THE GRAM-III MODEL

C. G. Justus, Georgia Institute of Technology

The GRAM is under continuous development and improvement. GRAM data were compared with Middle Atmosphere Program (MAP) predictions and with shuttle data (Blanchard).

An important note: Users should employ only step sizes in altitude that give vertical density gradients consistent with shuttle-derived density data. Using too small a vertical step size (finer than 1 km) will result in what appears to be unreasonably high values of density shears but what in reality is noise in the model.
Random Wind Spectra

$k\cdot F(k), (\text{m/s})^2$

$1E+03$
$1E+02$
$1E+01$
$1E+00$
$1E-01$
$1E-02$
$1E-03$

Vert. Wave #, cyc/m

100
10
1
0.1
0.01

$\lambda_0, \text{ km}$

$66-96 \text{ km}$
70 km
30 km
4.36 km

GRAM

MAP16, p. 152

PRECEDING PAGE BLANK NOT FILMED
\[\rho(z+\Delta z) = \Gamma_p(\Delta z) \rho(z) + \beta \sigma_p \omega_z \]

\[\beta = \sqrt{1 - \Gamma_p^2(\Delta z)} \]

\[\Gamma_p(\Delta z) = e^{-\Delta z/L} \]

\[\Delta \rho = \rho(z+\Delta z) - \rho(z) \]

\[\frac{(\Delta \rho)^2}{\Delta z} \rightarrow 2 \sigma_p^2 \Delta z/L \quad \Delta z/L \rightarrow 0 \]

\[\frac{(\Delta \rho/\Delta z)^2}{\Delta z} \rightarrow 2 \sigma_p^2 / \Delta z L \]

\[E_p(k) \sim k^{-2} \quad kL \rightarrow \infty \]
COMPARISONS BETWEEN SHUTTLE DERIVED AND ALTERNATE SOURCES
EIELSON AFB JANUARY

HEIGHT, KM

DENSITY PERTURBATION, %

- CIRCLE - 1 KM SPACING
- SQUARE - 0.25 KM SPACING
Sigma Density, %

Month

0 3 6 9 12

70km Lat=70 x=old _=new

25 20 15 10 5 0
JUN 70 km o=GRAM ___=MAP (Sat.)

Dens., 10^-4 kg/m^3

0.0 0.5 1.0 1.5 2.0

-90 -60 -30 0 30 60 90

Latitude, deg.

MAP16, p79
Figure 10.6 Density along a January mission 3 (Vandenburg polar orbit) re-entry and return trajectory. Density deviations are with respect to the 1962 U.S. Standard Atmosphere. Graph symbolism as in Figure 10.2.
Figure 10.5 Ground plot of the re-entry and return trajectory for mission 3, a 104° inclination polar orbit launched from and returning to Vandenburg AFB. The altitude in km is plotted on the inner side of the orbital plot and the time in seconds is plotted on the outer side.