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PREFACE

A series of meetings with engineering organizations
involved both in designing and developing new satellite systems
and sub-systems and in planning missions for and operating
current space vehicles led to the realization that there was a
communications gap between these engineering/operational
organizations, the "users" of natural ambient environmental
data, and the scientific and support organizations that were
responsible for obtaining, collating, and supplying these
environmental data to them. The users were unaware of the
limitations of and restrictions on the use of the data and
models while the suppliers were unaware not only of how the data
were being used but also of the data that the users were
obtaining through analyses of responses of operational systems
that could be attributed to variations in the natural ambient
parameters.

The neutral ambient atmospheric density above 50 kilometers
is one natural environment parameter where not only was the
communications gap significant but also where lack of knowledge
and the variability of the parameter itself were causing both
design and operational penalties.

It was decided that a workshop similar to the Workshop on
Satellite Drag held on March 18-19, 1982, at NOAA's Space
Environment Laboratory in Boulder, Colorado, could provide a
forum for discussing these problems and thereby for developing a
rationale and plan for possible solutions. There were 55
attendees, representing 32 organizations. Both sides were well
represented; problems and ideas were exchanged, discussed, and
recommendations for solutions were formulated.

In the body of this report, we present synopses of the
presentations and discussions from the editors' notes along with
selected presentation material. Also included are summaries
prepared by session chairpersons.

Finally, as a result of his attending this meeting, Dr.
Kenneth Moe has provided comments on differences between
atmospheric models and measurements.

R. E. Smith
M. H. Davis



INTRODUCTION

The purpose of this workshop was to allow an interchange of
ideas and to establish a communications link between the users
of models of the neutral atmosphere and the developers of these
models. On the first day the concentration was on operations
and modeling at orbital altitudes including a discussion of the
solar activity parameters that have been associated with
variations in the neutral atmosphere at orbital altitudes. On
the second day the concentration was on the middle atmosphere,
50-90 km, the entry region for operational vehicles. It is
essentlal that the models produce consistent and accurate values
of the atmospheric thermodynamic parameters from the ground up
through the thermosphere for all latitudes, 1ong1tudes, times,
seasons, and phases of the solar cycle. There is only one model
available at this time which meets all of these requlrements——
the Global Reference Atmosphere Model (GRAM), which joins an
updated version of the 1970 Jacchia model of the thermesphere
with an expanded version of the Groves model of the middle
atmosphere which is then joined to a 4-D model of the atmosphere
from the surface to 25 kilometers.

Satellite lifetime prediction is a typical application of
models of the thermospheric density. Density data are required
in the satellite tracking programs used by NORAD and by the Navy
for precision orbits. Density is also important in satellite
attitude control (desaturation of attitude control systems--
jitter in precision pointing) and in precision orbit
positioning. Atmospheric composition must also be considered:
it influences the drag coefficient, and neutral atomic oxygen, a
principal constituent, causes deterioration of exposed surfaces.
For drag, the neutral density is of primary importance. Plasma
drag has been observed for particular satellites in a research
context, but its effects are swamped by uncertainties in neutral
drag.

Day-two discussions on the middle atmosphere, in the
context of this meeting that portion of the atmosphere between
~50 km and ~90 km, included presentations by both users and
modelers. System and mission planners make use of the
statistics on small scale atmospheric variations established by
repeated runs of the GRAM to study Space Shuttle entry scenarios
and the proposed use of the middle (~80 km) atmosphere for
braking of the Aero-assisted Orbital Transfer Vehicle (AOTV).

The remainder of the workshop was devoted to formulating
recommendations for resolving problems revealed during the
workshop.

In addition to the speakers listed on the agenda, other
attendees participated in the program as discussants. Their
prepared materials are included at appropriate locations in
these proceedings.
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WORKSHOP SUMMARIES AND CONCLUSIONS

R.E. Smith, M.H. Davis
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SUMMARY OVERVIEW

Issues

Small-scale structures are
not modeled.

Dynamics are not included

Global reference atmosphere
model needs revision and
updating

Atmospheric parameter and
ancillary data measurement
programs are being stopped

Lack of communication between
users and modelers

Recommendations

Develop statistics or
bounds for small scale
structures for inclusion
in models

Investigate feasibility
of including in models

Use current (post 1974)
data to update model

Continue data acquisition
programs to establish a
required long-term data
base

Establish a clearinghouse
to insure a timely
exchange of recent
developments

FRECEDMNG PAGE BLANK NOT FILMCD



SUMMARY -~ ISSUES AND RECOMMENDATIONS

ISSUE 1: PREDICTION OF SOLAR AND GEOMAGNETIC ACTIVITY: The
ability to predict atmospheric density depends strongly on the
ability to predict solar EUV (models currently use its
approximate correlate, F10.7) and geomagnetic indices (Kp).

For design purposes, bounds are needed for solar and
geomagnetic indices for time periods several years in the
future. For satellite operations (viz. NORAD satellite orbit
determination and Navy satellite precision orbit adjustment),

the ability to predict up to several days into the future would
be valuable.

RECOMMENDATION: a) The uncertainty in predictability of these
quantities should be quantified as a function of prediction
interval and solar cycle phase.

b) Research should be supported to improve the reliability
of solar variability predictions.

ISSUE 2 - SMALL SCALE STRUCTURES IN MODELS:: The models now
being used are able to reproduce observed atmospheric density
with a standard deviation of about 15% after the actual Kp and
F10.7 indices are known (hindcasting). It is believed that a
significant part of the remaining discrepancy arises from
failure to represent small scale structures (of the order of 5
degrees in latitude or longitude).

RECOMMENDATION: Although individual gravity waves cannot be
modeled, it may be possible to upgrade present models to include
statistics or bounds for small scale structures using gravity

wave theory. Development of a gravity wave climatology should
be supported.

ISSUE 3 - INCLUSION OF WIND-FIELDS: Present models fail to
treat dynamical processes (winds). This defect is of importance
especially at high latitudes.

RECOMMENDATION: An attempt should be made to integrate wind-
field information into the models used by the engineering
community. The thermospheric GCM's being developed are
important in this context.

ISSUE 4 - TIMPROVED COMMUNICATION BETWEEN USERS AND MODELERS:
Model users generate information that can be valuable
feedback to the modeling process, provided effective
communication exists between the users and the modelers, and the
models allow for incorporation of new information. On the other

PRECEDING PAGE BLANK NOT FILMED



side, the modelers are continually working to upgrade their
models and add new features.

RECOMMENDATION: Models should be capable of accommodating
information from users as it becomes available, and an effective
clearinghouse for feedback should be established and maintained.
Information on new model developments and features should be
provided in a timely fashion.

ISSUE 5 — IMPORTANCE OF CONTINUITY OF "ROUTINE" MEASUREMENTS:
The measurements reguired to know the state of the thermosphere
are not now being routinely made. Rocket programs are
disappearing. Routine measurements of quantities such as F10.7
and geomagnetic quantities are dropping by the wayside. There
is no current program to derive density or other atmospheric
quantities from satellite tracking and there are no current
satellites specifically for this purpose.

For understanding of the atmosphere and its variability, it
is vital to have a continuous long-term data base.

RECOMMENDATION: If possible, routine measurements of
thermospheric parameters, and of solar and geomagnetic
quantities should be continued and encouraged in order to
continue the long-term data base that already exists.

The feasibility of using routine satellite orbit tracking
information to derive upper atmosphere information should be
studied.

The scientific community should plan and support a
"thermosphere weather" satellite or payload for the shuttle and
space station to monitor thermospheric conditions. It is also
of vital importance to monitor routinely geomagnetic quantities,

solar ultra-violet, solar and cosmic particles, and the solar
wind.

ISSUE 6 - STANDARDIZATION: While there is some advantage to
parallel efforts in modeling the thermosphere, there appears to
be unnecessary duplication of effort both by modelers and users.

RECOMMENDATTON: There should be a careful evaluation of
whether it may be desirable to standardize the atmospheric model
and the management of modeling and associated research. The
user community needs models that are reliable and
computationally efficient; Government officials require standard
models that can be called out in specifications; those doing
research and development on models need frameworks that will
allow for inclusion of new data and new factors. These needs,
which are somewhat in conflict, must be carefully weighed.

ISSUE 7 - NEW DATA SOURCES FOR THE MIDDLE-ATMOSPHERE: New data
sources for density and dynamics of the middle atmosphere have
appeared during the past ten years, including: satellite

10




radiometry, limb scanners, Rayleigh scatter lidar, MST radar,
shuttle drag measurements during re-entry, occultation of
astronomical sources.

RECOMMENDATION: The capabilities of these new techniques
should be carefully assessed, and this new information should be
added to the data base of user models.

ISSUE 8 — THERMOSPHERIC GCM: Theoreticians R. Roble and T.
Killeen are making rapid progress in development of theoretical
models of thermospheric dynamics.

RECOMMENDATION: The modelers should study and be guided by
the TGCM developments.

ISSUE 9 - PREFERENCE FOR THE OLD JACCHIA MODELS: While the
"old" Jacchia models J64, J70 and its updates, appear to be as
good as newer models for satellite drag analysis, they do not
give correct results for composition, which is needed for
studies of glow and atomic oxygen erosion, and can affect the
drag coefficient. Another issue is that by continuing to use
the old models, the user community is not taking notice of
recent trends in research such as the use of spherical
harmonics.

RECOMMENDATION: These points are part of the standardization
issue and need to be considered in that context.

ISSUE 10 - TACK OF SUPPORT FOR RESEARCH ON THE NEUTRAL
ATMOSPHERE: Research into the neutral middle and upper
atmosphere, particularly the region from about 60 to 120 km, is
not favored for support by NASA Headquarters or other Government
agencies.

RECOMMENDATION: The Workshop recommends that a way be found
to stimulate funding for research directed toward studying
properties, dynamics, and measurement techniques of the neutral
middle and upper atmosphere.

ISSUE 11 - SPECIFIC COMMENTS AND RECOMMENDATIONS ON THE GRAM
MODEL: There was general agreement on the desirability of a
unified model of the atmosphere from the ground up. The GRAM is
such a model and has been remarkably successful. An important
requirement is that the model encompass the "ignorosphere" from
60 to 100 km for which there is little data.

The Workshop endorsed the work of Justus and the Georgia
Tech Group in developing and maintaining the GRAM model.

Specific recommendations relating to the GRAM itself:

11



1) use monthly rather than seasonal reference atmospheres.
2) develop a better specification of the mean.

3) devise a better means for describing fluctuations and
their spectral distribution and correlation. (Care should be
used in applying the GRAM model for study of small scale
structures; spurious results can arise from using a vertical
step size that is too small.)

4) adjust zonal means to correct for planetary waves one
and two.

12




T YWY rF T e ¥ WV

ORBITAI, ATMOSPHERE MODEL USERS

Chairperson: G. Nurre

13



N87-20666

SATELLITE LIFETIME PREDICTION

Gerald Wittenstein, NASA/Marshall Space Flight Center

Satellite lifetime predictions are critically dependent on
the ability to forecast future solar and geomagnetic activity.
These quantities are inputs to the atmospheric model with which
values of atmospheric density are computed along a projected
orbital path. Density values are combined with the predicted
ballistic coefficient timeline to compute drag and predict decay
histories. The major uncertainty in making predictions that
pertain to time periods that are years in the future is in the
solar and geomagnetic activity projections, although the
ballistic coefficient is also frequently in doubt.

Reliable lifetime predictions are of great importance.
Lifetime in terms of years of on-station operation and reboost
requirements are major drivers of system costs. For the space
station a major issue is to predict when reboost is necessary.
For low solar activity (sunspot number 50) it is estimated that
1000 1b of propellant are required for reboost each year, while
for high activity (sunspot number 200) 10,000 lb are required.

Comparisons between actual and predicted orbit lifetimes
show large differences that are due mostly to the uncertainties
in predicting solar/geomagnetic activity. When the actual
solar/geomagnetic indices that were observed during the orbital
lifetime are put into the models during post-flight orbital
analyses, the models work quite well, within about 10 - 15
percent in lifetime. High inclination orbits may be expected to
exhibit the greatest variability (Roble).

Given present knowledge, solar cycle uncertainties are
unavoidable. A reasonable procedure is to go with the best
forecasts available, and try to allow for variations by
estimating lifetimes for both nominal and plus two-sigma solar
activity levels. Short term variations are essentially
unpredictable.

USER SUMMARY Satellite lifetime

In summary, while present density models are adequate for
planning, the inputs to themn, particularly solar/geomagnetic
activity indices, are unreliable.
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SKYLAB LIFETIME (IMPACT) PREDICTIONS
DURING THE PASSIVE PERIOD

Memo Date Ballistic Predicted Impact
Coefficient (Mo/Yr or Mo/Dav/Yr)
(kg/m?)
Nominal +20 -20

Aug. 1, 1973 170 7/81 9/78 10/85
Mar. 11, 1974 207 3/83 11/79 6/92
Sep. 3, 1974 140 5/81 10/78 10/84
Nov. 27, 1974 140 4/81 10/78 6/84
Dec. 12, 1974 140 4/81 10/78 6/84
Feb. 20, 1975 120 1/81 9/78 1/83
May 20, 1975 120 12/80 9/78 11/82
Jul. 27, 1977 144 12/2/80 8/21/79

Aug. 16, 1977 144 12/7/80 8/23/79

Oct. 15, 1977 144 4/16/80 5/31/79

Nov. 18, 1977 144 3/23/80 5/14/79

Dec. 18, 1977 144 3/14/80 5/22/79

Feb. 9, 1978 144 12/21/79 5/3/79

Apr. 10, 1978 144 8/29/79 4/13/79
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——  TYPICAL 27 DAY PREDICTION OF DAILY F,,  (FROM NOAA)
O—O ACTUALDAILY Fyq 5 )
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SOLAR FLUX

220

200

180

160

140 |~ \o o/

120 I i ]
1 3 18 27
6/12/79 6/20 6/28 7/8/79
DAY/DATE

COMPARISON OF PREDICTED AND ACTUAL SOLAR FLUX
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N87-20667

DENSITY UNCERTAINTY EFFECT ON COST OF SPACE STATION REBOOST

Walter Unterberg and Claus Meisl, Rocketdyne International

Summary:

If the Space Station is designed for operation in a nominal
atmosphere for ten years and the atmosphere is two- sigma higher
than nominal during the entire ten year period, the impact would

be an additional cost of $70.1 million, based on a resupply cost
of $3200/1b.

PRECEDING PABE BLANK NOT FMED
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N7 -20668

SPACE STATION MOMENTUM MANAGEMENT

V. Buckalew, Miriam Hopkins, NASA/Marshall Space Flight Center

Gravity gradient stabilization is planned for the space
station. Torques arise from air-drag since the center of
pressure is not the same as the center of mass of the satellite.
The magnitude of these torques varies depending upon the
orientation of the solar panels. Adjustments are made through
the use of CMG's (Control Moment Gyros). 1In time, if the CMG's
saturate, torque must be bled off using thrusters; however, that
is undesirable because it expends propellant and contaminates
the local environment. The task of the engineer is to design
the CMG's to handle the aerodynamic torques and design the
configuration of the spacecraft to prevent, if possible, CMG
saturation. For this application the long-term atmospheric
density trends are of less importance than the rate of change of
density within an orbit. In principle CMG's could be designed
for the worst case of maximum solar activity, but the penalty
for overdesign is excess mass and cost.

In summary, present models are inadequate for this

application with the greatest need being a reliable prediction
of maximum rates-of-change of density within an orbit.
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SOLAR FLUX NUMBER

259

R -4 SMOOTHED
T 13 MONTH MEAN

: ,q”fff
4 o .-‘wPEAK TO PEAK
r{]] ‘(& ¢

¥
g“" -1 2 s10MA

..
A

. @r=-T

N ) w
0 |' -—-’ L
M . '1 L RATE OF CHANGE
I 150 Y
: =
t B \N\ / NOMINAL
A i r\m |
g 100 ".‘i//‘
x.
A i’k_/
X
50 T 7 7 7T LEREBR A T 17 T 1 v 1 7 3 T 1 & 7 T 7T 7T T
1986 1987 1988 1989 1990 1991 1982

YEAR

CONTROL DESIGNER IS

0 NOT CONCERNED WITH 13 MONTH SMOOTHED MEAN (AT LEAST DIRECTLY).

0o THE SMOOTHED MEAN PLUS THE PEAK TO PEAK VARIATION DICTATE

SYSTEM SIZING REQUIREMENTS AND ESTIMATES TO USERS OF PROBABLY
TILT ANGLES OFF NOMINAL ATTITUDE.

0 RATE OF CHANGE OF DENSITY ON A PER ORBIT BASIS IS THE PRIMARY

CONCERN, DICTATES THE ROBUSTNESS REQUIRED. GENERALLY NEED
TO KNOW ONLY THE MAX VALUE.

o OTHERWISE DESIGNER IS RELATIVELY INSENSITIVE TO THE DIFFERENCE

BETWEEN THE MODEL AND THE ACTUAL DENSITY ON A DAY BY DAY
BASIS.
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TYPICAL DENSITY AND AERODYNAMIC PROFILES
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MOMENTUM REQUIREMENTS WITH AND

WITHOUT ACTIVE CONTROL
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MOMENTUM CHANGES DUE TO INCREASE
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SPACE STATION CONTROL MOMENT GYRO CONTROIL,

Aldo Bordano, NASA/Johnson Space Center

The potential large center-of-pressure to center-of-gravity
offset of the Space Station makes the short term, within an
orbit, variations in density of primary importance.

The large range of uncertainty in the prediction of solar

activity will penalize the Space Station design, development,
and operation.
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N87-20670

HUBBLE SPACE TELESCOPE

G. Nurre, NASA/Marshall Space Flight Center

The Hubble Space Telescope will employ magnetic torque
controllers, which make use of the earth's magnetic field
augmented by four reaction wheels. DC torques are easily
allowed for, but variations, orbit by orbit, can result in
excessive wheel speeds which can excite vibratory modes in the
telescope structure. If the angular momentum from aerodynamic
sources exceeds its allocation of 100 Nms, the excess has to
come out of the maneuvering budget since the total capacity of
the momentum storage system is fixed at 500 Nms. This would
mean that maneuvers could not be made as quickly, and this would
reduce the amount of science return.

In summary, there is a definite need for a model that
accurately portrays short term (within orbit) variations in
density for use in angular momentum management analyses. It
would be desirable to have a simplified model that could be used
for planning purposes; perhaps applicable only over a limited
altitude range (400-700 km) and limited latitude band.

e PAGE BLANK NOT FILMED

73



ONITT3A0W ALISNIQ ¥O4 SNOILYANIWWOI3Y

FYFHISOWLY S, HI¥Y3 IHL 40 S123443

NOTL1dI¥IS3a SId IS

PRECEDING PAGE BLANK NOT FILMED

S3d LS 3HL NO ALISN3Q JIY3IHMSOWLY 40 S123443 3IHL

101U09 14BII4 890dS jjeysiel ') 861009

VSV

75



986T Y39W31d3S-1SN9INY 3FLva HIONNYT

WX €65 - JANLILTY WLI9Y0 TYILINI

NOILvY43d0 SNOWONOLNY

SAINNIW 0C NI .06 YIANINWH

(oT) S T0'0 AJVHNIIY ONILNTOd

SWY § Z00°0 ALITIEVLS ONIINIOd

SINIWIYIND3IY SId 1S

76

SJd IS 3JHL NO ALISN3Q JI1Y3IHASOWLY 40 S133443 3HL

101U 1yB}14 0oeds leysien O e0!

VSV




W3ILSAS ONILNIod LS

wqw

ua«..cl_‘ Js1q

0»3)\

wsowsow

,..v:o.z‘cs.u A

5\ LU0

=

WHW

soc.‘r

H

g




THE EFFECTS OF ATMOSPHERIC DENSITY ON THE ST PCS

MOMENTUM MANAGEMENT

RWA SPEEDS VS TIME
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PRECISION TRACKING/NAVIGATION - NAVY SATELLITES

M. Crawford, U.S. Navy

Precision satellite orbit requirements and tracking, such
as for the Transit Program, are very density-sensitive. The
Transit satellite is in a 600 n.mi. orbit, with a 30 m tracking
accuracy requirement. The atmospheric density program used is a
Jacchia program modified to make use of Transit tracking data.
There are problems with automatic prediction of satellite
position during geomagnetic storms due to the inadequate models,
and there is manual intervention at such times.

In summary, the most pressing need is for more accurate and
reliable short term forecasts of solar and geomagnetic storm
activity.

PRECEDING PAGE BLANK NOT FILMED
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N87-20671

NORAD SATELLITE TRACKING

Joseph J.F. Liu, SPACECMD

NORAD routinely tracks about 6000 orbiting objects. During
the last 30 days of orbital time, prior to re-entry, special
perturbations are used in the orbital update procedure. Besides
routine orbit determination, NORAD does special tasks such as
predicting satellite orbit conjunctions within 20 km,
ephimerides of weather satellites, satellite decay predictions
and other studies. Since their mission is operational, they do
not store the data from their analyses. The ballistic
coefficient (CqA/m) is not known for most of the orbiting

objects. (In principle it could be derived by numerical
fitting, assuming that it is constant for a particular density
model, but this has not been done.) If a ballistic coefficient

were derived that was consistent with one density model, it
might give erroneous results if used with a different density
model. Given the ballistic coefficient, density values could,
in principle, be obtained from their tracking data. The
densities would represent an integrated mean over the orbital

path near perigee. They would be model dependent and would not
necessarily represent the "real" density.

NORAD's experience is that the Jacchia 1964/1965 model is
as good as more recent models for all levels of solar activity,
and runs significantly faster, since it is less complex.
However, if solar flux (as indicated by F10.7) and geomagnetic
activity (Ap) are known, then the density model needs
improvement. Their experience is that the specified model
altitude limitation of 1000 km does not appear to restrict the
utility of the earlier models for predictions of highly
eccentric satellite orbits.

It might be that orbital tracking data could be made
available for scientific use, although the model dependence and
lack of knowledge of the ballistic coefficient would make
interpretation difficult.

In summary, the primary need is for reliable forecasts of
F10.7 and Ap in the 1 to 4 week time scale. Forecasts over
longer time spans would also be useful for special projects.
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REPORT OF TEE USAF SCIENTIFIC ADVISORY BOARD

AD HOC COMMITTEE ON AERONOMY
USFA SCIENTIFIC ADVISORY BOARD, HO USAF (NR), WASHINGTON, DC
MAY 1977
SPECIFIC RECOMMENDATIONS AND SUGGESTIONS

TO IMPROVE THE EXISTING CAPABILITIES

0 FORECASTING AND SPECIFICATION OF IONOSPHERIC
PROPERTIES

0 SOLAR PARTICLE RADIATION FORECASTING

0 FORECASTING OF NEUTRAL DENSITY
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NORAD/SPACECMD DAILY CATALOG MAINTENANCE

o MAINTAIN AND UPDATE ABOUT 6,000 OBJECTS

o MORE THAN 3/4 OF THE OBJECTS ARE UNDER
SIGNIFICANT DRAG EFFECTS

92




CURRENT NORAD PROJECTS USING EMPIRICAL ATMOSPHERIC DENSITY MODEL

o TIP (DECAY PREDICTION)

o DNSP/NOAA (WEATEER SATELLITE EPHEMERIS)
0 COMBO (ORBIT CONJUNCTIONS)

0 SENSOR CALIBRATIONS

o SDI

0 OTHERS
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DEFICIENCIES

ACCURACY

EFFICIEKCY

F10’7 AND Ap PREDICTIONS

ALTITUDE LIMITATIONS.
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N87-20672

NORAD/SPACECMD COMMENTS CONCERNING THE ATMOSPHERIC DENSITY
MODELS

Joseph J.F. Liu
Directorate of Astrodynamics, SPACECMD

1. Recent Models do not produce more accurate neutral
densities (although they require more computer time), regardless
of the level of solar activity. This implies that there has
been no measurable improvement of the calculation of neutral
density since the early 60s.

2. With known solar flux and Ap inputs, the density evaluation
needs improvement.

3. For highly eccentric orbits which span low to high
altitude, the accuracy generated by JIJNSSC which has an altitude
limitation of 1000 Km remains comparable with those obtained by
more recent models. This implies that either the density at
1000 Km and above is insignificant or that the values provided

by the recent models at high altitudes may not be reliable or
both.

4, Prediction accuracies obtained through the use of precision
data from the defense mapping agency are generally comparable to
those obtained by using operational sensor data. This implies
that the prediction accuracy problem is not necessarily caused
by less accurate observations.

5. The above findings remain the same whether we use a special
perturbation theory or a simplified semi-analytic orbit theory.

6. Improved short and long term forecasts on solar activity
and Ap are required to support current and future operations.
One to four weeks predictions would be very helpful. Longer
predictions are also needed for some special projects.

7. The definition of the mean solar flux F10.7 is not
universal.
8. A unified model including low and high altitude densities

is needed.

9. New models using new parameters should be investigated.
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ORBITAL ATMOSPHERE PHYSICS AND DYNAMTCS

Chairpersons: R. Roble, T. Killeen
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ORBITAL ATMOSPHERIC PHYSICS AND DYNAMICS

Raymond Roble, National Center for Atmospheric Research
Timothy Killeen, University of Michigan

There are two ways of modeling the upper atmosphere. One
is the empirical model that makes use of experimental data on
means and excursions from the mean and fits the data in a self-
consistent manner. Although useful, such a model sweeps the
physics under the rug, and will eventually reach a plateau
beyond which progress can only be made by dealing with the
underlying processes involved.

The other approach is to deal directly with the physical
processes. This is difficult since what is happening is
extremely complex. Data measured using an interferometer to
give Doppler shifts of airglow lines showed 300-800 m/sec winds
with a complex structure in the upper region of the thermosphere
at high latitudes. Ionospheric electric fields, strongly
influenced by interaction with the solar wind, drive the ionized
component and large neutral winds result due to momentum
transfer between the charged particles and the neutrals.
Frictional heating results from movement of ions through the
neutrals, which also influences the compositional structure.
These are examples of the complex interactions involved.

Roble has adapted the NCAR General Circulation Model
(tropospheric) for use at thermospheric altitudes - the
Thermospheric General Circulation Model (TGCM). The model makes
use partly of primitive equations and partly of empirical data
for some quantities such as electron density, magnetic field,
and ion drift.

Roble remarked that the Jacchia 1971 model appears to give
more reliable composition while earlier models work better for
density. An advantage of the earlier models was that they used
Bates temperature models, which allowed for exact analytical
integration. Later models introduced a more refined temperature
profile fitting scheme which required numerical integration but
failed to improve density calculations. It is surprising that
the earlier Jacchia models work as well as they do for density,
since compositions found by the 0GO satellite are completely in
variance with Jacchia model predictions. Future revisions of
the Jacchia model are planned that will include
"pseudotemperatures", a procedure where each component has its
own effective temperature.

One might argue several ways regarding choice of models:

1) If there were little difference in density results
between old models and new models, then it might be better to
use the newer ones, since they yield better composition.
Composition enters in through differing behavior of various

99
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components witﬁﬁaltitude and season (viz. the observed large
changes in helium seasonally and geographically), and through
compositional influence on temperature structure. Composition
also can influence the drag coefficient, and questions arise
regarding activity of specific components such as surface
erosion by atomic oxygen.

2) On the other side of the argument, there is the
advantage of using density models that are consistent with past
experience and that are "good enough" as well as being
computationally efficient. Orbit data from NORAD and other
sources are model dependent. Another important consideration is
that once a model is specified, there is a considerable cost
impact in making a change. Once contracts for a Space program
development have been finalized, any changes are difficult,
costly, and undesirable from the standpoint of contract
management.

Since new models will undoubtedly be introduced, due
consideration should be given to the use of spherical harmonic
expansions. There are definite advantages to using spherical
harmonics: sizes of coefficients drop off quickly after the
first few, so consistent models of various degrees of detail can

be readily developed and new effects added with a minimum of
disruption.

Roble showed the Workshop an impressive computer-generated
animation of thermospheric motions.
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ORBITAL ATMOSPHERE MODELING

Chairperson: G. Carignan
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ORBITAL ATMOSPHERE MODELING
REMARKS AND DISCUSSION

George Carignan, University of Michigan

Present models are better at hindcasting than forecasting.
When Kp values are known, the models are able to reproduce
atmospheric density to around 15 percent. Much of the remaining
error probably arises because the models fail to deal with small
scale structures or dynamic processes which often are coupled to
small scale structures. 1In order to achieve improvement, we
should devise means for handling small scale structures and
couplings. For forecasts, it is necessary to be able to predict
solar and geomagnetic activity - to reliably forecast Kp or aa
and F10.7. At present the likelihood of being able to
accomplish this over long time intervals appears dim. More
success is likely over short times intervals.

Standardization of the models employed by the user
community should be considered. Competition among modelers is
wholesome, but there should not be excessive duplication of
effort. Another problem that has often been encountered is that
user groups sometimes unknowingly use outmoded versions of a
particular model, or even versions containing programming or
data errors where corrected and updated versions exist. There
would be much to be gained by using a model form that is readily
updated. A central clearinghouse is also strongly suggested.
This is a reason for considering the spherical harmonic
formulation. Standardization and a centralized clearinghouse
for model information appear to be constructive ideas, but in
order to carry them out the Government would need to have a
commitment to them. Somebody would need to assume central
responsibility, and they would have to be adequately funded.

Another point is that the vast potential data base of NORAD
tracking information is currently not being used for model
improvement or verification. This bears looking into. But a
problem [Smith] is that the NORAD information always has density
coupled to CyA/m. Decoupling would have to be done either
through a sophisticated fitting procedure, or by restricting the
analysis to those cases where C4qA/m is known. Another
consideration is that experiencé shows that results obtained
using a different model from the one that was used for the
orbital data reduction can lead to spurious results.

[Gary Swenson, Lockheed]

Drag is difficult to predict for a complex body such as
Skylab, with its solar panels, etc. Appendages such as solar
panels can give lifting forces, influencing the overall body
drag. The drag coefficient itself is influenced by such factors
as constituent and surface chemistry, temperature, and material
conditioning. Drag coefficient depends upon the velocity
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distribution of exiting particles. Glow studies bear on this -
it is a complex interaction between chemistry and radiation.
One conclusion is that in order to predict the effects of
chemistry on the drag coefficient it would be necessary for a
model to predict the density of individual constituents such as
atomic nitrogen and atomic oxygen.

[Carignan] Users need to be more specific on their needs. For
example, for an orbiting satellite, is information needed on the
order of minutes or on the order of orbits? [Smith] It appears
that for some applications the present models, and even some

from the past, are adequate. For other applications they are
not.

Perhaps it would be possible to design a standardized model
that would allow for updating and improvement, and would have
various hierarchies of complexity depending upon the
application. Use of spherical harmonics would help in providing
a means for adding greater scale detail.

Note that from the standpoint of the NASA program manager,
it is essential to stick with the original criteria specified to
the contractors. To change criteria in midstream would be very
expensive. As an example, criteria for the space station are
being specified right now. They will be firm by next year.

[Carignan] And they are apparently still using 1970 models...

[Smith] For drag that is probably quite all right. For
composition it would not be. Composition is of less importance
to the Space Station except for the matter of atomic oxygen and
its effects on surface erosion. However, as Swenson pointed
out, perhaps the other minor constituents are playing a more
important role than we had thought.

[Slowey] Judging from experience, for drag studies you probably
should use models that are derived from drag data.

[Smith] An important question is this: Do the users want
predictions or do they want statistics? It would appear that
although they naturally would like reliable predictions, that is
impossible to achieve over time scales longer than a few days or
weeks, and even for those time periods the predictions are of
questionable reliability. However, we should be able to provide
statistics, at least in some cases. That would mean, for
example, that the engineers would be able to plan for adequate
momentum management - to desaturate reaction wheels over the
lifetime of a particular system such as the space station.
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UPPER ATMOSPHERE

SUMMARY AND POSSIBLE RECOMMENDATIONS

G. Carignan

The Workshop heard presentations from thermospheric
modelers and from experimentalists who have compared the models
to measurements. These presentations were augmented by extended
discussion by users, scientists and other interested
participants. The results of these deliberations can be
summarized by identifying several important issues and
associated possible recommendations.

ISSUE I: The models being commonly used are able to reproduce
the actual atmospheric density with a standard deviation of
approximately +15% after the actual Ap and F10.7 are known. It
is believed that a significant part of the discrepancy comes
from failure of the models to represent small scale (~ 5 degrees
in latitude and longitude) structures.

RECOMMENDATION: Models should be upgraded to enable better
representation of variations at smaller scale than they
currently do. It is recognized that some variations, e.g.
individual gravity waves, cannot be modeled. The cusp is an
example of a feature that can and should be better modeled.

ISSUE 2: Few, if any, of the currently used models treat
dynamical processes (winds). This defect is of particular
importance at high latitudes.

RECOMMENDATION: Attempt to integrate the wind field
representations of the numerical models into the user models in
an efficient and least cumbersome way.

ISSUE 3: The ability to predict atmospheric density is
inextricably dependent on ability to predict F10.7 and
geomagnetic indices.

RECOMMENDATION: a) Quantify the uncertainty in
predictability of these quantities as a function of prediction
interval.

b) Support research aimed at improving predictability of
solar variability.
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ISSUE 4: Model users generate information that can be valuable
feedback to the modeling process. The implementation of this
obviously beneficial activity is not trivial, but if done well,
could be cost effective.

RECOMMENDATION Feedback from model users to modelers should
be encouraged and supported.

ISSUE 5: The measurements required to support a continued
viable program in predicting the state of the thermosphere are
not being routinely made. It is important to monitor several
atmospheric variables to provide continuity to the data base
that has enabled the progress to date, to track the long term
variability and to improve understanding and prediction
capability.

RECOMMENDATION:: Plan and support a thermosphere "weather"
satellite or payload for the shuttle and space station.

ISSUE 6: Competition amongst various workers modeling the
thermosphere is wholesome, but there does appear to be some
unnecessary and perhaps undesirable duplication of effort by
both modelers and users.

RECOMMENDATION ¢ The desirability of standardizing the
atmospheric model and centralizing the management of the
modeling and associated research should be carefully evaluated.
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SUMMARY OF ISSUES

A. Hedin

1. While prediction of drag force appears to have not advanced
much in the last decade, the description of composition and
temperature variations has advanced considerably.

2. How many different models for different purposes should be
provided? Composition is very much an engineering concern for
surface degradation and glow problems. It also has some
influence on drag and inaccurate drag coefficients may be
degrading the calculation of drag force using more accurate
atmospheric composition models.

3. Are we failing to allow for the evolution of engineering
concerns and providing misleading answers by continuing to
promote a 15 year old model to be used for the next decade. J70

is rarely referred to or compared to other data in the current
scientific literature.

4. How are we to keep the models current or improving with the
lack of current measurement missions and lack of appropriate
drag analysis for objects currently in orbit.

5. What time scales of variability are important for
engineering problems? The models may be better for some

purposes than comparisons with high time resolution data
suggest.
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N87-20674

LIMITATIONS TO MODELING THE THERMOSPHERE AND EXOSPHERE

John Slowey, Smithsonian Astrophysical Observatory

Correlations have been noted between solar 10cm radio flux,
the indices of geomagnetic activity, and what happens in the
atmosphere. There are also correlations between events in the
troposphere and density in the thermosphere. Gravity waves in
the thermosphere are not handled in existing models. A
reasonable estimate is that they contribute perhaps ten percent
to the deviation between model density values and the effective
density as it influences satellite orbital motion. Another
factor is atmospheric composition which influences density
through the different scale heights of components of different
molecular weight in this regime.

[Carignan] We should note that there are more gravity waves at
high latitudes and also more at high Kp. This may account for
the observed deviations.
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EMPIRICAL MODELING OF THE THERMOSPHERE: AN OVERVIEW

A. Hedin, NASA/Goddard Space Flight Center

Hedin gave a summary of thermospheric density modeling
history and standard atmospheres. In particular, he compared
and contrasted the approaches of the Jacchia and MSIS models.
His conclusions were that the Jacchia models are best if drag is
the primary concern. MSIS is superior for variations in
composition and temperature variations and comparison with
theoretical models is facilitated by the use of spherical
harmonics, which also provide a simple and consistent way of
obtaining simplifications.

ADVANTAGES/DISADVANTAGES

1. Jacchia

a. Theoretically best if drag is primary quantity
desired without high resolution and for satellite
geometries and orbits similar to those used in
generating the model. However, drag coefficients
used in density derivation need to be more
carefully specified if original drag is to be
reproduced. Inaccurate specification of compo-
sition (e.g. He bulge) may result in inaccurate
drag.

b. Absolute total density dependent on the drag
coefficient rather than the instrument
calibration. However, dependence of drag
coefficients on composition and extreme
geometries may be a problem. Model predictions of
composition and temperature are derived from
auxiliary data or assumptions and may not be
realistic.

c. Formulation has particular difficulty coping with
minor constituent variations found by mass
spectrometers and cumbersome pseudotemperatures
of J77 help only a little.

2 MSIS
a. Best for composition/temperature variations, but
agrees with drag models in overall averages.
b. Provides better resolution of variations

(including total density) in local time, etc.
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Absolute densities dependent on individual
calibration constants for contributing instruments

but model accuracy should be better than that of
an individual instrument.

Spherical harmonics facilitate systematic
increase in model resolution and comparison with
theoretical models. Similarly, complexity can be

reduced if desired by dropping higher harmonics
or unneeded effects.
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Historical Development of Empirical Thermosphere Models

Primarily Total Density Data Primarily Temp. & Comp. Data
Year from Satellite Drag from Ground and In-situ Instr.
a— I
ICAD
. ARDC
1960 N\ DENSEL +— J60
LOCKHEED- (Jacchia) .
JACHIA | CIRAS1
| |
USSA62 i | BARRIS-
I | PRIESTER
i |
' f
| t
1965 J65 CIRA6S
|
OSSA JACGI.A-/ 1
Suppl. WALKER~ i
RRUCE |
|
!
|
§
1970 J70 l
{
!
J71 |
\ CIRA7Z
|
N
]
GRAM | 0G06
(Justus) (Hedin)
1975 MDAC ]
(Olson) |
USsSAT6 ‘

J77 | M, M2 MS1S77 ESRO4
| (Thuillier) /(Hedin) (von Zahu)
| D™

(Barlier)

| AEROS MSIS

| (Kohnlein) UT/LonN
1980 GRAM3 I c

\ (Kohnlein)

|

! MSIS83

|
1985 | l

|

CIRA 86 € MSIS 86
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A.‘

B.

MODEL DEVELOPMENT

Jacchia
1. J65

a. Earliest comprehensive model based on drag. Lower boundary at 120
km.

b. Static height profiles as function of exospheric temperature
assuming hydrostatie/diffusive equilibrium.

c. First to include four principal effects (diurnal/seasonal,
semiannual, solar activity, magnetic activity) using ad hoc
formulas for exospheric temperature to fill gaps.

d. Introduced Bates type temperature profile (which can be integrated
explicitly).

2. J70 & M

a. Lower boundary at 90 km and more complicated temperature profile
requiring numerical integration.

b. Refinements and expansions of ad hoc formulas.

¢. Included factor of three winter helium bulge.

d. JT! raised atomic oxygen at 150 im over J70.

3. J17

a. Inclusion of some results from mass spectrometers.

b. Magnetic coordinates for magnetic activity effects.

¢. Composition phase through pseudo-temperatures.

0GO-6/MSIS
1. 0GO-6 (1974)

a. Earliest comprehensive model based on mass spectrometer data.

b. Bates temperature profile above 120 im.

¢. Spherical harmonics for geographical/local time coordinates.

d. Variable boundary at 120 km for He and O to represent phase
differences between constituents. Height profiles assuming
hydrostatic/diffusive equilibrium.

e. Temperature inferred from N2 agreed well with incoherent scatter.

2. MSIS 77

a. Same format as 0GO-6.

b. Used mass spectrometer density data from five satellites and
temperatures from four incoherent scatter stations.

c. Variable boundary also for N2 so temperature depends on incoherent
scatter and N2 scale heights.

3. MSIS 79

a. Introduced UT/Longitude variations for quiet and magnetic active
times (alternative to magnetic coordinates). Temperature maximum
and He minimum near magnetic pole.

4, MSIs 83

a. Density and temperature data from mass spectrometers on seven
satellites, from five IS stations, and from rockets.

b. Extended profiles below 120 km to 85 km using analytically
integrable temperature profiles.

c. Includes major variations in temperature and density below 120 im.

d. Improved resolution {n prediction of magnetic activity variations
using time history of 3hr indicies.
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CONCENTRATION (crid)

He

108 —
21 Dec
./.-
-

i
5 . ~ | L 7 N 7
Rl N\ 3 F - =
S Jacchia 19N \' 3 — . \\ ]
C —.—.— MSIS N\ -/ N —~
- ThisC;nod)el 1 N 7
A n — e
2!10‘ 1 i E 1 a1 1 1 1i 1 1 ~
-390 -60 -30 O 30 60 90 -90 -60 -30 O 30 60 90

and K

LATITUDE (°)

Fig. 13

Latitudinal variation of n(He) at 1000 kin altitude. The left
part corresponds to F=F =150 x 10722 w m‘2 Hz—!
= 2. The right part corresponds to F = F=92x

10-22 W m—2 Hz~!

and K
Jacchia 1971 and MSIS models.
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Table 4a. Density Ratio to MSIS~-83 for N;, 0, and He.

Ny 0 He
Data Sat altitude avg sd pts avg sd pts avg sd pts
0Go-6 (MS) 400~-700 1.08 .27 659 1.15 .16 1276 1.18 .19 902
San Marco-3 (M) 190-250 1.10 .20 77 .86 .15 24 1.09 .17 4l
Asros-A NATE (M3) 200~-500 1.13 .47 321 1.14 .33 478 1.18 .42 466
AE-C NATE (MS) 190~400 1.13 .33 640 .91 .18 866 .68 .18 855
AE~C 0SS (MS) 135-160+ .97 .15 440
AE-C 0SS (MS) 190-400 1.02 .26 319 1.08 .18 387 1.03 .23 1371
AE-D 0SS (MS) 140-160+ .99 .16 184
AE-D 0SS (MS) 190~-400 .87 .33 99 1.0l .18 107 .78 .22 107
AE-E NACE (MS) 140-160+ 1.01 .13 815
AE~-E NACE (15) 190-450 1.00 .22 701 .87 .18 1019 <93 .17 1002
ESRO~4 (MS) 200~-350 .88 .33 427 .83 .24 587 .84 .30 518
Rockects (MS) 100~120 .83 .36 35
Rockets (MS) 110-160 .92 .30 28
Rockets (MS) 190~-300 .90 .32 39
Arecibo (1S) 100-120 .92 .32 228
Arecibo (IS) 110-135 1.14 .51 109
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N87-20676

REQUIREMENTS FOR IMPROVED MODELING OF THE ORBITAL ATMOSPHERE

Frank A. Marcos, Air Force Geophysics Laboratory

Satellite accelerometer data are available for seven time
periods during the period 1974-present. All seasons and
latitudes up to 839 are covered. Deviations between the
accelerometer data and current models are greatest for high
geographic latitudes and high geomagnetic index, although about
a 15 percent standard deviation persists between the models and

the accelerometer data even at low latitudes and geomagnetically
quiet times.

Accelerometer data give density times the ballistic
coefficient, (C%A/m), and it is therefore necessary to estimate

the time-line of the ballistic coefficient in order to obtain
density.
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SMOOTHED SUNSPOT NUMBER

SOLAR CYCLE COVERAGE OF SATELLITE ACCELEROMETER DATA

'mnmm]'! 1] i 1 i 1] i t 1 ' ! i ] m
160 =
] row incLinaTION
.w =1 —
‘*/s 68° INCLINATION
140 |-~ SEM-i—1} .r“ | SeTa-2 -
/ POLAR INCLINATION
120 b= -
5 -L, * » OBSERVED CYCLE 21
100 b - « « PREDICTED CYCLE 2t |
| §3-4 —i2 -
80 g ~ g SETA-3 m
€ {— < B 3 -
AE-C > .@—535-1
ol / a0 < 2 ~
% A AEE SH o ~
% -
=] —
20 3 K-
o bt bbbl o, sl
.A.l( JI{ J.NE JINE ANE JUNE JUNE JNE UUNE ME JUNE ANE  JUNE ANE
974 ars - 1976 -1 d -1} 24" 1980 1981 832 1983 1964 1983 1986 1987 1988

Satellite accelerometer flight history and solar activity

vs. time.

TABLE 1. SATELLITE ACCELEROMETER DATA SOURCES
Satellite Data Acquisition Period
AE-C Jan - Dec 74
S3-1 Oct 74 - May 75
AE-D Oct 75 - Jan 76
AE-E Nov 75 - Nov 76
S3-4 May - Aug 78
SETA-1 Mar - Apr 79
SETA-2 May - Nov 82
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MEAN VALUE

MEAN VALUE
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GEOGRAPHIC LATITUDE
Mean values of SETA-1 data to J71 model plotted as a function
of geographic latitude (three Kp bins).
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Mean values of SETA-1 data to MSIS83 model plotted as a

function of geographic latitude (three Kp bins).
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Fig. 7. SETA-1 density ratios to J71 (with Kp = 1) plotted in geomag-
netic latitude - geomagnetic local time. The four Kp bins
are: 0 + 1.5, > 1.5 to 3.5, > 3.5 to 5.5 and > 5.5.
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SETH-2 DATA FOR KP BIN 5.5 - 9.8

FHTIU TO NHORMALIZED DATH FOR KP BIN 8.8 -

)8 -

11017 1.23 1.29
PHTIO BIN

! i !
n.93 A.99 1.85

Fig. 8. Density response to geomagnetic activity calculated from the
ratio of the > 5.5 Kp bin to the 0 to 1.5 Kp bin data of
Fig. 7.
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SOLAR ACTIVITY - GEOMAGNETIC INDICES

Chairperson: J. Joselyn
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N87-20677

FORECASTS OF SOLAR AND GEOMAGNETIC ACTIVITY

JoAnn Joselyn, NOAA Environmental Research Laboratories
Space Environment Laboratory

Forecasts of solar and geomagnetic activity are critical
since these quantities are such important inputs to the
thermospheric density models. At the moment, a key question is
"When will the next solar maximum be, and how large will it be?"
At this time in the history of solar science there is no way to
make such a forecast from first principles. Physical theory
applied to the sun is developing rapidly, but is still
primitive. Techniques used for forecasting depend upon the
observations over about 130 years, which is only twelve solar
cycles. (The solar sunspot cycle period is about eleven years,
but shows considerable variability. The number of cases
available for study is too small for a reliable statistical
analysis.) It has been noted that even-numbered cycles
systematically tend to be smaller than the odd-numbered ones by
about 20 percent. Another observation (Sargent) is that for the
last 12 cycle pairs, an even-numbered sunspot cycle looks rather
like the next odd-numbered cycle, but with the top cut off.
These observations are examples of approximate periodicities
that forecasters try to use to achieve some insight into the
nature of an upcoming cycle. Another new and useful forecasting
aid is a correlation that has been noted between geomagnetic
indices and the size of the next solar cycle.

Geomagnetic activity tends to correlate with solar
activity. There appears to be an 88 year periodicity (the
Gleissberg Cycle). Other quasi-periodicities can be partially
accounted for by noting that during even cycles, high aa is
primarily due to coronal holes, while during odd cycles it is
due to solar flare activity. Based on these and similar
considerations, in the mid 1990's we expect that aa<l10 70-145
days per year (quiet), 10<aa<50 22-55 days/year with K's 5 or
greater. As a function of season of the year, on the average
there is more geomagnetic activity during the equinoxes than
during the solstices.

Now to forecasts: We think that it is very unlikely that
the next solar minimum will occur before June, 1986. Our best
guess is July, 1987. We are unwilling to say when the next
maximum will occur, but the best estimate for the time of the
next maximum would probably be July of 1991. The next solar
maximum looks like around 150 for F10.7.
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(T6R,1962)

Feynman: Geomagnetic and Solar Wind Cycles, 1900-1975
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Fig. 1. The annual number, R and the annual average aa index, (sa), from 1868

to 1975. (aa) is measured in units of nanoteslas.
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separate high-category major geomagnetic storms in a given year (some storms
involve several consecutive half-day periods). Heavy vertical lines indicate
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N87-20678

NASA/MSFC PREDICTION TECHNIQUES

Robert E. Smith, Marshall Space Flight Center

The NASA/MSFC method of forecasting is more formal than
NOAA's. The data is smoothed by the Lagrangian method and
linear regre551on prediction techniques are used. The solar
act1v1ty period is fixed at 11 years--the mean period of all
previous cycles. Interestlngly, our present prediction for the
time of the next solar minimum is February or March of 1987,
which, within the uncertainties of two methods, can be taken to
be the same as the NOAA result.
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MIDDLE ATMOSPHERE MODEL USERS

Chairperson: J. Gamble
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N87-20679

USERS OF MIDDLE ATMOSPHERE MODELS
REMARKS

Joe Gamble, NASA/Johnson Space Center

The procedure followed for shuttle operations is to
calculate descent trajectories for each potential shuttle
landing site using the Global Reference Atmosphere Model (GRAM)
to interactively compute density along the flight path 100 times
to bound the statistics. The purpose is to analyze the flight
dynamics, along with calculations of heat loads during re-entry.
The analysis program makes use of the modified version of the
Jacchia-70 atmosphere, which includes He bulges over the poles
and seasonal latitude variations at lower altitudes. For the
troposphere, the 4-D model is used up to 20 km, Groves from 30
km up to 90 km. It is extrapolated over the globe and faired
into the Jacchia atmosphere between 90 and 115 km. Since data
on the Southern Hemisphere was lacking, what was done was that
the data was flipped over and lagged 6 months. Remarkably, this
procedure seems to work quite well.

Sometimes when winds are calculated from pressure data in
the model there appear to be discontinuities. Modelers
indicated that the GRAM was not designed to produce winds, but
good wind data is needed for the landing phase of shuttle
operations. It was remarked that use of atmospheric models
during re-entry is one application where it is obvious that a
single integrated atmosphere model is required.
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N87-20680

UTILIZATION OF GLOBAL REFERENCE ATMOSPHERE MODEL (GRAM) FOR
SHUTTLE ENTRY

Kent Joosten, NASA/Johnson Space Center

At high latitudes, dispersions in values of density for the
middle atmosphere from the GRAM are observed to be large,

particularlg in the winter. Trajectories have been run from

28.5° to 98°. The critical part of the atmosphere for re-entry
is 250,000 - 270,000 ft. 250,000 ft is the altitude where the
shuttle trajectory "levels out". For "ascending" passes (entry

trajectories with an ascending nodal crossing at the equator),
the critical region occurs near the equator. For "descending"
entries the critical region is in northern latitudes. The
computed trajectory is input to the GRAM, which computes means
and deviations of atmospheric parameters at each point along the
trajectory. There is little latitude dispersion for the
ascending passes; the strongest source of deviations is
seasonal; however, very wide seasonal and latitudinal deviations
are exhibited for the descending passes at all orbital
inclinations. For shuttle operations the problem is control to
maintain the correct entry corridor and avoid either aerodynamic
"skipping" or excessive heat loads.

The high dispersions displayed in the model mean that the
designers must allow for correspondingly high surface
temperatures. §S. Bowhill suggested that the time in the re-—
entry trajectory at which closed-loop control takes over might
be taken as a function of season. However, designers want to be
able to use a single control program sequence. At present,
entry begins with open-loop control. Accuracy of the model is
only a factor prior to going to closed-loop where feedback
controls take over. (It is not possible to use closed-loop

guidance throughout entry because of limitations on closed-loop
roll control capability.)
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N87-20681

USE OF THE 4D-GILOBAL REFERENCE ATMOSPHERE MODEIL (GRAM) FOR SPACE
SHUTTLE DESCENT DESIGN

S. M. McCarty, McDonnell-Douglas

This discussion centered on the method of using the GRAM
mean and dispersed atmospheres to study skipout/overshoot
requirements, to characterize mean and worst case vehicle
temperatures, study control requirements, and verify design.
Landing sites in these analyses range from 65°N to 30°S, while
orbit inclinations vary from 20° to 98°.

McCarty's primary concern was that they cannot use as small
vertical steps in the re-entry calculation as desired because
the model predicts anomalously large density shear rates for
very small vertical step sizes. This is an artifact of the
model which needs study.

The winds predicted by the model are not satisfactory.
This is probably because they are geostrophic winds and because

the model has an error in the computation of winds in the
equatorial regions.[Smith]
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Ng§7-20682
AERO-ASSISTED ORBITAL TRANSFER VEHICLE (AOTV)

Oliver Hill, NASA/Johnson Space Center

The AOTV will make use of the atmosphere to provide braking
on return from a planetary mission or geosynchronous orbit. The
minimum altitude for aerobraking is typically 255,000 ft at the
equator (only the equatorial region is being considered for AOTV
braking). Time of the braking maneuver is typically 480 sec
from 400,000 ft to 255,000 ft and back out - about 8 min. The
problem is to design a control system that will be able to
handle density irregularities ("bumps") such as those that have
shown up in shuttle data near 280,000 ft. To obtain data, one
has to use model-produced statistics or information obtained
during the atmospheric transit time. The GRAM appears to
bracket the shuttle data, but it is not clear that the
statistics are correct. The model-data exhibits strong density
shears over small step size that are probably an artifact.

[Gamble] The shuttle entry itself, particularly in the region

where the trajectory is nearly horizontal, is a new data source
for middle atmosphere density. There is a new National Weather
Service (NWS) rocket program to study atmospheric density along
shuttle entry paths (M. Gellman).
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N§7-20683

OVERVIEW OF SHUTTLE DATA
ON DENSITY

Robert Blanchard, NASA/Langley Research Center

The HiRAP (High Resolution Accelerometer Package) used on
the Shuttle was described and examples of flight-derived
density-altitude profiles were compared to the 1976 Standard
Atmosphere. By flying an accelerometer along with a mass
spectrometer it is possible to obtain the drag coefficients for
the Shuttle. However [Champion] problems may arise due to
contamination in the near-shuttle environment.
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N87-20684

SHUTTLE DERIVED ATMOSPHERE

John Findlay, Flight Mechanics & Control, Inc.

The shuttle descends along a rather shallow path, thus
providing some information on the horizontal structure of the
atmosphere. Small scale structures have been suggested (shears,
"potholes"). The best estimates of the shuttle drag coefficient
and projected areas are used to go from accelerometer data to
density through the use of BET's (Best Estimated Trajectories).
Data are from the IMU's (Inertial Measurement Unit) and the
HiRAP (High Resolution Accelerometer Package).
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MIDDLE ATMOSPHERE DYNAMICS

Chairperson: D. Fritts
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N87420685

GRAVITY WAVES

David Fritts, University of Alaska

Gravity waves contribute to the establishment of the
thermal structure, small scale (80-100 km) fluctuations in
velocity (50-80 m/sec) and density (20-30%, 0 to peak) .
Dominant gravity wave spectrum in the middle atmosphere: x-
scale, <100 km; z-scale, >10 km; t-scale, <2 hr.

Theorists are beginning to understand middle atmosphere
motions. There are two classes: Planetary waves and equatorial
motions, gravity waves and tidal motions. The former give rise
to variability at large scales, which may alter apparent mean
structure. Effects include density and velocity fluctuations
(velocity fluctuations are larger), induced mean motions, and
stratospheric warmings which lead to the breakup of the polar
vortex and cooling of the mesosphere. On this scale are also
equatorial quasi-biennial and semi-annual oscillations.

Gravity wave and tidal motions produce large rms
fluctuations in density and velocity. The magnitude of the
density fluctuations compared to the mean density is of the
order of the vertical wavelength, which grows with height.
Relative density fluctuations are less than, or of the order of
30% below the mesopause (vertical wavelength of the order of 30
km or less). Such motions may cause significant and variable
turbulence and diffusion. Sources include topography,
convection, and wind shear. There is a strong seasonal
variation in gravity wave amplitude.

Additional observations are needed to address and quantify
mean and fluctuation statistics of both density and mean
velocity, variability of the mean and fluctuations, and to
identify dominant gravity wave scales and sources as well as
causes of variability, both temporal and geographic. Useful
data can come from satellite measurements - winds, temperatures
and constituents; global means and variability, waves and
turbulence. Other valuable data can originate from fixed ground
sites: radar winds - energies, scales, temporal variability,
fluctuation statistics at high resolution; lidar temperatures -
wave amplitudes and scales, dynamics, temporal variability at
high resolution; optical systems-wavelengths and phase speeds.
Relevant measurements include temperature and density,
horizontal velocities and wave energies, wave periods,
wavelengths, phase speeds, and vertical velocities indicative of
trends but not as readily related to density fluctuations.

The GRAM does a good job with the available data. It could
be improved substantially with current knowledge if it
incorporated better means, i.e. monthly values, and used better
fluctuation statistics. Possible alternatives would be based on
mean and fluctuation statistics and knowledge of variability to

245 @RBCEDING PAGE BLANK NOT FILMED



L f‘

e

rms perturbation horizontal velocity, density, and knowledge of
the causes of these perturbations.

Oorbital perturbations arise from geomagnetic storms. 250
to 400 percent increases in density at polar latitudes occur
under these conditions, giving rise to ten percent fluctuations
in orbital velocity. Note that winds are thus not needed unless
density variations are known to better than 20 percent.
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SUMMARY NOTES - MIDDLE ATMOSPHERE

D. C. Fritts, University of Alaska

1l - MIDDLE ATMOSPHERE OBSERVATIONS:

Beginning to understand middle atmosphere motion; both
dynamics and effects

Planetary waves and equatorial motions

Variability at large scales, may alter apparent mean
structure

Effects include density and velocity fluctuations
(velocity larger) induced mean motions

Stratospheric warmings
Breakup of polar vortex
Cooling of mesosphere

Equatorial quasi-biennial and semi-annual
oscillations

Gravity wave and tidal motions

Large rms fluctuations in density and velocity

Magnitude of fluctuations is the order of the
vertical wavelength, which grows with height

Wave amplitudes limited by saturation
Mean density fluctuations of the order 0.3 below
mesopause (vertical wavelength of the order 30Kkm)
May have small horizontal and temporal scales
may cause significant and variable turbulence and
diffusion.
RECOMMENDATIONS REGARDING OBSERVATIONS:

Additional studies needed to address/quantify
mean and fluctuation statistics, density, and velocity

Variability of mean and fluctuations
Dominant gravity wave scales and sources

Causes of variability, temporal and geographic.
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Useful data
Satellite - winds, temps, constituents
Global means and variability, waves and turbulence.
Fixed site - winds and temps.
Radar winds - energies, scales, temporal

variability fluctuation statistics at high
resolution

Lidar temperatures. - wave amplitudes and scales,
dynamics, temporal variability. at high
resolution

Optical systems - wavelengths and phase speeds
Relevant measurements
Temperature and density
Horizontal velocities and wave energies
Wave periods, wavelengths, phase speeds
Vertical velocities indicative of trends, but not as
readily related to density fluctuations.
2 - DATA USE/MODEL IMPLEMENTATION:
GRAM Model
Good job with available data
Can improve substantially with current knowledge

Better means, use monthly values
Better fluctuation statistics

Alternatives possible
Based on mean and fluctuation statistics
Knowledge of variability in rms velocity fluctuation
components and density fluctuations, along with
causes.

3 - ORBITAL PERTURBATIONS:
Geomagnetic storms
~250-400% increases in density at polar latitudes
~10% orbital velocity fluctuations
Thus winds not needed unless density variations known
to ~20%
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MIDDLE ATMOSPHERE MODELING
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CONCILUSIONS ON
MIDDLE ATMOSPHERE MODELING

S. Bowhill, University of Illinois

COMMENT: GRAVITY WAVE CLIMATOLOGY
A climatology of gravity waves is needed, along with a
means for incorporation of winds into the models.

ISSUE 1: AVAILABILITY OF NEW DATA

During the past 10 years, a substantial body of new data
has become available relating to the structure and dynamics of
the atmosphere between 10 and 100 km altitude, which should be
taken into account in preparing new models of this region, as
follows:

A. Satellite radiometry. Models have been prepared (for
example, BARNETT and CORNEY, 1985) based entirely on
satellite data, that are quite comprehensive in
geographical coverage though limited in altitude extent (up
to 80 km only). However, the published models lack
information about the dispersion of the results around the
monthly mean values: this information is available from the
original tapes.

We recommend that this dispersion information be added to the
available satellite model information.

B. Rayleigh-scatter lidar. This new technique (CHANIN et al.,
1985) is capable of giving density and temperature data
over the altitude region 35-80 km with good accuracy, but
from a fixed ground location. These data may be useful for
real-time ground truth. Gravity-wave data are also derived
but with lesser time resolution than with MST radars (see
below) .

We recommend that the capabilities of this technique be
augmented and that additional information be provided.

C. MST radar. The mesosphere-stratosphere-~troposphere radar
(ROTTGER, 1984) is useful for winds (1 hr resolution) and
gravity-wave measurements (1 min resolution) from 5 to 25
km altitude, and (in the daytime only) from 60 to 95 km
altitude.

We recommend that present MST radars be used to develop detailed
climatologies for gravity waves in the region between 60 and 95
km altitude, including seasonal, geographic, orographic and
meteorological effects.
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D. Orbiter drag. Since the shuttle orbiter spends a
considerable portion of its re-entry track at around
200,000 to 250,000 ft. altitude, accelerometer data from
this source can provide unique information about the
horizontal structure of gravity waves.

We recommend intensive study of those measurements.

E. Occultation of astronomical objects. Considerable success
has been obtained in using occultation of X-ray sources
using observatory satellites such as HEAO-2 (MATTHEWS,
1985) to determinc atmospheric densities in the 85-150 km
height range. The Navy SHAD program accomplishes the same
objective at a lower altitude by observing the refraction
of visible sources.

We recommend that the feasibility of incorporating densities
determined from occultation data be investigated.

ISSUE 2: IMPROVEMENT OF THE GRAM MODEL

The GRAM model, in the altitude region below 100 km, is
based primarily on the model of GROVES (1971). Considering that
it used no satellite data, the model is surprisingly realistic.
However, some further work is needed to improve it, as follows:

A. Gross features. Comparisons of the density and temperatures
of the GRAM model with those of the satellite model of
BARNETT and CARNEY (1985) have shown some difference.

We recommend that the GRAM model be adjusted to reflect the
zonal means for standing planetary waves 1 and 2 from the
Barnett and Corney model.

B. Fine structure. The dispersions in the GRAM model are
prepared primarily on rocket measurements.

We recommend that dispersions from the satellite data base be
incorporated.

C. Monte-Carlo simulation. The Markov process used to generate
the irregular structure in the GRAM model does not give a
realistic representation of gravity-wave irregularities in
the mesosphere; nor does it provide the correct spatial
spectrum at high frequencies.

We recommend that an alternate procedure for irregularity
simulation be developed, resulting in realistic distribution
functions and correlation functions.

ISSUE 3: POSSIBILITY OF REAL-TIME DATA INPUT
In principle, given the large overall variability in
mesospheric-atmospheric density (particularly in winter and at
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high latitudes), measurements of mesospheric density in real
time could greatly improve the model predictions. However, the
practicality of incorporating such measurements is very much in
question. It is possible that incorporating a limited number of
alternate scenarios for re-entry might produce a cost-effective
improvement in re-entry margins.

We recommend investigation of the feasibility of incorporating
re-entry data into the re-entry plan, including time of year,
geographic location; storm environment and the transient
planetary-wave pattern.
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THE GRAM-III MODEL

C. G. Justus, Georgia Institute of Technology

The GRAM is under continuous development and improvement.
GRAM data were compared with Middle Atmosphere Program (MAP)
predictions and with shuttle data (Blanchard).

An important note: Users should employ only step sizes in
altitude that give vertical density gradients consistent with
shuttle-derived density data. Using too small a vertical step
size (finer than 1 km) will result in what appears to be

unreasonably high values of density shears but what in reality
is noise in the model.
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Figure 10.5 Ground plot of the re-entry and return trajectory
for mission 3, a 104° inclination polar orbit
launched from and returning to Vandenburg AFB. The
altitude in km is plotted on the inner side of the
orbital plot and the time in seconds is plotted on
the outer side.
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MIDDLE ATMOSPHERE DENSITY AND MODELS

K. Champion, Air Force Geophysics Laboratory

The 80 to 130 km altitude region is our old "ignorosphere"
- the region of the atmosphere that no one seems to be
interested in, and yet the critical region for shuttle entry and
atmospheric braking. Comparison between the Air Force reference
atmosphere and Shuttle IMU data shows large fluctuations at high
latitudes. New data sources are available now, such as the
Arecibo and Millstone Hill ionospheric scatter radars.

Conclusions:

In the 20-80 km altitude range there is a reasonable

quantity of data on the mean atmosphere; however, information on
diurnal variability is needed.

In the 80-120 km altitude range data is needed to identify
systematic variations and models for the region are preliminary.
Unpredictable variations are observed: turbulence, storm
effects, gravity waves.
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MEASUREMENT TECHNIQUES

Art Belmont, Control Data Corporation

Essentially everything known about the upper atmosphere is
based on rocket data. Now that the rocket network is being
closed down, there is a dim future for the interpretation of
satellite measurements. Belmont's strong suggestion is to
increase the rocket network, especially at high latitudes.

There is a need for a database for the atmosphere over one
complete solar cycle. The atmospheric community needs to come
up with new and improved satellite measurement techniques, such
as limb observations, lidar, etc. Analysis of four sets of
satellite data which cover the years from 1970 to 1982, although
not all of them are global, is underway. There is poor vertical
resolution in these data and while theoretically data can be
retrieved to altitudes of 100 km, 85 km is the practical upper
limit. Three or four independent data sets are required to get

higher vertical resolution due to the broad weighting functions
in the instrument.
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DENSITY MEASUREMENTS: ROCKETS VS SATELLITE

F. Schmidlin, NASA/GSFC/WALLOPS

Various density measurement techniques were discussed:
grenades, pitot probes, thermistors, rigia sphere, inflatable
sphere.

Available data show large variations in density in very
short time periods, on the order of tens of minutes. New
techniques have been developed for improving falling sphere
derived density data. There is a significant improvement at 55
km for wavelengths of 2 km. A 10-15% change in density was
measured at 70 km between night and day; however, whether or not
it is a true diurnal effect or a problem with the spheres has
not been resolved.

A real problem facing the modelers and the users is the
reduction of in situ measurements by the rocket network. The

interpretation of satellite measurements will suffer from the
lack of ground based measurements.
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DISCUSSION

[JoAnn Joselyn] November 13, 1960 was the worst
geomagnetic storm known. But we don't actually know what the
worst case is, since records have only been kept for 100 years.

Re: geomagnetic activity. We are now at a rather high
level, and it will very likely persist. With regard to future
capabilities, information useful for forecasts can be obtained
from monitoring the solar wind. Recent research on the sun
shows promise that solar mechanisms will be understood fairly
soon.

Short-term fluctuations: There is no good model for
determining what happens at high Ap and F10.7 in the form of
short term fluctuations. Nurre proposed looking at the control
data on SKYLAB.

Recent density models: J. Liu remarked that the current
models do not seem to improve predictions. Reasons for
continuing to use the older models are 1) for consistency with
the existing database, 2) they run faster.

[Carignan] Much of the discrepancy between models and the
real world is from our inability to model small scale
structures. A recommendation is that modelers concentrate on
this point. With a spherical harmonic approach, the 9th order
is quite feasible and wave number 9 would permit modeling the
cusp. Another deficiency of current models is in not including
dynamics in a useful way. This workshop should endorse the sort
of modeling that Roble and Killeen are doing and attempt to
incorporate TGCM concepts into models used.

[Hedin] Although it will become possible to obtain direct
solar uv data, that will likely not improve the model
performance over using F10.7.

On the one hand there are new data sources evolving rapidly
that will provide important inputs to density models. On the
other hand, there is a huge database that we must maintain
continuity with.

[Joe Gamble] It would be most important to bound density
variability due to gravity waves.

[Joosten and McCarty] A reliable global model is required.
For launches from Vandenberg there is concern about variability
at northern latitudes. Entries will probably have to be
restricted to coming in from the southern direction, but this
cuts significantly into opportunities and into overall shuttle
performance.
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[Gamble] We need to verify the results of the perturbation
model, particularly for AOTV studies.

[Fritts] We are beginning to understand the motions in the
middle atmosphere - gravity waves, equatorial motions, planetary
waves. If NASA wants to understand amplitude fluctuations
rather than momentum flux, then support will have to be provided
for a gravity wave climatology. There are important influences
from lower levels. Most motions are due to propagations upward
from below, rather than downward from above.

The Werkshop was in agreement that the GRAM model is
useful, and that the work of Justus and co-workers at Georgia
Tech to maintain and improve it should enjoy continued support.

[Vaughan] In the operational world, design decisions will
not be made on the basis of forecasting.
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SIX REASONS WHY THERMOSPHERIC MEASUREMENTS AND MODELS
DISAGREE

Kenneth Moe

Department of Geological Sciences
California State University
Fullerton, cA 92634

1. Introduction

One of the persistent themes at this workshop* has been the
differences between thermospheric measurements and models.
Sometimes the model is in error and at other times the
measurements are; but it also is possible for both to be
correct, yet have the comparison result in an apparent
disagreement. Several of the reasons for disagreement have been
pointed out by speakers at the various sessions. Our purpose
here is to collect these reasons for disagreement, and, whenever
possible, suggest methods of reducing or eliminating them. We
shall not discuss calibration, which was not discussed at this
meeting, and is extensively reported in the literature.

The six causes of disagreement which we shall discuss are:
Actual errors caused by our limited knowledge of gas-surface
interactions and by in-track winds; limitations of the
thermospheric general circulation models due to incomplete
knowledge of the energy sources and sinks as well as
incompleteness of the parameterization which must be employed;
and limitations imposed on the empirical models by the
conceptual framework and the transient waves.

2. Gas-Surface Interactions

Although gas-surface interactions have been extensively
studied in the laboratory since the end of World War IT, few of
these investigations have been directly applicable to satellite
problems until the past several years, either because atomic
oxXygen was not used, or because the energy range was much
different from that in the satellite case. One of the problems
is that atomic oxygen absorbs on many materials, drastically
changing the surface properties from those of the clean surfaces
which scientists prefer to study."*~

In order to overcome these limitations, accommodation and
drag coefficients were measured in orbit on three paddlewheel
satellites.?” The orbital decay responds to the incident
momentum, while the spin decay is caused mostly by the reemitted

* NASA Workshop on Middle and Upper-Atmospheric Modeling as
it Applies to Spacecraft Design and Operations,
Huntsville, Alabama, Nov. 19-21, 1985.
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momentum. Nevertheless, there still was a parameter which had
to be determined from a model; actually, five different models
of the angular distribution of reemitted molecules, motivated
by laboratory measurements at lower energies, were employed.
These models are shown in Fig. 1. All of the models are three-
dimensional: The figure actually illustrates their projection
on the plane of incidence. The corresponding accommodation
coefficients deduced from Ariel 2 which was in an orbit of
moderate eccentricity with perigee at 300 km, and Explorer 6,
which was in a highly eccentric orbit with perigee near 260 knm,
are shown in Fig. 2. Beletsky deduced from Proton 2, which was
in an orbit of low eccentricity near 190 km, that the Maxwell
reflection coefficient was 0.999. These measurements suggested
that in orbits of low and moderate eccentricity near 200 km the
reflection of molecules is to a close approximation diffuse and
completely accommodated. These are the assumptions which have
always been used since Sentman’ first calculated the drag
coefficient of a long, attitude-controlled cylinder. The drag
coefficient of such a satellite is shown in Fig. 3, which is
from an unpublished calculation by Jerome Kainer of the
Aerospace Corporation.

At this workshop Marcos® has tabulated the ratios of
measured density to that computed from many models for four
cylindrical satellites and for three satellites of compact
shapes. All four cylindrical satellites have ratios to the
models 10 to 15% below those of satellites of compact shapes.
It therefore appears that there is incomplete accommodation on
the long sides of the cylinders, where air molecules strike the
satellite at grazing incidence. (Measurements at grazing
incidence could not be made using the paddlewheel satellites).
Moe and Tsang9 have supplied equations for applying Schamberg's
formalism to data such as those obtained by Marcos. Marcos'
result could significantly impact the design of large
spacecraft, such as the Space Station. A recalculation of the

drag coefficients would also bring the measurements and models
closer together.

Another way of learning something about gas-surface
interactions in orbit is to compare measurﬁgents made by
different sensors as the altitude changes. Such a comparison
is shown in Table 1. There appear to be systematic variations
with altitude. This is an area for future research.

Another kind of comparison11 which may help us to
understand the interaction of helium with surfaces is
illustrated in Table 2. It should be obvious that helium will
not interact with surfaces in the same way as atomic oxygen
does. The analysis of these kinds of satellite data should

result in better agreement between measurements and models in
the future.

Swenson reported at this workshop that spacecraft glow
involves gas-surface interactions. This is an area of research

292




which will affect optical sensors. Plastics seem to glow less,

but it is possible that atomic oxygen penetrates the plastic
lattice and decomposes it.

3. Errors caused by In-Track Winds

It is well known that the satellite acceleration, a, is
__ p\/%QIAN
Ms

where £ is the ambient air density, V the velocity of the
satellite relative to the air, Cq is the drag coefficient, Ay
is the projected area of the satellite normal to the airstrean,
and Mg is the mass of the satellite.

At low latitudes, and at geomagnetically quiet times, the
wind-induced errors in measurements by accelerometers, pressure
gauges, and mass spectrometers only amount to 2 or 3%, so they
are comparable with some other errors. But at high latitudes
during geomagnetic storms, winds of 1 km/s often are measured.
The satellite cannot distinguish the effect of its own orbital
motion from that of in-track winds when molecules strike it.
Because the accelerometer senses momentum transfer, the

fractional error in density ﬁV?? caused by an in-track wind,
W, is

Z 2
AL - (vEW - \/oi’Z\\/;?\_A/"‘W N
_ox AW, WS
= %+%l

If W =1 km/sec, and Vo = 8 km/sec then

Pty

This is a 23% or 27% error, depending on whether the wind is
blowing in the same direction as the satellite orbital velocity
Vor Or in the opposite direction.

In cases in which adsorption can be neglected,12 the equation
for the pressure in a gauge can be written

Vg dt _ AcnoC <2 —Ao
W4t T e s eese) TR

where p is the pressure inside the gauge, V_, is its volume, T
its temperature and A_ the area of its orifice; k is Boltzmann's
constant, t is the time, n, is the number density of molecules
in the ambient air, C,, the speed of the ambient molecules, an?/&
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is the number of molecules which strike an area of 1 cm?in the
gauge from one side in one second. The function F(s cos ¢ )
depends on the speed ratio, s, and the anglezgy between the
velocity vector and the normal to the orifice.

Because the speed of molecules is so great compared with
the dimensions of the gauge, influx and efflux usually reach
equilibrium within a hundredth of a second. In equilibrium

F(S ws{&)
/L( = noCOO zx/—'ﬂ_:

But for(é cosQ?) > 3, which certainly is true if the gauge is
pointing into the airstream at 200 km altitude,

F (s cosfﬁ) = 2g cos{ﬂ \FTI:‘ ' So/apeak=no Coo S = NGV,

where V is the satellite speed relative to the airstream. The
ratio of the accelerometer and gauge measurements is then

VEGAN _ 1y (QAN
/%r;k:%}%\? MS m\/( M5>' where V =V

]
,--—Z'—— O—W’

and M is the mean molecular mass. Since a great deal is now
known about Cg4 and m, and it is easy to measure Ay and Mg,
before launch, this method can be used to measure variations of
the in-track velocity, V, during geomagnetic storms, and deduce
the wind, W. A closed-source mass spectrometer would respond to
velocity like a pressure gauge.

At the Meeting, Killeenl3 compared winds deduced from a
ground-based Michelson interferometer with those computed by the
NCAR Thermospheric General Circulation Model (TGCM). There was
gross agreement, but there were large differences locally. The
reason is that the TGCM uses a smoothly varying auroral oval,
whereas the actual variation of ionospheric conductivity, hence
the power input shown in Fig. 4, was complex. It therefore
would be helpful to have a method, such as the one just
described, for measuring the in-track winds in orbit. Then the
air drag could be computed from a model for comparison with that
measured, without assuming that that in-track wind was zero.
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DIFFICULTIES OF THE TGCM'S
(Sections 4 and 5)

4, Incomplete knowledge of Sources and Sinks

The solar extreme ultraviolet (EUV) radiation, which is an
important energy source, is not routinely monitored. Even when
it is, the sensors decay rapidly, so it appears that the 10.7 cm
solar radio noise Fq which, like the EUV, originates in the
lower chromosphere, wiZl continue to be used as a surrogate (as
long as the Eanadians continue to monitor it). According to
Hinteregger, > F 0.7 sometimes deviates from the EUV by a
significant amoun% for weeks, but Hedin said at the meeting that
he has investigated the problem and found F10.7 satisfactory for
most practical applications.

The large uncertainties in the energy sources are related
to the solar wind. Fig. 5 shows Olson's model of the solar
wind. The complex interaction of the solar wind with the
Earth's magnetic field produces the magnetospheric cavity, which
largely shields the thermosphere from direct impingement of the
solar wind. However, the solar wind does penetrate through the
bow shock into regions of low magnetic field, i.e., the dayside
cusps, polar caps, and the tail. Spacecraft measurements show
that energy is always being deposited in the thermosphere by
particles precipitating through the dayside cusps, although the
latitudes at which they precipitate varies with Kp. The
resultigg heating of the thermosphere was first calculated by
Olson.l

The energy inputs to the atmosphere through the polar caps
and tail are more sporadic, exc§§t for the ion drag associated
with magnetospheric convection. The magnetic perturbations
caused by ionospheric disturbance currents are represented by
such indices as Kp, Ap, and AE. There still is controversy
about the conditions which permit the entry of solar wind plasma
into the magnetosphere and thermosphere, but such parameters as
B, and B,, which are components of the interplanetary magnetic
f!eld, appear to be important. The number density and velocity
of the solar wind, which often increase after solar
disturbances, are important also.

Kamide and Baumjohann14 have recently shown that in order
to calculate the complicated pattern of Joule heating during a
geomagnetic storm, one must first collect the data from 57
magnetometer stations in the Northern Hemisphere and then place
these data in Rice University's 3-dimensional ionospheric
conductivity model. Only then is one ready to calculate the
energy source as a function of space and time. A glance at Fig.
4, which shows the patterns of power production derived by
Kamide and Baumjohann at particular times during two substornms,
reveals how complicated the patterns are, and how different. (A
satellite pass through these changing patterns every 90 minutes
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could not hope to derive this structure.) The NCAR general
circulation model has now been modified so it can accept the
total energy derived from this 3-dimensional Joule heating as an
input, although the total energy is used simply to expand the
auroral oval. The NCAR GCM does have IR cooling by CO,, but
there are several other aspects of the auroral and airglow loss
mechanisms which also must be measured, or at least modeled. No
doubt these are parameterized in some way in the TGCM. Another
important loss mechanism during storms which recently has been
discovered is the outflow of 0+ into the geomagnetic tail (the
excited polar wind).~7’ O 1In addition, the direct energy input
from precipitating electrons and protons must also be measured
and modeled, if the actual energy inputs are to be used instead
of the correlation with AE, Kp, or AE. This apparently is done
in the NCAR calculation.?

Actually, only half the Joule heating can be calculated by
Kamide and Baumjohann's method, because there are insufficient
geomagnetic stations in the Southern Hemisphere to calculate the
detailed pattern of ionospheric conductivity there. Since the
earth's magnetic field points in opposite directions in the
northern and southern hemispheres, and one hemisphere is usually
illuminated while the other is dark, the energy input in the two
auroral zones could be gquite different in magnitude and spatial
pattern. Fortunately, there is an approximate alternative
method which can be implemented in real time and may be useful
for modeling calculations. It was shown 15 years ago that the
response of the temperature of a static diffusion model to the
net energy inputs from the magnetosphere during storms can be
modeled by letting the ionospheric conductivitz vary as the 5/4
power of the integrated disturbance currents. ? This was done
as follows: The disturbance currents as a function of latitude
and Ap were detgrmined, by using data from 20 magnetic
observatories. ? By integrating the disturbance currents
corresponding to various values_of Ap, and inserting them in
Cole's theory of Joule heating, the temperature increase
corresponding with various functional relationships between the
ionospheric conductivity and the integrated disturbance current
were derived ésee Fig. 6). Comparison with the experimental
measurements? giving the temperature increase in Fig. 7
suggested the relationship

aga o< J 5/4, where o° is the Cowling conductivity.

Other important processes include the ring current, gravity
waves, convection, and turbulence. The ring current, which is
indexed by the quantity Dgp, is caused by the drift of electrons
and protons in the Van Allen belts. The ring current decays by
the precipitation of charged particles from low L-shells into
the South Atlantic Anomaly, and the auroral and sub-auroral
thermosphere. Evidence of this decay can be seen in SAR arcs26-

and in red airglow near the South Atlantic Anomaly, but this
airglow which identifies the region of energy input is actually
a loss mechanism, because the light is escaping from the
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thermosphere rather than heating it. Dgp is largest during
geomagnetic storms. It decays to a low Tevel in a few days.

Gravity waves and tidal waves are carrying energy from the
lower and middle atmosphere into the thermosphere at all times.
In addition, gravity waves generated in the auroral zone,
particularlg under disturbed conditions, carry energy to low
latitudes.? Aurogally generated gravitg waves are well modeled
by GCM's. Hine's? Chapman and Lindzen, 0 and Forbes and
Marcos have made important contributions to our understanding
of waves which propagate into the thermosphere from below. Some
of Forbes and Marcos' theoretical predictions of semidiurnal and
diurnal variations in the_ lower thermosphere have been
experimentally verified, so it is important to have these
tidal variations in the thermospheric models. The NCAR GCM has
now included a_wave input from below by "Rippling the Boundary".
Hedin, et al.>33 found direct evidence of transport processes in
the diurnal tide.

Perhaps the most difficult part of the entire circulation
problem is to know how to calculate the atmospheric motions near
the mesopause, which involve a superposition of laminar and
turbulent flows. General circulation models could add greatly
to our understanding of this relatively unexplored region if
they would treat this interface more realistically. This need
can be illustrated by considering atmospheric effects of the
dayside cusp precipitation. Fig. 8 shows the electron density
at 600 km measured by Alouette 1 in the polar winter, and the
corresggnding region of dayside cusp precipitation (shaded
area). Because the lifetime of electrons is only a few
minutes, and because field lines limit diffusion out of the
excited region, the region of enhanced ionization does not
spread out. But compare the neutral density bulges beneath the
dayside cusps measured by Logacs and Spades in Figs. 9 and 10.
The neutral bulges have half widths of about 20° in latitude,
which could result from motion out of the heated region in
response to the pressure gradient. The time it takes for the
heat energy to be carried down into the mesosphere and the ratio
of atomic oxygen to the molecular constituents are determined by
the molecular and eddy_conductivities near the mesosphere-
thermosphere boundary.>>~ Fig. 11 shows how composition
depends on eddy diffusion. A better understanding of these
processes,_including their variation with geomagnetic
activity,3 would be helpful in modeling the ionosphere and
airglow as well as the neutral atmosphere.

One other difficulty in using TGCM's should be mentioned:
How can they calculate the atmospheric variations which result
from an unknown cause; e.g., the semiannual variation? Perhaps
the modelers will choose to try the recent theory of
Walterscheid.? Anyone who attempts to compute a realistic
model of the thermosphere using a GCM obviously will have a
difficult time, but it is well worth the effort: General
circulation models are continually adding to our understanding
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of the important thermospheric processes, and will provide
guidance in refining the empirical models which will continue to
be used for practical applications.

5. Limitations imposed by the Parameterizations

The errors in the computed winds caused by simply
parameterizing the auroral heat input have already been alluded
to. Atomic oxygen must be parameterized in some way because the
rigid lower boundary at 97 km prevents 0 from diffusing down
into the mesosphere where it recombines. The thousands of
auroral lines must somehow be approximated. In spite of the
remarkable results achieved by the NCAR TGCM, we have a long way
to go before a thermospheric model can be calculated from first
principles.

The process described by Mayr, et al. is continuing39:
"From the theoretical side, one is faced with the problem of
solving a large set on nonlinear, partial differential equations
in three dimensions that relate the hydrodynamics and
electrodynamic properties of the neutral and ionized components
in the atmosphere to the energy, mass, and momentum sources of
the magnetosphere-thermosphere-lower atmosphere system. We are
far removed from such a comprehensive model. With the help of
simplified concepts the analysis is just beginning to explore
isolated regions and interaction processes to provide
understanding and guidance for the development of more
sophisticated models."
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DIFFICULTIES OF THE EMPIRICAL MODELS
(Sections 6 and 7)

6. Limitations imposed by the conceptual framework

The theory of static difgusion models was developed in the
1950's by Nicolet and Mange.4 It has been applied most
successfully by Jacchia and Slowey.4 The fundamental idea is
that the air expands in a vertical column in response to UV
heating and conductive cooling. The models have been modified
by Jacchia and Slowey into quite a flexible instrument for
representing the real thermosphere and visualizing its response
to various energy sources, although it cannot have the
flexibility conferred by dozens of harmonics. Judging from the
discussion, it has been difficult to include composition
realistically in the Jacchia-Slowey models, but they are ideal
for calculating density efficiently. Slowey has now added a
response to cusp heating. To reduce the discrepancy when
comparing these models with measurements, it would be desirable
to add a wind vector to them. The wind vector and its standard
deviation could be estimated by comparing TGCM calculated winds
with the various kinds of wind measurements.

Anothef type of empirical model, the MSIS, uses spherical
harmonics. 4 It appears more successful at representing the
composition. It seems less well suited to represent the cusp
heating. This is especially true if an ionospheric model along
the same lines is planned. As can be seen from Fig. 8, five or
ten times as many harmonics would be needed to represent the
effect of the cusp on the ionosphere.

The empirical models only require a few input parameters,
including F1p.7 to approximate the EUV, and Ap, Kp, or AE to
approximate the net energy input from the solar wind during
geomagnetic storms.

7. Waves, which cannot be included in Empirical Models.

The atmosphere is full of gravity waves, which have many
sources, and are continually changing. They cannot be included
in the empirical models. Two examples are shown in Fig. 12.43
Although realistic looking waves are Eroduced by the TGCM's of
the University of London%? and NCAR,2 the actual waves are
likely to differ from those modeled at a particular time because
of the auroral source is greatly simplified in these models, and
the source in tropospheric weather systems is completely
exXcluded. One of the important processes affecting gravity
waves is dissipation. This can be Eeasured by the method
recently developed by Tedd, et al.*

Waves are of little importance in satellite orbital
calculations, because they are nearly averaged out by
integration; but waves would be important if one had to know the

1
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exact density at a particular place and time. The only way to
know that is to measure it.

8. Conclusions

In conclusion, there are at least six causes of
disagreement between measurements and models, not all of which
are caused by the models. TGCM's have made great progress
lately, and they, along with wind measurements, will be helpful
in improving the empirical models, which will continue to be
used for practical calculations.
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Tasle 1.

Correlative Satellite Measurements of
Atmospheric Mass Density by
Accelerometers, Mass Spectrometers and
Ionization Gauges

F. A. MARCOS', C. R. PHILBRICK® and C. J. RICE®

Ratio of Density Mcasurements at different Altitudes

Altitude Number of Number of
(km) MSMESA points IGMESA points
250(D) 0.86 ¢ 012 1 098 + 0.12 2
220D) 0.79 + 009 16 0971 0.13 2
190(D) 084 + 007 18 1,04 + 0.08 2
160 100+ 010 3l 109 + 009 2
190(U) 091 £ 011 3 1.03 £ 031 22
220U) 0.88 + 0.08 31 095 1 0.07 2
250(U) 084 + 011 30 094 014 2

PRECEDING PAGE BLANK NOT FILMED
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TABLE 2.

Intercomparison of Neutral Composition Measurements From the Satelliies
Esro4, Aeros A, Aeros B, and Atmosphere Explorer C

H. Trinks, U. voN Zaun, C. A. ReBer, A. E. HeDin,
N. W, SPENCER, D. Krankowsky, P. LAmmERzAHL, D. C. Kavser, anp A, O. Nigr

Mcan Density Ratios Obtained From Compacison of the Data of the Neutral Gas Mass
Spectrometers Listed in Table | for the Gases Ny, O, Ar. and He

Esro 4, Acros A Esro4,AE-C
AE-C,Acros B
Nea Npime Nga Appce Dnime
Nrate finate Noss foss foss
Ny 0.89 0.63 1,08 1.04 0.79
(o] 0.7 0.91 1.0 1.07 1.13
Ar 0.62 0.97
He 0.25 048 1.10 0.63

Mean Density Ratios Representing a Comparison of the Measured Densitics of Each
Experiment With the Mean Density Obtained From All Experiments

Esro4 Aeros A Acros A AEC AEC Actos b
GA Nate Nims 0SS Nace Nims
Ny 1.1l 1.24 0,81 1.03 1.07 0.81
o 091 .18 .07 0.90 0.9¢6 1.02
He 0.53 2.10 .09 1.20 0.69

The ratios were generated by first calculating the ratio of cach spectrometer to Esro 4 GA and then
renormalizing by the average.
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AFGL

AOTV
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CMG
CP
F10.7
GRAM
GSFC
I0C
Jsc
LaRC

MAP
MSFC
NASA

NCAR
Nms
NOAA

PCS
RWA
ST
STEA

ACRONYMS/SYMBOLS

Area
Aeroassist Flight Experiment
Air Force Geophysics Laboratory
Aero-assisted Orbital Transfer Vehicle
Measures of disturbance of the
Earth's magnetic field
Drag coefficient
Center of gravity
Control Moment Gyro
Center of pressure
Solar radio noise flux at 10.7 cm wavelength
Global Reference Atmosphere Model
Goddard Space Flight Center
Initial Operational Capability
Johnson Space Center
Langley Research Center
Mass
Middle Atmosphere Program
Marshall Space Flight Center
National Aeronautics and
Space Administration
National Center for Atmospheric Research
Newton-meter-second
National Oceanic and Atmospheric
Administration
Pointing Control System
Reaction Wheel Assembly
Space Telescope
Short Term Extreme Atmosphere density
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AGENDA

NASA - USRA

WORKSHOP ON UPPER AND MIDDLE ATMOSPHERIC DENSITY MODELING
REQUIREMENTS FOR SPACECRAFT DESIGN AND OPERATIONS

November 19, 20, 21, 1985
Carriage Inn, Huntsville, Alabama

Tuesday, Nov. 19

9:00 - 9:15 Welcome G. McDonough, NASA/MSF

9:15 - 9:30 Introduction to the WORKSHOP R. E. Smith, MSFC

9:30 - 12:00 Presentations by the User group G. Nurre, MSFC
Satellite Lifetime - G. Wittenstein, MSFC
Space Station Reboost - V. Buckalew, MSFC
Space Station Momentum Manag. A. Bordano, JSC
Hubble Space Telescope Control G. Nurre, MSFC
Precision Tracking/Navigation - USAD/Navy/NORAD

12:00 - 1:00 Lunch

1:00 - 2:00 Users - Models H. Buchanan, MSFC

2:00 - 3:00 Orbital Atmosphere Physics R. Roble, NCAR
Orbital Atmosphere Dynamics T. Killeen, U. Mich.

3:00 - 5:00 Modeling G. Carignan, U. Mich

A. Hedin, NASA/GSFC (25 min)
Emperical Modeling of the Thermosphere: An Overview

F. Marcos, AFGL (25 min)
Requirements for Improved Modeling of the Thermosphere

J. Slowey, Smithsonian (25 min)
Limitations to Modeling the Thermosphere and Exosphere

Discussion (30 min)
5:00 - 6:00 Solar Activity - Geomagnetic Indices J. Joselyn, NOAA
Solar activity predictions - H. Sargent, NOAA

MSFC Solar prediction methods - R. Smith, NASA/MSFC

Informal discussions in the evening.
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AGENDA

SUB-ORBITAL ATMOSPHERE
Wednesday, Nov. 20

8:30 - 9:30 Summary and conclusions from Day 1 R. E. Smith, NASA/MSFC
9:30 - 11:00 Users J. Gamble, NASA/JSC
Shuttle
AQTV {(Aerc-assisted Orbital Transfer Vehicle)
AF/Navy/NORAD

11:00 - 12:00 Users - Models
12:00 - 1:00 Lunch
1:00 - Middle Atmosphere Physics D.C. Fritts, U.Ak.
- 5:00 Middle Atmosphere Models S. Bowhill, U. Ill.
J. Justus, Georgia Tech
K. Champion, AFGL

F. Schmidlin, GSFC, Wallops I.
J. Findlay NASA/LaRc

Thursday, Nov. 21

8:30 - 10:00 Summary and discussion of Day 2 R. E. Smith
10:00 -12:00 Summaries by Session Chairmen, Discussion

12:00 - 1:00 Lunch

1:00 - 3:00 WORKSHOP Conclusions & Recommendations
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