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1. Introduction. The study of supersonic combustion flames has become extremely 
important in view of the scramjet engine for the propulsion of hypersonic aircraft and 
cruise missile. The aerodynamic processes governing such reacting flows are exceedingly 
complex involving strong interaction between chemical and fluid dynamical effects. The 
simplest relevant problem of a combustion flame may be formulated by considering two 
uniform parallel streams of hydrogen and air, both supersonic and semi-infinite in extent, 
which begin to mix at some origin (Fig.1). The physical processes underlying this prob- 
lem are 1) the evolution of the mixing flow-field, 2) the evolution of the temperature field 
through conduction and convection, and through the heat generated by viscous dissipation 
and chemical reaction, and 3) molecular diffusion of each gaseous component into the 
other together with the annihilation of the combustible gas and the consequent production 
of combustion products. Any realistic modelling of the complex kinetics will necessitate a 
full scale numerical solution ( e g ,  Fem (1973), Drummond, Rogers and Hussaini (1986)). 
Then questions arise as to the reaction rates and their dependence on temperature and the 
relative importance of various reactions which entail thus rather large uncertainties. 

In a mathematical treatment of combustion, the kinetic model has to be necessarily 
simple. The one-step irreversible Arrhenius model has been extensively used with 
significant success in the study of combustion (Buckmaster and Ludford (1982)). It was 
employed by Marble and Adamson (1954) who considered the laminar mixing of two 
parallel streams, one of a cold combustible and the other of a hot inert gas. They dis- 
cussed questions of ignition, location of the flame relative to the initial contact point, and 
of its detailed development in the isovelocity case where both the streams have the same 
uniform velocity. The method of solution involved expansions in terms of the streamwise 
coordinate and the classical von Karman integral technique for solving the resulting set of 
ordinary differential equations. A similar problem of the continuous evolution from nearly 
frozen flow to near equilibrium flow in unsteady diffusion flames was analyzed by Linan 
and Crespo (1976). Their analysis, which employs a two-reactant model, elucidated the 
existence of the ignition, deflagration and diffusion flame. regimes. Although their study 
was confined to the isovelocity case and one-dimensional situation, it captured surprisingly 
well the rather complex picture. 

The present study extends their analysis to the more general problem of the chemical 
reaction between two parallel streams with different velocities. It is assumed that the 
characteristic chemical time and the fluid dynamical time are of the same order. The 
kinetic model consists of a one-step two-species irreversible Arrhenius process with high 
activation energy. This model appears to cover the essential physics of the problem. In the 
last decade or so, the asymptotic studies of combustion based on this model have 
significantly enhanced our understanding of ignition, of flame stability and of diffusion 
flame structure in low subsonic flows. There is as yet no reason to believe that this model 
will not play an equally significant role in enhancing our understanding of supersonic 
combustion. In any event, this idealization makes the problem amenable to asymptotic 



2 

analysis and thus provides a semi-analytical solution. The results can then certainly verify 
and in t u n  be verified by full numerical simulations. The asymptotic results of the present 
study bring out the effect of free shear and Mach number. They indicate that the important 
parameter is the product of Mach number and shear. Further, they predict the existence of 
the ignition, deflagration and diffusion-flame regimes even in the supersonic case. The 
numerical solutions cited above for analogous problems appear to miss  the ignition and the 
deflagration regimes. Perhaps, careful fine-tuning of the numerics will uncover these 
regimes; this will be the subject of future effort. 

2. Governing Equations. Consider two reactants initially separated by a finite length 
splitter plate coming in at different velocities and temperatures (see Fig. 1). The nondi- 
mensional shear-layer equations with zero pressure gradient which govern this mixing pro- 
cess are given by (Williams (1985)) 

( P 4 i  + (pv>,fl = 0, 1 = pT, (2.la) 

p(uYi, + vYiy,) = (~LY~,,)~’ - aiR, i = 1,2, (2.ld) 

where p is the density, u the velocity in the x’-direction, v the velocity in the y’-direction 
and T the temperature. Yl and Y2 are the mass fractions above and below the plate, 
respectively, with reaction assumed to be irreversible and of Arrhenius-type. The viscosity 
p is assumed to be a function of temperature. The other nondimensional parameters 
appearing above are: 

a = QYIO/CPTIOVIWI Heat release number, 

e = EJRT,, Activation energy, 

a+b a+b-lv w 4 BPI0 YIO 1 1 D=- Damkohler number, 

ai = viWi/vl Wl Parameter involving stoichiometry, 

M = Uldalo Mach number, 
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where a and b are the reaction orders of Y1 and Y2 , respectively; vi the stoichiometric 
coefficient for species j; W, the molecular weight of species j; E the dimensional activation 
energy; R the universal gas constant; B the preexponential constant in rate expression; alo 
the speed of sound referred to Tlo ; Q the chemical heat release; y the specific-heats ratio; 
and finally Cp the specific heat at constant pressure. The equations were nondimensional- 
ized by selecting the freestream values Tlo, plo, ul0, Yl0 above the plate for the tempera- 
ture, density, velocities and mass fractions, respectively. Lengths are referred to f, , some 
characteristic length scale of the flow. We have assumed unit Prandtl and Lewis numbers 
in writing down these equations. The assumption of unit Lewis number allows us to con- 
sider linear combinations of (2 .1~)  and (2.ld) to eliminate the source term, which then 
admits similarity-type solutions (see remarks after (2.10)). 

The boundary conditions consistent with (2.1) are 

T =  u = Y1= 1 ,  Y ,  = 0 X’ = 0, y’ > 0, and at x’ > 0, y’ + -, 

(2.2a) 

~ = p , , ~ = p ~ , y ~ = o , Y ~ = Y ~  x ’ = O , y ’ e O , a n d a t x ’ > O , y ’ + - .  

For definiteness, we take the maximum initial temperature to occur above the plate, and so 
we require PT,S 1. We make no such restriction on where the maximum initial velocity 
can occur, we only require both streams to be supersonic; Le., M - 1 > 0 and 

- 1 > 0. In addition, matching the pressure across the mixing layer results in the 
compatibility equation 

(2.2b) -1 PU 
-v(x’,-), 1 

4- PT 

which reduces to that given by Ting (1959) for PT = 1. 

Equations (2.1) can be transformed into incompressible equations by the use of the 
Howarth-Dorodnitzyn transformation (S tewartson (1964)) 

>’ Y’ 
X’ 1 

x = -  9 = - I pdy‘, w = (pv + uj p i  dy’), 
1, & o  0 

(2.3) 

where 1, is a scaling factor based on a characteristic chemical length, to be chosen later. 
The transformed equations in the (x,z) plane are 

ux 4- wz = 0, (2.4a) 

UU, + wu, = CU,, (2.4b) 
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UT, + wT, = CT,, + C(y-1)M2U: + lc-!2, (2 .4~)  

(2.4d) 

where the constant C appearing above is given by Chapman’s (1950) linear viscosity law 

l=cT. (2.5) 

These equations may also be written in terms of the variables x and q , where 
? I - % = =  Z 

is the similarity variable for the chemically frozen heat conduction problem, and qo 
corresponds to a shift in the origin determined uniquely by (2.2b). (We note here that if 
the initial velocities were subsonic, then the compatability condition (2.2b) would be trivi- 
ally satisfied, and thus qo would remain indeterminate (Klemp and Acrivos (1972)). By 
introducing the relationships 

(2.7) 
e 
G u = f ( q )  7 w=-(rlf-J% 

we see that the continuity equation (2.4a) is automatically satisfied, while the q -momen- 
tum equation (2.4b) reduces to the well known Blasius equation for free shear 

(2.8) f” + 2fs’ = 0, f(-) = 1, f(-) = pu, f(0) = 0, 

which represents the mean flow profile of the wake velocity. Numerical solutions are 
given, for example, by Lock (1951). For our purposes, we shall consider the velocity field 
completely known. 

Once f is known, the temperature and mass fractions can be determined from the 
equations 

4x1,aSZ 

P 
4 d T x  - 2g, ,  - T,,,, - ( ~ l ) M ~ ( f ‘ ) ~  = 7 (2.9) 

4xlcaiSZ 

P 
4XfYiX - 2fyii, - Y h  = - , i = 1,2. (2.10) 

These do not have similarity solutions due to the presence of the nonlinear source term. 

However, the combinations T+aY, and T+-Y2 do satisfy the heat equation without 

source terms, and are given by the form 

a 
a2 
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Thus, a similarity solution exists (Stewartson (1964)) and is given by 

where g satisfies the differential equation 

g" + 2fg' = 0, 

with solution 
X 

c1 and c2 being arbritary constants. When the boundary conditions (2.2a) are taken into 
account, we find that 

T + a Y l  = 1 + a - (1 - PT + a)c + flM2(l-Pu)2c(l-c), (2.1 1) 
2 

where 

(2.13) 

Note that as q + -, 5 + 0, and as q + -, 5 + 1.  

The relations (2.11) and (2.12) gives the mass fractions in terms of T and q , ena- 
bling us to reduce our problem to that of finding T from (2.9). If we choose for I, a nondi- 
mensional characteristic chemical length based on the maximum initial temperature Tlo 
and initial velocity ul0 , 

we obtain 
4x 

4flTX - 2g,, - T,,,, - (')~l)M*cf')~ = 0 - ~ ~ ( ~ ' 6 ) Y ~ Y ~ e ~ p ( 0 ( ~ ) } ,  T (2.15) 

subject to the boundary conditions 

T + 1 as q + -, x > 0 and x = 0, q > 0, (2.16a) 
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T -+ PT q -+ -00, x > 0 and x = 0, q < 0. (2.16b) 

Eqn. (2.14) implies, in effect, that the characteristic chemical time and characteristic flow 
time are of the same order. 

For the special case Pu = 1 (no shear), (2.8) gives f = q corresponding to u=l, v=O 
everywhere. Then from (2.13), 

(2.17) 

and we see that (2.11)-(2.17) is equivalent to Linan and Crespo's (1976) equations (13)- 
(17); with x in our paper playing the role of the time-like variable t in theirs. Therefore, 
the analysis of Linan and Crespo (1976), hereafter referred to as I, can be considered a 
limiting case of the above system. The goal of this work is to assess the effect of shear 
on mixing and ignition, as well as the coupling effect of differing initial temperatures. 

3. Ignition Stage. In the absence of chemistry, equation (2.15) reduces to 

44% - Tqq - 2flq - (y-l)MZ(fy = 0 (3.1) 

which posesses the (inert) similarity solution 

which is also a solution of (2.15) for small x. We note here that for pu = 1, the Mach 
number M plays no role. Substituting (3.2) into (2.11) and (2.12) yields for the (inert) 
mass fractions 

Y,I = 1 - 5 , Y*1= Y& . (3.3) 

Since 5 increases as Pu increases (see (2.13)), we see from (3.3) that Y,I decreases while 
Y ,  increases. Thus, the effect of shear is to enhance the initial mixing process that would 
otherwise be present only by interdiffusion of the reactants. 

As x increases, more of the combustible mixes until, at some finite distance down- 
stream of the plate, a thermal explosion occurs characterized by significant departure from 
the inert. The exponent of (2.15) suggests that, in the limit 8 -+ being considered here, 
this will occur in regions where T - 1 = O(e-'). Therefore, T = 1 is the switch-on tem- 
perature for the chemical reaction. 

To describe .the ignition stage, we follow I and set 

9 = e(T - Ti). (3.4) 
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The basic equation (2.15) becomes 

where 

from (2.1 1) and (2.12), respectively. 

The term 8(Tl - 1) in the exponent of (3.5) can be either positive or negative, 
depending on the amount of initial shear. For TI - 1 = 0(1), the rate term is either 
exponentially small or exponentially large, depending on its sign. The latter case shows 
that ignition takes place immediately at the trailing edge of the plate. A realistic model 
for this case should include the boundary layer effects at the trailing edge of the plate, 
which the present model neglects. Modifications of this model to allow for very short igni- 
tion distances will be the subject of a future paper. The former case shows that chemical 
activity is quenched. Thus, we confine our attention to regions where TI - 1 = O(e-'), 
consistent with (3.4) with T - 1 = O(e-'). 

We f i s t  consider the important case of ignition for nearly equal initial temperatures 

(3.7) 

and velocities. To this end, we set 

pT = 1 - e-lp, , pu = 1 - e- 112 Pu, 
and seek an expansion for 8 + - about the inert, with PT, p u  and M fixed and O(1) con- 
stants. In particular, we see that 

5 = 5, + o(e-ln), f= - e-lnD&, + o(e-'), (3.8) 

from (2.13) and (2.8), respectively, with 5, defined in (2.17). The inert solution can now 
be expanded as 

Y,, = 1 - 5, + o(e-1/2), Y, = y2&, + o(e-ln). (3.10) 

Substitution of (3.8)-(3.10) into (3.5) yields the following equation for the disturbance 
temperature: 
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subject to the boundary conditions 

$ = O  at x = O  a n d a t q + b .  (3.12) 

The expansions are based on the assumption that e-' > where Re is the Reynolds 
number based on the free-stream values of the flow. (Typical values for 8 are on the 
order of twenty, and for Re, the order of several millions). Except for the last term in the 
exponent, eqn. (3.11) is identical to (33I). Thus, the important new parameter governing 
ignition is the product of Mach number M and shear parameter pu, which measures the 
deviation from the isovelocity case. 

The solution to this problem was computed numerically. The equation was discre- 
tized in q, and the resulting system of ordinary differential equations was solved via the 
Gear package. Computations were done for various values of the parameters & and 
and for reaction orders a = b = 1. Integration was terminated when $ became infinite, 
thus identifying the ignition point (x*,qr). Results of these computations are displayed in 
the table, which is discussed below. 

The first entry of the table (M&,= 0) corresponds to that of I. Clearly, as & 
increases, the igntion distance X. increases, while the ignition location (x*,q*) moves into 
the region of higher initial temperature. Thus, the effect of cooling the gas below the 
plate is to retard ignition. 

-pT xr rl* MDU X I  rl* 
0 5.839 .O 0 5.839 0 
2 13.203 i3 2 4.899 0 
5 27.595 .62 5 1.912 0 
10 54.850 .84 10 0.057 0 

Mpu Xr q* MPU X* rl* 
0 13.203 .30 0 54.85 .84 
2 11.270 .28 2 51.01 .82 
5 4.666 .18 5 32.86 .70 

10 0.149 .08 10 2.92 .36 
Table. Ignition points for various values of PT and MPU, and for a = b = 1. 
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The other entries corresponds to fi ed values of BT. We note that these results do ot 
depend on the sign of pu; Le., does not depend on where the maximum initial velocities 
occur. As I pu( increases, with M fixed and 0(1), the ignition distance moves closer to 
the trailing edge of the splitter plate, while the ignition location (x*,q*) approaches the 
center line q = 0, where the maximum amount of shearing occurs. Thus, the effect of 
increase in I pul is to enhance mixing, and hence to enhance ignition. On the other 
hand, as M becomes large (Le., hypersonic speeds), for fixed I pul , ignition is found to 
occur rapidly even with a small amount of mixing! This is understandable since increasing 
the Mach number increases the inert temperature, which in turn feeds in more energy into 
the system causing it to ignite sooner. Consistent with the results of I, if we fix MI pu I 
and vary PT, we again see that ignition is retarded, moving away from the edge of the 
plate. 

As & and I pul increase, with M remaining 0(1), the expansions (3.7) break down. 
For the special case of no shear or zero Mach number, the analysis proceeds as in I. For 
0(1) shear, the location of the flame critically depends on the amount of initial temper- 
taure differences. If the two streams are nearly equal in temperature, then ignition ocurrs 
at the trailing edge of the plate, and a more delicate analysis is needed, as mentioned 
above. If, on the other hand, the two streams are sufficiently different in temperature, then 
ignition could occur away from the plate, and the analysis again proceeds as in I. We 
postpone the analysis for 0 ( 1 )  velocity and temperature differences as a topic of future 
research. 

After ignition has occured, a pair of well-defined deflagration waves emerges accord- 
ing to classical thermal explosion theory. Since the effect of the Mach number and shear 
is to only quantitatively alter the direction and speed of the waves, we do not present any 
results here. We only note that they must exist, penetrating the mixing layer until all of 
the deficient reactant is consumed (Fig. 1). Just downstream of the deflagration wave a 
diffusion flame exist where the flow is in chemical equilibrium, and is described in the 
following section. 

4. Diffusion Flame. As in I, a thin diffusion flame exists behind the premixed flame 
and is characterized by near-equilibrium conditions; Y ,  = 0 on one side of the flame with 
Y2 = 0 on the other. From the relations (2.11) and (2.12). we see that the flow can be 
described by 

Y1 = 1 - (1 + 3 ) s  , Y2 = 0, (4.la) 
a, 
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for q > q,, and 

(4.2a) yY Y1 = 0, Y, = -a,( 1 - (1 + -)!}, 
a 2  

(4.2b) 

for q c qe, where qe gives the location of the flame sheet where both reactants vanish, 
and T takes the adiabatic flame value T,, given by 

and 

(4.3) 

defines the flame location. We remark here that the location of the diffusion flame 
depends not only on the initial concentration, but also on the product of Mach number and 
shear, a feature absent from I. Fig. 2 shows qe for various values of M(1-Pu). In partic- 
ular, as pu decreases (or, equivalently, as M decreases), qe moves into the region of lower 
initial velocity, for fixed values of (1 + Y,$xz)-'. 

To study the structure of the diffusion flame, which appears as a discontinuity on the 

(4.5) 

q, or 6 scale, we introduce the variables 

6 = 5, + 8 - 9 2 ,  T = T, - o-~T~T, ,  

and expand for 8 + =. Here, B is a scaling factor defined by 

Following the notation of I, we introduce the relations 

Y, = qe-l(r - z y ~ ,  Y, = gT,e-l(r + Z ~ A ,  (4.6) 

with A defined by (831). By substituting (4.5)-(4.6) into (2.15), we obtain equation (84) 
of I (where a (-) minus sign is missing from the exponent), with I' given by (81I), except 
now the constant g of (851) is replaced by 
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Hence, the analysis of I for the structure of the diffusion flame also holds when shear is 
taken into account, with an appropiate interpretation of g. 

Conclusions. The laminar mixing of and the simultaneous chemical reaction 
between parallel supersonic streams of two reacting species has been discussed in the 
framework of high activation energy asymptotics. Attention is confined to the special but 
important case of low shear parameter, which is a measure of departure from the isovelo- 
city case, and small temperature differences between the streams. It is found that the 
regimes of ignition, deflagration and diffusion flame uncovered by Linan and Crespo 
(1976) are found to exist in the supersonic case also. In particular, it is found that two 
parameters governs the ignition regime: a parameter giving the temperature difference 
across the plate (Linan and Crespo), and a second parameter which is the product of the 
characteristic Mach number and the shear parameter. The location of the ignition point 
for a given temperature difference is a function of the latter parameter. It is implied that 
the ignition point moves upstream as the value of this parameter increases. 

This work suggests resolution requirement for the numerical simulation of the prob- 
lem to capture the ignition and deflagration regimes. The next improvement of this model, 
to be more realistic, should include the effect of the finite boundary layer thickness at the 
trailing edge. 

Acknowledgments. The authors would like to thank A. Kapila for helpful comments 
in connection with this work. 
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Diffusion Flame 

Figure 1. Schematic showing the reacting mixing layer, with TI > 7'2. 
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Figure 2. Diffusion flame location q, as a function of initial concentrations. 
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