vehicles. The role of each sub-element in element Space Transportation will be evaluated, including sub-element interrelationships. The space transportation element, being one element in a large lunar base matrix, will then be related to all other applicable elements through a Transform Relationship.

In this manner, the impact of a variation in sub-element characteristics can be evaluated by determining its impact on other elements in the Lunar Base Model.

For example, a variation in OTV propulsion system specific impulse, ISP will affect the sub-element "OTV" by changing its mission propellant requirements. This, however, will also affect other elements of the Lunar Base Model, such as lunar base LO₂ production rates, which would thereby influence the mining requirements, etc.
This impact must be iterated within the model and made available to the user as an output.

The method used to establish the framework for Space Transportation element model identification is to specify all sub-elements of the Space Transportation element. For each sub-element, the external requirements imposed upon the sub-element are defined. As example of a requirement imposed upon the OTV is a mission that requires 80,000 Kg of payload to be delivered from the space station to Low Lunar Orbit.

Due to the requirements, the OTV must possess various attributes. This would include size of the OTV, which would in turn effect its cost, etc.

The link between the requirements and the sub-element attributes are the Transform Relations. The transform relations define element and sub-element attributes. They also relate the various elements within the Lunar Base Model element matrix. Also, it is obvious that a sub-element attribute may become a requirement for another element or sub-element.
Transportation System Sub-elements

* Earth to LEO launches
 - STS
 - Shuttle derived vehicles
 - New development heavy lift launch vehicles

* Earth to lunar orbit transfer systems
 - Small two stage cryogenic aerobraked OTVs
 - Large single stage cryogenic aerobraked OTVs
 - Large propellant carrier cryogenic aerobraked OTVs
 - Load oxygen only in lunar orbit
 - Load oxygen and hydrogen in lunar orbit
 - Electric propulsion OTVs
 - Nuclear power, oxygen propellant
 - Nuclear power, other propellant
 - Nuclear thermal propulsion (NERVA)
 - Solar sail OTV
 - OMV
 - Tethers

* Earth to Mars orbit transfer vehicles
 - Conjunction class, all cryogenic vehicles
 - Opposition class, all cryogenic vehicles
 - Opposition class, all cryogenic aerobraked vehicles
 - NERVA vehicles
 - Nuclear electric vehicles
 - Solar sail OTV

* Earth to asteroid transfer vehicles
 - All cryogenic
 - Nuclear electric
 - NERVA
 - Solar sail
*Lunar orbit to lunar surface

-Small expendable cryogenic lander
-Small expendable cryogenic ascent vehicle
-Reusable, single stage lander for propellant transfer, lunar surface and maintained, all propellants loaded on lunar surface or only oxygen loaded
-Reusable, single stage lander for propellant transfer, LEO based, hydrogen loaded in LEO and oxygen loaded on the lunar surface or all propellants loaded on lunar surface
-Reusable lander, LLO based and serviced loading either oxygen only or oxygen and hydrogen on the lunar surface
-Single stage LEO to lunar surface vehicle, reloading with propellants in lunar orbit
-Single stage, reusable or expendable, LEO to lunar surface vehicles, loading all propellants on the lunar surface or in LEO

*Facility elements

-Earth surface additional launch facilities
-Space station additional propellant storage, maintenance, crew quarters, and special equipment required
-Low lunar orbit vehicle maintenance and propellant storage and transfer equipment required

General Requirements

*Payload requirements

-mass inbound/down, Kg
-mass outbound/up, Kg
-volume inbound/down, M³
-volume outbound/up, M³
-diameter inbound/down, M
-diameter outbound/up, M
-maximum temp., ⁰K
- minimum temp., °K
- maximum vibratory loading, g²/cps
- maximum acoustic loading, db, min
- maximum longitudinal accel., gs
- maximum transverse accel., gs
- maximum lateral accel., gs

*Launch success probability, %

Crew size
- up
- down

*Number of passengers
- up
- down

*Life support duration, hours

*Timeline
- time on surface, days/mission
- time in lunar orbit, days/mission
- time in LEO, days/mission

*Number of missions required

*Number of dockings/rendezvous required

*Engine parameters
- Isp, sec
- mixture ratio (O/F)

*Orbital mechanics requirements
- departure orbit apogee (KM)
- departure orbit perigee (KM)
- departure orbit inclination (deg.)
- intermediate orbit apogee (KM)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate orbit perigee (km)</td>
<td></td>
</tr>
<tr>
<td>Intermediate orbit apogee (km)</td>
<td></td>
</tr>
<tr>
<td>Destination orbit perigee (km)</td>
<td></td>
</tr>
<tr>
<td>Destination orbit apogee (km)</td>
<td></td>
</tr>
<tr>
<td>Destination orbit inclination (deg.)</td>
<td></td>
</tr>
<tr>
<td>Midcourse correction ΔV, m/sec</td>
<td></td>
</tr>
<tr>
<td>Other maneuvering req. ΔV, m/sec</td>
<td></td>
</tr>
</tbody>
</table>
GENERAL ATTRIBUTES

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Mass</th>
<th>DDT&E</th>
<th>Lifetime</th>
<th>Maint.</th>
<th>Unit</th>
<th>OPS</th>
<th>MTBF</th>
<th>Life</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kg</td>
<td>millions$</td>
<td>#missions</td>
<td>sion hrs</td>
<td>million$</td>
<td>million$</td>
<td>#missions</td>
<td>Req. millions$</td>
</tr>
</tbody>
</table>

- Main propulsion engine(s)
- Tankage
- Pump(s)
- RCS (inert)
- Structure
cargo pad
- Landing gear
crew component
- Other
- GN&C
- Communications
- Data management
- Electrical power
- Hydraulic power
- Life support
dry mass
- Consumables
- Crew systems
- Suits
- Other
- Total (dry)
GENERAL ATTRIBUTES (Cont.)

<table>
<thead>
<tr>
<th>Loaded in LEO</th>
<th>Loaded on LS</th>
<th>Loaded in LLO</th>
<th>Total Capacity</th>
</tr>
</thead>
</table>

Fluid mass, Kg
- main propulsion, oxidizer, Kg
- main propulsion, fuel, Kg
- RCS oxidizer, Kg
- RCS fuel, Kg

Life support consumables
- oxygen, Kg
- scrubbers, Kg
- water, Kg
- food, Kg

Vehicle total wet mass and time history of vehicle mass, Kg

Main engine parameters
- expansion ratio
- chamber pressure, PSIA
- no. of engines
- thrust per engine, Newton

Assembly in LEO parameters
- no. of shuttle of other vehicle loads
- to bring up dry mass
- manhours EVA and IVA to assemble in LEO
- special equipment in LEO req. to assemble

Disposal method for vehicle at end of lifetime
TETHERS

SUBELEMENTS

Vehicle attachment
Tether
Reel
Control System

REQUIREMENTS

Net Momentum Transfer Required
Equivalent Delta Vee
Release orbit restrictions
Available tether materials properties
Thermal and Aerodynamic regime
Gravity Gradient regime
Frequency of Operations
Vehicle Mass
Transport Node mass
Ultraviolet and atomic oxygen environment

ATTRIBUTES

Reel mass
Tether mass
Tip mass
Reel power requirements
Tether life
Tether handling requirements
Final vehicle and transport node orbits
Required transport node mass
Transport node momentum change
Transport node operational constraints
ELECTRIC MOMENTUM GENERATION

SUBELEMENTS

Electric thruster
Power Source
Propellant source (except for electrodynamic tethers)

REQUIREMENTS

Momentum required
Momentum loss due to other systems
Acceptable orbit variations
Transport node mass
Thruster and power systems performance

ATTRIBUTES

System mass – thruster and power system or marginal increase in power system
Duty cycle
Propellant requirements
Maintenance requirements
Orbital elements vs. time
Transport node operational constraints
APPENDIX J: EXAMPLE ESTIMATE OF LUNAR OXYGEN PRODUCTION PLANT MASS

ELECTROLYSIS OF MOLTEN SLAG: A crude mass estimate for a plant to electrolyze molten slags derived from lunar minerals can be made as follows:

Oxygen production via slag electrolysis proceeds as follows. Regolith is mined, and a specific feedstock (e.g., ilmenite) is concentrated by beneficiation. The feed material (minus tailings) is slowly introduced into the electrolysis cell where it dissolves in the liquid slag. The slag flows through the electrolysis cell and is discharged after sufficient amount of electrolysis. The Ferrotitanium product is also discharged periodically. Hot oxygen is cooled and sent to a liquifier for condensation and storage.

Thermodynamic data indicate that platinum may be adequately resistant to oxidation to be used as anode material.

It has been assumed that an iron bearing material is electrolyzed, as iron is more easily reduced than any other abundant lunar element. The mineral of choice is ilmenite, since it yields a fluid and conductive slag.

The electrolysis is carried out so as to consume half the iron, so that the residual slag will have an adequately low liquid temperature to be tapped, and so that no second phase can form from siliceous impurities in the feed. This means that a net 5.41% of the input feed is converted to oxygen.

If 1000 metric tons per year of oxygen are to be produced, 18,500 tons of ilmenite are required per year. If 5 to 15% of the mined soil is recoverable ilmenite, 1.23×10^5 to 3.75×10^5 tons of soil must be mined per year. Mining and beneficiation plant mass requirements are estimated 9.0 to 18.0 tons per year at 90% duty cycle or 20.3 to 40.5 tons at 40% duty cycle. These estimates are derived as follows:
Assuming a 10 cm slag bath depth at 1500°C and using known diffusion constants and conductivities, the optimum current density for energy efficient oxygen production is about 0.5 A/cm². This leads to a power efficiency of about 30%, and a required anode area of about 76 m² to produce 1000 tons of oxygen per year at 40% duty cycle. Using 190 watt per kg power, this gives 23 tons of powerplant to produce the oxygen from the slag.

Assuming the anode is composed of platinum 1 cm thick or so, it has a mass of about 10 tons (and a present market value of about $110,000,000). The anode passes about 380 kiloamps, so the conductor to it must have a cross section of about 1 m², a mass of about 1 ton per meter. If the plant is situated in the center of the power generating area, the equivalent conduction distance is about 40 meters. Thus, there are about 40 tons of wires in the plant.

The electrolysis unit must be in a pressure can about 10 meters across. Sizing this can to hold 1 psi with a safety factor of 10 indicates it will be less than 10 tons, so the mass will be taken as 10 tons. An additional 10 tons of refractory lining to protect the pressure container from the slag bath will be necessary.

Oxygen liquification is described in prior work, and is not discussed here since it is somewhat dependent on reliquification requirements for storage. The mass of the storage facility is dependent on the frequency of oxygen delivery, so it is not given and may be most conveniently described by making it a part of the transportation system.

This is a rough estimate of plant mass (inclusive of power system but exclusive of oxygen liquification and storage) is 113 to 133 tons delivered to the lunar surface.
Lunar Hydrogyn Extraction

There is a certain amount of solar wind implanted hydrogen in lunar soils. It is possible to extract this by heating the soils. There have been some hydrogen desorption vs. heating rate studies by Gibson et al. at JSC, which can be used to develop preliminary engineering data on a system to extract lunar hydrogen from the regolith.

There are two kinds of hydrogen in the lunar soil grains; surface correlated hydrogen which is related on heating to 500-700°C, and bulk hydrogen which is released on melting the sample. The ratio of these is about 1:1, although significant variation is present. Significant surface correlated hydrogen has been found in all lunar samples specifically examined for it. Surface correlated hydrogen becomes depleted with depth in the lunar regolith.

Gibson reports that lunar soil must be heated to 700°C in vacuo for approximately an hour with no significant hydrogen loss. Little hydrogen is released below 500°C so initial heating can be done with concentrated solar radiation. Heating from 500 to 700°C must be carried out in the process vessel in order to contain the hydrogen evolved. The heat must be supplied electrically by induction heating due to the insulating nature of the regolith. This determines the process heat demand. The material must be held for 1 to 2 hours in the process vessel. This determines the vessel size.

The modeling should evaluate whether it is more economical to only recover the surface correlated hydrogen than to recover all of the hydrogen because this minimizes the electrical heat demand. Recovering all of the hydrogen present would approximately halve the amount of soil required.

A discussion of plant mass estimates for hydrogen production are given below. Solar power is assumed due to the extreme penalty of not being able to use direct solar preheating.
Recovering 50 ppm of hydrogen from the lunar soil, a reasonable value from the literature data, a baseline plant makes 80 tons of hydrogen per year. The heat demands are 80 MW of concentrated sunlight and 31 MW of electricity (70 and 90% efficiency in heating) while the sun is up. These are used to heat 9600 tons of soil per hour.

An upper limit for plant mass has 100 tons of mining equipment (Gertsch, Space Manufacturing 6), 25 tons of solar heaters, 300 tons of solar electrical generating capacity, 31 tons of RF power converters, and 100 tons of process vessel and associated equipment. This gives a total mass of 556 tons.

An advanced design plant has 50 tons of mining equipment (assuming 50% weight savings on redesign), 10 tons of solar heat, 80 tons of electrical heat (assuming higher specific power and lower temperature rise), 15 tons of induction power supply, and 50 tons of process vessel for a total mass of 205 tons.

An optimistic advanced plant may have 30 tons of miner, 10 tons of solar heat, 60 tons of electrical power supply, 12 tons of induction heater and 30 tons of process vessel. This plant design is based on finding an area of the regolith which is significantly enhanced in hydrogen content. It may also be possible to concentrate hydrogen by concentrating soil components which are enriched over the average abundance.
PERFORMANCE UNCERTAINTY

The performance, production costs, operating costs, and development costs of any item or system which does not yet exist are uncertain to some extent. There is great variability in the extent of uncertainty associated with different items. These statements are obvious. It is less obvious how to address cost and performance uncertainty in any modeling process.

Accounting for performance uncertainty accurately is very difficult. One simple approach is to make the expected uncertainty inversely proportional to the number of like items which have been made in the past and to the amount of effort (perhaps as measured by dollars) which has been expended on development or design studies for the item in question.

Using these criteria, vehicle performance is extremely well understood (1% uncertainty), power system performance is reasonably well understood (5% uncertainty), habitat and life support performance are a bit uncertain (25% uncertainty) and manufacturing plant performance is poorly understood (100% or more uncertainty).

Performance uncertainty grows as the item under consideration becomes farther removed in time or in technological sophistication from the present state of the art. Thus an advanced cryogenic engine has lower performance uncertainty than an electric thruster.

Any modeling system developed to study a lunar base must account for these uncertainties. It would be desirable for the model to perform sensitivity analyses over the range of expected uncertainty in any system parameter. Thus, sensitivity to engine I_{sp} variation would be calculated over a few seconds, while sensitivity to hydrogen plant mass would be calculated over 50 or 100 tons.
APPENDIX K: COMMUNICATIONS, COMMAND, AND CONTROL

<table>
<thead>
<tr>
<th>SUBELEMENT</th>
<th>REQUIREMENTS</th>
<th>ATTRIBUTES</th>
<th>TRANSFORMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Orbit</td>
<td>Provide high-resolution imagery</td>
<td>Transmission rates</td>
<td>Attribute/KW</td>
</tr>
<tr>
<td>Command module TDRS</td>
<td>Provide survey</td>
<td>Operation rates</td>
<td></td>
</tr>
<tr>
<td>Survey/science TDRS-HALO satellite</td>
<td>Earth-moon tracking and relay</td>
<td>Memory Storage</td>
<td></td>
</tr>
<tr>
<td>Surface Mission Operations Center</td>
<td>Maintain Mission Control/documentation</td>
<td>Mass</td>
<td></td>
</tr>
<tr>
<td>Deployable/erectable antenna systems</td>
<td>Maintain Ground Communications</td>
<td>Vol.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mobility</td>
<td>Power</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Autonomy</td>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lifetime</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reliability</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX L: MINING

The basic structure of a lunar mining operation which for our purposes will be assumed to include the operations shown in Figure Y and described below:

Overburden stripping: Clearing the site of zero or low value ore and exposing the high value ore. The critical parameter is overburden ratio; the mass of overburden which must be excavated, moved, and dumped per unit mass of ore extracted. This parameter is a function of the mining method and mine design.

Ore excavation: The physical process of freeing the ore from its place of origin, lifting it, and discharging it to the transportation system.

Transportation: The physical process of moving the ore from the excavation site to the processing plant. It might include intermediate storage to accommodate different duty cycles in the mining and processing operations.

Size reduction: The physical process of crushing the ore to increase its surface-to-volume ratio. This may be required to obtain acceptable recoveries in both beneficiation and extraction processes.

Beneficiation: The physical/chemical process of increasing the concentration of the desired constituent per unit mass of ore retained in the system. This produces an ore concentrate and a tailings which reduces the mass of ore to be processed but also results in a net loss of desired constituents.
Simple models of this system can be constructed. For instance, the energy requirement \((P_M) \) in equivalent kw can be related directly to the mass \((M) \) of ore concentrate produced by the mining systems by

\[P = KM \]

The system constant \(K \) is a complex function of the many operating parameters which describe the individual sub-element operations. One possible general relationship is

\[
K = \alpha_{OS} K_{SO} + \alpha_X (1-f_X) + \alpha_T (1-f_X) + f_T \] LT

\[+ \alpha_{SR} (1-f_X) K_{SA} + \alpha_B (1-f_X) (1-f_{SR}) \]

where

\[\alpha_{OS} \] = energy requirement per unit overburden mass

\[K_{OS} \] = overburden ratio

\[\alpha_X \] = energy requirement per unit mass of ore

\[f_X \] = fraction ore lost during extraction

\[\alpha_T \] = energy requirement for ore transport

\[f_T \] = fraction of ore lost during transport per unit of transport distance

\[L_T \] = transport distance

\[\alpha_{SR} \] = energy requirement for size reduction
The numerical value of each constant is dependent upon:
- the type of technology to be used in each sub-element
- the type of equipment used to implement the technology used in each sub-element.

The values are best determined by developing conceptual level engineering descriptions of at least three possible moon mining systems where two different technologies and two different scales of production are used:

Similar relations can be established for:
- equipment cost
- equipment weight
- operating/maintenance labor
- maintenance materials
- O & M cost

These relationships are expected to be non-linear rather than linear as in the power relationship. They are also highly dependent upon
system decisions which have yet to be made such as those regarding single purpose vs. multipurpose vehicles and operating methodologies. Two such examples are:

- The mine excavator could be used initially as a habitat construction vehicle and at later stages as a ground transport vehicle, waste burial vehicle, etc. in addition to its mining role. Allocation of the cost of this vehicle FOB the lunar base and vehicle O & M cost to various parts of lunar base operation must be decided.

- Lunar soil moving operations at the mine could be completed most optimally in a little as one or two days per week of beneficiation/extraction operations freeing the mining vehicle(s) for other duties during the remaining time. Again, this affects vehicle size, cost, and the allocation of those costs.

It is clear that screening studies must be done to identify most probable scenarios and eliminate technologies which have little potential for cost effective lunar operations. Given these results, a few mining scenarios can be selected for model development. These models can be used for optimization of the overall lunar base model and suboptimization of mining element design and operations within the larger context of the overall lunar base model.

The input variables (requirements) and output variables (attributes) for such models are listed for each sub-element in Table Z.
<table>
<thead>
<tr>
<th>SUB ELEMENT</th>
<th>REQUIREMENTS</th>
<th>ATTRIBUTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Overburden stripping</td>
<td>1. Overburden ratio</td>
<td>All - Power requirements</td>
</tr>
<tr>
<td></td>
<td>Stream factor</td>
<td>Earth produced equipment/shelter weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maint. Mat'l weight/year</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Operating and maintenance labor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capital cost FOB lunar base</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O & M cost</td>
</tr>
<tr>
<td>2. Ore excavation</td>
<td>2. Mass rate to beneficiation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stream factor</td>
<td></td>
</tr>
<tr>
<td>3. Transport</td>
<td>3. Distance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stream factor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturing plant part. size dist.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stream factor</td>
<td></td>
</tr>
<tr>
<td>5. Beneficiation</td>
<td>5. Run of mine composition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manu. plant feed composition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mass rate to manu. plant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stream factor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufact. plant waste mass rate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stream factor</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX M: MANUFACTURING ON THE MOON

The subelements of a generalized manufacturing facility on the lunar surface are shown in table M-1. Examples are discussed below.

Mat'ls inventory: This is the receiving, storage, and dispensing facility for all raw materials, maintenance materials, and other quantities consumed by the manufacturing operation.

Feed Preparation: This includes any physical/chemical modification of feed materials which are essential to prepare them for the primary manufacturing operations (PM). Such activities could include disassembly of space transport modules, removal of paint from same, etc.

Thermal Processing: This is any primary manufacturing operation (PMO) which involves heating, cooling, or phase change as its primary function such as hydrogen boiloff from regolith.

Chemical Conversion: This is any PMO which is based upon conversion of one or more chemical constituents to different chemical forms such as Ilmenite to water to oxygen.

Purification: Any PMO intended to improve the quality of either a raw material or a product such as urea recovery from human urine.

Fabrication: Any PMO which produces finished physical forms such as sheet metal, cinder blocks, etc.

Assembly: Any PMO which creates a product from components such as satellite assembly.
Packaging: Any operation which prepares a product for export from the manufacturing facility such as painting, encapsulation, etc.

Product Inventory: Storage to accumulate production for bath shipment or usage.

Waste Heat
Rejection: This is the lunar analog of the terrestrial cooling tower essential to any manufacturing facility which uses thermal energy or produces waste thermal energy via mechanical work.

Waste Solids
Disposal: This reclaims all usable solid materials for recycle and exports all non-usables for disposal.

The LO₂ and LH₂ manufacturing facilities can be described in terms of these subelement components. Other examples of potential manufacturing facilities are:

- production of metal powders and shapes from lunar minerals for propellant use, structural shapes, etc.

- manufacture and reclaiming of water.

- forming of aggregate blocks from lunar regolith for structural construction.

- hydroponic production of foodstuffs.

- reclaiming of usable gases constituents from habitat atmospheres

- processing of human wastes for usable chemicals such as ammonia, urea, methane, nitrogen.
- maintenance of appropriate biochemical environments to preserve the human immunity system for eventual return to Earth.

A single generalized mathematical model relating input or independent variables (requirements) to output or dependent variables (attributes) would not be cost-effective. These input-output relationships are highly specific to the products made and the individual technologies selected to carry out the production.

It is recommended that product specific models be developed for each product considered worthy of production for lunar consumption and/or export to space. For those products where alternative technologies exist, screening studies should be carried out to identify the most probable technology and the limits of its lunar application. Models should then be developed for the selected technologies.

All models should be based on conceptual level engineering descriptions at levels of detail commensurate with the relevant moon resource data, transportation cost estimate, energy cost estimate, etc.

The structure of such a model can be visualized as shown in Table Y. Here an interactive model is proposed where the user first provides basic problem definition via inputs, establishes a design basis via question/answer (Q/A) interactions with the model, the model then constructs an engineering description of the manufacturing facility via use of computational routines, some sub-optimization of the engineering description can be authorized by the user, who then elects to output part or all of the engineering and cost data.

The data base necessary to support such a model will include information such as that listed in Table 1.
<table>
<thead>
<tr>
<th>SUB-ELEMENT</th>
<th>REQUIREMENTS</th>
<th>ATTRIBUTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Materials inventory</td>
<td>1. Consumption rates</td>
<td>1,9 Enclosed volume and its capital cost</td>
</tr>
<tr>
<td></td>
<td>Conservation efficiencies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maintenance materials</td>
<td></td>
</tr>
<tr>
<td>2. Feed preparation</td>
<td>2. Size reduction</td>
<td>2-8, 10, 11 Equipment weight,</td>
</tr>
<tr>
<td></td>
<td>Phase change</td>
<td>Equipment cost</td>
</tr>
<tr>
<td></td>
<td>Disassembly</td>
<td>Operating labor</td>
</tr>
<tr>
<td></td>
<td>Cleaning</td>
<td>Consumables mass rates</td>
</tr>
<tr>
<td>3. Thermal processing</td>
<td>3. Production rate</td>
<td>By-product mass rates</td>
</tr>
<tr>
<td>4. Chemical conversion</td>
<td>4. Production rate</td>
<td>Energy requirements</td>
</tr>
<tr>
<td></td>
<td>Product mix</td>
<td></td>
</tr>
<tr>
<td>5. Purification</td>
<td>5. Product specifications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Production rate</td>
<td></td>
</tr>
<tr>
<td>6. Fabrication</td>
<td>6. Product specifications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Production rate</td>
<td></td>
</tr>
<tr>
<td>7. Assembly</td>
<td>7. Product specifications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Production rate</td>
<td></td>
</tr>
<tr>
<td>8. Packaging</td>
<td>8. Transport requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical form</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Production reserve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal efficiencies</td>
<td></td>
</tr>
<tr>
<td>Process Parameters</td>
<td>Site Information</td>
<td>Alternatives</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>0/4</td>
<td>0/4</td>
<td>0/4</td>
</tr>
</tbody>
</table>
TABLE M-2 (Cont.)

<table>
<thead>
<tr>
<th>Computational Routines</th>
<th>Potential Sub-optimization</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Constituent Balances</td>
<td>*Minimum earth equipment</td>
<td>*Production data</td>
</tr>
<tr>
<td>*Mass Balance</td>
<td>*Minimum bubble size</td>
<td>1. Products (Gross &</td>
</tr>
<tr>
<td>*Energy Balance</td>
<td>*Maximum value of produced</td>
<td>2. By-products Export)</td>
</tr>
<tr>
<td></td>
<td>products</td>
<td></td>
</tr>
<tr>
<td>1. Thermal</td>
<td>*Minimum earth derived</td>
<td>*Consumable quantities</td>
</tr>
<tr>
<td>2. Electrical</td>
<td>feedstocks</td>
<td>1. Chemical</td>
</tr>
<tr>
<td>*Major equipment</td>
<td>*Preventive maintenance vs.</td>
<td>2. Thermal</td>
</tr>
<tr>
<td>sizing/wts</td>
<td>unscheduled shutdown vs.</td>
<td>3. Electrical</td>
</tr>
<tr>
<td></td>
<td>redundant systems</td>
<td>4. Maintenance materials</td>
</tr>
<tr>
<td>*Minor equipment</td>
<td>*Production data</td>
<td></td>
</tr>
<tr>
<td>sizing/wts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Bubble size/wt</td>
<td>*Consumable quantities</td>
<td></td>
</tr>
<tr>
<td>*Site preparation</td>
<td>1. Solid</td>
<td></td>
</tr>
<tr>
<td>*FOB lunar site</td>
<td>2. Gaseous</td>
<td></td>
</tr>
<tr>
<td>equipment cost</td>
<td>3. Thermal energy</td>
<td></td>
</tr>
<tr>
<td>*Lunar site erection</td>
<td>*Process description</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Block flow diagram</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Block description</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Layout</td>
<td></td>
</tr>
<tr>
<td>*Operating costs</td>
<td>*Facility description</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Major systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Support</td>
<td></td>
</tr>
<tr>
<td>1. Labor</td>
<td>*Labor requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. On-site operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Off-site maintenance</td>
<td></td>
</tr>
<tr>
<td>*Total Facility</td>
<td>*Ad infinitum</td>
<td></td>
</tr>
<tr>
<td>1. Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Lunar surface area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Earth manuf.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. FOB site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Total capital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Product as 8 (bP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Life cycle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M-6
TABLE M-3

1. Resource
 A. Extent and variability data
 B. Average content per unit bulk volume
 C. Topographical problems
 D. Constructability of site
 E. ETC.

2. Chemical Processing for each technology
 A. Beneficiation efficiencies
 B. Conversion efficiencies
 C. Energy requirements
 D. Recycle (consumable mat'ls recov.) eff.
 E. Heat rejection requirements
 F. Waste production/disposal
 G. On stream factors vs. cost
 H. Labor vs. automation cost/reliability

3. Manufactured Products (each has one or more technologies)
 A. LO₂
 B. LH₂
 C. Metal powders
 D. Metal shapes
 E. H₂O
 F. Construction materials
 G. Food
 H. ETC.

4. Reclaimed Products
 A. CH₄
 B. Urea
 C. Human organisms
 D. H₂O
 E. CO₂
 F. N₂
 G. NH₃
 H. ETC.
Processing of lunar materials into a different chemical or physical form is very complex and poorly understood. A "laundry list" of process variables has been generated. Most of these variables do not interact with the overall lunar base design. Many of them describe interactions among the various unit operations blocks. Optimizing plant design is probably as difficult as modeling the rest of the lunar base program. Some adequate means of optimizing oxygen and other product plants without having to model them fully is probably needed.

There are a lot of possible chemistries to choose from. Two randomly selected ones have been described in limited detail.
ELEMENT:

Oxygen production factory using carbon reduction of molten ilmenite combined with solid state electrolysis of carbon dioxide.

SUBLELEMENTS:

Miner
Beneficiator
Reduction reactor
Off gas disproportionator
Electrolysis cell
Radiator
Liquefier
Storage

SUBLELEMENT REQUIREMENTS

Miner
Mine model
Avg. production capacity
Transport distance

Beneficiator
Feed compositions
Avg. Prod. capacity
Output composition
Transport distance
Feed storage requirements

ATTRIBUTES

Duty cycle
Mass
Size
Setup effort
Operating effort
PM effort
UM effort
Pit geometry
Power consumption
Surge storage
Spares inventory
Spares consumption
Failure profile

M-9
<table>
<thead>
<tr>
<th>SUBELEMENT</th>
<th>REQUIREMENTS</th>
<th>ATTRIBUTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction reactor</td>
<td>Feed composition</td>
<td>Duty cycle</td>
</tr>
<tr>
<td></td>
<td>Feed temperature</td>
<td>Mass</td>
</tr>
<tr>
<td></td>
<td>Avg. production capacity</td>
<td>Size</td>
</tr>
<tr>
<td></td>
<td>Output composition constraints</td>
<td>Setup effort</td>
</tr>
<tr>
<td></td>
<td>Feed storage</td>
<td>Operating effort</td>
</tr>
<tr>
<td></td>
<td>Output pressure</td>
<td>PM effort</td>
</tr>
<tr>
<td>Off gas disproportionator</td>
<td>Feed rate</td>
<td>UM effort</td>
</tr>
<tr>
<td></td>
<td>Feed composition</td>
<td>Power consumption</td>
</tr>
<tr>
<td></td>
<td>Feed temperature</td>
<td>Spares inventory</td>
</tr>
<tr>
<td></td>
<td>Feed stream factor</td>
<td>Spares consumption</td>
</tr>
<tr>
<td></td>
<td>Input pressure</td>
<td>Product composition</td>
</tr>
<tr>
<td>Solid state electrolyzer</td>
<td>Feed rate</td>
<td>Heat rejection requirement</td>
</tr>
<tr>
<td></td>
<td>Feed composition</td>
<td>Heat consumption</td>
</tr>
<tr>
<td></td>
<td>Feed temperature</td>
<td>Output pressure</td>
</tr>
<tr>
<td></td>
<td>Feed stream factor</td>
<td>Setup effort</td>
</tr>
<tr>
<td></td>
<td>Input pressure</td>
<td>Operating effort</td>
</tr>
<tr>
<td>Reduction Reactor</td>
<td>Feed rate</td>
<td>PM effort</td>
</tr>
<tr>
<td></td>
<td>Feed composition</td>
<td>UM effort</td>
</tr>
<tr>
<td></td>
<td>Feed temperature</td>
<td>Product composition</td>
</tr>
<tr>
<td></td>
<td>Feed stream factor</td>
<td>Heat rejection requirement</td>
</tr>
<tr>
<td></td>
<td>Input pressure</td>
<td>Heat consumption</td>
</tr>
</tbody>
</table>

M-10
<table>
<thead>
<tr>
<th>SUBELEMENT</th>
<th>REQUIREMENTS</th>
<th>ATTRIBUTES</th>
</tr>
</thead>
</table>
| Electrolysis Reactor | Feed composition
Feed temperature
Avg. production cap.
Input steam factor | Output composition
Power consumption
Efficiency
Output temperature
Duty cycle
Mass
Size
Setup effort
Operating effort
PM effort
UM effort
Spares inventory
Spares consumption
Pressure drop
Failure profile |
| Radiator | Power rejected
Rej. temperature
Gas flow rate | Duty cycle
Mass
Size
Setup effort
Operating effort
PM effort
UM effort
Setup effort
Operating effort
Pressure drop
Failure profile |
| Pump | Flow rate
Feed composition
Pressure head
Input temperature | Duty cycle
Mass
Size
Setup effort
Operating effort
Power consumption
PM effort
UM effort
Spares inventory
Spares requirements
Failure profile |
<table>
<thead>
<tr>
<th>SUBELEMENT</th>
<th>REQUIREMENTS</th>
<th>ATTRIBUTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquefier</td>
<td>Flow rate</td>
<td>Duty cycle</td>
</tr>
<tr>
<td></td>
<td>Input pressure</td>
<td>Mass</td>
</tr>
<tr>
<td></td>
<td>Input temperature</td>
<td>Size</td>
</tr>
<tr>
<td></td>
<td>Output temperature</td>
<td>Setup effort</td>
</tr>
<tr>
<td></td>
<td>Output pressure</td>
<td>Operating effort</td>
</tr>
<tr>
<td></td>
<td>Input steam factor</td>
<td>Power consumption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM effort</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UM effort</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spares inventory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spares requirements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Failure profile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat rejection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(power vs. temp)</td>
</tr>
<tr>
<td>Storage</td>
<td>Temperature</td>
<td>Size</td>
</tr>
<tr>
<td></td>
<td>Pressure</td>
<td>Mass</td>
</tr>
<tr>
<td></td>
<td>Input flow rate</td>
<td>Setup effort</td>
</tr>
<tr>
<td></td>
<td>Output flow rate</td>
<td>Operating effort</td>
</tr>
<tr>
<td></td>
<td>Size of taps</td>
<td>PM effort</td>
</tr>
<tr>
<td></td>
<td>Time of taps</td>
<td>UM effort</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spares inventory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spares requirements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Failure profile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"spillage" or "boiloff"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power requirements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat rejection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>requirements</td>
</tr>
</tbody>
</table>
ELEMENT:

Oxygen production factory using hydrogen reduction of subsolidus ilmenite and high temperature electrolysis.

SUBELEMENTS:

Miner
Beneficiator
Reduction reactor
Electrolysis reactor
Radiator
Pump
Liquefier
Storage

SUBELEMENT REQUIREMENTS ATTRIBUTES
Miner
Mine model Avg. production capacity Duty cycle
Mass
Size
Setup effort Operating effort
PM effort UM effort
Pit geometry Power consumption
Surge storage Spares inventory
Spares consumption

Beneficiator
Feed compositions Avg. Prod. capacity Duty cycle
Avg. output composition Mass
Output composition Size
Transport distance Setup effort Operating effort
PM effort UM effort
Power consumption Surge storage Spares inventory
Failure profile Spares consumption Product composition
Product/feed ratio Tailings/feed ratio

SUBELEMENT REQUIREMENTS
Reduction reactor
Feed composition Duty cycle
Avg. production capacity Mass
Electrolysis Reactor

Feed composition
Feed temperature
Avg. production cap.
Input stream factor

Radiator

Power rejected
Rej. temperature
Gas flow rate

Pump

Flow rate
Feed composition
Pressure head
Input temperature

Liquefier

Flow rate
Input pressure

Size
Setup effort
Operating effort
PM effort
UM effort
Output composition
Heat consumption
Spares consumption
Spares inventory
Failure profile
Pressure drop

Size
Mass
Duty cycle
Power consumption
Spares inventory
Spares consumption
Output composition
Setup effort
Operating effort
PM effort
UM effort
Efficiency
Output temperature
Failure profile
Pressure drop

Size
Mass
Duty cycle
Setup effort
Operating Effort
PM effort
UM effort
Pressure drop
Failure profile
<table>
<thead>
<tr>
<th>Storage</th>
<th>Input temperature</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output temperature</td>
<td>Setup effort</td>
</tr>
<tr>
<td></td>
<td>Output pressure</td>
<td>Operating effort</td>
</tr>
<tr>
<td></td>
<td>Input stream factor</td>
<td>Power consumption</td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
<td>PM effort</td>
</tr>
<tr>
<td></td>
<td>Pressure</td>
<td>UM effort</td>
</tr>
<tr>
<td></td>
<td>Input flow rate</td>
<td>Spares inventory</td>
</tr>
<tr>
<td></td>
<td>Output flow rate</td>
<td>Spares requirements</td>
</tr>
<tr>
<td></td>
<td>Size of taps</td>
<td>Failure profile</td>
</tr>
<tr>
<td></td>
<td>Time of taps</td>
<td>Heat rejection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(power vs. temp)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Storage</th>
<th>Temperature</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pressure</td>
<td>Mass</td>
</tr>
<tr>
<td></td>
<td>Input flow rate</td>
<td>Setup effort</td>
</tr>
<tr>
<td></td>
<td>Output flow rate</td>
<td>Operating effort</td>
</tr>
<tr>
<td></td>
<td>Size of taps</td>
<td>PM effort</td>
</tr>
<tr>
<td></td>
<td>Time of taps</td>
<td>UM effort</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spares inventory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spares requirements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Failure profile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"spillage" or "boiloff"</td>
</tr>
</tbody>
</table>
APPENDIX N: ELEMENT--GEOCHEMICAL LABORATORY

Description: Capability for analysis of collected rock and soil samples. Level of analysis sufficient to identify interesting scientific samples for detailed analysis on Earth. Analysis of samples for possible resource exploitation.

<table>
<thead>
<tr>
<th>SUBELEMENT</th>
<th>REQUIREMENTS</th>
<th>ATTRIBUTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access</td>
<td>Allow passage of persons, samples, stores, equipment. Desirable to bring sealed specimens and examine them in controlled atmospheric environment (N_2 atmos.; vacuum)</td>
<td></td>
</tr>
<tr>
<td>Life-support</td>
<td>Support 2 to 4 persons working. (Round-the-clock utilization?) (Sporadic utilization?) (Utilization only during lunar night?)</td>
<td>Connected to base.</td>
</tr>
<tr>
<td>Mass Storage</td>
<td>Supplies, replacements, some chemicals.</td>
<td></td>
</tr>
<tr>
<td>Module</td>
<td>Space station module.</td>
<td></td>
</tr>
</tbody>
</table>

N-1
<table>
<thead>
<tr>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment Control</td>
</tr>
<tr>
<td>Maintain shirt-sleeve environment (space station); clean benches.</td>
</tr>
<tr>
<td>Computational Facility</td>
</tr>
<tr>
<td>Data collection, manipulation, storage. Instrument control.</td>
</tr>
<tr>
<td>Communication</td>
</tr>
<tr>
<td>Voice to rest of base. Access to central data storage for communication with Earth.</td>
</tr>
<tr>
<td>SUBELEMENT</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Inputs</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Outputs</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Safety</td>
</tr>
</tbody>
</table>
GEOLOGICAL INVESTIGATIONS (TRAVERSES)

[TRAVERSE VEHICLE WITH LIFE SUPPORT]

Description:
Two or more geologists travel to a remote site for geologic investigation. Time spent at the site will be at least two days. Distance to the site should be at least 50 km from the base. Scenarios could include traverses up to thousands of kilometers lasting for months.

<table>
<thead>
<tr>
<th>Sub-elements:</th>
<th>Requirements</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access</td>
<td>Airlock or depressurization for EVA. Possible collection of samples with remote arm.</td>
<td></td>
</tr>
<tr>
<td>Life-support</td>
<td>4 or more days of air, water, food, waste storage for 2 or more people. Shirt-sleeve environment nominally.</td>
<td></td>
</tr>
<tr>
<td>Mass Storage</td>
<td>Supplies, collected samples, deployable equipment, waste storage.</td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td>Range, speed, slope climbing capability, rough terrain capability.</td>
<td></td>
</tr>
</tbody>
</table>
GEOLOGICAL TRAVERSE VEHICLE

<table>
<thead>
<tr>
<th>Sub-element</th>
<th>Requirements</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment Control</td>
<td>Shirtsleeve working environ.; dust control from EVA's</td>
<td></td>
</tr>
<tr>
<td>Computational Facility</td>
<td>Data collection, instrument control, monitoring vehicle subsystems</td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td>Voice back to control base (Relay satellite). Warning for imminent solar flare event.</td>
<td></td>
</tr>
<tr>
<td>Mass, Volume</td>
<td>Less than space station module.</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>Portable, rechargeable.</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>Require emergency procedure in case of solar flare. Probably consists of excavation under vehicle.</td>
<td></td>
</tr>
</tbody>
</table>
ELEMENT - BIOLOGICAL LABORATORY

A. Assumptions

1. Lunar science module(s) derived from space station science module(s)

2. Experiments are life-science oriented (bio-medical, space biology, cells, exobiology experiments)

B. Systems Analysis [Functions]

<table>
<thead>
<tr>
<th>Egress/ Exit</th>
<th>Life Support</th>
<th>Supply Storage</th>
<th>Communication</th>
<th>Computers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialized Eqpt.</td>
<td>Environ. Control</td>
<td>Clean Room</td>
<td>Control Temperature of Rooms</td>
<td></td>
</tr>
</tbody>
</table>

C. Inputs

1. People
2. Lunar materials
3. O₂
4. Water
5. Power
6. Bytes
7. Biological specimens
8. Chemicals
9. Stores, supplies

D. Outputs

1. Bytes
2. People
3. Wastes
 - solids [chemicals—toxic, non-toxic, lunar materials, specimens]
 - liquids [urine, solvents, toxic and non-toxic solutions]
 - gases
4. Records
5. Heat
6. Materials for terrestrial analysis
ELEMENT LABORATORY (BIOLOGICAL)

<table>
<thead>
<tr>
<th>SUB-ELEMENT</th>
<th>REQUIREMENTS</th>
<th>ATTRIBUTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrance/exit</td>
<td>Allow passage of persons, sample specimens, stores, etc. Direct EVA? (soil a problem)</td>
<td>EVA; non-leakage, dust removal</td>
</tr>
<tr>
<td>Life support</td>
<td>Connected to base system or separate? For 4 persons; separate for animals, plants? Life-boat concept requires separate system.</td>
<td>4 KW (see habit. element)</td>
</tr>
<tr>
<td>Mass Storage</td>
<td>Store toxic & non-toxic chemicals, solvents, gases, etc.</td>
<td>15% of volume</td>
</tr>
<tr>
<td>Module</td>
<td>Space-station module</td>
<td>20M³, safety provisions for fires, explosions.</td>
</tr>
<tr>
<td>Equipment</td>
<td>Carry out experiments for cells, space biology, biomedical, exobiology in safety</td>
<td>60% of volume = 80M³ Protection from fires, spills, explosives etc. 10-20 kw</td>
</tr>
<tr>
<td>Environ. Control</td>
<td>Maintain shirt-sleeve environment (space-station)</td>
<td>1 kw</td>
</tr>
<tr>
<td>Computer</td>
<td>Data collection, manipulations, storage, experiment control</td>
<td>Sensors, bulk storage devices</td>
</tr>
<tr>
<td>Communication</td>
<td>Receive and transmit information outside of laboratory</td>
<td>Appropriate rate</td>
</tr>
<tr>
<td>Clea Room</td>
<td>Maintain biological barrier & dust-free area</td>
<td>Air-flow, filters; UV lamp</td>
</tr>
<tr>
<td>Temperature Controlled Rooms</td>
<td>For incubation and growth studies for microbes, plants, animals, cells, etc.</td>
<td>Temp, humidity, gas concentration, air flow filters, illumination</td>
</tr>
</tbody>
</table>
ELEMENT = FARM

<table>
<thead>
<tr>
<th>SUB-ELEMENT</th>
<th>REQUIREMENTS</th>
<th>ATTRIBUTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure chamber</td>
<td>Contain all sub-elements required for food production</td>
<td>Area = 25M²/person</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volume = 25M² x 1.5M = 37.5M³/person</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Additional volume 10M³/person</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total volume = 47.5M³/person</td>
</tr>
<tr>
<td>Water</td>
<td>Water for plant growth for 1 person</td>
<td>2000 kg/person</td>
</tr>
<tr>
<td>Water storage</td>
<td>Store water for plant growth</td>
<td>1 tank = 73.5 kg tank capacity, 22.9 kg/tank dry weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27 tanks/person</td>
</tr>
<tr>
<td>Plant support structure</td>
<td>Support plant mass & nutrients</td>
<td>7.2 kg/M²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180 kg/person</td>
</tr>
<tr>
<td>Light & support structure</td>
<td>Artificial illumination for plant growth</td>
<td>34 kg/M²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>850 kg/person</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400 W/M², 10 KW/person</td>
</tr>
<tr>
<td>Control console and gas</td>
<td>Monitor & control Plant environmental parameters</td>
<td>16 kg (fixed wt)</td>
</tr>
<tr>
<td>analysis</td>
<td></td>
<td>250 W</td>
</tr>
<tr>
<td>Humidification/Dehumidification equipment</td>
<td>Maintain optimal relative humidity (= 75%)</td>
<td>68 kg/person</td>
</tr>
<tr>
<td>Thermal control</td>
<td>Maintain temperature during growth period, ventilation, heat transport and rejection</td>
<td>1.5 KW/person</td>
</tr>
</tbody>
</table>

N-9
<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food processing equipment</td>
<td>Produce edible food from plant harvest</td>
<td>134 kg/person</td>
</tr>
<tr>
<td>Food waste</td>
<td>Waste produced in growing food plants</td>
<td>17.4 kg/person/day</td>
</tr>
<tr>
<td>Waste processing equipment</td>
<td>Process food, human, trash wastes</td>
<td>60 kg/person</td>
</tr>
</tbody>
</table>
APPENDIX O

PARTICIPANTS ROSTER

FOR

NASA/LSPI WORKSHOP ON LUNAR BASE METHODOLOGY DEVELOPMENT
August 26-30, 1985
La Jolla, California

APEL, Uwe
Institut fur Luft- und Raumfahrt
TU-Berlin Sekr. SG 72
Salzufer 17-19
D-1000 Berlin 10
GERMANY
Secretary: Eva Buttner
Germany 030 314 2590

AUSTIN, Robert E. (Gene)
Chief, Space Transportation Group
Mail Code PS03
Marshall Space Flight Center
Huntsville, Alabama 35812
Secretary: Judi Hollingsworth
(205) 453-0162

AVERNER, Mel
Mail Code EBR
NASA Headquarters
Washington, D.C. 20546
Secretary:
(202) 453-1551

CHARNES, Abraham
Director, Center for Cybernetic Studies
The University of Texas at Austin
CBA 5.202
Austin, Texas 78712
Secretary: Karyn
(512) 471-1821

COOPER, William W.
Professor of Management, Finance
and Accounting
The University of Texas at Austin
CBA 4.202, Department of Management
Austin, Texas 78712-1170
Secretary: Paralee Lukens
(512) 471-1822
CUTLER, Andrew H.
Mail Code A-021
University of California, San Diego
La Jolla, California 92093
(619) 452-6044

DAVIS, Hubert P.
315 Lakeshore Drive
Seabrook, Texas 77586
(713) 332-0770

DUKE, Michael B.
Chief, Solar System Exploration Division
NASA/Johnson Space Center
Mail Code SN
NASA Road 1
Houston, Texas 77058
Secretary: Rose
(713) 483-4464

EILENBERG, Stanton E.
Senior Systems Engineer
Loral Electro-optical Systems
300 N. Halstead
Pasadena, CA 91109
Secretary: Roz Poitevin
(818) 351-5555, extension 1069

FAIRCHILD, Kyle
Aerospace Engineer
NASA/Johnson Space Center
Mail Code ED2
Houston, Texas 77058
Secretary: Donna Greer
(713) 483-2055

FAYMON, Karl A.
Technical Assistant - Power Technology Division
NASA/Lewis Research Center
23500 Brookpark Road
Cleveland, Ohio 44135
Secretary: Kathy Naugle
(216) 433-4000, extension 5241

GORSKI, Raymond J.
Vice President, Earth Space Operations
6515 High Knoll Road
San Diego, CA 92111
(619) 576-3166

HUGHES, Mari
6302 Rancho Mission Road, #116
San Diego, CA 92108
(619) 284-3760

0-2
KNUDSEN, Chris
Vice President, Carbotek, Inc.
2916 West T. C. Jester
Houston, Texas 77018
(713) 688-7840

KOZMETSKY, George
President, Large Scale Programs Institute
2815 San Gabriel
Austin, Texas 78705-3594
Secretary: Ophelia Mallari
(512) 478-4081

LASDON, Leon
David Bruton, Jr. Professor of Business
Department of General Business
The University of Texas at Austin
Austin, Texas 78712
Secretary: Kim Burke
(512) 471-9433

LEITNER, Jeffrey M.
Aerospace Engineer
NASA/Johnson Space Center
Mail Code ED22
Houston, Texas 77058
Secretary: Donna Greer
(713) 483-4226

MATTHEWS, Dennis
Future Projects Manager
Mail Code PT-FPO
NASA Kennedy Space Center
Kennedy Space Center, Florida 32899
(305) 867-2780

MENDELL, Wendell
NASA/Johnson Space Center
Mail Code SN
Houston, Texas 77058
Secretary:
(713) 483-2956

NOZETTE, Stewart
Vice President, Large Scale
Programs Institute
2815 San Gabriel
Austin, Texas 78705-3594
(512) 478-4081
PEETE, Herbert
Mechanical Engineer
NASA Kennedy Space Center
Mail Code DB-MED-41
Kennedy Space Center, FL 32899
(305) 867-3206

ROBERTS, Barney B.
Missions Manager
NASA/Johnson Space Center
Mail Code ED13
Houston, Texas 77058
Secretary: Lori Beauregard
(713) 483-2258

SIEBENTHAL, Charles D.
Chief Process Engineer for Research and Engineering
Bechtel Group, Inc.
P. O. Box 3965
San Francisco, CA 94119
Secretary: Sherry Valencia
(415) 768-5724

SIMON, Michael C.
President, Earth Space Operations
6515 High Knoll Road
San Diego, CA 92111
(619) 576-3177