MCR-86-675 VERSION 1

PROGRAM MAINTENANCE MANUAL
FOR
NICKEL CADMIUM BATTERY EXPERT SYSTEM

NASB8-35822

DEVELOPED. FOR
NASA/MARSHALL SPACE FLIGHT CENTER

HUNTSVILLE, ALABAMA

PREPARED BY
MARTIN MARIETTA CORPORATION
AEROSPACE DIVISION

DENVER, COLORADO

OCTOBER 1986

_ . < MAIXTENANCE
FCE NICKEL CALNIUN EATTERY EXEEKT SYSTEM, - N87-20472

VERSICN 1 (Martin Marietta dercspace) 132 p
: CSCL 10C Unclas
G3/33 45235

SECTION 1.

SECTION 2.

SECTION 3.

SECTION 4.

[]
TABLE OF CONTENTS

GENERAL. ¢ it it ittt it ittt et e nsanenenseeesensanaenss 1
1.l PUPPOSE. s it it it it it ettt ettt e e 1
1.2 Project Reference.cuuuuieemeenneeennenas 1
1.3 Terms and Abbreviations.............cciveiune.e.. 1
SYSTEM DESCRIPTION. ...ttt tioeeeeesaenosenanesonenas 2
2.1 System Application............ S, 2
2.2 SecUrity.. ... it ittt aseconeseeeenoneanneeas 2
2.3 NICBES General Description. .. .veeeveeresneeeas. 2
2.4 NICBES Program Description......c.euveeeueennnn.. 2
2.4.1 Data_Handler Description...........ec.... 2
2.4.1.1 datacl.bat..........., 2
2.84.1.2 hst.h. ittt enoeoonennns 4

2.4.1.3 data_hdl.c....uvviviirnnnannn 5
2.4.1.4 read_dat.c........c.iiiiiinnnn.]

2.4.1.5 PpProcess.C.....cceeveicnnacianns 15

2.4.1.6 writ_fil.c.....ivviiiinnuinnnn. 2

2.4.1.7 Interrupt Handler............. 25
2.4.2 Expert System Descrition............... 2B
2.4.2.1 start.prg.....ceciiiiiineninas 27
2.4.2.2 faultd.prg.....ceieverveennn.. 29
2.4.2.3 advice.pPrg......cueiiieeccacena. 30

2.4.2.4 showpak.pPrg.....uoeiveveeoeanens 30

2.4.2.5 grafpaKk.prg...ceeeeeieeneneeenn 31

2.4.2.6 utility.prg....eeeieeiinneenns 31
2.4.2.7 prolog.ini...... i, 32

ENVIRONMENT . . . ittt it ittt e naesosseneensoeenennnsoens 33
3.1 Equipment Enviromment..........cetitiiueinneneenn 33
3.2 SuppOort SoftWaIre. ... it eeetoeteeeostennoenennes 33
3.3 Data Base......ies ettt ecisterneenoeoneoneeees 33
3.3.1 General Characteristics................ 33
3.3.2 Organization and Detailed Description..33
PROGRAM MAINTENANCE PROCEDURES. ... v vttt vt tnetnnnns 36
4.1 ConventionsS....ieesveteeeetoneeenseronsoenneens 36
4.2 Verification Procedures.........cooveeeeeeneses 36
4.3 Error Conditions......ui it ineeeesenosnnennnas 36
4.4 Special Maintenance Procedures...........v.0.. 36
4.5 Special Maintenance Programs..........co0c000.. 37
4.6 Listingsccivvernnnnn cees e s enaasea 3T

TABLE OF CONTENTS CONTINUED

APPENDIX A - Data_Handler Code Listings
APPENDIX B - Expert System Code and Documentation Listings

APPENDIX C - Test Procedures

ILLUSTRATIONS
FIGURE 1 - DATA-HANDLER FLOW DIAGRAM..........iuennn 3
- FIGURE -2 - EXPERT SYSTEM FLOW DIAGRAM............. 000 28

ii

SECTION 1. GENERAL

1.1 Purpose of the Program Maintenance Manual.

The objective for writing this Program Maintenance Manual for project
Nickel-Cadmium Battery Expert System {NICBES), Contract Number
NASB8-35822, 1is to provide the maintenance programmer personnel with the
information necessary to effectively maintain or enhance the system.

1.2 Project References.

NICBES 1is an Expert System for fault diagnosis and advice of the
Nickel-Cadmium Batteries found in the Hubble Space Telescope (HST:
Electrical Power System (EPS) Testbed 1located at Marshall Space Flight

Center (MSFC). NICBES resides on a dedicated IBM-PC AT and operates 1in
two modes. The first mode is the Data-Handler which is written in
MICROSOFT C. The second mode is the Expert System which is written 1in

ARITY PROLOG, a logical programming language. The following documents and
manuals serve as reference materials for NICBES: :
NICBES User’s Manual - September 1986
IBM-PC AT Manuals
ARITY PROLOG Manuals - Version 4.1
MICROSOFT C Manuals

1.3 Terms and Abbreviations.

AHI - ampere hours in

AHO - ampere hours out

bpre - battery protection and reconditioning circuits
cCcC - charge current controllers

DOD - depth of discharge

EOC - end of charge

EOD - end of discharge

EOF - end of file

EPS -~ electrical power system

HST ~ Hubble Space Telescope

MMDA - Martin Marietta Denver Aerospace
MSFC - Marshall Space Flight Center

NICBES - Nickel-Cadmium Battery Expert System
SOW - Statement of Work

SPA - solar panel array

SECTION 2. SYSTEM DESCRIPTION

2.1 Svstem Application.

NICBES was developed as an assistant for engineers working on the HST EPS
Testbed to aid in decision making with regard to the Nickel-Cadmium
Batteries. NICBES analysis depends on the particular testbed

configuration at MSFC, see Figure 1, and the particular Battery
manufacturer.

2.2 Security.
There are no security requirements.

2.3 General Description.

NICBES, as programmed for the IBM-PC AT, a single tasking computer,
requires two independent processes. The first is the Data-Handler which
processes 1incoming telemetry every one minute. Input to the Data-Hundler
comes from the DEC LSI-11 over a RS232 to the IBM-PC AT. Each telemetry
burst contains 370 1integer and floating point values preceeded by the
character ’A’. There are 96 minutes in one orbit. An orbit is composed
of a discharge and charge phase. An orbit starts at the beginning of the
discharge phase and ends at the completion of the charge phase. Once
this process 1is completed (for 12 orbits total), the Expert System of

NICBES <can be run. Input to the Expert System consists of processed data
files output by the Data-Handler. Output from the Expert System includes
fault diagnosis, battery status and advice, plus decision support. Anv

Expert System screen displays can be routed to the STAR-SD-15 Printer for
hardcopy.

2.4 Program Description.
Program Descriptions for NICBES will be given in two sets. First the
Data—~-Handler will be described and then the Expert System.

2.4.1 Data-Handler.

The Data-Handler, writtem in MICROSOFT C, is installed on the IBM-PC AT
according to the procedures listed in the MICROSOFT C Manual. All the
following programs can be found under C:\USR . This is also where they
should be executed. The data output files are also written to this
directory. See Figure 1 for Data-Handler Flow Diagram.

2.4.1.1 datacl.bat

datacl.bat creates the executable for the Data-Handler. It compiles
data___hdl.c, the main control routine, and then links all the other object
files needed. The result is data__hdl.exe which 1invokes the
Data-Handler. The user simply types ’'data_hdl’ from the DOS prompt to
execute the Data-Handler. If changes are made to any of the ’C’
programs, they must be recompiled (’msc filename.c;’) and then relinked
{’datacl’) to <create a new executable. 'printf’ statements used in
development have been left in the programs but commented out. These
statements are can be reinstated for debugging purposes. ’

2

DATA-HANDLER FLOW DIAGRAM

L.f’ BEGIN
. main(}
*-._T_..,/

: /~signalll ™y
INITIALIZE Se"'.’”.“(.g

(_read—initO | y(*read_data())

p et1(} -
READ DATA \ { proc_sync()) 9 COMMUNICATION
t*read_data()‘) proc_head{} ERROR CHECK

proc_bat() | elread_buffern)
proc_solar(} }
g
COMMUNICATION
ERROR CHECK ' 7
. " inempTt) | COUNT ORBITS | !
- -PROCESS DATA
- ~ FOR EOC AND |
FAULT CHECK EVERY M!N |
\ check_fault(}J . y,
' -
T < —
-PROCESS DATA
@i@jggw ALJ > FOR EOD AND
EVERY MIN
| _PROCESS DATA |
FOR EVERY MIN H!N
" IF ERROR, FAULT P -
OR USER SIGNAL FINISH h,' sarrsti) Y
FINISH, ELSE L finish() /] P write_filel) |
_CONTINUE) S— ~ -
‘ " FIGURE 1

3%

ﬁ b_char()
/ time()
— get2() }

“PROCESS DATA
. 1 WRITE FILES
! RE-INITIALIZE

'\ pracess(}

:)

/"~ Yo = \ ¢ write_ f103 ‘\
process_datal) - 3 cases [write_ 710 3
i

!

FFwrite_f1180) - 3 cases |—»{ wf() - 17 cases write_f2(]
df-init1() - 3 cases write_f3{)
N

w -~ ~, S
hidtohid())

!

(move_buffers() j—{ movel) }

2%

2.4.1.2 hst.h

hst.h contains all the header items for the Data—Handler. It starts with
define statements for errors, phases and data files. It also lists the
needed system include files. Last are the structure and matrix
definitions for global arrays.

Define Statements:

SUCCESS 1

FAIL 0]

EOC 2

EOD 3

EVMIN 1

DEFLT -9999.0

SHOWF(N)DAT N where N =1 to 13
CURF(N)DAT N where N = 14 to 16
FAULTDAT 17

Include files:
stdio.h, stdlib.h, process.h and errmo.h

. Global Structure for storing telemetfy run, hid{0] = last run,

hid{1l] = current run.
hid{i].yvear Int i =0 tol
hid{i].day Int col 0 = last telemetry run
hid{i].hour Int col 1 = current telemetry run
hid{i]).min Int :
hidl[i].sec Int
hid[i].orbit Int
hid{i].phase Int 0 if discharge, 1 if charge
hid{i].day_min Int minute in charge phase
hid{i].night_min Int minute in discharge phase
hid[i].batd{j].battno Int j =0 to 5, for 6 batteries
hid[i].batd[j].cellv[k] Real k = 0 to 22, for 23 cells
hid[i].batd[j].cellp(k] Real per battery
hid[i].batd[j].batv Real p => pressure, v => volts,
hid[i].batd{j].batc Real ¢ => current
hid{i].batd(j].bprcc Real batt reconditioning current
hid[i].batd[j}.batemp[k] Real 6 temp sensors per battery
hid[{i].batd[j].batrecond Int int flag for reconditioning
hid[i].spacl[k] Real k = 0 to 12, for 13 SPAs
hid[i].bd{k].busv Real k = 0 to 2, for 3 busses

hid[i].bd[k].busc

The global matrices and arrays which support the data files are
. documented in Appendix A of the code listing for hst.h

4

2.4.1.3 data hdl.c

data__hdl.c is the main driver for the Data-Handler. Following is a
description of all the ’C’ routines in this program (main{}, init::!,
read_init(}!, finish(), sig_catch(), process{() and incomplete() ;.

Identification: main

Function: main is the Data-Handler driver. It controls the program
flow and determines the times for events to happen.

Input: No Input, although argc and argv make it possible to easily
add inputs.

Processing: Keeps track of Orbit and Phase. Controls program flow by
its routine calling sequence.

Output: Error Message written to screen if more than CILIMIT consecutive
incomplete telemetry runs.
Error Message if fault is detected.
Message written to screen at the completion of each orbit.

Local Variables:
orbitno - Counter for number of orbits
err - recieves return from read_data()
phase_signal - EOC, EOD or EVMIN
phasel - phase of previous telemetry run
phase2 - phase of current telemetry run

Global Variables:
EOC, EOD, EVMIN
FAULTDAT
fault|]
FAIL
hid{]

Interfaces: Calls init(), process(), finish{(), sig_catch(), incomplete()
read_dat.c - read_data()
writ_fil.c - wf().

process.c - check_fault()
Error Handling: 1If read_data encounterd an EOF while reading the
telemetry stream, FAIL is returned. If there are

CILIMIT consecutive incomplete rumns, Data-Handler
is shutdown after the fault flag is set to 1.

If a fault was detected the fault flag is set to 1
and the Data-Handler is exited.

Identification:. init

Function: Sets the communication port, initializes interrupt handler,
and calls buffer initialization and read telemetry
initialization routines.

Input: No input.

Processing: No processing.

OQutputs: Error message stating that an EOF was found while reading
the telemetry stream and that the system is shutting down.

Local Variables:

err - receives return value from read_init().
port - communication port
Global Variables: None
Interfaces: Called by main.
Calls system signal() and set_port(), read_init(),
interrupt handler - serini() and process.c - df_init{).
Error Handling: If read_init() returns FAIL, system will shutdown.
Identification: read_init
Function: Initializes telemetry reading to first full orbit.

An orbit starts at the beginning of* the discharge phase.
Input: Novinput.

Processing: Reads the telemetry stream until night_min = 1, start of
discharge phase. This signifies the start of an orbit.
process() is then called to process this first set of data.

Output: Prints message to the screen "Starting first full orbit”.
Local Variables: err - receives return value from read_data().

Global Variables:

FAIL, DEFLT, EVMIN
hid[]

Interfaces: Called by init().
Calls process(), incomplete(),
read_dat.c - read_data().

Error Handling: 1If read_data() returns FAIL, control is passed back to
init() also with a FAIL message.
6

Identification: finish
Function: Exits Data Handler.
Input: No input.

Processing: Ends interrupt handler, writes data output files and calls
exit().

Qutput: No output.
Local Variables: None.

Global Variables: EOC, EOD

Interfaces: Called by main(), init(), sig_catch(), incomplete() or
read_dat.c - get2().
Calls writ fil.c - write_file(), system exit()
and interrupt handler - serrst().

Error Handling: None.

Identification: sig_catch

Function: Catches ’"C’ signal input by operator to halt Data-Handler.
Input: User signal inpuf [oA

Processing: No processing.

Output: Writes message to screen, "Interrupt caught; exiting!"

Local Variables: None.
Global Variables: None
Interfaces: Calls finish().

Error Handling: None.

Identification: process
Function: Calls the routines necessary to process the telemetry.

Input: phase_signal - EOC, EOD or EVMIN
orbitno - 0 to N, N is the number of orbits.

Processing: No processing.
Output: No output.
Local Variables: None.

Global Variables: None.

Interfaces: Calls process.c - process_data(), df_initl(),
writ_fil.c - write_file().
Error Handling: None.
Identification: incoﬁplete()
Function: Checks for CILIMIT number of consecutive incomplete telemetry
bursts.

Input: None.

Processing: If there are CILIMIT consecutive incomplete telemetry runs
fault flags are set, fault.dat is written and finish(} is
called.

Output: Error message.

Local Variables: None.

Global Variables:

CILIMIT - Limit for consecutive incomplete telemetry runs
conseq_incmplt - counter for incomplete telemetry bursts
FAULTDAT
fault[]

Interfaces: Called by main() and read_init().
Calls finish() and writ_fil.c - wif().

2.4.1.4 read dat.c i
read__dat.c is the routine which reads the telemetry from the interrupt
handler buffer. Following is a description of all the ’C’ routines in
this file (read__data{), proc__sync(), proc__head(), proc_bat{}, proc
solar(), read_buffer(), getl() and get2()).

Identification: read_data
Function: Read telemetry from DEC LSI-11 over RS232 every 1 minute.

Input: No input, however telemetry from HST EPS Testbed, 370 values
preceded by ’A’, is utilized.

Processing: Calls routines to read telemetry.

Output: Returns FAIL or SUCCESS.
Telemetry is placed in structured arrary hid[1l)] for later
processing. A description of the structure of hid follows:

Local Variables err - return value from proc_head(), proc_bat({(),
proc_solar().

Global Variables:
TILIMIT, TZ2LIMIT
buf[] - intermediate character storage array.
count - keeps count of data values per telemetry burst.
FAIL, SUCCESS

Interfaces: Called by main().
Calls proc_sync(), proc_head(), proc_bat(), proc_solar().

Error Handling: If proc_head(), proc_bat() or proc_solar() return a
FAIL, reading is stopped and control is returned to the
read_data() call in main().

Identification: proc_sync
Function: Synchronize reading data to start of telemetry burst.
Input: No input, but uses telemetry burst, first character is ’A°’.

Processing: Checks input characters until character A" is found.
Also checks for a shutdown signal from the DEC LSI-11.

Qutput: Can write message to screen "Sync Received!'!”
Can write message to screen "Received shutdown signal from
DEC LSI-11'"

Local Variables:
cc -~ character found in the interrupt handler’s buffer.

Global Variables:
fault[]
FAULTDAT

Interfaces: Called by read_data().
Calls data_hdl.c ~ finish{), writ_fil.c - wf(),
getl() and get2().

Error Handling: Error Message if shutdown signal from DEC LSI-11.

Identification: proc_head
Function: Read header data from input buffer.
Input: No input, but uses telemetry stream.

Processing: Read header data from input buffer into buf{]. Use sscanf
to put characters into integer format.

Output: Integer header data put into global structured array hid{1l].
Returns FAIL or SUCCESS.

Local Variables err - return value of read_buffer().

Global Variables:
FAIL, SUCCESS
hid[]
buf{]

Interfaces: Called by read_data().
Calls read_buffer().

Error Handling: If read_buffer() returns a FAIL, proc_head() stops and
returns FAIL to read_data().
10

Identification: proc_bat
Function: Read battery data from input buffer.

Input: No input, but uses telemetry, 57 values for each of the 6
batteries.

Processing: Read battery data from input buffer into buf{l. Use sscanf
to put characters into integer and floating point format.

OQutput: Integer and real battery data put into global structured array
hid{1l]. Returns FAIL or SUCCESS.

Local Variables err - return value from read_buffer().

Global Variables:
FAIL, SUCCESS
hid(]
buf{]

Interfaces: Called by read_data().
Calls read_buffer().

Error Handling: If read_buffer() returns a FAIL, proc_bat(’ stops and
returns FAIL to read_data().

Identification: proc_solar

Function: Read SPA and bus data from input buffer.

Input: No input, but uses telemetry, 13 SPA and 6 bus values.

Processing: Read SPA and bus data from input buffer into buf[]. Use
sscanf to put characters into floating point format.

Output: SPA and bus data put into global structured array hid[1l].
Returns FAIL or SUCCESS.

Local Variables err -~ return value from read_buffer().

Global Variables:
FAIL, SUCCESS
hid[]
buf]

Interfaces: Called by read_data().
Calls read_buffer().

Error Handling: If read_buffer() returns a FAIL, proc_solar() stops and
returns FAIL to read_data().
11

Identification: read_buffer
Function: Puts characters from interrupt handler buffer into bufi!.
Input: k is the actual number of telemetry values to be read.

Processing: Get next character in interrupt handler buffer, this
includes newlines and <CR>s. Characters are put in buf{!.

OQutput: Returns found characters in buf[] to calling routine.
Returns FAIL or SUCCESS.

Local Variables nl_count - counts telemetry values read by counting
newlines.

Global Variables:
count
buf]
EOF
FAIL, SUCCESS

Interfaces: Called by proc_head(), proc_bat(), proc_solar().
Calls getl().

Error Handling: If EOF is encountered while reading the telemetry

stream, read_buffer() is stopped and FAIL is returned
to the calling routine.

12

Identification getl{)

Function: Reads characters from interrupt handler buffer during
telemetry burst.

Input: None.

Processing: Gets characters from interrupt handler buffer. Checks

time and count to insure complete telemetry runs are read.

Output: Returns EOF or character.

Local Variables:

cc - character read from interrrupt handler buffer.
t0 - start time for timer.

tn - current time

timer ~ difference between tn and tO.

Global Variables:
count
EOF
TILIMIT - maximum time to wait for next character

Interfaces: Called by read_buffer() and proc_sync().
Calls interrupt handler b_char().

Error Handling: If a character is not read within a given time 1limit

it is assumed to be an incomplete telemetry burst.
Passes EOF back to read_buffer().

13

[$%]

)

Identification get

Function: HReads characters from interrupt handler buffer at the start
of a telemetry run.

Input: . None.

Processing: Gets characters from interrupt handler buffer. Checks
time to insure the beginning of telemetry is read within
T2LIMIT time limit.

Output: Returns character. Writes Error Message if time limit exceeded.

Local Variables:

cc — character read from interrrupt handler buffer.
t0 - start time for timer.

tn - current time

timer ~ difference between tn and tO.

Global Variables:

EOF

T2LIMIT - maximum time to wait for next character
fault[]

‘FAULTDAT

Interfaces: Called by proc_sync().
Calls interrupt handler b_char().

Error Handling: If a character is not read within a given time limit
it is assumed that a telemetry run is missed.
Sets fault flag to 1, writes fault.dat, writes Error

Message "No communication in 3 minutes; exiting!", and
exits.

14

2.4.1.5 process.c
process.c processes the current telemetry which has been stored in hid_]

by read__ dat.c. Following 1is a description of all the ’C’ routines in
this file (df__init(}, df__initl(), hidtohid(), move_buffers(}, movel;,
process_data(), check_fault()).

Identification: df_init

Function: Start up initialization counters and globally defined

structures, matrices and arrays.
Input: No input, but uses globally defined structures and arrays.
Processing: Sets counters, matrices and arrays to 0 or DEFLT.
Output: No output.
Local Variables: None.

Global Variables:

DEFLT - default value = -9999.0. Signifies missing data.
. no_druns - number of discharge runs in an orbit.
no_cruns - number of charge runs in an orbit.
fault{]
FAULTDAT
DATA FILE CORRESPONDING BUFFER
showfl.dat eod_voltage(6,12)
showf2.dat hc_voltage(6,12)
high_buffer {6}
showf3.dat rc_ratio(6,12)
ahi(6)
ahoo(6)
showfd4.dat cv_eod_hv(6,12)

cv_eod_1lv(6,12)
cv_eod_av(6,12)
showf5.dat cv_hc_hv(6,12)
cv_hc_1lv(6,12)
cv_hec_av(6,12)

- showf6.dat cellv_eod(6,12;
showf7.dat cellv_hc({6,23)
showfB.dat avgt(6,48)
showf9.dat avg_temp(6,12)

avg_temp_buffer(s)
showfl0.dat cp_eod(6,23)
_ cp_eoc(6,23)
showfll. dat time_tc(6,12)
. trickle(6)
showfl2.dat rc_orbit(6)
bc_drc(6,48)
showf1l3.dat aho(6,12)

curf2.dat batt_avg(6)
. 15

i
Interfaces: Called by data_hdl.c - init{().

Error Handling: None.

Identification: df_initl

Function: After each telemetry burst is read, certain counters,
structures and arrays used for processing need to be
re—initialized. There are 3 cases - EOC, EOD or EVMIN,

Input: phase_signal - EOC, EOD or EVMIN. Also uses globally defined
structures, arrays and matrices.

Processing: Sets counters, variables and arrays to 0 or DEFLT (-9999.).

Output: No output.
Local Variables: None.

Global Variables:

DEFLT - default value = -9999.0. Signifies missing data.
no_druns - number of discharge rumns in an orbit.
no_cruns - number of charge runs in an orbit.

EOC, EOD, EVMIN

DATA FILE CORRESPONDING BUFFER
showf2.dat high_buffer(6)
‘ showf3.dat ahoo(6)
ahi(6)
showf6.dat) cellv_eod(6,12)
showf7.dat cellv_hc(6,23)
showf8.dat avgt(6,48)
showf9.dat : avg_tenmp_buffer(6)
showfl0.dat cp_eod(6,23)
cp_eoc(6,23)
curf2.dat batt_avg{6)

Interfaces: Called by data_hdl.c - process.

Error Handling: None.

16

Identification: hidtohid
Function: After each telemetry burst is read and processed, the data
in hid{1l] is put in hid{0] to prepare for next data burst
which will be stored in hid[1].
Input: No input.
Processing: Puts hid[1l] column into hid{0] column.
Output: No ocutput.
Local Variables: None.
Global Variables:
hid[]
DEFLT
Interfaces: Called by df_initl().

Error Handling: None.

17

Identification: move_buffers

Function: Prepares the globally defined matrices for move(}.
The affected matrices are those associated with data files
containing data for 12 orbits. When more than 12 orbits
have been processed, the arrays need to be shifted so that
they contain the only the last 12 orbit’s data.

There are two cases - EOC and EOD.
Input: phase_signal - tells whether charge or discharge phase.
Processing: Prepares matrices and then calls move().

Output: No output.
Local Variables None.

Global Variables:

EOC, EOD

DATA FILE CORRESPONDING BUFFER
showfl.dat eod_voltage(6,12)
showf2.dat hc_voltage(6,12)
showf3.dat rc_ratio(6,12)
showfd.dat cv_eod_hv(6,12)

cv_eod_1v(6,12)
cv_eod_av(b6,12)
showf5.dat cv_hc_hv{6,12;
cv_hc_1v(6,12)
cv_hc_av(6,12)

showf9.dat avg_temp(6,12)
showfll. dat time_tc(6,12)
showf13.dat aho(6,12)

Interfaces: Called by process_data().
Calls move().

Error Handling: None.

18

Identification: move

Function: When the Data-Handler continues after 12 completed orbits,
the 6x12 matrices must loose their first column, the remaining
data must be shifted one column to the left and the next
orbit’s data will be put in the 12th column. You hence alwavs
have the latest 12 orbits.

Input: buffer[] to be moved.

Processing: Shift columns in buffer one column to the left, dropping the
first column. Set the 12th column to DEFLT (-9999.).

Output: No output.

Local Variables: None.

Global Variables: DEFLT - default value = -8899.0.

Interfaces: Called by move_buffers().

Error Handling: None.

Identification: process_data

Function: 96 minutes of telemetry making up each orbit, are summarized
mathematically in preparation for writing the data to output
files. There are 3 cases - EOC, EOD and EVMIN. ‘

Input: phase_signal - EOC, EOC or EVMIN.

orbitno - 0 to N, where N is the number of orbits.
Processing: Data is prepared for showf(n).dat, n = 1 to 13
and curf(n), n = 1 to 3. Following, in Section 3.3.2 on

data bases, a description is given of each data file’s
functional requirements.

Output: No output.

Local Variables:

col - 0 to 11, matches orbit to column number of matrices.
sum - variable used to sum 6 temperature sensors per battery.
avg - sum / 6 to give average temperature of battery per min.
current_min - sum of night_min and day_min.

Jj - flag to do processing on even minutes.

x1 -~ used to find maximums.

%2 - used to find minumums.

x3 - used to find averages.

x - miscellaneous variable.

19

Global Variables:

DEFLT - default value = -9999.0. Signifies missing data.
no_druns - number of discharge runs in an orbit.
no_cruns ~ number of charge runs in an orbit.
DCHGLIMIT - necessary number of discharge runs per orbit.
CHGLIMIT - necessary number of charge runs per orbit.
DATA FILE CORRESPONDING BUFFER
showfl.dat eod_voltage(6,12)
showf2.dat hc_voltage{6,12)
high_buffer(6)
showf3.dat rc_ratio(6,12)
ahi(6)
ahoo(6)
showf4.dat cv_eod_hv(6,12}

cv_eod_1v(6,12)
cv_eod_av(6,12)
showf5.dat cv_he_hv(6,12)
cv_hc_1v(6,12)
cv_hc_av(6,12)

showfB.dat cellv_eod(6,12)
. showf7.dat cellv_hc(6,23)
showf8.dat avgt(6,48;
showf9.dat avg_temp(6,12)
avg_temp_buffer(6;
showfl0.dat cp_eod(6,23)
) . cp_eoc(6,23)
showfll.dat time_tc(6,12)
trickle(8)
showfl2.dat rc_orbit(6)
bec_drc(6,48)
showf13.dat aho(6,12)
curf2.dat batt_avg(6)

The indented buffers are working arrays which support the
main arrays. The data files followed by blanks require no
processing but directly use telemetry from hid{1l].

In addition process_data determines if it is necessary to
call move_buffers and keeps count of number of charge and
discharge runs per orbit.

Interfaces: Called by main().
Error Handling: Checks that no division by zero occurs.
Checks that enough charge and discharge runs have been

recorded to validate the processed data. Else DEFLT is
. left in the global matrices and process{() stops.

20

Identification: check_fault ()
Function: Detects faults in telemetry.

Input: No Input.

Processing: There are four fault categories that are checked:
1. Power Supplies
a. SPA current 5 amps during first 5 minutes of charge phase.

{

b. SPA current »>=
SPA current >=

c. SPA current >

8 amps for 1-SPAs (1,3,5,7,9,11).
16 amps for 2-SPAs (2,4,6,8,10,12,13).
5 amps during discharge phase.

2. Batteries
a. Cell voltage <= 0 volts for any cell in any battery.
b. Cell voltage > 1.55 volts for any cell in any battery.

3. Load Banks
a. Sum of 3 bus currents > S99 amps.

b. Load < 5 amps on any single bus during discharge phase.
4. Temperature
a. Average of the 6 temperature semnsors > 25 C or < ~10 C.

Output: Returns FAIL or SUCCESS
Local Variables:
x - miscellaneous floating point number.
sum - sum of various arrays.
GlobaI.Variables:
FAIL, SUCCESS
hid[]
Interfaces: Called by data_hdl.c - main().

Error Handling: Returns FAIL if fault found, SUCCESS if not.

21

2.4.1.6 writ fil.c

writ__fil.c <contains the ’C’ routines needed to write the processed data
buffers to output files. Following 1is a description of all the ’'C’
routines in this file <{(wf(), write__ fl{), write_f2{),write_f3(), write
file() ;.

Identification: write_file

Function: Determines which data files should be written. There are 3

cases - EOC, EOD or EVMIN.
Input: phase_signal - EOC, EOD or EVMIN.

Processing: According to the time, wf is called to write the data
output files. Following is a time chart:

TIME DATA FILES
EOC showf2.dat
showf3.dat
showf5.dat
showf6.dat
showf7.dat
showfB.dat
showf9.dat
showfll.dat
showfl2.dat
EOD showfl.dat
showf4.dat
showfb6.dat
showfl0.dat
statfl.dat
EVMIN curfl.dat
curf2.dat
curf3.dat

fault.dat is written initially with fault flag = 0, and then
only after fault flag is set to 1.

Output: Error message is written to the screen
"Couldn’t open ’filename’!'".

Local Variables: err - return value from wf({).

Global Variables:
EOC, EOD, EVMIN
SHOWF (N)DAT for N
CURF (N.)DAT for N

1 to 13
1 to 3

22

Interfaces: Called by data_hdl.c - process() and finish{).

Calls wf().
Error Handling: If a data file can not be opened, a message is written
to the screen. No other action is taken.
Identification: wf

Function: Write output files for Expert System from globally defined
matrices and arrays containing summarized telemetry. There
is a case statement for each data file.

Input: Name of the data file to be written.

Processing: Open output files, write processed data from matrices in
list format, then close output file.

Output: Data files to be used by the Expert System.
Returns FAIL or SUCCESS.

Local Variables:
err - return value from write_fl(), write_f2{(), write_f3(:
sfp - output file pointer. :

Global Variables:
SHOWF(N)DAT for N
CURF(N)DAT for N
FAIL, SUCCESS

1 to 13
1 to 3, and FAULTDAT

0w

hid[]

DATA FILE CORRESPONDING BUFFER
showfl.dat eod_voltage(6,12)
showf2.dat he_voltage(6,12)
showf3.dat rc_ratio(6,12)
showf4.dat cv_eod_hv(6,12)

cv_eod_1lv{6,12)
cv_eod_av(6,12)
showf5.dat cv_hc_hv(6,12)
cv_hec_1lv(6,12)
cv_he_av(B,12)

showfb6.dat . cellv_eod(6,12)
showf7.dat » cellv_hc(6,23)
showf8.dat : avgt(6,48)
showf9.dat avg_temp(6,12)
showfl0.dat cp_eod(6,23)
cp_eoc(6,23)
showfll.dat time_tc(6,12)
showfl2. dat rc_orbit(6)
bc_drec(6,48)
showfl3.dat aho(6,12)
curf2.dat batt_avg(6)

23

Interfaces: Called by write_file(},
data_hdl.c - main(), incomplete(),
read_dat.c - get2()..
Calls write_fl(), write_f2(), write_f3¢(),
system fopen(), fclose() and fprintf().

Error Handling: Returns FAIL if data file can not be opened.

Note: List format means that data is contained in brackets and separated
by commas. A main list holds all the sublists and ends with a
peroid. Following is an example for showfl.dat:

show(l,{[al,bl,cl,dl,el,fl,gl,hl,11,j1,kl,11],

{a2,b2,c2,d2,e2,T2,82, .0t viicnnns 1,
=0 7 1,
= T I 1,
(88, i ittt ettt eieeeecasaosceesnanasas 1,
(BB, ittt ittt et tssatnoeronnnsas 1)
In this example there are 12 columns, one per orbit. Orbital data is

. listed in chronological order.

Identification: write_f1

~

Function: Write output files for Expert System from globally defined
matrices and arrays containing summarized telemetry.

Input: filename, buffer and file number to be written to output file.

Processing: Open output files, write processed data in list férmat,
then close output file.

Output: Data files to be used by the Expert System.
Returns FAIL or SUCCESS.

Local Variables file -~ output file pointer.
Global Variables: FAIL, SUCCESS

Interfaces: Called by wf() for showfl, showf2, showf3, showf9, statl.
Calls system fopen(), fclose{() and fprintf().

Error Bandling: Returns FAIL if data file can not be opened.

24

Identification: write_f2

Function: Write output files for Expert System from globally defined
matrices and arrays containing summarized telemetry.

Input: filename, buffer and file number to be written to output file.

Processing: Open output files, write processed data in list format,
then close output file.

Output: Data files to be used by the Expert System.
Returns FAIL or SUCCESS.

Local Variables: file - output file pointer.
Global Variables: FAIL, SUCCESS

Interfaces: Called by wf() for showf4 and. showf5.
Calls system fopen(), fclose() and fprintf().

Error Handling: Returns FAIL if data file can not be opened.
Identification: write_f3
Function: Write output files for Expert System from globally defined

matrices and arrays containing summarized telemetry.
Input: filename, buffer and file number to be writtem to output file.

Processing: Open output files, write processed data in list format,
then close output file.

Output: Data files to be used by the Expert System.
Returns FAIL or SUCCESS.

Local Variables: file - output file pointer.
Global Variables: FAIL, SUCCESS

Interfaces: Called by wf{) for showf6 and showf7.
Calls system fopen(), fclose() and fprintf().

Error Handling: Returns FAIL if data file can not be opened.

25

2.4.1.7 Interrupt Handler
The Interrupt Handler takes over control of the IBM poling technique for

receiving data over a communication net. Instead each incoming character
is retrieved in a buffer which <can be accessed by the Data-Handler
programs. This is to insure that the telemetry is read accurately and not

written over.

These are the programs needed:
serial.c and serial.obyj
com_cfns.c and com_cfns.objj
com_fns.asm and com_fns.obj
serset.asm and serset.obj
fixup.asm and fixup.obj

Functions directly called from the Data-Handler are:
data_hdl.c - init() calls serini()
- finish() calls serrst()
read_dat.c ~ getl() calls b_char()
get2() calls b_char()

Include files required are:
serial.h
entry.h
asment.h
asmexit.h
sasment.h
sasmexit.h

26

2.4.2 Expert Svstem.

The Expert System 1is writtenm in ARITY PROLOG which is installed on the
IBM-PC AT according to the procedures listed in the ARITY PROLOG Manual.
All the following programs can be found under C: PROLOG. This is also
where they should be executed. The set of data files to be used for the
Expert System analysis need to be copied to C:\PROLOG. Unlike the ’C’
programs, the PROLOG programs of made up of many predicates and control is
implemented by predicate <calls to other predicates. In a way this 1is
similar to subroutines at a smaller level. The programs have been grouped
to be modular. See Figure 2 for Expert System Flow Diagram.

2.4.2.1 start.prg

Identification: start

Function: Main control routine for the Expert System. It calls other
segments of the Expert System via the utilization of user
menus.

Input: fault.dat, curfl.dat and user responses to menus.

‘ Processing: First fault.dat is checked to see if the fault flag has been
set to 1. If so, faultd.prg is called to perform fault
diagnosis. The user can then opt for more information.

In this case or if no fault, the Main Menu is written to

the screen from which the user can select from Plots and
Graphs, Battery Status or Advice. Next the user is asked

to select Battery.

Control is passed to one of the above 3 choices with the
selected Battery. Further menus are shown for Plots and
Graphs and for Advice. The user can always opt for another
Battery selection or to Quit to the Main Menu where they can
opt to Quit NICBES.

OQutput: Menus and contrel parameters which are passed to other
portions of the Expert System telling what the user’s choices
are in response to menus, and which Battery to view.

Interfaces: Invoked by prolog.ini, the PROLOG initiation program.

Start calls functions in faultd.prg, status.prg, advice.prg,
showpak.prg and utility.prg

27

@® FEXPERT SYSTEM FLOW DIAGRAM

FROLOG.INI

SYSTEM INITIALIZATION

A J
CONTROLLER AND

FAULT DIAGNOSIS

DECISION SUPPORT

SHOWPAK.PRG

G

RAPHICS SUPPORT]
GRAFPAK.PRG

MENU INTERFACE FAULTFLAG = 1 ALLTD PRG
START.PRG :
| I |
v v v |
BATTERY STATUS BATTERY ADVICE |
STATUS.PRG ADVICEPRG |
h 4
PROGRAM SUPPORT
UTILITY.PRG
FIGURE 2

28

18

.4.2.2 faultd.prg

Identification: faultd
Function: Perform fault diagnosis for the HST EPS Testbed.
Input: curf2.dat and curf3.dat

Processing: Five conditions are checked to determine the source of the
fault. See faultd.doc in Appendix B.

. Output: Output is in the form of screen report detailing the fault
cause(s) and advising on correctional procedures.

Interfaces: Called by start.prg - fault_diag/O0.

2.4.2.3 status.prg

Identification: status
Function: Status analysis is performed for Batteries 1 to 6.

"Input: Battery number (Bat), showf3.dat, showf4.dat, showfB.dat,
showfl1l3.dat

Processing: Status checks reconditioning flag first. If battery is
being reconditioned status stops because data would be
misleading. If not, temperature, workload, charging
scheme and divergence are checked using averages which are
compared to thréshold values. See status.doc in Appendix B.

Output: Output is in the form of a screen report detailing the
condition of the battery with respect to the above checks.

Interfaces: Called by start.prg - battery_status(Bat).
Calls functions in utility.prg.

29

2.4.2.4 advice.prg

Identification: advice

Function: Advice uses trend analysis for voltage, recharge ratio,
temperature and divergence to give further detail on three
subjects: whether a battery needs reconditionin, changes in

charging scheme or changes in workload.

Input: Battery number (Bat), Advice Menu Choice (1 to 3), showfl.dat,
showf2.dat, showf3.dat, showf5.dat, showf9.dat and showfl3.dat.

Processing: Depending on the Choice, data files are read, trends are

derived using the difference of two weighting functions and

deviation factors. These trends are then compared to

conditions to tell whether a battery needs to be changed.
Explanations are given to back up the resulting diagnosis.
See advice.doc in Appendix B..

Output: Output is in the form of a screen report detailing Battery
Advice and explanations.

Interfaces: Called by start.prg - advice(Bat,Choice).
Calls functions in utility.prg.

2.4.2.5 showpak.prg

Identification: showpak

Function: Decision Support portion of the Expert System providing
12 Plots to the user for each battery.

Input: Plot (N), Battery Number (Bat), Orbit number (Orbit),
showf#.dat (# from 1 to 12).

Processing: Data from the appropriate data file, for the appropriate
Battery is read. The data structure show/1ll, containing
the parameters needed for plotting, is called.

See showpak.doc in Appendix B.
Output: Plotting parameters are passed to grafpak.prg

Interfaces: Called by start.prg - show_view(N,Bat,Orbit).
Calls functions in grafpak.prg and utility.prg.

30

2.4.2.6 grafpak.prg

Identification: grafpak

Function: Draws to the screen the any of the 12 available plots,
per battery.

Inputs: List of points to be plotted and all plotting parameters
including captions.

Processing: Uses graphics primitives to draw plots\on the screen.
Plots have X and Y axes, title, header and points displayed
in color and symbol. Missing data and data out of range are
also displayed. See grafpak.doc in Appendix B for more
details and start.doc for a listing of the graphs.

Outputs: Plots drawn to the screen.

Interfaces: Called by showpak.prg - graphplus/6 and plot/S8.
Calls functions in utility.prg

2.4.2.7 utilityv.prg

Identification: utility

Function: Collection of miscellaneous Prolog functions used by one or
more of the Prolog routines.

Inputs: Parameters are passed for the particular function call.

Processing: Depends on the function call. See utility.doc in Appendix B
for detailed description of the functions as well as built-in
Arity functions. Details on the handling of data files 1is
also described there.

Outputs: Sends requested values back to the calling function.

Interfaces: Called by start.prg, faultd.prg, status.prg, advice.prg,
showpak.prg, grafpak.prg.

31

2.4.2.8 prolog.ini

Identification: prolog.ini

Function: Consults the programs needed to run the Expert System
Inputs: No inputs.

Processing: start.prg, faultd.prg, status.prg, advice.prg, showpak.prg

grafpak.prg and utility.prg are loaded at the initiation of
Prolog, when the user enters ’api’ at the DOS prompt.

All data files are copied to the NICBES directory.

The currenet data files and fault.dat are also loaded.

The Expert System is then called into operation.

Outputs: No output.

Interfaces: No interfaces.

32

SECTION 3. ENVIRONMENT

3.1 Equipment Environment.
The following computer equipment is needed for the execution of NICBES:
DEC LSI-11

RS232 cable connector

IBM-PC AT

STAR-SD-15 Printer

3.2 Software Support

The following computer software is needed for the execution of NICBES:
DOS (IBM’s operating system)

MICROSOFT C

ARITY PROLOG - Version 4.1

3.3 Data Base
The following paragraphs will detail the data base utilized by NICBES.

3.3.1 General Characteristics.

As NICBES is actually two systems, a data base description will be given
for each.

First for the Data-Handler whose data base consists of telemetry, received
and processed every one minute. This dynamic data base is not stored, but
condensed and summarized by performing mathematical operations. The final
historical data will be written +to files for use by the Expert System.
The only 1limitations for the telemetry are time constraints and reading
and writing validity.

The data base for the Expert System consists of the data output files
written by the Data-Handler. These files are static and should not be
modified. However, they can be stored in uniquely referrenced locations
for later review.

3.3.2 Organization and Detailed Description.
Telemetry for the Data-Handler:

Start of Telemetry Burst

A

Header Information (Integer)

1. year

2. day of year - 198X

3. hour - 0 to 24

4., minute - 0 to 60

5. second - 0 to 60

6. orbit - Positive Integer

7. phase - 0 for discharge, 1 for charge

8. day minute (minute in charge) - 0 to 70

9. night minute (minute in discharge) - 0 to 37

33

Battery Information (for each of 6 batteries)
10 - 351, 37 values for each battery

battery number Integer 1 - 6

cell voltage 23 Reals -2 to +2 volts
cell pressure 23 Integers 0 to 150 psi
battery voltage Real 0 to 40 volts
battery current Real -30 to +25 amps

negative for discharge phase
positive for charge phase

bprc current Real 0 to 5 amps
temperature sensors 6 Reals ~15 to 30 {(degrees C}
battery reconditioning Integer 0 for no, 1 for yes

Miscellaneous Information

352 - 364 Solar Array current 13 Reals 0 to 20 amps
365 - 367 Bus Voltage 3 Reals 0 to 40 volts
368 -~ 370 Bus current 3 Reals O to 90 amps

Reals are five place floating point numbers. Each telemetry value is
sent one per line with an associated new line and carriage return. 270
values are sent every one minute, 96 minutes per orbit.

Data Files for the Expert Svstem:

All data files are written in list format. All the show files have ©
lists, one for each battery. All the data files are loaded into the
PROLOG Expert System as facts. See documentation in Appendix B for
details.

fault.dat - Contains a fault flag l1 if there was a fault

0 if no fault was detected.

curfl.dat Contains the current orbit number and
a reconditioning flag for each battery = 1 for reconditioning

0 no reconditioning.

curf2.dat

Contains Phase (charge or discharge)
Day_min
Current from 13 SPAs (Solar Panel Array)
Current from 3 Busses
Average Temperature for 6 Batteries

curf3.dat

Contains 6 battery cell voltages (23 per battery)

showfl.dat - File contains battery voltage at EOD for last 12 orbits, in
chronological order.

showf2.dat - File <contains the battery voltage during high in-charge
period, last 12 orbits.

34

showf3.dat - File <contains the recharge ratio = AHO/AHI per orbit for 12
orbits.
showfd.dat - File contains cell voltages at EOD, with the high value, low

value and average of all values, in this order for each of the last 12
orbits

showf5.dat - File contains «cell voltages at high-charge; high, low and
average of all values, order H,L,A, for each of last 12 orbits, per
battery.

showf6.dat - File contains 23 cell voltages at EODP for each battery, from

the latest orbit.

showf7.dat - File contains 23 cell voltages at high-charge for each
battery, from latest orbit.

showf8.dat - File <contains the averages of the six temperature sensors
(degrees C), at two minute intervals over the latest orbit. The first
value in this file is the minute into orbit, followed by the temperature
readings for the batteries.

showf9.dat - File contains the average battery temperatures per orbit for
the last 12 orbits.

showfl0.dat - File <contains the 23 cell pressures taken at EOC and then
EOD for each battery in the last full orbit.

showfll.dat - File —contains the time on trickle charge for each battery
from last 12 orbits.

showfl2.dat - File contains battery current during reconditioning, at
2-minute 1intervals, for last reconditioning of each battery. It is
recorded every 2 minutes, only when battery reconditioning is 1 and only
for one orbit. The file contains zeroes until a battery is reconditioned.

showfl3.dat - File contains AHO summed at EQOD over last 12 orbits.

35

SECTION 4. PROGRAM MAINTENANCE PROCEDURES

4.1 Conventions.

Each routine in the programs comprising the Data-Handler have headers as

well as code documentation. The Expert System files are documented in

separte files having the same name as the Prolog program but with ’doc’ as

their extension.

a. Conventional extensions to file names are designed as nmemonic
identifiers (file and variable names) based upon descriptive
abbreviations of function title.

c ’C’ programs

obj object files

exe executable files
asm assembler programs
prg Prolog programs
dat data files

doc document files

b. Refer to SAMSO EX 2.3.3 and MIL-STD-847 (Documentation).

4.2 Verification Procedures.

Any enhancements added to the Data-Handler should be verified by checking
the data output files. It is always wise to test the changes on a small
test case before running the whole procedure. One enhancement that could
be made is to increase the error checking on incoming telemetry so that
faults could be detected directly from the Data-Handler. Another
enhancement would be to check the ranges on each telemetry value as it 1is
read in.

Changes to the Expert System logic would have to be verified by a Nickel

Cadmium Battery 'expert’ for validity. These could include changes to the
deviation factors, threshold variations and adding conditions to be
checked. Enhancements to the screen displays can obviously be checked by

running the Expert System and viewing the screen.

The Test Procedures 1listed in Appendix C will give you a baseline upon
which to verify any changes.

4.3 Error Conditions.

There are no special provisons for operating system errors. Procedures to
take at such instances would include rebooting the IBM-PC AT, checking to
see that all files are intact and starting the NICBES system again.

4.4 Special Maintenance Procedures.

Data files written by the Data-Handler need to be archived for later use.

One way of doing this would be to create a data directory at the root.

Then for each set of data files created, a sub-directory could be created

into which the data file set could be copied. This sub-directory can then
be referrenced by location and time. A command file - data.bat, has been
written for just this purpose. It is located in C:\USR. To run data.bat
simply enter data directory-name <CR>’., The directory-name can be a

date as 01-16-87 for later referencing.

36

It 1is also wise to make periodic backups of the NICBES system as well as
the accumulated data. There is no need to backup the MICROSOFT C
directories iexcept C:\USR) or the ARITY PROLOG files as these can alwayvs
be re-installed from their original disks.

4.5 Special Maintenance Programs.
There are no special maintenance programs.

4.6 Listings.

All NICBES program 1listings will accompany this Maintenance Manual. The
'C’ programs are documented internally while the Prolog programs are
documented in files with the same name as the Prolog routine but with
*doc’ as their extension. APPENDIX A contains the Data—~Handler listings.
APPENDIX B contains the Expert System listings.

37

APPENDIX A

DOCUMENTED CODE LISTINGS FOR THE DATA-HANDLER

ORIGINAL PAGE IS
OF POOR QUALITY

HST. H

fa-Harcd Ler

S Define Da O

L i

Ea o Iz
EOD =
EVMIN 1
DEFLT ek Aok

Migming

SHOWF1DAT 1 /¥

MNumbers

Hode f ine
Hodes f e
#defines
#odef ines
#define
: fine
ine

#ode
#ode f ins
#odat ine
#odefins

SHOWF2DaT =2

SHOWF3DAT
SHOWF4DAT
SHOWFSDAT
SHOMWFEDAT
SHOWFZDAT
SHOWFZDAT
SHOWFSDAT
SHOWF 1LODAT
SHOWF 11DAT

SHOWF 12DAT 12
SHOWF L3EDAT 13
CLURF1DAT 14
CURFZDAT 15
CURFIEDAT 1
FALLLTDAT e

(stdio.h> /o
Hine lude Carrno.hy

#inc Lude (stdlikb. b

¥include {(process.h}

#ime lude {time ki

#Hinclude {zignal . h>

Incliude il

S dkk Structures for HST

incomming data file

bati {
battno;
cellv(23];
cellp(23];
Aty
hato;

boroo

L. 2

struct

g
int

Battery Numiber #/
Cell Vol
Cell Pra:)
Fattery Yoltags w7
baattery Ourrant &
BPRC Curvrent d 7

[S S T e S
T GREY Y T

-~

o
batemp [6]

;
batrecond;

T oy ruisey &
P e

. S T S S, S

Reconditioning®/

i-1

ORIGINAL PAGE IS
OF POOR QUALITY

ot s S OBus data w7

float b1l Ik voltage # 7
Float IRt JE Bus Current # 4
sty b et i A OHET Incomming Data 4 4

int VEAY ; JE Year

int day A Day

int Froar s S Hour .

int MiLr g S Minutes

int SECs S Seconds

int orbit; S Orbit#

int phase; /# Phase=0 if night

V& =1 if davy

inmt day _min; A¥ Min into charge perolds/

irt nlth mln /% Min into discharge " #/

ot /% Battery Data *

Float J* SPA Current &
atruct J# Bus info for three bus

dhidiaz] s

’,f’ﬁ'rf Show File#1 {12 orbits for a battery and for
Float pod_voltage[&][12]: /4 Yoltage talken
f*ifnl“1T=w & batterls
"
:

tpcatad when pha chanages

from O to 1

Show File#2(12 orbits for a battery and for & batteries) +/
e _voltagel{e][12]1; A% Max Batt voltags taken for
high_buffer[e]; ¥ orbits, & batteries during :

phase 1. To be updated when #/

/% phase changes from 1 to O * /

¢z
o

*: Show File#3(12 orbits for a battery and for ¢ batteries) #/
loat FC_thlO[&][lZJ; /* Recharge Ratio for 12 orbits,*/
loat ahool&]; /4 & batteries. Sum of battery #/
float ahile]; ' J* current during phase 1 !
A% divided by sum of battery
S curvent during phase 0. It
A ods always > 1. Updated when
/% phase changes from 0 to 1

F
i

Show File#d

..,r’ K3
float

Ahvow Fil
ocv_ho
cv _hao
ov b

File#e
ellv_eod[&][23

Show

“s

Show Fille#7
cellv_ho

cfell23];

Show File#%
avg_temp[s][12];

avg_temp_buffer[&];

Show File#l0
cp_eod[&]1023
<3 [e1{23

wr A

/#E
/#
/o

ORIGINAL PAGE I8
OF POOR QUALITY

Cell Voltage for & batteyries
1loulate h)ﬁh Low and ave
ot of 23 whiesry o

changes

Calcula
out of 23
1, at high—-charc
update whsn
from 1 to O.

te hiahlh, low and avyg
P eells during phase

a. To be

changes

e
Cell Voltage taken at EOD. *
To ke updated when phass &/
changes from Q to 1. *®7

Cell voltage taken during
phase 1 at high-charge.

To pe updated when phase
change from 1 to 0O &/

avg temperature talkern From
& sensors per battery, o
patteries, at 2 min interval

Every Minute take an average
of & sensors’ temp for 9¢

mirtes in the orbit, for 12 %/
arbits,& for each of & batts +/
Avg over P4 minutes or entire#/
orbit. To be updated when */
when phase change from 1 to 0%/

Cell pressure at eod
Cell pressure at eoc

int

Sh

St

Ca

Ta
f

oW File#l1l .
time tolali12]
trickield]:

¥

at fFile

41
aholell12]

r File #2
batt_avgtle&]:

wlt.data
ult[2]:

ORIGINAL PAGE IS
OF POOR QUALITY

FH When battery current is
JE than Z amps, add 1 to t
A otime counter . Only during
J¥ charoe phas

Orbit at which reconditicnin
takes placs . Batitery current
during reconditioning at

JH¥ 2 minute intervals

Jd Keep running sum of amp hours
A out during phase 0.

/% Average temp of six
FH* for each of & batterd

/¥ Fault flag, fault[0l=1 fault
/F =0 no Fauli
¥ Faultll] = ~1 when prozlem
S with communication

OR{GINAL PAGE IS
OF POOR QUALITY

DATA-HDL.C

_inomplt o= O
:###tfkkkb+iifkfbw+frkklklkfif&*#f#fﬁ+tkbrrkifl|ls&@f
¥ omaln is the Data—Harndler driver. It viam T
S oprogram Flow and determines the times

Hm

int orbitno = O,ere:
int phasel,phases

/% phasel = last phase +
22 = current phased/

2 From O to 104
from]
zation

int phase_siagnal:

initl):
while(l)
i
conseg_incmplt = 0 :
while ((ery = read_data()) ==z FAIL) /# Read telemetry burst &/
incomplete() : J* Check for consecutive

/l '_* ' :,’
if ({err = check_fault{)! == FaIL) /% e For kS
{ /S fFanlt v

Fault[0] = 1, A Flag = 1 B

W {FAULTDAT) ;
finish{)};

¥ determine phe
if{(phasel = hid[0].phase) == (phase? = hid[1].phas
phase_signal = EVMIN:
if (iphasel && phase?2) phase_signal = EOD:
if {phasel && iphase2) phase_signal = EOC:

S EOD and EOC s
if ((phase_signal == EOD) !! (phase_signal == EOC))

PrOCesS phase_signal, Orbitnm);/$ process Jdata EOCSEOD S
1f{phase_signal == EHC: ji
printf{"%d. ORBRIT = Xd\n",++orbitno,hid[0] . orbity.

S EVMIN
process (EVMIN,orbitnn) ; /* proce
o/ oend while loop #/

Finish(); /¥ exiting routine #
P oA end mailn #/

ata EVMIN

A1-H

ORIGINAL PAGE 13
OF POOR QU

arei i /A Thﬁ communication port and signal, initial : ;
{ JEodntervupt handler, global buffers and Lml@m@try =YW

I S oimitialine wuser
; ,fi<1n“1l catochey
JEodrnd Lz interrupt
S han d l

07 s J# met comm port for

s ¢n1t1q data Dot e
J¥ initialize telemetry

/¥ reading to

Yo/ oend init kS

g SR P E B R R B U T R K Bl R R R R R A R R TR S o e S B B S N B TR B N PN S S SRR R S S R SRS
/ . . £y . . . -
d_imit () /¥ Initializes telemetry reading to first full orbit.

Y

-
-
H

int i,err;

1 = DEFLT:
while{i t= 1) ’ /¥ Orbit star
{ /¥ minute 1,

while ((err = read_data()) == FAIL) /* phs . No &
‘ P b Found L Of

at niaght +/
scharge *

.

Lnuomplet&();
o= hid{i] ondght _min;

h ametry D
printf{"Starting First full orbiti\n");
process CEYMIM,O) ; JF

o/ oend v Limit ow/

first min Jdatas/

v

ﬁ*#********ﬁ¢***$$****$¢ E A e S RO 3¢ SR TR 1 S SRC NI S S0 S0 R St TR SO SO R e S St S S TR T S S S N A
fimish() /¥ Exits Data Handler and writes flle:.
1

swervst(): A end intervrupt harndlevs/

write file(EQC) J¥ write outpnt files

write_fi*e(EnD)

E‘XJT(D) M / kS Dxlf D """ Hdr“"l{:;? ;:,-;i,.-"
P /% end finish #/

YRR

A 2-8

ORIGINAL PAGE IS
OF POOR QUALITY

TP IR B e T Ok TR T SR e o ISR % A o o USSR oF S S B S RUE R o :zb::f;;i;:fk:.:t:::ir:::}::#::#::#:.’*:;e);:'

J# Catches 1ot gignal input v operalbor TO &

/4 halt Data- —Handler. * 7
{
orint F\ Trterrapt caughts exi Ctingi\nt s

RO e 1gnal . nrtltnn\ Thw rmutin

it arbitnos the telemalry
datalphase signal ,orbhitno’; S proo cdata

cignal): /4 write files

wrlto file{phase_
/# reintialize paf fers 4 f

df _imitld (phase _ »anql)
¥ o/F ﬁrtd Process 7

VT 2 e o .#1'%‘"i"“f"#"4‘111‘51#2-'*1-'#12*21*11#‘ T P o TR b B B PRV RRACE 30 2K o b B IS T SRR £ R

"nrnmNIMfw) /¥ counts no. of consecutive incomplete data oy s
1
;¥ ﬂruntr"rnnﬁefutive = wi\nt,consed. inemplt) s * /

g _incmplittts /# inc consecutive in— S
(conseq_incmplt == CILIMIT) /# complete telemety pur
’* if ‘LLIMTT runs, halt

. printf(’ 'rec ieved wd consecutive 1ncomp Jetelhn’ ,"TLTM"T3
printfl veelemetry Dbursts. shytting duwn*!xn'};

Faultinl = 1: IE:
I o= ”l:

' L)

COn

e b

"'Ul.x t '

v
dultill
wf (FAULTI
fln*@ff}:
}.
i

v/ end incomplate #/

*‘I' READ-DAT. C

#define TILIMIT 2
#define T2LIMIT 180

#include "hst.h"

char buf{2048];

int count;

float cell[23];
/***/
read_data() /* Read telemetry from DEC LSI-11 over RS232 every 1 min.x%~

{

int err;
/¥ Call proc_sync to read start character ’A’, call proc_head to readx/
/¥ header info, proc_bat() to read battery data, and proc_solar to x/
/¥ to read SPA and bus data x/

proc_sync();

count = 0;

if ((err = proc_head()) == FAIL) return(FAIL);

if ({err = proc_bat()) == FAIL) return(FAIL);

if ((err = proc_solar()) == FAIL) return(FAIL);

return{SUCCESS);

. } /% end read_data x/

/***/

proc_sync{) /¥ Synchronize reading data to start of telemetryv burst.*.
{
char cc;
while (cc = get2()) /% Get character from x/
{ /¥ interrupt hdlr buffer %/~
if (cc == 'A%) /% If A’ ,telemetry startx*/
{
/X printf("Sync Received!\n"); x*x/
break;
if(ecec == 'B?’) /¥ If >B’, shutdown X/

-~

printf("\n\nReceived shutdown signal from DEC LSI~11'\n");
/X fault{0) = 1;

fault{l] = 7;

wf(FAULTDAT); X/

finish();

} /* end while loop x/

cc = getl(); /% Read newline and CR */
cc = getl(); /¥ to position pointer atx/
. } /% end proc_sync x/ /* next character X/

ﬁ-l—R

/*********.***/

proc_head() /¥ Read header data from input buffer. X/
‘ int err;
if {({err = read_buffer(9)) == FAIL) /% Read 9 header items X/
return{FAIL):
sscanf(buf, "%d%d%d%d%d%d%d%d%d", /% Put header data in bufx/
&hid{1l].year,&hid{1l].day, /% into structured array x/
&hid[1l].hour,&hid[1].min, /% hid[l] in int format %/

&hid{1]}.sec,&hid{1l].orbit,&hid(1l].phase,
&hid[1l].day_min,&hid{1].night_min);
/% Print header data . 3
/% printf("time=%d\nday=%d\nhour=%d\nmin=%d\nsec=%d\norbit=%d\nphase=%d\n,
day_min=%d\nnight_min=%d\n\n",
hid{1l].year,hid(1l]}.day,hid{1].hour,hid[1].min,hid{1].sec,
hid{1l]}.orbit,hid{1].phase,hid[1].day_min,hid[1].night_min); x/

return(SUCCESS);
i /* end proc_head x/

/EERKKRKKK KKK KR RKK KK KKK KKK KKK KK KK KK KR KKK KK KKK KK KKK KK KKK KKK KRR KK KKK KKKk k% /

proc_bat () /¥ Read battery data from input buffer. x/
{
int j,k,err;
for/ k=0;k<b:k++) /% For 6 batteries X/
{
if ((err = read_buffer(1l)) == FAIL) /% Read battery no L ¥
return(FAIL);
sscanf (buf,"%d",&hid[1].batd{k].battno); /% Put buf X/
/% contents into hid[1l] x/
/X% printf("batt no = %d, count = %d\n",hid[1].batd[k].battno,count;:

if ((err = read_buffer(23)) == FAIL)/x Get 23 cell voltages ¥/
return(FAIL);

sscanf (buf, "SSP TS TS T s P %S %%t f TS f%fsf”,
&cell{0],&cell{l],&cell{2],&cell[3)],&cell[4],&cell{5],
&cell(6],&cell[7],&cell[8],&cell[9],&cell[10],&cell[11],
&cell{12)],&cell{13],&cell[14],&cell[15],&cell{16],&cell{17;
&cell[18),&cell[19),&cell[20),&cell{21]),&cell[22]);

for (j=0;j<23; j++)
hid{l].batd[k].cellv{j] = celllj];

if ({err = read_buffer(23)) == FAIL) /% Get 23 cell pressures *.
return(FAIL);

sscanf(buf, "Sf% s f STt LT P uf st s fuxfsfufsfst,
&cell{0],&cell{l],&cell{2],&cell(3],&cell{4],&cell 5],
&cell[6],&cell[7],&cell[B],&cell[9],&cell[10],&cell{11],
&cell(12],&cell[13],&cell(14],&cell[15],&cell{16],&cell[1l7
&cell[18],&cell[19],&cell[20],&cell[21],&cell{22]);

[—

for (j=0;j<23; j++)
hid{1l].batd[k].cellp(j] = cell[j];

if ((err = read_buffer(10)) == FAIL)/* Get remaining 10 bat x/
return{FAIL);

sscanf(buf, "% fuf%sf% %% f%f%f%f%d"”, /% Put buf contents X/
&hid[l].batd[k].batv, /% into hid[1] */

&hid[1].batd[k].batc,&hid[1l]).batd[k].bprecc,
&hid{1l].batd[k].batemp{0],&hid[1].batd[k].batemp|l:,
&hid[1].batd[k].batemp[2],&hid[1].batd{k].batemp(3],
&hid{1].batd{k].batemp{4],&hid{1].batd[k].batemp[5],
&hid[1].batd[k].batrecond);

} /¥ end for loop, battery 1 to 6 x/

return(SUCCESS);

} /% end proc_bat %/

p- 3 -

/***/‘
proc_solar() /% Read SPA and bus data from input buffer. X/

int j,err;

if ({err = read_buffer(13)) == FAIL) /% Get 13 SPA values * /
return{FAIL;: /% values from buffer

¥*

/% Put buf contents into X/
sscanf(buf, "% f%f% % f%f% %% fuf%sfsf%fxf”, /% hid[1l] X
&hid{lj.spac[0],&hid[1].spac{1],&hid[{1].spac[2],
&hid[1].spac{3],&hid{1]).spac[4],&hid[1].spac{5],
&hid[1].spac[6],&hid{1].spac[7],&hid[1l].spac[8],
&hid[1].spac{9],&hid{1l].spac{10],&hid[1].spac[11],
&hid[1l].spac{l1l2]);

if ((err = read_buffer(6)) == FAIL) /% 3 busses, volt and X/
return(FAIL); /% current for each L3
sscanf(buf, "% fufyxfEf%fxf", /% Put buf contents L ¥4
&hid{1].bd(0].busv, /¥ into hid[1] * /

&hid{1].bd[0].busc,&hid{1].bd[1].busv,&hid[1].bd[1].busc,
&hid{1].bd[2].busv,&hid{1].bd{2].busc);

. /X printf("solar count = %d\n",count); %/

/% for(j=0;J<3; j++) %/ /¥ Print bus data *
/ * {
printf("bd{%d].busv = %f\n",j,hid[1].bd[j].busv);
printf("bd[%d].busc = %f\n",j,hid[1l].bd[j].busc);
P ox/
return(SUCCESS);

} /% end proc_solar X/

JRKKKKKKKKKKKKKKRKKKKKERERKKKKRK KKK KRR KKK K KK KKK KKK RRKKKKKRKRKEKR KKK KKK KKK KKK /

read_buffer (k) /% Retrieves telemetry values from interruptx/
int k; /% handler buffer and puts them in buf! X/
int i=0, nl_count = 0;
while(nl_count '= k) /% For k data points X/
if ((buf[i] = getl()) == EOF) /% Get each character X
return(FAIL); /% from input buffer and x;
if(buff{i] == ’\r’) /% put in buf, including x/
{ i /% newline and CR L
count++; /% count values read per */
/% telemetry run X/
nl_count++; /%¥ Returns FAIL if EOF X/
if ((buf{i] = getl()) == EOF) /% read before end of 4
return(FAIL); /% telemetry burst x/
}
14+
}
buf[i] = ’\07°; /% sets end of data in L %
return{SUCCESS); /% in buf{i] . 4

} /% end read_buffer x/

ERKKEKKKKEKKKEKKKKKK KK KKK KK KKK KK KKK KKK KKK KKKKKEKKKKKKKKKKEK KKK KK KKK KKK KK /
getl() /¥ get character from interrupt handler buffer ¥

char cc;
long tO0,tn,timer;

time(&t0); . /% initial time . 3
while ((cc = b_char()) == EOF) /% get char from interruptx/
{ /¥ handler buffer, EOFs x/
/% start timer = tn - t0 %/
timer = time(&tn) - tO; /¥ tn is current time X/

printf("get: count = %d, timer = %1d\n",count,timer); x/
if ((count < 370) && (timer > TI1LIMIT)) /% check for incmpltx*/
return(EOF); /% run, TI1LIMIT exceeded x/

}

return(cc);

} /% end get x/

A- 5 -€

JEEKKKEKKKRKKK KKK KKK KK KKK KKK KKK R ERKK KK KKK KKK KKK KKK K KKK KKK KKK KKK KKK KKK KKKk /
get2() /% get character from interrupt handler buffer X/
!

char cc;
long t0,tn, timer;

time(&t0); /% initial time X/
while ((cc = b_char()) == EOF) /% read char from interruptx/
{ /% handler buffer, EOFs */
/¥ start timer = tn - t0 %/
timer = time(&tn) -~ tO0; /¥ tn is current time 3
if (timer > T2LIMIT) /% Exit if T2LIMIT is X/
! /% exceeded => No Commun. X/
printf("No communication for 3 minutes; exiting!'\n");
fault{l] = -1; /% write fault flags t
fault[0] = 1; '
wf(FAULTDAT);
finish();

!
J

1
J

return(cc);
} /% end get x/

A-86-%

PROCESS. C

DCHGLIMIT 30
CHGLIMIT 50

#define
#define
*include "hst.h"

int no_druns,no_cruns;
JRERKKKKKKKRKK KKK KKK KK KKK KKK KKK KKK KKK KK KKK KK RKKEKRKRKKKKKEKKRKRRK KK KKK KKK KKK/

df _init() /% Initialization of buffers*/
I
L
int i,J;
/% printf("in df_init\n"); x/
fault{0] = 0; /% FAULTDAT buffer X/
fault{l] = 0; /% FAULTDAT buffer */
no_cruns = no_druns = 0; /¥ run counters x/
for (i=0;1<6;i++) /% for 6 batteries X
¢ :
batt_avgt[i] = DEFLT; /% CURFZDAT buffer L
avg_temp_buffer{i] = 0.0; /% SHOWFSDAT work buffer x/
high buffer([i] = DEFLT; /x SHOWFZ2DAT work buffer x/
ahoo{i] = 0.0; /* SHOWF3DAT work buffer x/
ahi{i] = 0.0; /% SHOWF3DAT work buffer x/
rc_orbit{i] = 0; /% SHOWF12DAT buffer 3
trickle[i] = 0; /¥ SHOWF11DAT work bufferx/
for (j=0;j<12; j++) /% for 12 orbits X
p
1
eod_voltage{i][j] = DEFLT /% SHOWF1DAT buffer L3
he voltage[l][J] = DEFLT; /% SHOWF2DAT buffer t 3
* rc_ratio{i]{j] = DEFLT; /% SHOWF3DAT buffer X/
cv_eod_hv[i]{j] = DEFLT; /%¥ SHOWF4DAT buffer L ¥
cv_eod_hv{i][j] = DEFLT; /% SHOWF4DAT buffer x/
cv_eod_av[i][j] = DEFLT; /* SHOWF4DAT buffer X/
cv_hce hv[l][J] = DEFLT; /% SHOWF5DAT buffer X/
cv_hc_lv[J[j] = DEFLT; /% SHOWF5DAT buffer X/
cv_hc_av[i]}[j] = DEFLT; /% SHOWFS5DAT buffer X/
avg_ temp[i][j] = DEFLT /% SHOWFIDAT buffer X/
aho[i][j] = DEFLT; /% SHOWF13DAT buffer X/
time_tec[i][j] = DEFLT; /% SHOWF11DAT buffer X/
}
for (j=0;3<23; j++) /% for 23 cells per batt */
!
cellv_eod[i][j] = DEFLT; /% SHOWFEDAT buffer X/
cellv_he(il[j] = DEFLT; /% SHOWF7DAT buffer X/
cp_ eod[i][j] = DEFLT; /% SHOWF10DAT buffer x/
cp_eoc[1][J] = DEFLT; /% SHOWFlODAT buffer X/
}

. for (j=0;j<48; j++)
f
L

avgt[i][j] = DEFLT; /% SHOWF8DAT buffer
be drcli][j] = 0.0: /% SHOWF12DAT buffer
wf{FAULTDAT) : /% write no fault vet

} /%end df_init %/

/***,/
df _initl(phase_signal) /% After each telemetry burst is read, or afterx/

/% EOC or EOD, buffers used for processing needx/
int phase_signal: /% to be re-initialized. %/
{

int laJa

e printf{”"in df_initl \n"}; */

éwitch(phase_signal) /% start switch x/

{

case EOC: /% EOC case X/
no_cruns = no_druns = 0; /% run counters *

for (i=0;i<6;1i++)

avg_temp_buffer[i] = 0.0; "~ /¥ SHOWFO9DAT work buffer x/
high_buffer{i] = DEFLT; /% SHOWF2DAT work buffer x/
ahi[i] = 0.0; /% SHOWF3DAT work buffer x/
ahoo[i] = 0.0; /% SHOWF3DAT work buffer *x/
for (j=0;j<23;j++) /% for 23 cells per batt x/
f .
S
cellv_he[i][j] = DEFLT; /% SHOWF7DAT buffer X/
cp_eoc[i]j{j] = DEFLT; /% SHOWF10DAT buffer */
cp_eod[i][j] = DEFLT; /% SHOWF10DAT buffer X/
cellv_eod[i]{j] = DEFLT; /%¥ SHOWFBDAT buffer X/
}
for (j=0; j<48; j++)
avgt{i]ij] = DEFLT; /% SHOWF8DAT buffer %/
)
break; /% end EOC case */
/¥ No EOD case %X 7
case EVMIN: /% Every Minute case X/
for (i=0;1i4<6;i++) /% for 6 batteries %/
batt_avgt[i] = DEFLT,; /% CURF2DAT buffer %/
hidtohid(); /% switch hid columns X/
break; /% end EVMIN case X/

} /% end switch x/
} /% end df_initl */

A-3-P

/***/'
hidtohid() /% After each telemetry burst is read and processed, the */

/% data in hid[1l] is put in hid[0] to prepare for next x/
/% data burst which will be read into hid([1l]. X/

—~

int 1i,J:

/X printf("in hidtodhid, ready to exchange buffers\n"}; */
hid{0].year = hid{l].year; /¥ switch header items X
hid[0].day = hid[1l].day;
hid{0].hour = hid[1l].hour;
hid{0].min hid[1l].min;
hid{0].sec hid(l].sec;
hid{0].orbit hid[1l].orbit;
hid{0].phase hid[1l].phase;
hid[1l].phase DEFLT;
hid[{0].day_min = hid[l].day_nmin;
hid[1l].day_min = DEFLT;
hid{0].night_min = hid[1l].night_min;

for (i=0;i<6;i++) /% switch battery items %/
{
hid[0].batd[i].battno = hid{1l].batd[i].battno;
for (j=0;j<23;j++) /% for 23 cells per batt X/
{
. hid[0].batd{i].cellv[j] hid[1l].batd[i].cellvijl:

DEFLT;

i}.
hid{1l].batd{i].cellv[j]
i] hid{1l].batdli].cellplj!:

hid{0].batd[i].cellp{Jj]

nowou

hid[0].batd{i].batv = hid[1].batd[i].batv;
hid[0].batd[i].batc hid[l].batd[i].batc;
hid{0].batd[i].bprcc = hid[1l].batd[i].bprcc;

3}
for (i=0;i<13;i++) /% switch SPA items . X/
hid[0].spac|i] hid(1l].spac[i];
hid[1l].spac{i] DEFLT;

for (i=0;i<3;i++) /% switch bus items x/

hid[0].bd[i].busv
hid[0].bd{i].busc
hid[1l].bd[i].busc

hid[1l].bd[i].busv;
hid[l].bd[i] .busc;
DEFLT;

5

J
1 /% end hidtohid %/

h-a-¢.

‘ JERKERKKKKEKKKRKKKKKKRR K KKK F KK KK KKKKKKRKKKKK KKK KKK KKK KKRKKKRKRK KKK XK KKKk /

move_buffers(phase_signal} /% Prepares the global buffers for move X/

int phase_signal;

{

X printf{("in move_buffers, ready to move buffers\n"}; ¥/

switch(phase_signal) /% start switch ¥

case EOC: /% start EOC case X
move(hc_voltage); /% SHOWF2DAT buffer * /
move(avg_temp); /% SHOWFSDAT buffer X/
move{time_tc); /% SHOWF11DAT buffer X/
move{cv_hc_hv); /% SHOWF5DAT buffer X/

move(cv_hc_1lv):
move(cv_hc_av);

break; /% end EOC case X/
case EOD: /% start EOD case 9
move({eod_voltage); /% SHOWF1DAT buffer b 34
move{rc_ratio); /% SHOWF3DAT buffer L 9
move(aho); /% SHOWF13DAT buffer X/
move(cv_eod_hv); /% SHOWF4DAT buffer * 7

move{cv_eod_1v);
move(cv_eod_av);
break; /¥ end EOD case

. /% no EVMIN case e
; /% end switch %/

} /% end move_buffers() %/

»*

/**X******/
move(buffer) /% If the Data-Handler contines after 12 completed orbitsx*/
/% the buffers(6,12) will lose their first column, the %/
/% remaining data will be shifted one column to the left, %,
/% the next orbits data will be put in the 12th column. X/

float buffer[6][12];
{
int i,J,4dJ;
for(i=0;i<6;i++) /% for 6 battery rows */
{
for (j=0;j<10; j++) /*x for 11 orbit columns %/
{ /% column 1 is dropped L
JJ = j+1; /¥ shift each column one %/
buffer(i][j] = buffer[i][Jjj]; /% column to the left L 34
}
buffer{i][{11] = DEFLT; /% initialize 12th columnx/
}

} /* end move X/

A-5-7

/***/
process_data(phase_signal,orbitno) /% Perform mathematical operations x/

/% to summarize telemetry. Keeps 93
int phase_signal, orbitno;: /% results in global buffers. %/
{

int current_min,col;
int j-.j’in.j;
float x,x1,x2,x3;
float sum,avg;
;k printf("in process_data\n"); x/
if (orbitno > 11)
{
col = 11;
move_buffers(phase_signal);
}else col = orbitno;
switch(phase_signal) /% start switch X/
.
case EOC: /% start EOC case X/
Jj = no_cruns + no_druns;
if (jJj < (CHGLIMIT + DCHGLIMIT)) /% Enough runs? X,/
break;
. for (i=0;i<6;i++) /% for 6 batteries X/
(_
avg_temp{i]{col] = avg_temp_buffer{i]/jj; /* SHOWFODAT bufferx/
if (ahoo[i] !'= 0.0) /¥ SHOWF3DAT buffer L
rc_ratio[i]{col] = ahi[i]/ahoo{i];
if (trickle{i] '= 0) /% SHOWF11DAT buffer X/
time_tc{i][col] = trickle[il];
for(j=0;j<23; j++) /¥ for 23 cells per batt x./
cp_eoc({il}{j] = hid[0].batd{i].cellp{j];
/% SHOWF10DAT buffer X/
}
break; /% end EOC case X/

n case EOD:

/X

if (no_druns < DCHGLIMIT) /¥
break;

for{(i=0;1<6;1i++) /%

]

.~

start EOD case x /
Enough discharge runs?x*/

for 6 batteries * 7

eod_voltage{il{col] = hid{0].batd[i].batv;

/ %
/
aho[i][col} = ahooli]; / %
x1 = DEFLT; /X
x2 = -DEFLT; /%
x3 = 0.0;

for(j=0; j<23; j++) /%

1
1S

x = hid[0].batd[i].cellv[j];

SHOWF1DAT buffer X/
SHOWF13DAT buffer X
high, low, avg of cellx’

voltage at EOD *

for 23 cells per batt X/

if (x > x1) x1 = x;
if (x < x2) x2 = x;
x3 = x3 + x;
cellv_eod[i][Jj] = hid[O0].batd[i].cellv(j];
/% SHOWF6DAT buffer 93
cp_eod(i][j] = hid[0].batd[i].cellp(j];
/* SHOWF10DAT buffer */
cv_eod_hv[i][col] = x1; /% SHOWF4DAT buffer X/
cv_eod_1lv[i][col] = x2;
cv_eod_av(i]{col] = x3 / 23.0;
break; /% end EOD case)

case EVMIN: /% start EVMIN case *x/

current_min = hid(1l].night_min + hid{1l].day_min;
Ji = -1
if (!(current_min % 2)) jj = current_min/2;
for (i=0;1i<B6;i++) /¥ for 6 batteries *
sum = 0.0;
for (j=0;j<6;j++) /% for 6 batt temp sensorsx*/
sum = sum + hid{1l].batd[i].batemp{j];
avg = sum / 6.0; /¥ avg temp per battery x/
batt_avgt{i] = avg; /% CURF2ZDAT buffer 5
avg_temp_buffer{i] = avg_temp_buffer(i] + avg;
/% SHOWF9DAT buffer b 9
if (jj '= -1) /% every 2 minutes */
avgt{i][Jjj] = avg; /* SHOWF8DAT buffer X /
if (hid[l1]}.batd[i].batrecond) /% SHOWF12DAT buffer X/
if ((rc_orbit{i] '= hid[l].orbit) &&
(re_orbit[i] !'= 0))
{

rc_orbit{i] = hid{1l]}.orbit;
for (j=0;3<48; j++)
be_dreli][j] = 0.0;

be_dre(il[jj] = hid[1].batd[i].batc;

A- 8 -¥

if (hid[1].phase)
{
no_crunst++
for (1=0;1<6;1i++)

x1 = high_buffer{i];

x2 = -DEFLT;

x3 = 0.0;

for(j=0;j<23; j++)

{
x = hid[1l].batd[1i]
if (x > x1) x1 =
if (x < x2) x2 =
x3 = x3 + x;

}

cv_he_1lv[illcol] = x2;

if (high_buffer{i] < x1
{
cv_he_hv{i][col]
cv_hc_av{i]{col]
hc_voltage[i]{col]

for (j=0;j<23;j++)
cellv_he{il[J
B

/%

/%
/ X

/X
/*

CHARGE PHASE X/
increment charge runs x/
for 6 batteries X
high, low, avg of celilx:

volts at high-charge *_

/% for 23 cells per batik/

.cellv{jl;

X3
X3

/% SHOWFS5DAT buffer */

)

x1;
x3 / 23.0;

= hid{1l].batd{i].batv;

/%

/%
] = hid{1l}.

J
x = hid{l].batd[i].batc;

ahif{i] = ahi{i] + (x/60

printf("ahi[%d] = %f\n"

if (x < 3.0)
trickle[i]

]

3

jelse(
if {('hid[1].phase)
{
no_druns++;
for(i=0;i<6;i++)
ahoo[i] = ahoo{i]
}
}
break;

} /% end switch x/
} /% end process_data() */

A- 9 -P

.0); /%
yi,ahi{ij);

trickle[i]++; /%

/*
/%

/%
/%

SHOWF2DAT buffer L 9%
SHOWF7DAT buffer */
batd[i].cellv{j]:

SHOWF3DAT work buffer x~/

SHOWF11DAT work bufferx/

end CHARGE case b
DISCHARGE PHASE X/
incr discharge runs * /
for 6 batteries %/

- (hid[1].batd[i].batc/60.0);

/¥
/X
/¥

SHOWF3DAT work buffer x*/,
end DISCHARGE case 54
end EVMIN case . 4

. /***/
check_fault{() /% check telemetry for a fault %/

int 1i,J;
float x,sum;

5
3

for (1=0;1<13;1++)}
x = hid[l].spac{i];
if ({(hid{1l].day_min < 5) && (x < 5.0))
return(FAIL);
J = (1 + 1)/2;
if (J)

{

if (x >= 16.0) return(FAIL);
}else{

if (x >= 8.0) return(FAIL);

5

J

if ('hid[1l].phase && (x > 5.0)) return(FAIL);
\
J

for (i=0;i<6;i++)

{
sum = 0.0;
for (j=0; j<6; j++)
{ .
. sum = sum + hid[1l].batd{il.batemp[j]:
1
;
if {((sum > 25.0) ! (sum < -10)) return(FAIL);
for (j=0;j<23; j++)
!
L
x = hid[1l].batd[i].cellv[j];
if ((x <= 0.0) ! (x > 1.55)) return(FAIL);
}
}
sum = 0.0;
for (i=0;i<3;i++);
{
x = hid[1l].bd[i].busc;
SumR = sum + X;
if('hid{1l].phase && (x < 5.0)) return(FAIL);
}

if (sum > 99.0) return(FAIL);
return{SUCCESS);
} /% end check_fault x/

A - 10 -7

WRIT-FIL. C

#include "hst.h”

SRKKKKKKKKKKKKKKKK KKK KK KKKKKKKKKKKKKKKKKKKKKKEK KK KKK KKK KK KK KKKKR KKK KKK KKKk /

write_file(phase_signal’ /% Determines which data files should *-
int phase_signal; /¥ be written at this time. X/
' int err;

/% printf("at write_file\n"); x/
switch(phase_signal) /% start switch x/
{
case EOC: /% start EOC case x/
if (!'(err wf (SHOWF2DAT))) printf("Couldn’t open %s\n","showf2.dat”};
if (!'(err wf (SHOWF3DAT))) printf("Couldn’t open %s\n","showf3.dat");
if ('{err wf(SHOWF5DAT))) printf("Couldn’t open %s\n","showf5.dat");
if (!'(err wf (SHOWF7DAT))) printf("Couldn’t open %s‘\n","showf7.dat™);
if ('{err wf (SHOWF8DAT))) printf{("Couldn’t open %s\n",”"showfB8.dat"}:
wf (SHOWF3DAT))) printf("Couldn’t open %s\n","showf9.dat"::
wf(SHOWF11DAT))) printf("Couldn’t open %s\n","showflli.dat”::
if (t{(err wf (SHOWF12DAT))) printf("Couldn’t open %s\n","showfl2.dat"};
if (!'(err wf (SHOWF10DAT))) printf("Couldn’t open %s\n","showfl0.dat"):
break:; /% end EOC case X/

if (!'{(err
if (!'(err

case EOD:
if (!'{err
if (!'(err

wf{SHOWF1DAT))) printf("Couldn’t open %s\n","showfl.dat"
wf(SHOWF4DAT))) printf(”Couldn’t open %s‘\n","showfd.dat"”::
if ('(err wf (SHOWFBDAT))) printf("Couldn’t open %s\n","showf6.dat"?:
if (t{err wf (SHOWF13DAT))) printf(”"Couldn’t open %s \n","statfl.dat":@:
break; /% end EOC case X/

case EVMIN: /¥ start EVMIN case X /
if (!'(err wf (CURF2DAT))) printf("Couldn’t open %s‘\n","curf2.dat”):
if (!'(err wf (CURF3DAT))) printf("Couldn’t open %s\n","curf3.dat");
if (!(err wf(CURF1DAT))) printf("Couldn’t open %s\n","fault.dat"):
break; /%¥ end EVMIN case X/

} /% ‘'end switch %/
} /% end write_file %/

JREEEEKKKRKKK KKK KK KRR KKRKK KKK KKK KKK K KRR KKK K KKK K RKKK KKK KR KKK KKK KRR KK KK KK%K /

wf{filename) /* Write output files for Expert System from buffers x/
/¥ containing summarized and condensed telemetry. X/
int filename; /% Files are written at EOC, EOD or Every Minute. K7
FILE ¥sfp: /% Show File# Pointerx/
int i,Jj,err;
switch {filename) /¥ Write data output file
r
case SHOWF1DAT: . /% Write showfl.dat, contains
err = write_fl("showfl.dat",eod_voltage,l); /% EOD voltages per
return(err); /% orbit, per batt X
case SHOWFZDAT: /% Write showf2.dat, contains
err = write_fl("showf2.dat",hc_voltage,2); /% high_voltages per
return(err); /% orbit, per batteryx-
case SHOWF3DAT: /% Write showf3.dat, contains
err = write_fl("showf3.dat",rc_ratio,3); /% recharge ratio per
return(err); /% orbit, per battery
case SHOWF4DAT: /% Write showfd4.dat, contains
err = write_f2("showf4.dat",cv_eod_hv,cv_eod_1lv,cv_eod_av,4);
return(err); /% high, low & avg cell volts
/% per orbit and per battery
case SHOWFS5DAT:. /% Write showf3.dat, containsx
err = write_f2("showf5.dat",cv_hc_hv,cv_hc_1lv,cv_hc_av,5}; :
return(err); /% high, low & avg of 23 cellx’

/% voltages at high charge
/% per orbit, per battery

* ¥

b
X /

X
L 3

* .

*

case SHOWFO6DAT: /% Write showf6.dat, containsx/
err = write_f3("showf6.dat",cellv_eod,6); /% 23 cell voltages at*/
return(err); /% EOC,per orbit, per batteryx-
case SHOWF7DAT: /% Write showf7.dat, containsx/

err = write_f3("showf7.dat”,cellv_hc,7); /% 23 cell voltages at %,

/% high charge per

,
X /

return(err); /% orbit, per battery */

F-2-W

case -SHOWFBDAT: /¥ Write showfB.dat, containsx~/
if ((sfp = fopen("showfB.dat","w")) >= 0) /% average temp per X/
{ /¥ batt every 2 mins */
fprintf(sfp, "showf(8,[")
for (i=0:; 1i<6; i++)
f
ferintf(sfp, "["):
for (j=0; j<48; j++)
{
if (j !'= 47) fprintf(sfp,"%f,",avgt{ilijl};
else fprintf{sfp,"%f",avgtL11[j]};

}
if (i '= 5) fprintf(sfp,"],\n");
else fprintf(sfp,”]1).");
}
fclose(sfp);
return(SUCCESS);
}else return(FAIL);
case SHOWF9DAT: /% Write showf9.dat, containsx.
err = write_fl("showf8.dat",avg_temp,9); /* average temperature x.
return{err); /% per orbit, per batt x/
case SHOWF10DAT: /¥ Write showflO.dat, contains¥* -
if ((sfp = fopen("showfl0.dat","w")) >= 0) /x 23 cell pressures X
{ /% at EOC & EOD for last full x
fprintf(sfp, "showf(1l0,["); /% orbit, per battery X

for (1=0; i<6; i++)
{
fprintf(sfp, "[");
for (j=0; j<23; j++)
fprintf(sfp,"%f,",cp_eod[il[j]);

for (j=0; j<23; j++)

{
if (j '= 22) fprintf(sfp,"%f,",cp_eoc(il{j])
else fprintf(sfp,”"%f",cp_eoc{il(j]);
}
if (i '= 5) fprintf(sfp, "1,\n");
else fprintf(sfp, "]1).");
}
fclose(sfp);
return(SUCCESS);

}else return(FAIL);"

case SHOWF11DAT: /% Write showfll.dat, containsx

err = write_fl("showfll.dat",time_tc,11); /% trickle time per *
return{err); /% orbit, per battery %

case SHOWF1Z2DAT: /% Write showfl2.dat, contains#
if ((sfp = fopen{("showfl2.dat”,"w")) >= 0) /% battery current :

{ /% during reconditioning at K
fprintf(sfp, "showf(12,[")}; /¥ 2 min intervals per battery:

for (i=0; i<6; i++)
i

fprintf(sfp, "[%d,",rc_orbit{il]l)}:

for (j=0; j<48; j++)

{
if (j !'= 47) fprintf(sfp,"%f,",be_drc[i]lljl);
else fprintf(sfp,"%f",bc_drcli]{j]l);

}
if (i '= 5) fprintf(sfp, "],\n");
else fprintf{sfp, "1]).");

}

fclose(sfp);

return(SUCCESS);
lelse return(FAIL);

case SHOWF13DAT: /% Write showl3.dat, contains~
err = write_fl("showfl3.dat",aho,13); /% AHO per orbit,per battery =
return(err); :

case CURF1DAT: /% Write curfl.dat, contains <
if ((sfp = fopen("curfl.dat”,"w")) >= 0) /% -orbit number & *
{ /* reconditioning flags per *
fprintf(sfp, "curf(l, [%d,[",hid[1l].orbit); /% battery S
for (j=0; Jj<6; Jj++)
{
if (j !'= 5) ‘fprintf(sfp,"%d,",hid[1].batd[j].batrecond);
else fprintf(sfp, "%d]]).",hid[1l].batd[j].batrecond);
} .
fclose(sfp);
return(SUCCESS);

}else return(FAIL);

hoa-W

case CURFZ2DAT: /¥ Write curfl2.dat, containsx*/
if {(sfp = fopen("curf2.dat”,"w")) >= 0) /% AHI,AHO, phase, x/
{ /% 13 SPA currents, average X/

/% temperature for each battx/
fprintf(sfp, "curf{2,[%d,%d,\n[",hid[1l].phase,hid{1l}.day_min::

for (j=0; Jj<1l3; j++)

<
C

if (j '= 12) fprintf(sfp,"%f,",hid{l]l.spacljli;
else fprintf(sfp,"%f",hid{1l].spac{jjJ;
3

fprintf(sfp, "],\n{");

for (j=0; j<3; Jj++)

{
if (j '= 2) fprintf(sfp, "%f,",hid[1].bd[j].busc);
else fprintf(sfp, "%f",hid[1].bd[j].busc);

J

fprintf(sfp, "1,\n{");

for (j=0; Jj<6; Jj++)

t
if (j '= 5) fprintf(sfp,"%f,",batt_avgtljl);
else fprintf(sfp,"%f]]).",batt_avgt{jl);
} -
fclose(sfp);
. return(SUCCESS);
lelse return(FAIL);
case CURFIDAT: /% Write curf3.dat, contains *
if ((sfp = fopen{("curf3.dat”,"w")) >= 0) /¥ day min, night min =
{ /¥ 23 cell voltages per batt %/

fprintf(sfp, "curf(3,[");

for (i=0; i<6; i++)

{
fprintf(sfp, "{");
for (j=0; j<23; j++)
if(j t= 22)fprintf(sfp,"%f,",hid[1]).batd[i].cellv];’
else fprintf(sfp,"%f"”, hid[l].batdli].cellv[j];
}
if (i !'= 5) fprintf(sfp, "],\n");
else fprintf(sfp, "]}).");
}

fclose(sfp);
return{SUCCESS);
} else return(FAIL);

k-5 -

case FAULTDAT: /% fault.dat has fault X/

;f ({(sfp = fopen{"fault.dat","w")) >= 0) /x flagl = 0 or 1 x/
i /¥ flag2 = 0 or -1 %/
fprintf(sfp, "fault({%d,%d]).",fault{0],fault{1l]};
fclose(sfp);
return{SUCCESS);

telse return{FAIL);

} /% end of switch x/
3 /% end of wf x/

S EEEKKKKKKKK KKK KKK KKK KKK KKK KK KKK KKK R R KRR KKK KKK KKK KKK KK R KRR K KRR R KRR KR KKK K
write_fl{filename,buffer,number) /% Write output file for Expert Systemx/

char ¥filename; /% buffers containing summarized telemetry. x/
float buffer{6]1{127;

int number;

FIlE xfile;

int i, J;

if ({(file = fopen(filename,”"w")) >= 0)

fprintf(file, "showf(%d,[”,number);
for (i=0; i<6; i++)
(

fprintf(file, "["):

for (j=0; j<12; j++)

{
if (j '= 11) fprintf(file, "%f,", buffer{ilijl);
else fprintf(file, "%f", buffer[il[j]);
}
if (i '= 5) fprintf(file, "j,\n");
else fprintf(file, "]}1).");
1
fclose(file);
return(SUCCESS);
. lelse return(FAIL};

} /¥ end write_f1l %/

A-7-W

/***,-'”
write_f2(filename,bufferl,bufferZ,buffer3,number)

/% Write output files for Expert System from buffers x~

char xfilename: /% containing summarized and condensed telemetry. x/
float bufferl{6][12],buffer2{6]/12],buffer3(6][12};
int number;
r
FILE *xfile;
int i, d;

if ((file = fopen{filename,"w")) >= 0)
fprintf{file, "showf(%d,{",number);
for (i=0; 1i<6; i++)

{
fprintf(file, "[");
for (j=0; j<1l2; j++)
fprintf(file, "%f,",bufferl[il[(j]);
for (j=0; j<l2; j++)
fprintf(file,"%f,",buffer2(i](jl);
for (j=0; j<l2; j++)
{
if (5 '= 11) fprintf(file,"%f,",buffer3{ij{jl);
else fprintf(file, "%f",buffer3{i]{jl);
1
4
if (i '= 5) fprintf(file, "],\n");
else fprintf(file, "1]).");
1
fclose(file);
return(SUCCESS);

lelse return(FAIL);
} /% end write_f2 x/

i write_f3(filename,buffer,number)

'= 22) fprintf(file,"%f,",

S RERKEKKK KKK KK KKK KKK KKK KKK KK KKK KK KKK REK KKK KKK KR RK KK KK KRR KKK KKK KK KK KR KRk KKk X /

/% Write output file for Expert Systemx/

/%¥ from buffers containing summarized telemetry. x-

>= 0)

buffer{ij{jl);
buffer([i]l[jl});

char ¥*filename;
float buffer{61723;;
int number;
FILE xfile:
int 1,Jd;
if ((file = fopen{filename,”"w"))
) fprintf(file, "showf(%d,[",number);
for (i=0; i<6; 1i++)
{
fprintf(file, "[");
for (j=0; j<23; j++)
if (J
else fprintf(file,"%f",
}
if (i

N
fclose(file);
return{SUCCESS);

Jelse return{FAIL);

} /% end write_f3 x/

'z 8) fprintf(file,”l,\n");
else fprintf(file,

"11).");

APPENDIX B

CODE AND DOCUMENTATION FOR EXPERT SYSTEM

PROLOG. INI

This is the initialization file for ARITY PROLOG. The directives

in this file are run every time the Prolog interpreter is called,

by typing "api" from the NICBES directory. Prolog.ini consults

all the PROLOG programs needed to run NICBES (start.prg,

faultd.prg, utility.prg, showpak.prg, grafpak.prg, status.prg,
advice.prg). Any additional routines added to this package should

be included in prolog.ini. All the data files necessary for

the execution of the Expert System are copied to the NICBES
directory. The current data files (curf{N).dat, N = 1 to 3) and
fault.datare loaded. begin/0 is called to initiate the Expert System

P = [’utility.prg’,’showpak.pr ',’grafpak.prg’,’start.prg’, ’advice.prg’,
‘ ’status.prg’,’ faultd.prg’|.

% := shell(’copy c:\usr\showf*x.dat .’),
% shell(’copy c:\usr\curfx.dat .’),
% shell(’copy c:\usr\fault.dat .’).

1={’fault.dat’,’curfl.dat’,’curf3.dat’,’curf2.dat’}.

:- begin.

Start.prg is the main driver for the NICBES. It calls faultd.prg
if a fault flag is set. Otherwise is prints menus to the screen so
that the user, by making selections, can determine what portion of
the system to view next.

o A s - Y——————— o —— - ————— ——— o —————————— — — ———— ——— Y ———— T~ ——— —— —— ——————— —— —————

PREDICATES AVAILABLE IN START.PRG

begin/0--calls fault to read the fault flag. It also calls curf{(l) to
get the orbit number and reconditioning flags, which are both
asserted to the data base for use by other routines. begin/1l then
calls eval_flag/l. begin/0 is called by prolog.ini.

eval_flag(Flag)--if Flag is 1, control is passed to faultd.prg for

fault diagnosis. When finished, the user is asked whether more
information is desired. The user’s response is validated by checkl/1
and then continue/l is called. If Flag is 0, eval_flag/l consults all
the show files to load the data as facts. complete/l is then called
to insure that enough values are present in the data set for accurate
analysis. If there are too many missing data points the user is only
allowed to view the graphics portion of the Expert System. sequence/l

. is called next to prepare the horizontal axis for plots which will be
drawn later. write_message/l then brings up the Main Menu.
eval_Tflag/l called by begin/0.

continue(ves/no)--If yes, eval_flag(0) is called. If no, all data files
are deleted from the NICBES directory and PROLOG is halted.
The user is returned to DOS.

write_message(N)--brings the Main Menu to the screen and waits for user
input which is checked for validity by check2/2. N is a flag which

determines the allowable selections by the user. write_message/l
operates in a repeat-fail loop so that the user can always come back to
the Main Menu. There are 4 selections in the menu:

NICBES MAIN MENU
1. PLOTS AND GRAPHS
2. BATTERY STATUS
3. ADVICE ON RECONDITIONING, WORKLOAD AND CHARGE
4. Quit NICBES
ENTER YOUR SELECTION (e.g. 1<CR>):

write_message/l is called by eval_flag(0). It calls battery/l.
battery(Choice)--Choice (1 - 4) is the item selection from the Main Menu.
battery(4) calls continue(no) to halt the Expert System. battery/l

asks the user to select a battery. The user’s response is validated by
‘ check/2. execute/2 is then called to execute the Main Menu Choice for

B-1-3

the chosen battery. battery/l is in a repeat-fail loop so that the the
user can make multiple battery selections. ’

execute(Choice,Bat)--is called by write_message/l to pass control to the

Choice selected in the Main Menu. There are 3 cases.
execufe(l,Bat)*—Plots and Graphs. A Graphics Menu is written on the
screen with 12 plots per battery. The user may also make another
Battery Selection or Quit to the Main Menu. User’s choice is checked

for validity by calling check/2. After the graph has been drawn on the
screen the user is asked to enter ’<CR>’ when ready to continue.
execute/2 is in a repeat-fail loop so that the Graphics Menu will always
return until the user opts to return to the Main MEnu. show_view/3
(showpak.prg) is called to generate the plots.

GRAPHICS MENU FOR BATTERY N
l1--Battery Voltage at EOD for last 12 orbits
2-~-Battery Voltage at high in-charge for last 12 orbits
3--Recharge ratio for last 12 orbits
4--Cell Voltages at EOD; high, low, average for last 12 orbits
5--Cell Voltages at high in-charge; high, low, avg, last 12 orbits
6--Cell Voltages at EOD for latest orbit
7--Cell Voltages at high in-charge for latest orbit
8--Average Battery Temperature for latest orbit, each 2 min
9--Average Battery Temperature for last 12 orbits
. 10-Cell Pressures at EOC and EOD for latest orbit
11-Time on Trickle Charge for last 12 orbits
l12-Battervy Current during reconditioning, 1 orbit, each 2 min
13-Quit for Another Battery Selection
14-Quit to Main Menu
Enter choice (e.g. 5<CR>):

execute(2,Bat)--activates the Status analysis portion. A header is
written to the screen, STATUS FOR BATTERY N, LATEST ORBIT NN. Then
battery_status/l is called to analyze Battery Status after which the
user can opt to make another Battery selection and return to Status or
Quit to the Main Menu.

execute(3,Bat)--An Advice Menu of five items is displayed to the user.
User’s response is checked for validity by check/2. more/2 is called
to activate the Advice portion of the Expert System. execute/2 is in a
repeat-fail loop so that the Advice Menu will always return until the
user opts to return to the Main Menu.

BATTERY ADVICE MENU FOR BATTERY N

RECONDITION BATTERY?

CHANGE CHARGING REGIME?

. CHANGE WORKLOAD?

. QUIT FOR ANOTHER BATTERY SELECTION
. QUIT TO MAIN MENU

. ENTER CHOICE (e.g. 1<CR>):

.

.

QLB W N -

B-2-5%

more(Choice,Bat)--writes a header to the screen, ADVICE FOR BATTERY N,
LATEST ORBIT NN. advice/2 (advice.prg) is then called. more/2 is called
by execute(3,_).

ORIGINAL PAGE S
OF POOR QUALITY

4 the main control unit for the Lxpe shem. It
% seis 1F Fault flag is set to 1. qalr poarred s
ol qwr ot the soreen. Control is zed bty other portions

A o ST : :* em deending on the usesr’s
i g for turther documentation.

ridl, forkit,Recond])),
{orbit{Oyr L.).l.t)),
: x-‘;?rt al{recondiRecond)),

eval _flag(Flag).

.{faulti[Flags_]))v
<A

eval _flag(l) :-
cls,nl,
Wi LT (Pk
nl,write(ENICRES FAULT DIAGNOSIS FOR ORBIT %),
calll{orbit{Orb)), write(Orb),nl,
fault_diag.nl,
wWr l te (b 2 O R R R T R R R B i R B o OB R K R e R O i R o K O o R O I O R SR R R o o OF i'l-‘ifE ; Y
nl,
repeat,
writel(d Do vou want move information {ves or nol? 33,
reader CAnS),
checll fAns),
continue(Ans) .

R T T T T T e S B S e L Tt L G TN FEF BT g% N LR Rt vy PN 1% % L FEN IR S S S R T TR e T TB% TP 192 o SR S S M

[2R

i
S
’

!

continue {ye

15)
eval fla

o
gy

af

continue(no):—

b4 shell (Pdel showf+. dat’

% shell ("del curf+.dat’),

% shell{’del fault.dat’),
halt.

eval _Tlag(Flag) :- :
["showfl.dat’, ’showf2.dat’, "showf3.dat”, ’shﬂwf4-dat’,’Shmwfs-dat’.
’“hﬁwfﬁ-dat’1’ShDuf?-dat’,’showa.ddt , showf? . dat’, *showfl0.dat’,
‘showfll . dat’, *showfl2. dat’, "showf13. da], .
comelete (M),
vailfarbitfﬂrbif)},
sequence{rbit),
write_message{(N).

84S

ORIGINAL PAGE {S
OF POOR QUALITY

NICKEL CADYUM BATTERY EXPERT SYSTEMZ) ,nl,

T D -0 IS =

NICRBES Yarml,nl,
0TS AND GRAPHS ¢ 3.l

2 BATTERY STATUS 2).nl,

i,
4 QUIT NICBESZ).nl.nl,
YOUR SELERTION {a.g. L1{CR> }): T,

o hw(i«u‘((v,hu”)u N)
bmttery(bholue),
fail.

attery{(4) -
continuei{no).

battery (Choice)} -
w,nl,nl,nl,
@oeat,
nl.write($ NICKEL CADIUM BATTERY EXPERT SYSTEM 13),
. ML aWrlE@{d e e e e e e e e e e e ®y,
rl.ml.

: ENTER BATTERY SELECTION 1 ~ & {&.0. SRS M TR B
quL),nl .Ml
chech T,6),

cecute (Cholce,Bat),
cls.nl.nl,

i, Fail.

w~n(urwig,,at) 2
wr J. te _ 3;:#: € 38 S0 SR S 3FT S S0 S8 R T T A% ST R 2 53 e S S S 0 e S S T A R K 5 S % S SRR SR S S0 B0 BN] S e St SR e S B S 1=|=-‘f]; \ ST 1 .

l.‘_‘lt) 9

write{d STATUS FOR BATTERY 2),write(B
callforbit{(orbit)),

write(d, LATEST ORBIT %),write{Orbit),nl,nl,

pattery _status(Bat),

Tt L 5 Wt l te (: -3';:.1': 33 S¢S S SR T T SE R S S S T 6 el e 25 3 A Mc R Mo K e S0 G S A 3P S G S e S S DO S T e B M e 3 e, S0 1e Jc S 0% e 10 S :' 3 5
ni,nl.

1 QUIT FOR ANDTHER BATTERY SELECTION $),rml.
{3 2 QUIT TO MAIN MENU $),nl,
(& ENTER CHOICE {e.g. I<CRY) ¢ T3,
ruadwr&Lhnl-‘),
- e, o)

L, b, Fadll);{Choice == 2,

-
]

&
o)
in
-~
hn}
o

B-5 -5

S ADVICE ON RECONDITIONMING, WORKL.OQAD OR CHARGES) .

. URIGINAL PAGE IS
' \ OF POOR QUALITY
wrecute(l,Batl -
Aall{orhitiOrbit)),
nl.nl,

riteld . Rattary Voltage
bl @ Battery vVolta 3t
! scharge ratio Tor la 1,
=11 Yoltag at EOD; high, low, average for
5 Cell voltages at high charage; high,low avg, 1a

write(d & Cell Yoltages st EOD for latest orbkit 23, nl,
writel(s 7 eell Voltages at high in-charge for latest oripit 2, ni,
write(3 o Average Battery Temperature for latest orbit, each 2 mirdi el
write(s % Average Battery Temperature for last 12 orbits3).nl,
writel(d 10 cell Pressures EOC and EOD for last orbit®),nl,
write(t 11 Time on Trickle Charge for last 12 orbitsg), nl,
writel(gd 12 PRattery Current during reconditioning, 1 orbit-each 2 min £,
nl.,
writel(t 13 ouit for Another Battery Selection$).nl,
writel(s 14 oQuit to Main Menu $).ml,
write (BENTER CHOICE (e.g. 1<{CR>): %),
reader (Cholce),
cheok{Choice, 14},

' {{Choice == 13,1,fail):
{{Choice == l4,clz,nl.nli;

b

{show_view(Cholce,Bat,Ornits,
tmowe (0,07,
write (BENTER (CR> WHEN READY TO CONTINUE: L),
reader (Ans),
% ago{Filly,
cle, faill)i).

pxecute(3,Bat) :—
repeat,
write{t BATTERY ADVICE MENU FOR BATTERY), write(Bat),
rnl,ml,
write(s
write(s
write(s

RECONDITION BATTERY? 2),nl,

CHANGE CHARGING REGIMET 3),nl,

CHANGE WORKLOAD? 2),nl,

write(3 QUIT FOR ANCQTHER RATTERY SELECTION 3),nl,
write(s QUIT TO MAIN MENU 3),nl.nl,

write{d ENTER CHOICE (e.g. L1{CR>):),

reader (Cholce)
check{Choice,
{({Choice == 4,1,fail);
{{Choice == S,cls,nl,nl);
{more(Cholice,Bat),fail))).

0o LN e

— e
~

S

B-6-5

more {Cholc
wy 1 te (g ”
callforbit(orbeit)),
Write{$ADYICE FOR BATTERY 2),write{Bat),
ldr-‘j_t({r?(fﬁ? AT o 1T \-9) LW ite (Orblt) n 1 o 1 1

f 3¢ 35 W 39¢ 3¢ 3

R E EP S R R R R PR I Ol

RIS R R ST SR R SR R SR O O S SRS o R R R N
ni,nl,
tei(d TO CONTINUE ENTER <(CRY 33,

reader (Ans) o !

2-7-5

Faultd.prg is the fault diagnosis section of NICBES. It uses the
current data contained in curfl.dat, curf2.dat, and curf3.dat to

diagnose alarms to the system. Faultd.prg is automatically
invoked by the system when the C language data handler detects an
anomaly. It loads values into the database, diagnoses the
problem, and cleans up the database, then quits. It is not

accessible by the user. If more than one fault exists, it will
diagnose them all.

——— —— ————— ————— —————— — ——— ——— — — ———— ————— ——— —————_— ——————————— . ——— - —— — . ——— 7 — T

ALARMS FOR NICBES SYSTEM:

More than 18 faults trigger the suggestion to "Check the control
computer.” This is a means to quantify the statement
"lots of crazy data coming out means the control computer is faulty.”

The data handler monitors the telemetry as it comes in, and looks for
values that indicate a serious malfunction of the system, for which the
DEC LSI-11 has sent an alarm to the engineer. The alarms are in five
categories:

1. Power supplies

Current from any SPA less than 5 A. during first five minutes of

the day is a failure of power supply or control circuitry.

Current greater than 8 A. for 1-SPAs (1,3,5,7,9,11) or 16 A. for 2-SPAs
(2,4,6,8,10,12,13) is a failure in control circuitry.

a. current < 5 A during first 5 minutes of charge period
——check the 13 SPA currents (SPA I), phase is 1, day min. <= 5.

b. current >= 8 A for 1-SPAs, >= 16 A for 2-SPAs
—-check the 13 SPA currents.

c. current > 5 A during discharge period
—~-check the 13 SPA currents, phase is 0.

2. Batteries
Cell voltage for any cell less than 0 means a failure in BPRC,
and voltage of 0 means a short to a cell. Cell voltage for any

cell greater than 1.55V. is a failure in control limit circuitry.

a. Cell voltage <= 0 for any cell in any battery
-—-check cell voltages

b. Cell voltage > 1.55 for any cell in any battery

B-1-€

-—-check cell voltages
3. Load banks

If the sum of the current on busses A, B and C {Vl, V2, V3 in

code) is greater than 89 A., bus overload has occurred, a failure
of the control circuitry or load banks. If any of the bus currents
is less than 5 A. during discharge period, a failure of control
circuitry has occurred.

a. Sum of three bus currents > 99 A
——sum the three bus currents (Bus I).

b. Load < 5 A on any single bus during discharge period
~—check the three bus currents when phase = 0.

4. Temperature

If 1 battery has high temperature { > 25C) during charge cycle, thermal
runaway is suggested. If 2 or more have high temperature, it is
suggested that the chamber be checked for coocling malfunction.

If 1 or more batteries are cold (¢ ~10C), it is suggested that

the chamber be checked for failure of coolant control (failed ON).

Average of the six temperature sensors > 25 degrees or < -10 degrees
~-—-take the average of the six temp sensors.

5. Communication

More than two telemetry runs missed mean either a system shutdown
or a communication failure to the PC and will trigger an alarm
diagnosis by NICBES. NICBES resets the fault.dat flag file to 0.
after an alarm diagnosis, so it is ready to start again when the
system is restarted.

No data coming into PC.

———— —— ———— — ——_———————————— —— ——— —————— T~ — ——————— —_—————— - —— "~ —— T o ——————— - ———

CURRENT DATA FILES:
curf(2,[Phase,Day_min,Curlist,Vlist,Templist]).
where Curlist contains 13 SPA Currents
Vlist contains 3 Bus Currents
Templist contains Average Temperature for 6 Batteries

curf(3,[Voltlist]).
where Voltlist contains 6 sublists, one for each battery,
with 23 Cell Voltages each.

fault({fault flag, Type]).

—— . — ———— T T — —— > G G A G - — — D S . W e T . S e S Gt D P e e G o G G S e S M T A S . - Y - —— - — - — - St - -

B2 -¢

fault_diag--uses the current data files loaded in the database by
prolog.ini to find the faults which cause alarms to the testbed system.
Five classesof faults are diagnosed by calls to comm_fail/0,
power_cir_fail/0, loadbank_fail/0, chamber_fail/0, and cell_fail/O0.
A message is written to the screen as each of the above are checked.
If any of these five predicates discover a fault, they write 2 message
to the screen. After diagnosis is done, diagnose/0 checks the
counter 20. If more than 18 fault lines have been written in fault
diagnosis, it suggests that the control computer be checked for
sending bad data. It would be unlikely for that many faults
to occur otherwise. diagnose/0 is called automatically from
eval_flag(l) (start.prg).

comm_fail--checks fault({_,Type]). The Data-Handler will set this
to -1 if it detects a failure in communication, 3 missed telemetry
runs. comm_fail/0 is called by diagnose/0. Fault diagnosis can still
analyze last set of current data files. This may however be
misleading so handle with caution, If no problem found, a message
will be written to the screen so stating.

chamber_fail-—-checks battery temperatures from Templist. If

only one battery is hot (> 25C), it suggests checking for thermal

runaway. If more than one battery is hot, it suggests checking

coolant control. If any battery is cold (< ~10C), it suggests
. checking coolant control failed on. chamber_fail/0 will always

succeed, so that other faults can be diagnosed as well. If no

problems found, a message will be written to the screen so stating.

chamber_fail/0 calls check_temp/2 . It is called by fault_diag/0.

check_temp(Templist,Phase)~~calls check_t to recursively check the list
of temperatures. Counters 1 and 2 are used to store the number of
high or low values found, respectively. Counter 3 is used to keep
track of which batteries temperatures are being checked. checkl_t/3
is called to check highs and lows. Diagnostic messages are printed.
check _temp/2 is called by chamber_fail/0.

check_t([H!T])--checks the head of the list (H) for missing data
(-9999), or temperature out of range, prints a message if either
condition holds, then calls itself on the tail of the list (T).

Counter 3 keeps track of which battery is being checked. Counter
1 keeps track of how many high values, and counter 2 counts low
values.

checkl_t(Highs,Lows,Phase)--checks number of Highs and Lows. Diagnostic

messages are written to the screen.

loadbank_fail--uses Phase and Vlist from curf(2,_). check_bus/2 and
checkl_bus/2 are called to check for problems in the load bank.
find_sum/2 is called to get the sum of the 3 bus voltages.
loadbank_fail/0 always succeeds, so that other problems can also
. be diagnosed. If no problems found, a message will be written to

3 3-¢

the screen so stating. load_bank/0 is called from fault_diag/0.

check_bus(Vlist,Phase)-~checks bus values for missing data (-9999).
If any bus has less than 5 A during discharge phase, failure
of load bank or control circuitry is diagnosed. check_bus/4
is called by loadbank_fail/O0.

checkl_bus{Sum,Phase)--if the sum of the bus currents is over 894,
failure of load bank or control circuitry is diagnosed.
Called by loadbank_fail/O0.

power cir_fail--uses Day_min, Phase and Curlist from curf(2,_), then

calls check_cur/3 to diagnose failures in SPAs. Counter 3 is used
to keep track of which bus is being checked. power_cir_fail/0
always succeeds, so other faults can also be diagnosed. If no

problems found, a message will be written to the screen so stating.
power_cir_fail is called by fault_diag/0.

check_cur([H!T],Phase,M)~-~-checks data from the list of SPA currents {Curlist:
recursively, checking an item, then calling itself on the
tail of the list. It checks for missing data (-9999), then checks
for malfunctions in SPAs. Possible malfunctions are current
less than 5 A in first five minutes of charge period, current
from any SPA in discharge period, current of greater than 8 A
from 1-SPAs (1,3,5,7,9,11), or. current of greater than 16 A
from 2-SPAs (2,4,6,8,10,12,13)., check_cur/3 writes diagnostic

messages to the screen. It is called by power_cir_fajl/0.
cell fail--uses Voltlist from curf(3,_). Calls check_volt/1 to check
each battery cell for problems. If no problems found, a message

will be written to the screen so stating.
cell fail/0 is called by fault_diag/0.

check_volt(Voltlist)-~sets counter 3 to keep track of which cell is being
checked. It recurses through the 6 lists of cell voltages, one for
each battery. The recursive function read_volt/2 is called to check
the voltages. check_volt/2 is called from cell_fail/O0.

read_volt([H!T],N)--checks the head of the list (H) for missing
data (-9999), voltage of 0 (diagnoses hard short), negative
voltage (diagnoses BPRC failure), and voltage over 1.55
(diagnoses overcharge). read _volt/2 then calls itself on the
tail of the list (T). Counter 3 is used to keep track of which
cell is being checked, for use in the failure messages. read_volt/2
is called from check_volt/1.

2-4 F

ORIGINAL PAGE IS
® OF POOR QUALITY

% t diagnosis section of NICBES. . fiwe fault
it See Faultodor For further documentation.

§ 2t (20,07,
mi, wrlrwxm CHECKING COMMUNICATIONS:),
bommm Fadll,
nl, write({$ CHECKING 5PA CURRENTS:2),
power _cir _fTail,
nl, writed(fd CHECKING BUS CLURRENTS:3),
Loadbank_fail,
rnl, write{(t CHECKING BATTERY TEMPERATURES:%),
ckuﬁmcner_ fail,
nl, write(d CHECKING CELL YOLTAGES:%),
cell”failq
ctr _is{20,Faults),
iftheniFallts == O, :
inl,write($+sNo cause found for alarm——chechk alarm
ifthen{Faults > 15,
nl,write(g-———- Many failures——check control computer—-————%3})

.n:: omm_fail -
call{faultd[_,-113}.nl,

el gHECommunication fallure-—veceliving no data from
Write(s Fault Jdiagnosis is limited to last set of current

o

ctr_inc{20, _}.

IV

comm_fail — write(3 No Communications Problems Found! 3.

chamber fail -
call (curf (2, [Phase, _._,_,Templist])),
check_temp(Templist,Phase) .

C.i":i?—.tlnf‘"-‘f“ fail -
(retract(flag) : write(s No Lhamher Problems Found! $)).

checlk _temp (Templist, Phase
chr_set(l,0),ctr_set
check _t{Templist),
oty _is{l.Highs),
ot _is(?,Lows),
fhuLnl t{Highs, Lows, Phase) .

(2,0, oty _zet{(3,1),

25 €

' _ ORIGINAL PAGE IS
check _ti{l). . OF POOR QUALITY

ﬂ
il LWk ite

Temp cdata tem mizsing on

QP Y I

sty _inct,),

nl,write{t*+Battery 3$), write(N),

write(s is overheated-—2),write(H) ,writel($ degrses.t),
nne_assert(flag),

ctr_inc{20,_),

check _t(T).

check t{[HIT]) -
H < —1{i,
ctr _inc(Z,N),
chr _inci{2,_),
nl,write(g+*+Battery 3),write(N),
write(t is too cold at 3).,write(H),write(d degrees._g),
one_assert{flag),

‘l' coby A U I

cheek tO[HIT

checkl _t{_,Lows,_) :—
Lows > 0O,
nl,write(s*eChamber too cold--check coolant control.$),
ctr_inc(20,_),
P,fail.

checkl _t{1,_,1) :-
nl,write(g**Check for thermal runaway.$),
ctr_inc(20,_).)

checkl _ti(Highs,_,_) =
Highs » 2, .
nl.write{d**Overheated chamber——check coolant control.$),

ctr_inc{20, _).

B-6-F

ORIGINAL PAGE 18
OF POOR QUAUTY

Loadbank Fail -
iull“

xur(\,,[Phaﬂe,*,“,»¢i$t,_]})j
20(3,1),
Mhﬂfhwhu F?]lbL,th-e
yumtﬁ‘j'ftuuml,

sSumn, Fhase) |

he

Ioadbanb fail -
tretract{flag); write(s No Loadbank Problems Found!g)i.

check bus{{71,).

sk _bus ([-99990TY, Phase) --
ctr_1s(3,N),

nl.write(tMissing data on bus), write(N),
rtr lnt(.,_),

check _bus{[HIT],Phase) .-~
Phase == 0,
H <5,
ctr_is{3,N),
nl,wrlt@($#kLudd on Bus 2,
t@fN) sWrite(d 1 < 5 amps——load bank o contyol fa;
i ,,_f,(ir‘inc(zﬂ,“},

ure&)

i
peds
r..a

chiech nnuﬂx[H TJ,;}“1u“) -
ctr_inc (3, _),
chumk“bbeT,Phaﬁ

checkl _bus(Sum, Phase) - -~
Sumo > Wy,

nl,write{$++Bus currents > 99 amps——=Ffailure in load barks o corntyo)

circuitry.g),
ctr_inc{20,).
power _cir_fail -
call{curfiz, [Phase,Daymin,Curlist, , 1),
ctr_set(3,1),
check ur/Iur List,Phase,Daymin)

power _cir _fail:~ write(l No SPA Current Problems Fournd!g).

27-F

data From
,Davmin?

oty _inc(3,L),

rl,write{fEsCurrent from SPA“T‘ Wr
circud

writeld Jduring night-—control o
oty ihC! Y,
rheo ! W T rh‘: we, Daymin) .

1, Phase,Daymin) :—

it
rni, write (f*+Current from SPA-%), write(L), write(s =
write(s Check for failure in control limit circuitry.
oty inc{20,_3,

check IHY\T,Fhﬁ% ,Daymin) .

JnL(a, I,

ORIGINAL PAGE IS
OF POOR QUALITY

SPa 2),

writeli),ni,

day—-3),nl,

B-g-F

contral %),

check_o (M T], Phase, Daymin) -
ctr_i“'ﬁ,L),
L o=%= 13,
Pliase ==z 1,
Daymin 7,
Ho 5,
H o> =50,
Qtr_inr(S,_},
rnl,write{d*sCurrent low from SPA-3), write(lL),
write(d in first 5 minutes of
write{s failure of power supply or
ctr _inc{20,_),
chegk_cur(T,Phase,Daymin).

check _our {[HIT], Phase,Daymin) -
Phase == 0,
H > S5,

ife(l),
try failurad),

1,
b
¢\
® /

amps.3),

2

rnl,

ORIGINAL PAGE IS
OF POOR QUALITY

thﬁckwﬁur{[HET]1Phase?ﬁﬁymin) -
ntr im(3.00,
. mud =

st Trom S a-5) W LT Y,writeld = i4
Y

prent limit clroul Ly LB

WLy 1kaJU,.3,
chuuA oy 1.thnw.Daymin),

chack cur{ [HIT],Phase, Daymin)
o lnl(3, 3.
‘hucb cur LT, Phase, Daymin) .

(CJrf(a,VDlTl}CT)),
ctr seti{l,1),
th@ck nlthnltlLut)-

cell,i&Ll z- ' ‘
rwfrartifl . write(g No Cell Faillures Found!$)).

3

check volt([I)-

e (IHITYY =
Lnf\l Nl

et wui‘ (H,MY,
_woith,.

pead volt({l._}.

prmad volt ([=3%99] T1. MY -
ctr inc(3,L),
nl,wr1t9x$M1qcan ddtd or cell 3),write(l},
write(s of battery). ite (M),
read_volt(T,N).

"Pmd V(\Lt{[n'T-l M) -
~ty_incid L),
ril NYJ[P T*F%u~pﬁrf fard short in cell $).,wrd all).
wrlfo\t of battery $},wr1tw(N
Ctt_wnr 20
e sy
reaJ ao‘taY,N)-

—.

B-9-F

ORIGINAL PAGE IS
. OF POOR QUALITY

pead_volt(IHITI, N <
HoCD, :
e
rl.wrid ik Failed in cell 37, writell},

= B T A
crr_inc (3,0,

nl,write(grevoltage too figh in cell $),writeil),
write(s of battery £y, write(N),nls

write(s check agvercharge or Loo high a charge rate.$}),
Ctr_inc(QD,_),

one _assert{flag),

r@ad_volt(T,M).

paad volt([HITI,N) -
ctr_inc (3,00,
read_volt(T,N).

810 €

Status.prg has the STATUS portion of NICBES. Selecting Battery Status
from the Main Menu for battery n (n is 1 through 6) will trigger the
checking of battery n for reconditioning, temperature, workload,

charging scheme, and divergence. Messages will be printed on the screen.
The STATUS section uses averages of data from some of the showf(n).dats
in its analysis. If nothing is wrong with the battery, a message

is written to this effect. Problems with the battery often
produce messages to use "Plots and Graphs” or "Advice” for more information.

——— e s ———— —————— ——— — — — — - ——— ———————— ————- _— g —— ———————————————————— — ———————— . " — T —

The following conditions are examined:

Condition Status—-
Temperature average over last orbit < 0, Cold
and over last 12 orbits < 0

Temperature avg. over last orbit > 11, Hot or possible overcharging
and over last 12 orbits > 10

Temperature avg. over last orbit > 11, Possible overcharging
and over last 12 orbits < 10

. AHO average over last 12 orbits < 3 : Underwork
{3.0 Ampere-hours), and avg. EOD
voltage < 27

AHO average over last 12 orbits > 14 Overwork
(14.0 Ampere-hours)

Recharge ratio average < 1.020 Insufficient charge .
and avg. high-charge voltage < 32.5V

High-charge voltage > 33.8 : Possible overcharge

Divergence average > .8V between High divergence
high and low cells

High cell minus average greater than Too many cells to
(avg. minus low cells) + 1 low values

—————— —————— ———— . —_— ——————_—— o ——————— . — ———— —————— T — ———— —— ———— . —— T~ — — —————— —_——_————_—

PREDICATES AVAILABLE IN STATUS.PRG

battery_status(Bat)--First, battery_status/l checks for reconditioning.
If the battery is being reconditioned, status analysis stops
at that point, since data will be misleading. Otherwise, four
procedures are called, temp_status/l, work_status/1,
‘ charge_status/1, and div_status/1. Each of these procedures

5-4‘1" ?

writes messages to the screen and increments counter 15 if
problems are found. If counter 15 is still zero, a message is
written to the screen that the battery seems healthy.
battery_status/1 is called from execute(2,Bat) (start.prg).

temp_status(Bat)--showf(8,_) {temperature over last orbit) and showf(9, >
{(average temperature over last 12 orbits)} are used in analysis.
get_data/5 is called to get the appropriate battery data and then to
find the its average. Finally, check_temp/3 is called to analyze the
data. temp_status/]l will always succeed, even if no problem is found,
so that status analysis can continue. If no problem was found a
message will be printed to the screen.
temp_status/l is called from battery_status/l.

work_status(Bat)--showf(13,_) (AHO for last 12 orbits) and showf(1l,_)
(EOD battery voltage over last 12 orbits) is used to anmalyze workload
status. get_data/5 is called to get the appropriate battery data and
then to find the its average. Analysis is done by calling check_work/3.
find_avg/2 is called to find averages. work_status/1 will always
succeed, so that status analysis can continue. If no problem was found
a message will be printed to the screen.
It is called from battery_status/1l.

charge_status(Bat)--showf(3,_) (recharge ratio) and showf(2,_) (high
cell voltage during charge) is used to analyze charge status.
get_data/5 is called to get the appropriate battery data and then 1o
find the its average. Analysis is done by calling check_charge/3.
charge_status/1 will always succeed. If no problem was found a
message will be printed to the screen. It is called from
battery_status/1.

get_data(Bat,N1,N2,Avgl,Avg2)--N1 and N2 reference the show files, Bat
is the selected battery. get_list/3 is called to get the
data list for the appropriate show file and battery. find_avg/2
is then called to calculate the average for each data list.
Cut is used to prevent backtracking. get_data/5 is called by
temp_status/1, work_status/l, charge_status/1l.

div_status(Bat)--showf(4,_) (EOD divergence) is used to analyze divergence.
get_list/3 is used to get the appropriate battery data, find_div/5 is
called to find highs, lows and averages, then eval_div is used to
analyze the divergence. div_status/l will always succeed. If no
problem was found a message will be printed to the screen.
It is called from battery_status/1.

check_recond(Llist)--checks the single value passed it by battery_status/1.
If this value is 1, the battery is in reconditioning, and a message
is printed on the screen. No further status analysis is done.

check_temp(Oavg,Avgl2,Bat)--If average temperature in last orbit and

average temperature over last 12 orbits are both below zero,
a message that the battery is cold is given. 1If average temperature

B-2-9

over the last orbit is over 11, and average over last 12

orbits is over 10, a message is given that the battery is hot.
If average over last orbit is greater than 11, and average over
last 12 orbits is less than 10, a message is given to check
chamber or check for overcharging. check_temp is called by
temp_status/1.

check_work(Bat,Ahocavg,Eodv)--analyzes the battery for overwork or underwork.
If the average AHO is less than 3 ampere-hours, and EOD voltage
is less than 27 V, a message that the battery may have memory
effect is given. If the average AHO is greater than 14 ampere-
hours, a message is given that the battery is overworked. check_work/3
is called from work_status/I.

check_charge(Rr,Cavg,Bat)--analyzes the battery for overcharging or
undercharging. If recharge ratio is greater than 1.020, and high
battery voltage during charge is less than 32.5, a message is given
that the charging scheme may be insufficient. If in-charge high
voltage is greater than 34 volts, a message is given that

possible dangerous overcharging may be occurring. In-charge high
voltage average greater than 33.6 volts triggers a message to
check for overcharging. check_charge/3 is called from charge_status,/3.

find_div(List,Avg,Div,Highs,Lows)--Given a List taken from
showf(4,_) or showf(5,_), find_div/5 calls break_list/4 to break
the list into a list of high values, a list of low values, and a
list of average values for cell voltages. find_avg/2 is then
called on each of these lists to find the average high reading (Highs;,
low reading (Lows) and average reading {(Avg) over the 12 orbits.
Div is instantiated to Highs minus Lows. find_div/5 is called by
div_status/1.

eval_div(Div,Avg,Highs,lLows,Bat)--evaluates two measures of
divergence, using variables passed out from find_div. eval_div/5
writes a message that divergence is high if Div is greater than
0.8. If Avg is closer to Lows than to Highs by a noticeable margin
(1), a message is given that too many cells are migrating to low
values. eval_div is called by div_status/1l.

B-3- P

ORIGINAL PAGE IS
‘ OF POOR QUALITY

of NICBES
status from fFive viepwpoints

For documerntation

battery _status{Bat) -
call{recond(Recond)),
find_nth{Recond, 1,Bat,lList),
wilte ($CHECKIMG RECONDITIONING: 3},
chech recond{lList).

pattery_status(Bat) :-
write (s Battery is not being reconditioned!),
ctr_set(l15,0),
temp_status(Bat),
work_status(Bat},
charge_status(Bat),
div_status(Bat),
ctr_is{15,A),
ifthen((A < 1),

(nl,write{s*xBattery seems healthy; no obvious problems. $)).

' tomp _status{Bs

rl.write (POHECKING TEMPERATURE: 3,
gelt_datai{Bat,S,%,Avg,Aval),
check_temp {(Avg,aval ,Bat).

ity .-

temp_status{Bat) :— write(d Mo Battory Temperature Prolblems!

worlk status(Bat) :-
nl,write(BCHECKING WORKLOAD:3),
get_data(Bat,13,1,Avg,Aval),
check_workiBat,Avg,bavgl).

work _status(Bat) :- write(s No Battery Workload Problems!t

charge_status(Bat) :-
rl.write ($OHECKING CHARGE:3),
get_data(Bat,3,2,Avg,Avall,
check_charge(Avg,Avgl,Bat).

charge status(Bat) - write(s Mo Battery Chavrging Problemsi

3t _dataiBat,N1.N2,Avgl,avgd) :-
get_list{(Bat,Nl,List),
find_avg(List,Avgl),
get_list(Bat,N2,Listl),
‘ find_avgl{lListl,Avg2),!.

(- A~ g 4-P

Pr.onl.

$r.nl.

Sr,ml.

s(Bat) -

TCHECK ING DIVERGENCE 37,
quLﬁq,Li:t),
Cddiviiist,Avg, Div, Highs, Lows
1 diviDiv.,Avg,Highs, Lows,Bat) .

sah) o write (s Mer Battery Divergencs Proble

check _recond([11) -
il
write(gesBattery is in reconditioning.®),nl,
wr i te(gekNo further Status, as analysis would be misleading. s3] .

check temp(Qavg,Avgl2,Bat) -
Davag < 0,
avalz < O,
ctr_imc(15,_),nl,
Write (fsPattery is cold--check chamberd),nl,
write(s Select Plots and graphs from Maln Meniu For Battery £,
write(Bat),nl, ' ’
writel(s with choice & from Graphics Merut $),.nl.

check _temp(Qavg,Aval2,Bat) :-
navg > 11, AvglZ > 10,
i Y,nl,
Lrtery iz hot-—check chamber or overchargingdl . nl,
ert Plots and Graphs from Main Mernu for Battery 33,

4ty ,nl,

with choice & from Graphics Menu to see temp, T .l
and with choice 2 from Graphics Meng for overchargina. &@,

check_temp{Qavg,AvglZ2,Bat) :—
NDavg > 11, Avgl2 < 10,
ctr_imc(is,_),nl,
Write(g++Battery is hot this cycle——check for overcharged) ,nl,
writel(d Select Plots and Graphs from Main Menu for Battery &),
write(Bat),nl,
write(g with choice 2 from Graphics Menu for overchargingg).nl.

check _work(Bat,Ahoavg,.Eodv) -
ahoavg < 3,
Fodv ¢ 27,
ctr _inc{l15,_).nl, ‘
writw(i**ﬁaftery may have memory effect.$).nl,
write(s Select Plots and Menus Trom Main Mernu for Battery %),
wtx*ef”ﬁt Lrl,

AR

ite(s with choice 1 from Graphics Mernu for plot of EOD veltage.$),.nl.

wrltp(i Select Advice from Main Meru for Battery 3),
write(Bat),nl,
write(3 with choice from Adv1ce Meru for reconditioning.g).nl.

R-5 -¥

ORIGINAL PAGE IS
OF POOR QUALITY

check work{Bat,ahoavg,Eodv) o
shoavyg 14,

cverworked,. &y ,ml,
from Main Merod for Battery o7,

ooholos Trom Advice Merna workload 33 ,nl .

wit

o, Cava,Batl s

_).nl,

(ptdRattery charging scheme may be insufficient. $).nl,
Wwrite(s Select Advice from Main Mernu for Battery),
write(Bat),nl,

write(d with choice from Advice Menu for workload.g),nl.

checl _charge(_,Cavg,Bat) :—
Caveg > 34,
ctr_inc{ls,_),nl,
write(derPossible dangerous overcharging. ##g),nl,
write(? Select Advice from Main Menu for Battery),
write{Bat),nl,
write(s with chioice from aAdvice Meruw for charging.$),ni.

. check _charge(_,Cavg,Bat) -

Cavg > T3.6,

ctr _ineils,),nl,

Wi i heck for overcharging. ##3),nl,

writei(s Select Advice from Main Menu for Battery),
write{Bat),nl,

writel(s with choice from Advice Menu for charging.3),nl.

{ q'; E

Find_div{list,Avg,Div,Highs,Lows) -
break list{lList,Listl,List2,12),
break list(List2,List3,List4,12),
find_avg(Listl,Highs),
find_avg(List3,Lows),
find_avg(lList4,ava),

Div is Highs - Lows,!.

eval _div(Div,Avg,Highs,Lows,Bat) -
A Ls Highs - Avg,
B i1s Avg — Lows,
C is B + 1,
O A,
nl.write ($##Too many cells migrating to low valies.#*%3),
ctr_inc{l5,_),fail.

5P

ORIGINAL PAGE I8
OF POOR QUALITY

pval _divi{Div,ava,Highs, Lows,Bat) -

Div » Do,
rl.writ w#FDivergence is high, may

1
Fom Main

“om o Advioe

7

¥

rieect
M

Meésrig

recorndl tion:

for

for

Battery

(AR EIuEe1g] ij i ’

i

e

L

Advice.prg contains the ADVICE section of NICBES which goes into

further detail on three subjects: whether a battery needs reconditioning,
changes in charging scheme, or changes in workload. Select Advice from
the Main Menu for battery n brings up a menu of three choices for the user.
The ADVICE section finds trends in many of its data files, and uses themn,
along with averages, for analysis in greater depth. Messages to

the user give trends and average values, as well as advice.

ADVICE section, using trends in voltage, recharge ratio, divergence
and temperature--

AHO average (Ahoavg) is used for advice on workload. It is considered to
be overly high above 14, high above 9, average around 7 and low below 3.

EOD pressure (Eodpress) is considered to be high above 100, and fairly high
above 90. EOC pressure (Eocpress) is considered to be high above 110, and
fairly high above 100. .

Divergence (Div) is considered to be high above 0.8V (difference
between high and low cells).

e A e —— ——— —— —— —— i — — — S — —— A —— ——— o ———— — —— ———— ———————— — ————— —— — ————

PREDICATES AVAILABLE IN ADVICE.PRG

advice{Bat,Choice)~-with choice 1, advice/2 calls get_one/6 to get data,
and recond/5 to analyze it. With choice 2, advice/2 calls
get_two/7 to get data and chgchg/6 to analyze it. With choice 3,
advice/2 calls get_ three/4 to get data and chgwrk/3 to analyze it.
advice/2 is called by more/2 (start.prg).

get_two(Trend2,Trend3,Div,Trend9,Eodpress,Eocpress,Bat)--The
hand-crafted deviation factors are called (Dev2,Dev3,Dev5,Dev9).
Then get_list/3 is called to read data from showf(2,_)
(in-charge cell high voltage), showf(3,_) (recharge ratio),
showf(5,_) (in-charge divergence), showf(8,_) (temperature),
and showf(10,_) (cell pressure). Trend analysis is done on voltage,
divergence and temperature by calling trend_analysis. find_div/5 is
called to find average divergence. find_avg is called to find average
cell pressure EOC (Eocpress) and EOD (Eodpress). get_two is called by
advice/2.

get_three{(Trendl,Trend4, Ahoavg,Bat)~--Hand-crafted deviation
factors are called (Devl,Devd). Then get_list/3 is called to read
data from showf(l,_) (EOD battery voltage), showf(4,_) (EOD
divergence) and Statfl,_) (AHO).
trend_analysis/3 is called to derive Trendl of voltage. disp_trend/3
is called to find divergence trend. find_avg/2 is called to find
average AHO. get_three is called by advice/2.

B1- A

get_one(Trendl,Trend2,Trend3, Trend4, Trend5,Bat)--Hand-crafted

deviation factors are called (Devl,Dev2,Dev3,Devd,Dev5). Then
get _list/3 is called to read data from showf(l,_) (EOD

battery voltage), showf(2,dat (in-charge cell high voltage},
showf(3,_) (recharge ratio), showf(4,_) (EOD divergence) and
showf(5,_) (in-charge divergence).

trend_analysis/3 is called for voltages and recharge ratio.
disp_trend/3 is called to find trends for divergence data.
get_one is called from advice/2Z.

disp_trend(List,Trend,Dev)--bréak_list/4 is called to break the

divergence List into highs (Listl), lows (List3), and averages
(Listd4). get_disp/3 is called to figure the divergence list (Divlist).
Then trend_analysis/3 is called on Divlist. disp_trend/3 is

called by get_three/4 and get_one/6.

get_disp(Listl,List2,List3)--is a recursive function to find the

differences between corresponding values of twe lists, and put the
differences in a third list. It is used to find the divergence
between high-voltage cells and low-voltage cells in the data from
12 orbits. Missing data (-9999) in either of the comparands means
that -9999 is written to the list of divergence. Comparison is
done of the heads of the two lists, and the result is put in the
head of the third list. Then get_disp/3 is called recursively on
the tails of the lists. Halting condition for the recursion is the
empty list. get_disp is called by disp_trend/3.

trend_analysis(list,Trend,Dev)-—-analyzes trends in data using two

simple mathematical functions. find_wl/2 is called, which weights

"recent values more heavily, and sums the weighted values. Then

find_w2/2 is called, which weights all the values equally, with

the weight ((n+1)/2) chosen so that for a list of constant values,
find_wl and find_w2 give the same sum. Then eval_trend/3 is called
using the difference of the two weight functions (Diff), and the
hand-crafted deviation factor (see dev/6 below) appropriate to the
set of data being analyzed, and returns the Trend. trend_analysis/3
is called by get_two/7, get_three/6, and get_one/4).

find_wl(Weightl,List)--given a list of n values, find_wl/2

calls multwt/2 to multiply the first by 1, the second value by 2,
the third by 3, and so on till the nth value is multiplied by n.
find_wl/2 uses counter 12 to keep track of the number of

items in the list. Weighttl is the sum of the individual products.
find_wl is called by trend_analysis/3.

multwt (Wt,[H!T])--checks for missing data (-99), then calls

itself recursively on the tail of the list (T) until the empty list is
reached. Each recursive call that does not find a missing data item
increments the counter. Then as multwt/2 climbs out of the recursion,
the value of the counter is multiplied by the head of the

list (H) at that time, and is added to the weight, which has

B2-A

been is initialized to 0 for the empty list. multwt/2 is
called by find_wl/2.

find_w2(Weight2,List)--initializes a counter, then calls find_sum
on List to find the sum of the values. Then a weight factor is
figured which will make Weight2 (from find_w2) equal to Weightl
(from find_wl) if the List contains all one constant value. This
weight factor is figured by (n+1)/2 for a list with n elements,
and is multiplied by the sum. find_w2 is called by trend_analysis/3.

eval_trend(Dev,Diff,Trend)--takes the deviation factor, and the
difference (Diff) between Weightl and Weight2, and determines a
trend. If the absolute value of Diff is less than Dev/3, the
trend is none. For positive Diff, Diff greater than Dev/3 and
less than Dev is considered to indicate the trend is slightly_up.
Diff greater than Dev but less than 2 times Dev indicates the
trend is up, and Diff greater than 2 times Dev indicates the
trend is strongly_up. Similarly, negative Diff is slightly_down
for Diff less than -Dev/3, down for Diff less than -Dev, and
strongly_down for Diff less than 2 times Dev. Prolog syntax is
used to advantage in this code, with atoms giving the trends.
eval_trend/3 is called by trend_analysis/3.

recond(T1,T2,T3,T4,T5)-~-writes the trends (EOD voltage, in-charge
high voltage, recharge ratio, EOD divergence and in-charge
divergence) on the screen, and calls tell_1/5 to analyze the
trends to determine whether reconditioning is advisable.
recond/5 is called by advice/2.

chgchg(T2,T3,Div,T9,Eodpress,Eocpress)—--writes the trends (in-charge
voltage, recharge ratio, and temperature) on the screen, along
with the averages (in-charge divergence, EOD pressure and EOC
pressure). Then tell_2/6 is called to advise as to whether the
charging scheme should be changed. chgchg/6 is called by advice/2.

chgwrk(T1,T4,Ahocavg)-~-writes EOD voltage and EOD divergence
trends to the screen, along with the AHO average. Then tell_3/3
is called to advise if the workload should be changed. chgwrk/3
is called by advice/Z2.

tell_3(T1,T4,Ahoavg)~~-Six conditions are used by tell_3 to advise
as to workload change.
1. EOD voltage down, EOD divergence down, AHO avg. less than 5
--loads probably too light.
2. EOD voltage strongly down, EOD divergence strongly down, AHO
average less than 5 ~-losing capacity due to memory effect,
try heavier load.
AHO average greater than 14 —--possibly destructive overwork.
AHO average greater than 9 --heavy workload.
EOD voltage down or strongly down, EOD divergence down or
strongly down, AHO average above 6 --losing capacity. Consider-
reconditioning.

(S0)

‘B3pA

5.

none of the above --see no need to change workload.

tell _2(T2,T3,Div,T9,Eodpress,Eocpress)--Nine conditions are used by
tell_2/6 to determine if the battery should have its charging
scheme changed.

1.

w N

[9}]

8.

9.

Temperature strongly up, EOD pressure greater than 100,

EOC pressure greater than 110 --overcharging causing high
pressure.
In-charge voltage strongly up --check for overcharging.

EOD pressure greater than B0, EOC pressure greater than

100 ~-charge rate may be too high.

EOD voltage strongly down, in-charge voltage strongly down
--undercharging may be seriously affecting capacity.

EOD voltage down, in-charge voltage down --appears to be
undercharged.

EOD voltage strongly down or down, in-charge voltage strongly

down or down —--undercharging may be causing loss of voltage.

EOD voltage down, in-charge divergence greater thanm 0.8
--undercharging may be causing loss of voltage.

EOD voltage strongly down, in-charge divergence greater

than 8 -~undercharging may be causing serious loss of voltage.

none of the above --see no need to change charge scheme.

tell_1(T1,T2,T3,T4,T5)~--uses 11 conditions to determine if a
battery needs to be reconditioned.

1. EOD voltage strongly down, in-charge divergence strongly up

' --reconditioning advised.

2. EOD voltage strongly down, in-charge voltage strongly down

-~-recondition soon.

3. EOD divergence strongly up, in-charge divergence strongly
up —--strongly rising divergence indicates reconditioning.

4. Voltage trends strongly down or down, recharge ratio and
divergence trends strongly up or up --reconditioning is

indicated by all five trends.

5. Recharge ratio strongly up —--reconditioning indicated.

6. In-charge voltage is down or strongly down, in-charge
divergence is up or strongly up --reconditioning recommended.

7. EOD voltage down or strongly down, in-charge divergence
up or strongly up --reconditioning indicated.

8. Both divergences up --consider reconditioning.

9. Recharge ratio up --consider reconditioning.

10. Both voltages down —--consider reconditioning.

11. none of the above --see no need to recondition at present.

dev(Devl,Dev2,Dev3,Devd,Dev5,DevI)--Data structure, listed as a fact,

which contains the hand-crafted deviation factors. Each one

is associated with a data file.

Devl1=2 - showf(1l,_) - EOD battery voltage

Dev2=2 - showf(2,_) =~ in-charge high battery voltage

Dev3=0.02 - showf({(3,_) - recharge ratio
Dev4=0.15 - showf(4,_) - EOD cell voltage divergence

Dev5=0.09

showf(5,_) - in-charge cell divergence

B-4 B

Dev9=13 - showf(9,_) - battery temperature

These values are used in the weighting scheme to analyze trends.
To INCREASE sensitivity to trends, lower the values. These need
not be integers, but must be greater than 0.

To change these values, put advice.prg in your favorite editor and
revise the data structure dev/5. No other changes are necessary.

B-s-A

ORIGINAL PAGE {8
OF FOOR QUALITY

“ o pra oleris trends to give further analysis on whether a
ot should be reconditioned, charging sheme) o
% o changed. advice doc for dooumentation.

. +: ON RECONDITIONING BATTERY: ##%),nl,
ﬁﬂﬁ{TF@ﬂdl,Tteﬂd¢1-fEﬁdS,TFeﬂdﬂ,TF@ﬂdS,Bat)7
' Trendd, Trendd, Trendd) .

achv ic f"‘l]_di) et
wt;Ll”t:'(’EH ADVICE ON CHANGING CHARGING RF[;TME' OF BATTE RY: ##% $),ni,
get _twol{Trend?,Trend3,Div, Trend?,Eodpress,Eocpress, Rat) .,
chogoha{Trend?2, Trend3,Div, Trend?, Eodpress

advice(Bat,3) -
write{dsr ADVICE ON CHANGING WORKLGAD OF BATTERY : #*+3),nl,
get_three(Trendl, Trend4, Ahoavyg,Bat),
hqwrkxTrendl Trendad, Ahoavg) .

g@t_twm(Trend' Trend3,Div, Trendy, Eodpress, Focpress,Bat) -
call{dev(_,Devz,DevE m,_,Dev?))

i _l.i.‘i-’i‘t(_B:.:f.L.,i“L 1"

red_analysils

list{Bat,3,L13t3},

trend analvsis(li s, Trendd, Devi),

Qut_liﬂt(B&t,S,Ligta),

fired, divfliﬁtﬁ,_,Div,_,_),

Qet list(Bat,¥,Liat%),

trﬁnd_dnqumfm(LiSt?,Trend?,DeV@),

aet_list{(Bat,l0,Listld),

break_list(ListlO, DliEt,CliSt,Zﬁ),

find avg{Dlist,Eodpress),

find_ava{Clist,Eoacpress).

Trend?,Deve),

get_three(Trendl, Trendd,Ahoavg,Bat) -
\dA¢ldewavl, ,Devd, _,_)),
2 & [' l LL‘:J _L§

\'L\Bclt,'-’&.,l..l*.
trﬁnH(List4,Trend4,Dev4),
C Tist(Bat,l3,Listx),

'1nd Lava{Listx,shoavg) .

2-6-M

ORIGINAL PAGE IS
OF POOR QUALITY

nrn‘i__ , Trend?, Trendd, TrendS, Bat) -
,DEVL,DQVS,Devd,DQVS,W)},

L Trendl, Devi),

\‘H‘l[,\. T ')
ﬂdfll“t‘ wandde@VS},

disp trendilist, Trend,Dev) -
break_ligt(List,Ligtl Lis
break _list(list2,lists istd, 12,
get _disp(listl,lis t3,hivlist),
tY@ﬂumdﬂdliblm(DlVllSt,TT@ﬂd,Dev).

t2,12),

get _disp (0], 01,01).

aet. 41~,,-,|{Hl'11],m;?: T2],[HriTrl) -
M .
et dl p{TL, T2, Tri.

tﬁendmanalyﬁiﬁ(List,Trend,Dev) ;=
find wl{Weightl,lList),
find _w2{Weight2,List),
Diff is Weightl - Welight2,
eval _trend{Dev,Diff,Trend).

Find wliWeightl,List Yo

oty _set(lLMl)1 A
muleLaNe1ghtl,Liﬁt}_

2-7-R

T =
e, LiE Ty o
‘ ,'10,033

ilﬁd anami 1 st , Sumy
ety dm{Ll0, A}u

i A+ 1,
1w B/Z2.0,
Weight?2 1€

Firvd_ w“ﬂw

o
o Sum.
eval trend(Dev. niff, Trend)

HOLS fib”ki‘lff\

& ¢ Dev,

Tyand = nons.

trend{D@v,Difijrendj
nDiff > i,

pniff ¢ {4
Trand =

pval

s i ff,

Trend)

wval trandiDe
Diff » u,
niff » (5 #* Dev),
Trend = strongly _UP.

eval_trend(Dev,DiFF,Trend)
Diff < Uy
s ls -2 0#F
piff > A,
Trand = sliaghtly

nev ,

“”il_trEHd{D@v,DiFF,Trend)
Diff < 0.
A s ~3
piff A,

Trend = down.

Dev,

ORIGINAL PAGE IS
OF POOR QUALITY

"Minc(liﬂﬁ})ﬁ

WEiE Tamp, Wt is Bt

AOWn .

3-8 -A

Teamp) -

ORIGINAL PAGE I8
OF POOR QUALITY

wval trend{Dev,DifF,Trend) -
DifFF < O

#
o

fronoly o,

T, Ta,TE)
oD voltaos trend 1s $),write(T1l),nl,

v voltage trend is $),write{T2).nl,
- ge ratio trend Is $),write{T3),nl,
sEOD divergsnoe trend is $),write(T4ai.nl,
write(tIn-charge divergence trend is $),write{T5),nli,
tell 1(T1,T2,T3,T4,T5).

Wit

N .
z 4

chachal(T2,T3,Div, T9, Endpress,Eocpress) -
write(3In—charge voltage trend is) ,write(T2),nl,
wr 1te{

{tRecharge ratio trend is §),writel(T3),nl,
write($In—charge divergence avg. over last 12 orbits iz 37,
writel(Div),nl,
write{savg. of cell
write(Eodpress),nl,
wriite{sava. of cell
write{Eocpress),nl,
write(fTemperature trend is $),writelT?),nl,

‘ twll 2(T2,T3,Div, 79, Eodpress,Encprass) .

=t 12

at EOD over

at EQOC over last 12 orbits is $5.

"1, Ta,ahoavg) o

voltage trend is $i,write(T1l:,nl,
divergence trend is $),write(T74),nl,
¢ last 12 orbits is 3,

tell _Iddown,down,Ahoavg) -

Davg (5,

write($++Battery loads are probably too light——memory effectd),.nl.
write(3 is indicated.s).

tell 3{strongly_down.,strongly_down,Ahnavg) -
Ahoavg < 5,
write(PH+Battery is losing capacity due to memory effect. Try all,
nl,write{s deeper DobD first$),.ml.

tell 30, . Ahoavg) -

9 > 14,
write(sekRattery is overwori
- ¥

i .

~-—may result in destructive damage.$),

2-9-f

tell

tell

tll

tell

tell

ORIGINAL PAGE
OF POOR QUALITY

B, _.Ahoavg) =

.‘—\mu-w Ty T,
e ”**Ritterv rlhload seems heavy at 3,
writw Anoavg) L write (FAHD . E) .,

,Ta, ahoaveg) o
= odown; T1 = sTrong

= dﬁwn T4 = Strong

1w dowrd,
1y _down) ,

v is losing capacity. Corrs i der peconditioning B .l

_)
write(tSee no need to change workload.) ,nl.

2(,_,_,strongly_up,Eodpress,Eocpre ess) -
» N
5

100,
mept 110,
wir it xT~~varchﬂrq.nq caused high pre Check charge Limit®),ml,

write(d cirowlitry, or change charae rwnxmo immediately _$).0i.

s{Trend2, . _s_._2_) =~

{Trend2 is strongly _up),
w1 te ($R*Check for overchargings voltage is high.3$).

g .__,.(.'r p" [780N) b

HO

write : rate may be too hiah. Precsure high at £00, thou
nl, N?LEth ; = vecombination lowers pressurs dAuring dis

s bt e L g

-

_2{strongly_down,strongly_down, o

— 7 —t -
write{gseBattery urdercharging may be seriously affecting bat?
nl,write(s capacity for work.3),nl.

2 {down,dowr, _,_._,_) =
write(t++Battery appears to be undercharged.$) .nl.

,_'.T Tq, " :=

(T2 is tronqlv down: T2 is down},
(T3 is btrongly”down; TS is downl,
write{dekUndercharging may be causing loss of voltage.$),n

[
)

_e{dowr, _,Div,_s_,_) =~

Div ¢ D.&,
wr i te{$+EUndercharging may be Causing

“fﬁtrnnqu dowrn, _.Div,_._
Div < 0.
wrlre($*+Undprchdrq1nq may be causing serious loss of voltage.3).nl

B’lO'A

tell_

tell

tell

tell_

PR A ST I N S

ORIG!INAL PAGE I8
OF POOR QUALITY

) -

L] [}

ey

write($ses no need to change charging scheme $).nl.

trongly _up,strongly _upl -
Strongly ri

(7L, T2, T3, Td,TS) -

{T1 is strongly_down; T1 is down),
(T2 is strongly_down; T2 is down),
(T3 is strongly_ups; T3 is up),

(T4 is strongly_up; T4 is up),
(TR “ongly _up; T8 is up),
wr i he

1{ _, ,strongly_up,_,_J) =

write{ttkRecharge ratio indicates sevious

shkRoeconditioning is indicated by all

loss of

racondl tioning

Five trends.3).nl

nl,write(d suggest reconditioning soon.3$),nl.

yo_a 13

ot ;

z strongly _down),
TR upy strongly _upl,
write(st+sReconditioning recommended.
ml.writel(d to low values.$),nl.

T(Tly a_ s -TH} 2=

(Tl is down: Tl is strongly_down),
(TS is up: TS is strongly_up),
write(sseConsider reconditioning to

-1-(:_7_1__1up1|~1p) i
wr ite(f+kConsider reconditioning to

tE‘?ll__li::_-;__-;'—lp:-.,v_) =T

write(g+*Consider reconditioning to

nl.

tel]l _1{down,down, _, _,_J) -

T 7

write(deeBattery is losing car

by

tell _1{_,_s_s_s_3 =—

Too many cells ars migratin

correct poor performancs.

correct divergence.$),nl.

correct

COrE L

rising rechargs

write{tSee no need to recondition at presentd),nl.

dev(2.0,2.0,0.02,0.05,0.09,4.3).

‘e 11~

Ry

¥

ornditioning.

Ty,nml.

Showpak.prg contains the DECISION SUPPORT system, which gives
the 12 plots which are available to the user upon selecting
Flots and Graphs from the Main Menu. The graphical primitives
from Grafpak.prg are used in the plots. Showpak contains a few
supporting data handling primitives and the titles, horizontal
and vertical captions used in the plots.

12 Plots in the DECISION SUPPORT package:

1)

EOD battery low plotted 26.4V.
valtage high plotted 28.86V
scale .2V
2} In-charge high low plotted 32.0vV
cell voltage high plotted 34.2vV
scale .2V
3) recharge ratio low plotted 1.010
high plotted 1.055
scale .005
4} EOD divergence low plotted 1.05v
high plotted 1.55¥%
scale .05V (cell)
5) In-charge low plotted 1.35v.
divergence high plotted 1.55vV.
scale .02V, (cell)
6) EOD cell V. low plotted 1.05v.
divergence high plotted 1.55v.
scale .05V, (cell)
7) In-charge cell low plotted 1.36V.
divergence high plotted 1.56V.
scale .02V. (cell)
8) Temperature low plotted -4c¢
this orbit high plotted 11¢
scale 1C
8) Temp. avg. low plotted -4C
high plotted 11¢C
scale 1C
10) Cell Pressure low plotted 30

2-1-D

EOD and EOC high plotted 140
scale 10 units
11; Time on low plotted 8
trickle charge high plotted 28 minutes
scale v 2 minutes
12) Reconditioning low plotted 0 A.
current high plotted 14 A.
scale 1 A.

The above numbers can easily be manipulated to change range or
scale of the plots, but must remain integers. These changes can be
made in Showpak.prg by editing the correct ’show’ data structure.
’show' has the following format:

1. N - the number of the plot (1 to 12)

2. Vertcap - vertical caption

3. Horizcap - horizontal caption

4. Title - graph title

5. H - heigth of graph

6. W - width of scale

7. Base - lower bound for data points plotted
8. Top - upper bound for data points plotted
g. Hscale - horizontal scale of values

10. Vscale - vertical scale of values

11. Start ~ start point of graph

Changing the number of orbits plotted from 12 is more difficult, and
will require chasing down many ll’s and 12’s, as well as rewriting the
file handler portion of the code.

Colors are Colors are set in predicates
1 = blue "wa(n,color)", where n is the number
2 = green of characters of that coleor, and
3 = 1light blue color is one of the numbers to
4 = red the left.
5 = pink
6 = gold
7 = white
8 = gray

Symbols for the graphs are referrenced by their ASCII code.

e e e e — ——————— —— —————————————— —— - ————————————_———————_——] —_— - —— 2~ = —

THE PREDICATES AVAILABLE IN SHOWPAK.PRG

show_view(N,Bat,Orbit)--N specifies which plot is done, and Bat
specifies which battery is displayed. Orbit gives the current
orbit number. The data structure ’show’®, discussed above, is
called to get all the captions and values needed for plot N.
show_view/3 calls get_list/3 to read the appropriate data file.

%-2-D

Then graphplus/6 and plot/B (in Grafpak.prg) are called to plot

the display. Besides the information in ’show’, only the <color
and symbol need to be passed. The present orbit is then written
to the plot, if applicable. show_view/3 is called by execute/2,

the Graphics Menu.

show_view/3 -— There are four cases; plot 10, plot 12, plot 4 and 5,
and the rest. Plot 10 displays 2 lines, plot 12 has the orbit no.
preceeding its data, plot 4 and 5 display 3 lines each. For plots
4,5 and 10, breaklist/4 is called to break the data into

lists, each one to be plotted on the same graph. plot/8 is then
called for each list with a different color and symbol.

write_orbit/0 -- writes ’Orbit’ on the horizontal axis. Called by
show_view/3.

write_orbit/l] -- writes ’Orbit’ and the last orbit on the horizontal
axis. Called by show_view/3.
show/11 -- a data structure containing the captions and values needed

to display the graphs. Itemized above.

B-3-D

ORIGINAL PAGE B
. OF POOR QUALITY

% nwmak-—contains the decision support system, 1.e.
- ilad the 12 plots which support analvsis in At
o4 showpalk doc Fro fur ther documentation.

iew{iIn,Pat,Orbhit) -
et 11---r'.L‘n in,List),
shiow {10, Voap,Hoap ., Title, H, W, Base, o, Heca
)nrx4°’H N Vran,Hcap,Titl@,Bat), :
- st,histl,Liste,23),

ntkLl,Cl HW MLH,V xnl@,Ra 2, Top,3,Start, 2543,
nLnT (List?,Hscale,Vscale,Base,Top,4,5tart,4),
erte_mtblt(UFblL: !

T -

show_view{l2,Bat,orbit) -

(;li‘t__la.:\l"\' .1t,-¢. [R-,LJ.._\t]) 5

Start)y,

callshow(l2,Voap,Hoap,Title,H,W,Base, Top, Hscale,Vsoale, Start) 1,

graphplus(H, W, Voap Heap , Title,Bat),
ist,Hscale,Vscale,Base,Top,4,S5tart,254),
write_orbit(R).

show_view{V,Bat,0rbit) :-

. (V == 4; V == 5),
wet_list(Bat,v,list),

71=“hnw'¥,JPHQNHFHﬁ T'Tlﬂ W

,12),

127,
tl HMLdLH,ﬂ“ s, Top ,3,5tart,
i ,\leta,H«.. B e, Top,4,5%tart,
le‘xt’Ll t4 He: L‘ll‘-‘ Ve dlb‘ Bt‘l‘-d-‘ Tllp-./ ,‘)tdft
write orkit,!

Ll

show_view(V,Bat,0rbit) :-
get_list(Bat,v,List),
call (show(V,Vcap,Hcap,Title,H,W,Base, Top,Hscale
araphplus(H,W,Voap ,Hcap,Title,Bat),
plot{lList,Hscale,Vscale,Base,Top.4,5tart, 254,
({{Y ==z B:% ==z &3;V == /),wrltP orbit{0rk 1[),.
write_orkit),!.

'l
O3
,__

L Start))

write_orbit -
tmove {24,353,
walh, 2y,
write{sorbitd).

B-4-D

ORIGINAL PagE j
S
‘I' OFf POOR QUALfTY

write orbit(Oriait) -
tmove (24,00,
wa(lD,?),
’fr(?ﬁrkit e,
writelrhit)

ORBRT

Foapl, ? FOR L 1z

- B oy - g -

f"'.':i’llt:’l/‘.l '1.-‘:‘3 {—;4-:3‘::31.0,;3] IPY) .'.l_x, D . 4 ..1).;_-,\) it .l]..\u_f,l_a-. u_ -D_--.-. L
apl, HIGH VYOLTAGE DURING CHARGE FOR LAST 12 ORBITS’,
0,34.2,5,0.2,11).

show(3,[1.057,1.0R0,1: 045,1.040 1.035,1.030, l.u 5,1.020,1.015,1.01071,
HLdpl,’ RECHARGE RATIO FOR LAST 12 ORBITS’, us,l.mlo,l.qu,ﬁ,m-ums,li)"

show(4,[1.55,1.50,1.45,1.40,1.35,1.30,1.25,1.20,1.15,1.10,1.05],Heapl,
: EOD HIGH(blue) - LOW(red) - AVG(wh) FOR LAST 12 ORBITS’,
12,65,1.058,1.55,5,0.05,117.

show(5,[1.55,1.53,1.51,1.49,1.47,1.45,1.43,1.41,1.3%,1.37,1.35] ,Hoapl,
? HIGH (b lue) - lUN\red) - AVF(wh) - DURING CHARGE LAST 12 ORBITS”,
12,65,1.35,1.55,5,0.02,11).

showi{e,[1.55,1.50, l-45,.]..40,l.'f5,1 30,1.25,1.20,1.15,1.10,1.0571,

I:l'n -,1{:_:,‘-', -,.La.-;’ .,.llﬁ: 3 '!,‘::11 1,;“{’“:,’ 5]?

? SEOEOD CELL VOLTAGES FOR LAST ORBIT?,13,82,1.05,1.55,2.0.05,11;.

=y 1wk [1.56,1.54,1.52,1.50,1.4%,1.46,1.44,1.42,1.40,1.33,1.3:1,

L1, T, TL1h,7 T, le, T TLEl,T TLRe],

i 2% HIGH CHARGE CELL FOR LAST ORBIT?,13,62,1.34,1.5£,2,0.02,11.
whf:)W\--,[’l.].C’,’lC)C’,":?;’(ZI’,’:E:C’,’?’C)’,’r.l':’ 0T, 40T, TECT,RCT 10T, o, T-0n

O
0, =0
kl

Tt -0, -4’], [0,10,20,30,40,50,80,7
? TEMPERATURE IN LAST ORBIT, EACH 2 MIN

|ll

1,?0,100],
L17.60,-4,11,1,1,127.

:::_:how(‘?i,[’1.,1‘(_”;’,’10[3’,",-.7(3’,’E:C’,’?C’,’E:C’,’SC’,’4[3’,’3(3’,’2(3’,’1.[3’
T =300, =407] Heapl,
? AVG. TEMPERATURE IN EACH ORBIT, LAST 12 ORRITS’,17,45,-4,11,5,1.11 3

show(10, [140, 130, 1“u 110, 100,%0,580,70,40,50,40,307,

[1,7 7,6, *,11,7 *,16,° *,21,° *,26,” 71,

K CELL PRESSURE E0D (red), EOC {(blue), DURING LAST ORBIT’,
13,62,30,140,2,10,11).

show{ll, [28,26,24,22,20,18,16,14,12,10,5] ,Hcapl,
? TIME ON TRICKLE ».:HAT\GE‘_-, LAST .Lr— ORB LTC‘,le,":"

U“
o
b
X
h
)
2 3
N
“
-3
-
[,
[
Nl
'

B-5-D

show(12,[14,13,12,11,10,9,8,7,4,5,4,3,2,1,01,
[0, 10,20, 30,40, 50,40, 70,20,20, 1007,

’ CNT DURING CAP. TEST/RECOND, EACH 2-MIN, 0 =) NO RECOMD,
16, &0,0,14,1,1,12).

-~ B-e6-D

Grafpak.prg contains graphic primitives and supporting predicates
for Showpak.prg to use in giving the user plots and charts to aid
in decision support. The procedures are written to be
general-purpose so that plots may be altered easily. New plots may
be developed by the programmer using these primitive operations.

Arity/Prolog graphical primitives

Parameters in
{List,
Hscale,
Vscale,
Base,
Top,
Color,
Coord,

Obj)
Parameters in
(H,

w,

Vcap,
Hcap,
Title)

plot are

list of values to be plotted

distance horizontally between plotted points

vertical scale of values

lowest value plotted

highest value plotted

color of the plotted points

the horizontal positioning factor, generally starts
with 11 (columns from left-hand side of screen),
increments by "num” with each point {(Start)

ASCII code for symbol to be plotted

graphplus are

Rows in height (1 more than number
of values wanted)
Columns in width (5 more than the spaces
needed to plot values--see "coord"”
Vertical caption
Horizontal caption
Title written above plot

Built-in Graphics Primitives:

tmove(x,y)~— moves the cursor to row x (rows are numbered 0 to
24 beginning at the top) and column y (columns are numbered 0 to
79 beginning at left).

wc(n,char)-- prints n copies of char (given as an ASCII code
or within single quotes) starting at the cursor.

wa(n,color)--prints the next n characters in color {(given as a number).

1
5

blue
pink

1t. blue 4
white 8

red
gray

2 = green 3
6 = gold 7

Characters can also be made flashing or inverse, in any of the colors,
using this command. To see the attributes that are available, with
the Arity interpreter running, type "[’table.ari’}." and when Arity

returns

"yes" type "table."

16

. — . —— — ——— ——— — —————— ————— —— T _———————— — ——— ————————— ———————— i — o ——— — ————

THE PREDICATES IN GRAFPAK.PRG

graphplus(H,W,Vcap,Hcap,Title,Bat)--creates the basic graph with
height H and width W, vertical caption Vcap {usually the scale),
horizontal caption Hcap, and title Title including the battery
number, Bat. H should be chosen to be 1 greater than the number of
rows {(which is the number of possible values that will be plotted).
W should be chosen to be 5 wider than the spaces needed to plot the
values. See plot/8 for more information.

graphplus/6 calls graph{(H,W,Hcap) to build the skeleton along

with the horizontal caption, then calls write_vert(Vcap), and
write_title(Title,R,Bat) to fill in the captions. write_header is -
also called to write information about missing data and data out of
range at the the top of the graph.

graphplus/6 is called by show_view/3 in Showpak.prg, with the proper
parameters of size and captions.

graph(H,W,Hcap)--builds the skeleton graph of height H and width W, using
vertical/2 for the vertical graphics characters making the left-hand
side of the graph, and horizontal/2 for the lower edge. graph/2 is
called by graphplus/6.

vertical(A,W2)—--uses graphics characters 180 (ticks) for the vertical axis
and 250 for the dots across the inside of the graph.

horizontal(B,List)~-uses graphics characters 196 and 194 for the botitom edge
of the graph. The tick marks are placed every five spaces. The
elements of the List, containing the horizontal captions, are alined
with the ticks but one line under.

write_vert(L,P)--writes the list L along the left-hand side of
the graph. Calls write_scale(l) which writes the list recursively.

write_scale(lL)--writes the vertical caption recursively from the
list L. The empty list ({]) halts the recursion.

write_title(S,P,Bat)--writes the Title along with the Bat, battery
number, above the graph. § is the Title and P is the row
position.

plot(List,Hscale,Vscale,Base, Top,Color,Coord,Obj)~~Plots the values in
list List on the basic graph produced by graphplus/6. Hscale is the
horizontal distance (in columns of the screen) between the points
plotted. Vscale is the vertical scale of the graph. Base is
the lowest value plotted, and Top is the highest value
plotted. An attempt to plot any value outside this range will
result in out of range values being plotted at the top of the graph
and the actual values being written, in order at the top of the

B-2-G

screen. Top minus Base divided by Vscale will equal the number of
rows upon which the graph is plotted. Color is the color of the
plotted point. Coord is the horizontal positioning factor, as the
plot moves across the screen from left to right. Coord ordinarily
starts at column 11, and increments by either 1 or 5. Obj is the
ASCII code for the symbol which will be plotted for each data point.

plot/8 calls plot_point/8 to recursively plot the points from
the list L. When plot_point/B is done, plot/B changes the color
back to white and moves the cursor to the top left-hand corner.

plot/8 is called by show_view/3 in Showpak.prg with the data
in the List and specific parameters for the plotting.

plot_point([Head:Tail],Hscale,Vscale,Base,Top,Coord,Color,0bj)~--plot_point/8

recursively plots the list of points, divided into Head and Tail,
then calls itself on the Tail, having updated Coord for the next
point. The empty list halts the recursion. Hscale, Vscale, Base,
Top, Coord, Color and Obj are the same as in plot/8.

plot_point/8 calls place/7 to find the correct place for the
plotted point, and plot it there in the correct color.

place(Head,Vscale,Base,Top,Coord,Color,0bj)~-figures the correct place

for the plotted point, moves the cursor there, and plots the point.
The value for missing data causes an asterisk in gold

to be plotted on the low boundary line of the graph. place/7
truncates values as it plots them. When values are out of range,
place/7 plots a symbol at the top boundary of the graph and writes
the value at the top of the screen.

place/7 is called by plot_point/8.

P

- 3_G

. ORIGINAL PAGE IS
OF POOR QUALITY

it pra-—contalns graphic primitives and supporting predd
% i i sleton given height, width and o
o = oon the graph.

% further documentation.

araphiplu map,Hecap, Title,Rat) -

(Yﬂph(H N,H(dp)

LR

wrltn titln\TLtl@ R,Bat),
wr ite_headeyr,

tmove(l,1),

Rl is R + 1
ctrm_E'ZL,Rl)

ctr 2t {10,0) .

Wy ite hmadpr :=

. tm'*vnh .,'._‘),NI"'LT(:‘(J: MISSING DATA,),

I3 P e

Yoo D
L 9

QLT OF RANGE, LISTED ON NEXT LINES$].

araph (H, W, Hoap
cls,
H1 is 24 — H,
Wl is W - 1,
vertical (H1,W1l),
Mo iz Oﬂle(N,HCdp),
tmove {(23,5),
wal(l,2),
we(l,1%2).

al{A,W2) -
tr_set(0,4a),
repeat,

ctyr _inc(0,Al),
tmove (Al,5),
wa(l,:,,

ge (1,180),
hmcve(AL,ﬁ‘,
l‘JLer‘_,;_)-,

we {W2,250),

Al == 22,

ver tio
i

+0—~

b-4-Q

horizontal (B,List) -
Bl iz (B - 2)//5,
ctr _smet{0,1),

Lmnvw(”h '

“Tr_;n(vl{J,C),
wq\4,¢
ATl O I 1

ism 5 % (O
tmmvn(QS D,
wall,2),
woil,194),
tmove (24.,D),
wa(10,2),
write(H),

E iz D+
tmove (23,
o == Bl,
Fois (B - 2)
watlo,
ifthen(F

+ 1) +

mod 5,

@y O, wef

list _ite

write vert{L,P) :-
tmove{P,0),
write scale(l).

L1

C[H

i

write_scale(

write_scalel
wals,2),
writeiH),
wrlte_

T1) :-

ni,
scale(T).

._,
'

write_title(S,P,Bat

rmUVHtP,n),

iterate(H,list),

Fol196))

_inc

SATTERY 3 ,wri

ORIGINAL PAGE IS
OF POOR QUALITY

{0t , MY,

ORIGINAL PAGE IS
OF POOR QUALITY

slotilist,.Hscale,Vacale,Base, Top,Color,Coord,0i) -
plot_pointilist,Hs ale,Base, Top, Coord,Color,0bi),
tmovwe (1,17,

TV
wiE i L7)

la, B L Tops,

<y
LLCoord, Color, Ok

oordl 1s (Coord + Hscal , .
olot _point{Tall,Hscale,Vscale,Bagse, Top,Coordl, ol

L Coord, _,_) -

W&t ': l 5 Cl) -
weihl,236) .

place(Head,Vscale,Base, Top,Coord,Color ,0bj) :-
{Head ¢ B

oty _is{Z,R1),
tmove (R, Coord),
wall,&),
woil,0bBi),
ctr_is(10,R2),
tmove (3,R2),

place {(Head, vs
Q1L iz (Head Rase) /Vscale,
Goim round{Gl,0),
Level i1z 22 - integer (Q),
tmove {Level,Coord),
wall,Color?},
wo (1,0bd).

“place (Head, Vscale,Base, Top,Coord, Color ., 0bi) -
% tl is (Head - Base)/Vscale,

% 0 ois round(ql,0),

% Laevel is 22 - integer{(q),

% tmove (Level,Coord),

4 wall,Colar),

% we(l,0bi).

8-6-G

Utility.prg is a collection of general Prolog predicates which are used
in one or more of the routines comprising NICBES.
Data Files in the Expert System:

All data files are loaded into PROLOG as facts in the following

format:
showf(N,List). N =1 to 13 for showf(N).dat
curf(N,List). N =1 to 3 for curf(N).dat

fault([Flag,Type]). for fault.dat

List for show files contains 6 sublists, one for each battery,
seperated by commas. For example, in PROLOG, showfl.dat is loaded as:

showf(1,([[27.0,26.4,27.0,26.4,-9999,27.0,26.4,27.0,26.4,26.9,26.8,27.2:;,

[26.8,27.0,26.8,27.0,26.8,26.6,27.0,26.8,27.0,27.0,26.4,27.0},
{27.z2,27.2,27.2,27.0,26.8,26.8,26.8,26.8,26.8,27.1,26.5,26.0],
{27.5,26.9,26.9,26.9,26.9,26.8,26.8,27.0,26.8,27.0,27.0,26.7],
[27.4,27.0,27.1,27.0,27.0,27.3,27.2,27.0,26.9,26.8,26.8,26.8],
[27.0,26.4,27.0,26.4,26.4,27.0,26.4,27.0,27.0,281,27.2,27.5}1]).

Actual data points are reals with 5 decimal places. -9999.0
. represents missing data points. There are 12 columns, one for each
orbit in chronological order from oldest to latest.

An example of the current data files is curf2.dat:

curf (2, [Phase,Day_min, {13 SPA Currents]

,[3 Bus Currents],
[6 Average Battery Temperatures]])

Built-in ARITY PROLOG Functioms:
nl--gives a new line (like carriage return).

cls~-clears the screen.

Many of the functions use the ARITY PROLOG counters. There are 32 counters

{0 to 31) which are accessible from any procedure in any file. The
operations on a counter are:

ctr_set(n,m) set counter n to value m

ctr_is(n,A) A 1s instantiated to the value of counter n

ctr_inc(n,A) counter n is incremented, and A is instantiated
to the previous value

ctr_dec{n,A) counter n is decremented, and A is instantiated

to the previous value

. Underscores (_) appearing in place of arguments signifies an anonymous

241+

variable~~we do not care what the value is and will not be using
it at this time. This°'saves the system work.

ifthen and ifthenelse use the following format:
ifthen(X,Y) => if X then Y.
ifthenelse(X,Y,Z) => if X then Y else Z.

var{X)~—succeeds if X is a variable.
integer(X)--converts X to an integer.
round(X,N)——r&unds X to N decimal places.

read_line(H,String)--reads string from file H. When H == 0, reads string
from keyboard.

———— ——— —— - R P = ———— Y ————— i ———— ——— —————— - —_— —— ———— —. Y —— —— ———— ————— A - —— —— oot Tt G

PREDICATES AVAILABLE IN UTILITY.PRG

get _list(Bat,N,List)--N tells which show file. ¢get_list calls the particular
'showf’® fact which was loaded in eval_flag(0) (start.prg) and which is
described above. find_nth is called next to find the data list
corresponding to Bat, the battery of interest. This list is returned to
the variable List. get_list/3 is called from complete/l, status.prg,
advice.prg and showpak.prg.

find_nth/4--given a list, find_nth/4 finds the Nth element of the list.
It is called by get_list/3.

append(Listl,list2,List3)--appends List2Z to Listl, with the
result in List3. append/3 calls itself recursively, with the
empty list the halting condition.

break_list(List,Listl,List2,N)--breaks List into two lists. The first N
items are put in Listl, and the remainder into List2. After setting
counter 1 with N, break_list/4 calls steal_item to recursively build
the lists. break_list/4 is called by show_view/3 (grafpak.prg),
disp_trend/3 (advice.prg) and find_div/5 (status.prg).

steal _item([H!T],Listl,List2)--recursively traverses the tail of its first
argument, decrementing the counter, until the counter is 0, or the first
argument is the empty list. Then list2 is set to the remaining portion o
the original list (or the empty list), and Listl is built as steal_item/:
climbs out of the recursion. steal_item/3 is called by break_list/4.

find_avg(List,Avg)-~-finds the average of a list of numbers. Counter 10 is
set to count the number of items in the list. find_sum is called to
sum them, then the average is found. find_avg is called by get_data/5

and find_div/5 (status.prg).

find_sum([H!T],Sum)--recursively finds the sum of a list of numbers. The
head of the list (H) is checked for missing data (-9999), counter 10
is incremented, then find_sum/2 is called on the tail (T) of the list.

&2-V

The empty list halts the recursion, then the sum is found as find_sum
climbs out of the recursion. A missing data item is left out of the sum,
and a message is printed. find_sum/2 is called from find_avg/2, find_w2Z/ "
{advice.prg) and loadbank_fa11/0 (faultd.prg).

sequence{0Orbit)--creates the horizontal axis for those graphs using the 12
latest orbits. It calls seq/3 to make this list and horiz_place/l to
it in the data structure show/11. It is called by eval_flag{l)
(start.prg).

pu*

seq(H,T,[H!Z])~-Builds the list of last 12 orbits recursively from the latest
orbit, T and the first orbit in this series, H. Called by sequence/1l.

horiz_place(list)--searches the data structures show/11 to find ones with
variable Hcapl, the horizontal axis. It retracts these and then asserts
them to the data base with the List in -the place of the variable.
Called by sequence/l.

cut_retract/0-~retract fact and cut. Called by horiz_place/1.

check(X,N)~-used for checking the user input to menus. If the user
selection X is >0 and <= N (upper bound), the screen is
cleared and program continues. If not, a message is written to
the user saying ’YOUR CHOICE IS OUT OF RANGE'!'’. The user can
then input a proper selection. Called by Status, Advice and Graphics
menus in start.prg.

check2{X,N)—--used for checking the user input to Main Menu in start.prg.
If the user selection X is >0 and either X <= N (upper bound) or equal

to 4, the screen is cleared and program continues. If not, a message
is written to the user saying °'YOUR CHOICE IS OUT OF RANGE'’. The user
can then input a proper selection.

checkl(X)--used for checking the user yes/no responses to menus. If the user
input is either yes or no, the screen is cleared and program continues.
If not, a message is written saying ’ANSWER IS OUT OF RANGE!’. The

user can then re-enter a correct reply. Called by eval_flag(l) (start.pr:
complete{M)-~calls get_list/3 to look at show file 1. missing/2 returns the

number of missing data points in show file 1. If there are more than

4 missing values, M is set to 1 so only Graphics may be called from the

Main Menu. Else M is set to 4 and all options from the Main Menu will

be valid. Called from eval_flag(0) (start.prg).

missing(List,N)--returns the number of missing data points,N from the List.
Called by complete/1l.

reader(Atom)--reads input from the keyboard and returns it as an atom.
Called by all menus in start.prg.

one_assert(X)-~if X is already in the data base, no action. Else
the fact X is asserted to the data base. :

%-3-0

ORIGINAL PAGE IS
‘.. OF POOR QUALITY

% Utility contains general functions which are used in one or M e
oot the routines comprising NICBES.

LML LISt o -
raliishowf{N,L)Y,
Find _nth{l,1,Bat,List).

Fingd_nth{[HITI NN, H) .

Fimd nth ([HIT],N1,N,X) --—
M is N1 + 1,
Find_nth{T,M,N,X).

break list(list,Listl,List2,N) .-
ctr_=met{1,M),
steal item(List,Listl,List2).

steal _item{[], istl,lList?) --
lListl (3.
Liste {1.

. steal item{list,Listl,List?) .-
ot ds{l,M),
{1

Hon

X

.l
s
T

Listz

i
b e

steal _item{[HIT],Listl,List2) -~
ctr_dec{l,),

_item{T Temp,List2),

= [H!Temp].

Find_avgilist,Avg) :-~
cty_set(lo,0),
find_sum(List,Sum),
cty _1s(10,Num),

Avgl is Sum/Num,
Ava is round(Avgl,4) .

Find_sum{{],%um) :-
Sum is 0.0,

Find_sum{{H!T],Sum) :-
ctr_inc(10,_}
Find_sum(T,Temp),
ifthenelse(H == -992%, (Sum is Temp,ctr_dec(10,_)),Sum is H + Temp).

-

B-4-0

® ORIGINAL PAGE IS

szaquence{Orbit) -
Hois Orbit o~ 11
Orn 1w Oroit b

[

seq(H, T, [HIZ]) -~
M1 is H + 1,
caq(Hl,T,27.

iz place(list) -

OF POOR QUALMTY

calli{show(nN,Yoap,Hzap, Title,H.W,Base,Tup, Hscale, verale,Start)),

var (Hoap),
cut retract{show{N,Voap,Hcap, Title.H,W,Base, Top,HsCa

..L

As nrtm\~how(N Yeap,List,Title,H,W,Base, Top, Hescale.,Vs

F111
horiz place() - 1.
cut retract{X) :- retract(X),!.

check (X,N) -

"I' X o0,

1471t~\$ VOLIR CHOICE IS OUT OF R&MGET $),nl,nl,
1, fail.

check2 (X, N) -
X o> 13,

(% =(N; X == 4y,

wls, .

check2 (X, N) -
cls, nl,nl,
write ($ YOUR CHOICE IS OUT OF RANGE! $).ni,nl,
1, faill.

checkl (X)) -
(% == 'ves’; X == ‘Tno’),!l.
checkl(X) -
cls,nl,nl,
write(d ANSWER IS OUT OF RANGE! %),
nl,nl,!,fail.

B5-U

. ORIGINAL PAGE IS
OF POOR QUALITY

complete (M) -

a
PN I

data Tor NICRES anad
Yok may run Graphiios_ 3.

nl,wriltel(d

Modlsm 1y

mi

sAinal[].NY = ctr_is(1.N).

mi gt [HIT] N o
ifthen(iH == —9%9% ctr_inc{l,_)J,

missing{(T,N). ~

reader (Atom) -
read _line(0,String),
s

(inmt _text({atom,String)
atom_stringlatom,String)), .

one_assert{xX) -

o
A -

one_assert{(X) :-
sertalX) .

5-6-U

¥

APPENDIX C

TEST PROCEDURES

[sS]

Power on the IBM-PC AT and Printer.

Run the Data—Handler.
A. Data-Handler is in directory USH.
B. Enter ’data_hdl’ to execute Data—-Handler.
C. Check telemetry flow across RS232.
D Messages printed to screen:
"Starting first full orbit",

"#. ORBIT = N - every 96 minutes.

E. If a fault is detected, message printed to screen:
"Fault detected; exiting!'".

F. If no communications being received, message printed to
screen; "No communication for 3 minutes; exiting'".

G. If 5 consecutive incomplete telemetry runs, message printed

' to screen; "Received 5 consecutive incomplete telemetry

runs; exiting!'".

G. When ready to quit Data—-Handler enter *"C’. Message printed:

"Interrupt caught; exiting!".

Verify and Archive Data-Handler Output.

A. View showf#.dat (1 to 13),curf#.dat (1 to 3) and fault.dat
for correct format.

B. Archive data files under directory DATAFILES,
subdirectory ’'DATE’ where DATE is current date.

Run Expert System.
A. Expert System is in directory NICBES.
B. Enter ’api’ to execute Expert System.
C. View Fault Diagnosis.

a. Print Fault Diagnosis Report.
D. View Main Menu and make all selections.
E. Select battery.

F. View Graphics Menu and make all selections for one battery.
a. Print opme Plot.

G. View Status for all batteries.
a. Print Status Report for one battery.

H. View Advice Menu and make all selections for one battery.
a. Print Advice Report for one battery.

I. Quit Expert System.

Verify Expert System Output.
A. Review printed Reports and Plots.

(Y

