N87-20313

SOPHISTICATED SOFTWARE SYSTEMS FOR
SMALL SELF-CONTAINED SPACE SHUTTLE PAYLOAD G285

Robert Burkhardt
Getaway Special Project G-£85
Unsversity of Colorado, Boulder

ABSTRACT

The increasing development of small microprocessor systems has allowed the use of more
advanced software in the area of control systems. This paper discusses the development of software
for small Space Shuttle Getaway Special Project payloads using payload G285 as a case example.
The development process behind a space related software package (as in any software package) is
a major factor. The design process for G285 is discussed in some detail along with the general
scheme behind data acquition and thermal environmental control for a space related payload.
Additionally, key concepts in a software system concern the implementation of redundant systems,
error detection, and error response. All of these factors are discussed within this paper.

INTRODUCTION

The University of Colorado’s Getaway Special Program began in the Spring of 1984 when a
group of students began to solicit the University community for experiment ideas applicable for
investigation aboard NASA’s space shuttle orbiters. Three experiments were selected for their
feesability, applicability to current space operation work, and for their contribution to scientific
advancement within the University.

BRCEome PAEE RANK MOT FILMED
PRECEDING PAGE BLANK NOT FILMED 71

The first experiment, a biological experiment, will study the theory of geotropism as it applies
to a small fungus called phycomyces. Growth of this organism will be initiated several days prior
to launch via a small preprogrammed clock. The fungus will be photographed prior to launch and
during launch using a small camera. The second experiment deals with studies of the separation
of gases and liquids in a zero-gravity environment. This experiment, utilizing a small centrifuge to
separate the gasses and liquids, will be started within 24 hours after achieving orbit. The activity
within the centrifuge will be recorded using a camera. The third experiment will examine the
phenomenon of shuttle glow around the orbiter’s tail section using an ultraviolet spectrometer.
The spectrometer will be able to view the tail via an intricate mirror assembly constructed at the
top of the payload. A Motorized Door Assembly (MDA) allows view outside the cannister. A
fourth experiment was later added. This will use eight thermal sensors positioned throughout the
cannister to examine the temperature fluctuations within an open GAS cannister.

MISSION SEQUENCE

Controlling all of the sybsystems with the exception of the phycomyces experiment (this
is a completely isolated experiment) is a small National Semiconductor (NSC) MA2000 series
microprocessor component system utilizing a Z80 instruction set as a base for all software. All data
will be stored in bubble memory totaling 0.5 Megabytes for retrieval post-flight (see Figure 1 for
data allocation of various experiments). A general timing sequence is needed for payload operation
and this is provided by an MM58174A Microprocessor-compatible real-time clock external to the
microprocessor.

Within 24 hours of achieving orbit, the astronauts will flip one of the three GCD switches which
will activate the G285 payload. This will initiate internal power thus causing the microprocessor
to bootstrap. A resistive heater will also be turned on near the microprocessor to help alleviate
possible microprocessor problems due to cold temperatures. The power to the bubble memory will
be turned on and a header written to the top section of memory to indicate a successful initiation
of microprocessor control. All thermal sensors (eight) will be checked and data stored in the header
section of the bubble memory for post-flight data analysis as to the initial characteristics of the
cannister.

Once initialization has completed, the microprocessor will initiate power to the fluids experi-
ment and a small camera. The microprocessor will be in complete control of the camera, sending
a pulse to the device to take each picture. Approximately 300 pictures will be taken over the
period of the next two hours at varying but predefined intervals. For each picture taken, three
bytes of data will be stored that contain a time tag consisting of hours (0-??), minutes (0-59), and
seconds (0-59) since payload activation by the astronauts. The clock will be read for each time
tag and compared with the initial time of power up (stored within a main program variable and
also within the header of the bubble memory). These 300 time tags stored over a period of two
hours will actually be much greater then needed by fluids experiment specifications but will enable
microprocessor personnel evaluate the computer’s response to the severe environment and will also
provide the best time correlation for data analysis. Temperature data will also be stored at a rate
of eight samples (one sample per sensor) each minute.

CATEGORY FRAMES ZTOTAL
FLUIDS EXPERIMENT 0.36%

CAMERA TIME TAGS 0.17%

THERMAL DATA 0.18%

BLOCK HEADER
TIME TAGS 0 0.00%
STATUS FLAGS 20 0.004%

SYNC WORDS 10 0.002%

UNUSED 10 0.002%

INTER-EXPERIMENT
GAP S7 0.01%

SPECTROMETER EXP. 522310 99.62%®
SYNC WORDS 2749 0.52%
STATUS FLAGS 5498 1.05%®

TIME TAGS 8247 : 1.57%
THERMAL DATA 10996 2.10%

EXPERIMENT DATA 494820 94.38%

BUBBLE MEM. HEADER 21 0.004%

TIME TAG 10 0.002%

SYNC 1 <0.001%
STATUS FLAGS 2 <0.001%

THERMAL DATA 8 0.002%

TOTAL 524288 100.00%

Figure 1. Data allocation for project G285

73

At the conclusion of the two hours, the fluids experiment will be powered off and a sequence
of bytes (i.e. 255 values) will be written to the bubble memory to indicate a gap in data prior
to initiation of the next experiment. Following this, the spectrometer will be powered up and a
pressure sensor will be checked to verify a safe pressure level. (The inside of the cannister will
be pressurized to approximately 1 atm of argon. This is to avoid problems with corona discharge
caused by high voltage in vacuum or near vacuum environments. The entire spectrometer will be
within this sealed container with a field of view out through a small quartz window. In the event
that the pressure drops to approximately 10 torr, corona discharge will take place. To avoid this
problem, the microprocessor will automatically shut off high voltage power at approximately 50
torr.) Upon initiation of power to the high voltage power supply, the microprocessor will initiate
an ultraviolet region wavelength scan with the MDA closed (used for calibration purposes).

Data in the form of data numbers (0 to 255) will be read from a Pulse Amplification Detector
(PAD) counter. This counter is a ripple bit counter and as such, the line from the PAD to the
counter must be disabled prior to being read by the microprocessor (see figure 2). Every 1/3
second, the microprocessor will disable the line, read the counter, reset the counter to zero, and
then enable the line between the PAD and counter. A ninth bit of the counter is also checked
on each read. This is an overflow bit that is latched upon a carry out of the eighth and most
significant bit of the counter. In the event of a data overflow, a value of 255 will be written to
memory to help post-flight data analysis.

Spectrometer PAD counter

(Data Acquition Scheme)
Enable/disable switch

——

—

S~ Microprocessor

Interface (ports/chip select)

J, Data Bus
Microprocessor
Address Bus

N

Ripple bit
counter

Counter
> Reset

[~ [=-T-T-T-T~T+]

T

Overflow flag

va
N

RP/Gaes

Figure 2. Data acquition scheme

After each data sample is read, the grating drive of the spectrometer will be stepped. A
total of 180 grating positions will be used (to allow for a scan time of approximately 1 minute).
After each complete grating drive scan, the mirror (constructed outside the quartz window) will

4 be moved one position by activating a worm gear motor controlled by the microprocessor. This

74

will be repeated twelve times to allow for twelve different mirror positions. In this way, a complete
scan across the tail section is achieved. (See figure 3 on pointing angles.) A photodiod is used as a
Bright Object Sensor (BOS). This incorporates a field of view greater than that of the spectrometer
to detect of the emergence of any bright object into the field of view (i-e. Sun, Moon, Earth, etc.).
In the event of a triggering of the BOS, the power to the high voltage power supply is disabled
and an interrupt is sent to the microprocessor.

Thermal data is also collected during the spectrometer portion of the mission at a rate of four
samples a minute. This will result in a complete thermal data resolution of at least two minutes
per sensor.

CABIN ¢ > TRIL
. ———— — Spectrometer
thirror o ~.. View of
tail section
— "'/
S
~N
- __"\\\ Non-pressurized
ge..,-{ > » section of
Quartz ___—— -] . — container
Window

Spectrometer __—— \ Pressurized
Section of
Conteiner
NOT DRAWN Payload mounted on
TO SCALE Starboard side of
\.. B) shuttle payloed bay.
S~ — -"___/

RB/G285

Figure 8. Spectrometer pointing angle

TELEMETRY FORMATTING

All data gathered during the mission, will be formatted into 190 byte blocks (see figure 4 on
data block format). This number was chosen to allow for an approximate one minute resolution
of data frame during the spectrometer portion of the mission. Each data frame consists of a one
byte sync code, three bytes of time tag, two bytes of status flags, four bytes of temperature data,
and 180 bytes of instrument data. This allows for a 94.7 percent raw data content which meets all
mission requirements. During the fluids portion of the experiment, this 180 bytes consists of time
tags (3 bytes) and temperature data to give a resolution of approximately 12 minutes per frame.
During the spectrometer portion, the data frames are collected in groups of 12 (corresponding
with the 12 mirror positions) to form a major frame (or block) consisting of 2160 bytes of raw data
for each 2280 bytes of data stored. All data is buffered in RAM in 190 byte segments and then
downloaded to bubble memory.

75

ORIGINAL PAGE IS
OF POOR QUALITY

Early in the mission, a variable length data format scheme was considered. This incorporates
a block counter indicating the amount of data stored in each frame. This number is then inserted
into the block to aid in post-flight data formatting. The variable length format, however, has
specific drawbacks. Post-flight data formatting will rely on the fact that the block counter is
correct (i.e. not getting corrupted) and in a particular position of the block. To add safety checks,
one would need to add long sync words (longer than is needed in a fixed length version) to the
telemetry frame, thus diminishing the amount of data storage available to science data. For this
reason, the variable length data format philosophy was discarded and a fixed length format was
selected for its structure and time oriented basis (the frame structure). The 0.5 Megabyte memory
will allow for a total of 2759 frames with a total of 78 bytes left over. These 78 bytes are used up
in the initialization header and the inter-experiment gap written to the bubble memory between
the fluids experiment and the spectrometer experiment.

The fixed length format also helps in developing plans for post-flight data formatting. Upon
conclusion of the mission, all data will be downloaded to an HP64000 computer system and from
there downloaded to a VAX 11/780 computer. Here all data formatting will be done and data
inserted into the appropriate data bases. Utilizing the fixed length format, the 190 bytes can be
masked and all data stripped out quite easily. In addition, an added sync detect can be put into
the system by triggering sync not only on the fixed one byte sync word but on the unused bits of
the minutes and seconds fields of the time tags (2 most significant bits). This increases the ability
to perform redundant error checking post-flight.

REDUNDANCY OF SYSTEMS

Early in the planning for G285, the subject of redundant microprocessors was discussed. The
dual microprocessor system was later discarded since the development of such a system created
more problems than would be solved by this method (i.e. handshaking, who is slave and who
is master”, etc.). Redundant microprocessors would however be of great use in larger systems in

which failure of the payload could have disasterous effects. In the case of G285, the payload just
did not fall into this category.

Kours alapsed sinee Minutes of
paylead activation /M- (1 byte)
{1 byte) P ya
Z - A
Syne datect Z
(1 dyea) P —
\ = R = ||} Seconds of
SYNC WOURS | HINUTES | SICONDS 44117 minute elapsed

CORBCCERESEIER, W tim (1 byte)

Bny

/ TiRc 1 | ILAG 2 \ -‘N\!\wnnun dava -

temperature .‘"N sensors 4 & 8
dats - "\N subcommituted
Sansers 16§ MY (1 byre)
subcommtated "

1b
(1 byred Tenparsture
Lv’ date - sensers

' 3 & 7 subcommutated
| Ve (1 byte)
Telemactry !L

bit flegs \
(1 byze avch)

Tempersture date
sensers 2 & 4
subcemmsteted

(1 byte)

Spectrometer
Data
(180 bytes)

Figure 4. G285 Data block format

76

ORIGINAL PAGE IS
OF POOR QUALITY

Some redundancy, however, was built into the software and hardware for project G285. In the
case of the BOS, a hardware interrupt will disable power to the high voltage power supply. A BOS
trigger will also cause the microprocessor to enter an interrupt service routine setting a software
flag to true (BOS trigger has been activated). Thus the microprocessor vote will be in favor of
turning off the power to the high voltage power supply. It takes only one vote to shut off the high
voltage power supply but requires two votes to turn it back on. This is to protect against failure in
the system causing the high voltage to be on during sunlight (This could cause a burn-out in the
PMT tube.) A similar scheme is used with the pressure sensor to protect against corona discharge.

A SOFTWARE DESIGN PROCESS

1. EXPERIMENT SELECTION

6. INITIAL BREAXDDWN OF MODULES NEEDED
All experiments sre selected end defined

(tncludes herdware needs)

Herdwere and softwere sbilities are both teker 1rs
2. DATA REQUIREMENTS SUBMITTED considerstion The entire softwere packege outlinez
Experiment principle investigetors submit in step S is broken down into smell modules
requests for dete storage allocetion
7. BEGIN CODING DF VARIOUS MODULES
3. DATA STORAGE ALLOCATION (dividing responsibilities among verious team
Dete storsge menager ellocates dete storsge members)
8s per experiment needs ang aveiiebility

This section includes o'l documention of code, mciue
testing, eng dotumentetion in terms of configuretisn
reports If the above & steps were performed

well, this should proceed rather smoothly

B. INTEGRATION OF PAYLOAD SOFTWARE

4. EXPERIMENTS DEFINITION COMPLETE
Principle investigators complete list of
experimen! requirements snd definitions and
construction of payloss begins

S. PRELIMINARY DIAGRAMMING OF SOFTWARE NEEDS S":h"““::: 'h’“f::'“ “{‘“"t%)
(includes dete acquition and commanding u should be spent on this eree
methods) 9. FINAL INTEGRATION AND SOFTWARE RELEASE
This mey eppesr in the form of flow charts, technice!

reports, disgrems, graphs, etc

Figure 5. GAS Software Development scheme

Redundancy is also built into the thermal environmental control system. This consists of three
resister heaters placed at strategic locations throughout the cannister. A temperature sensor is
placed next to the heater to provide data to the microprocessor for imputing into the telemetry
frame for post-flight data analysis. A second temperature sensor is set next to the first to control
the heater. This simple circuit operates under the simple philosophy of "colder temperature yields

higher heat output”. In the event of a heater runaway, the microprocessor will disable the power
line to the heater.

DEVELOPMENT OF A SOFTWARE SYSTEM

As in any software system developed for flight or ground use, the development process is a
vital process. All hardware requirements need to be defined completely (or close to completely)
before software work begins. This delaying action actually saves time in that it keeps a group
from proceeding down many wrong roads. A simple diagram of a development process for a small
shuttle payload is given in figure 5. The project starts out with documentation and diagrams

77

depicting exactly what is required of the software. This must then be examined within the whole
context of the payload. How does a particular piece of software relate to the entire payload? This
question must be answered at every step in the development process.

The development environment in which the programmer or engineer works must be kept
organized. A software configuration process (complete with paperwork filled out on each routine

completed or changed) is a definite MUST especially in systems in which many people are doing
the coding.

ALL SOFTWARE CHANGES MUST BE DOCUMENTED
BOTH INTERNALLY TO THE CODE AND EXTERNALLY
IN CONFIGURATION REPORTS

Work should NEVER be performed directly on a released routine (i.e. in the event that some
change is being made to a previously released routine). A separate copy should be made and
extensively tested before being submitted for release. Backup tape copies and paper copies should
be made as needed or as specified by the software manager. In all, a sense of organization is
necessary. Disorganization will lead to mistakes and bugs.

The choice of a language is always a question that is discussed extensively in developing
any software system. For project G285, the language being used exclusively is Z80 assembly.
The software is developed on a VAX 11/780 using a Z80 assembler made for interface with an
HP64000 computer. The software is downloaded to the HP64000 using normal computer network
lines and then downloaded from the HP64000 to the flight microprocessor through RS-232 standard
interfaces. Many computers (the HP64000 included) have cross-compilers that enable programmers
to program in languages such as C or pascal and then convert the source code to Z80 (or some
other instruction set). For project G285, it was felt that writing the code in Z80 directly would
allow the programmer more ease and flexibility to do exactly what was required.

CONCLUSION

The increasing development of software systems for small microprocessors is causing an ever
increasing complexity of jobs being delegated to small control systems. Computer scientists and
engineers are developing the skill of putting into software what had been put into hardware only
ten years ago (the programmer free to utilize many aspects and features of the software involved).
In this way, more complex systems can be developed for both space and ground related software
systems. The Getaway Special Project, with its great diversity, becomes a magnificant test bed for
the programmer to develop sophisticated software. However, as in any project, the programmer

must be driven by the ultimate goal - to develop a sophisticated software system and at the same
time, achieve maximum simplicity.

78

