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SUMMARY

A technique allowing time-staggered solution of partial differential
equations is presented in this report. Using this technique, called time-
partitioning, simulation execution speedup is proportional to the number of
processors used because all processors operate simultaneously, with each
updating the solution grid at a different time point. The technique is
1imited by nefther the number of processors available nor by the dimension of
the solution grid. Time-partitioning was used to obtain the flow pattern
through a cascade of airfoils, modeled by the Euler partial differential equa
tions. An execution speedup factor of 1.77 was achieved using a two processor
Cray X-MP/24 computer.

INTRODUCTION

The trend in aeropropulsion system designs has been to try to obtain more
and more power with less and less weight. To achieve this, simplicity is gen-
erally sacrificed in order to achieve the increase in performance. Aeropro-
pulsion systems, and their components, become more complex with each new
design.

Computational Fluid Dynamics (CFD) is playing an increasingly important
role in the design of aeropropulsion systems. This is due to: (1) the high
cost of building hardware; (2) the time and expense required to conduct wind
tunnel tests of new designs; (3) the lack of facilities to realistically test
new designs (testing the National Aerospace Plane concepts at hypersonic
speeds, for instance); (4) advances in computational technology; (5) increased
understanding of fundamental physics.

The objective of CFD s to build an understanding of these advanced sys-
tems into mathematical models which accurately represent the complicated phys-
ics taking place in these systems. The good news is that these mathematical
models are evolving through intensive research (both experimental and analyti-
cal), but the bad news is that the models are so detailed that time-accurate
solutions cannot currently be obtained in a reasonable amount of time. Holst
(ref. 1) projects that direct simulation of a Navier-Stokes airfoil simulation
using no simplifying assumptions would require approximately 1016 computer
operations. This amounts to 4 months cpu-time using a state-of-the-art giga-
flop computer such as the Cray-2. If solutions were available in minutes or
hours, optimized designs could be generated on the computer. Therefore, orders
of magnitude increases in computing speed are needed to make CFD practical for
aeropropulsion design optimization.

It is generally recognized that computers are fast approaching speed
limits. As a result, the 1980's has seen a growing interest in combining
state-of-the-art hardware with new architectures and software techniques to



try to achieve the required speedup. Approaches have included vector proces-
sing (single instruction-multiple data), multiprocessing (multiple instruction:
muitiple data), and data-driven architectures. Williams and Bobrowicz (ref. 2)
indicate speedup rates of ten or more can be attained combining vector proces
sing with multiprocessing.

Today, almost all supercomputers use vector processing and several (e.q.,
Cyber 205, Cray X-MP, Cray-2) use multiple vector processors. Programming
these supercomputers involves the use of vectorizing compilers that convert
source codes, originally intended for conventional single, scalar processor
computers, to codes that run efficiently on the vector processors. While
today's supercomputers represent a step in the right direction, they still
offer only a fraction of the needed computing power because of the limited
number of processors (4 or less) and the limited capabilities of the software.

Data-driven approaches to parallel processing have been proposed (refs. 3
and 4) that involve large numbers (hundreds or thousands) of processors. In
these cases, calculations are assigned to processors on a single operation
basis. Hundreds of processors could be used to achieve significant speedups
in simulations where 1ike numbers of individual operations can be simultane-
ously carried out. However, software is required to control these calculations
and to assign the operations to the processors. The sequencing of hundreds of
computers is a tremendous software task.

It seems clear that tapping the tremendous potential of parallel proces-
sing will depend upon advancements in software technology. In particular,
software needs to be developed which can automatically map complex, multi-
dimensioned codes onto parallel architectures, making effective use of availa-
ble scalar and vector processing resources.

Researchers at NASA Lewis Research Center are actively engaged in a
research program (refs. 5 to 14) to explore parallel processing techniques for
analyzing internal flows in aeropropulsion systems. One of the objectives of
that research is to identify parallel architectures and algorithms that are
well suited for three-dimensional Navier-Stokes flow solvers. Another objec-
tive is to devise techniques for effectively partitioning the solver calcula-
tions for parallel solution.

This paper discusses a partitioning technique which allows calculations
at the next time interval to begin before all calculations at the current time
interval are completed. The authors refer to the method as time-partitioning.
The next section of this report discusses time-partitioning and other parti-
tioning methods, pointing out the advantages and disadvantages of each. Time-
partitioning is then applied to a restriction in a flow field problem. This
example represents an important class of problems relating to computing flows
in turbomachinery cascades. The resulting speedup, obtained using the Cray
X-MP, is discussed, as well as the steps required to develop and implement the
time-partitioned simulation.

PARTITIONING METHODS
Partitioning the simulation into work units and allocating those work
units to processors (packing) is one of the most difficult tasks which must be

addressed in parallel processing. The way that the simulation is partitioned
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and packed directly affects the speed at which the simulation executes and the
efficiency of processor use. Work loads should be balanced among the proces-
sors to eliminate excess processor idle time. The level of parallelism being
considered greatly affects the ease with which processor work load balance is
achieved, as shown in table I. This table summarizes key characteristics of
three partitioning methods about to be discussed.

Bata-driven architectures consider parallelism in a simulation at its
most basic operational level. An operation is considered the basic unit of
work. When an operation is triggered, a processor is assigned by the system
to carry out that operation. When that single calculation is completed, the
processor is free to be assigned to another waiting calculation. In this case,
then, processor load is very simply a single operation. Processor assignment,
on the other hand, is very difficult. In a large simulation, literally hun-
dreds of additions and multiplications may be ready to be carried out simul-
taneously. Processors to service them are normally assigned on the fly while
the simulation is executing. The bookkeeping for tracking which processors
are currently busy and which are available for assignment is tremendous.
Sophisticated software is required to manage this task.

Assigning the equation as the basic unit of work eliminates the require-
ment of having to assign processors on the fly to carry out parallel calcula-
tions. Equations are assigned for computation to the processors before
execution begins. Relatively few processors are required to execute a simula-
tion. (The helicopter engine simulation of reference 10 required only six to
achieve minimum execution time.) However, using the equation as a basic unit
of work makes this architecture one level removed from the data driven archi-
tectures. Whereas before, work balance on the processors was no consideration,
now it is an important consideration. Depending on the complexity of the
equation, the time to calculate the output of an equation will vary. Hence,
work load balance among the processors cannot be achieved by just assigning an
equal number of equations to each processor. Equation execution times must be
determined and sequential calculation paths must be identified. The longest
such path is designated the critical path because its execution time is the
minimum possible execution time of the simulation. To achieve this minimum
execution time the critical path equations must reside on a processor by them-
selves. The other paths must be packed on remaining available processors in a
way that the execution time of no processor exceeds that of the critical path
processor. The entire process of partitioning and packing mathematical models
for parallel calculation has been automated. Reference 15 discusses the pro-
cedure in detail; block diagrams of the process are included in the report.

Each of the partitioning methods discussed above performs all calculations
within the same time interval. Time-partitioning, as the name implies, per-
forms calculations at different time intervals simultaneously. This parti-
tioning technique is particularly suited for problems requiring solution of
partial differential equations over a grid.

Whereas other partitioning methods identify vectorization as scalar
parallelism, time-partitioning maintains vectorization within the grid
calculations.

For simplicity, the discussion here will assume a two-dimensional grid.
The assumption is made for convenience only in descibing the time-partitioning
concept and does not imply limitations on the generality of the method. The
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concept readily extends to n-dimensional grids. However, time-partitioning
does require that current state variable values be dependent only on
neighboring-node past values. This condition would be met if an explicit
integration method were used, for example.

Time-partitioning can be used to reduce the effective calculation time of
the simulation if parameter update calculations over the grid are completed in
the systematic fashion described in the following paragraph. At some point,
before all grid node updates for the current time interval have been completed,
sufficient information will be available to begin updating grid nodes at the
next time interval.

Suppose that the current parameter values at each node of a rectangular
grid are dependent only on past values at two columns of neighboring nodes.
If the grid nodes are updated column-wise from left to right, once three col-
umns of nodes have been updated, sufficient information exists to begin updat-
ing the leftmost node columns at the second time interval. Since the same
kinds of calculations are taking place at each node, calculation time at each
node is comparable. Theoretically, then, the first processor set should remain
a fixed distance (that is, three columns of nodes) ahead of the second proces-
sor set. Hence, there should be no delays caused by the second processor set
having to wait for required information from the first.

Likewise, once the second processor set has updated three columns of
nodes, sufficient information again exists to begin updating the simulation at
the third time interval. This process can continue until all processor sets
available are being used or until the first processor set has completed its
time interval update. 1In either case, the first processor set will update the
next time interval. The process continues to repeat until the simulation run
has been completed. A diagram of the time-partitioning execution process is
shown in figure 1.

An outstanding feature of time-partitioning is the ease with which the
technique can be implemented. Basically the same equations are executing on
each processor, but at different time points. Because of this, the processor
work load is almost naturally balanced. The process can be implemented with
as little as two processors, and the theoretical speedup factor realized is
proportional to the number of processors used. Processor idle time is virtu-
ally nil.

To use time-partitioning techniques requires that parameters at a node
can be updated using only past values of parameters at some level of neighbor-
ing nodes. Thus, a simulation using an implicit integration method could not
be time-partitioned due to the iterative nature of the solution and the inter-
dependence of the parameter current values. Time-partitioning techniques were
applied to a fluid-flow problem at Lewis Research Center using the two proces-
sor Cray X-MP computer. The example problem used and the results obtained are
discussed in the following sections.

TIME- PARTITIONED SIMULATION DEVELOPMENI
An important class of fluid flow problem deals with computing flows in
turbomachinery cascades. 1his flow information is vital to developing eff}

cient new turbomachinery designs. Calculating the flow about the cascade of
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bicircular arc airfoils shown in fiqure 2 is representative of this class of
problems, and is well-documented by Johnson and Chima (refs. 16 to 19).

The cascade of airfoils can be used to model many different systems. For
instance, two adjacent airfoils could model the convergent-divergent nozzle of
a jet engine.

Chima and Johnson model the cascade of airfoils using the thin-Tlayer ver-
sion of the Navier-Stokes equations. The thin-layer assumption is implemented
by using a body-fitting coordinate system and neglecting the viscous terms in
the coordinate direction along the body. 1Initial conditions are specified as
uniform flow at the isentropic Mach number implied by the ratio of exit static
pressure to inlet total pressure. Specified inlet boundary conditions are
total pressure, total temperature, and flow angle; at the exit, static pressure
is specified. For inviscid flow, the tangency condition is applied along solid
surfaces as shown in fiqure 2. Starting with a 65 by 17 grid and using the
multi-grid acceleration scheme discussed in reference 17, Chima and Johnson
achieved work reduction factors for inviscid flow calculations ranging from
1.14 (for choked flow conditions at Mach 0.73) to 4.02 (for low-speed flow at
Mach 0.2). For Mach 0.5, a work reduction factor of 3.31 was achieved.

Time-partitioning techniques were applied to the cascade of airfoils
problem for three reasons. First, as was mentioned above, it is an important
problem in computational fluid mechanics. Results obtained are important in
designing components which are more efficient than those currently available.

A second reason is that the Chima-Johnson multi-grid simulation could be
used as a standard for verifying the results coming from the time-partitioned
mode! being developed. A valid time-partitioned simulation would produce
results consistent with those from the muiti-grid simulation.

And finally, the multi-grid simulation could be used as a basis for
developing the time-partitioned model. Chima and Johnson use a second order
Runge-Kutta integration update. This is an explicit integration technique
requiring only past values to update state variables. This lends itself very
nicely to time-partitioning.

This time-partitioning study was carried out using a 33 by 9 grid (fig. 3)
at Mach 0.5 conditions. Computations are made column-wise in the discussion
which follows, although the grid can actually be updated either row-wise or
column-wise. The former vectorizes a row of length 33 as opposed to a column
of length 9; as shown later in the COMPUTATIOAL RESULTS section, the latter
allows use of up to eleven processors as opposed to three.

The Chima-Johnson simulation was written with the intent of executing the
code on a single, serial processor. Because of this, considerable reorganiza-
tion of the simulation was required in order to make it conducive to parallel
computation and time-partitioning techniques.

Reorganizing the Chima-Johnson simulation to meet time-partitioning needs
required considerable care. The simulation had been designed to carry out
calculations, a portion at a time, over all nodes of the grid, one set of cal-
culations being completed before the next set would begin. Time-partitioning
requires that a column of nodes be updated completely before beginning the
next column of nodes. Effecting this change was not straight forward.
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In a simulation coded to execute on a single, serial processor, memory
locations designated to hold updated parameter values can be used as scratch
memory to hold intermediate values for other calculations before those parame-
ters are updated. However, when time-partitioning is being used, memory cannot
generally be used for dual roles. Once a column of nodes is updated, their
values must not be changed because those values are required for use almost
immediately by another processor performing calculations at the next update
interval. Calculations in the time-partitioned simulation were arranged as a
task that updated a column of nodes every time the task was called. Successive
calls to the task updated the nodes a column at a time from left to right
across the grid. Once a node column was updated, including its boundary val-
ues, no parameter value was changed until the node column was updated again at
the next time interval.

Normally, local variables use the same memory locations throughout execu-
tion of a simulation. However, to use both Cray X-MP processors simultaneously
requires that the program code execute in stack mode. 1In this mode, local
variables are not saved between subroutine calls. Every time that the stack
is accessed, different memory locations can be used for holding values of the
local variable. A variable required to maintain its value between subroutine
calls must be a global variable. Care must be taken not to use local variables
as counters, flags, or storage locations for needed information at a subsequent
time. One way of ensuring global status is to include the variable in a COMMON
statement.

The reorganized simulation was validated by executing it on a single
processor in stack mode on the Cray X-MP. A steady-state solution was obtained
in 5.47 sec execution time and the results agreed with those from the Chima-
Johnson simulation. One thousand eight hundred and seventy calculation cycles
were performed and residuals were less than 4x10-11 . Residuals are a measure
of the maximum differences between successive values of the state variables as
simulation execution progresses. As the simulation approaches steady- state
conditions, the residuals approach zero. Chima and Johnson use residuals to
determine when the solution has converged (ref. 17).

TIME- PARTITIONED SIMULATION EXECUTION

As discussed above, the reorganized simulation was arranged as a task
which updated a column of nodes. Successive calls to the task updated node
columns from left to right across the grid. To execute the simulation in
time-partitioned mode, a duplicate copy of the task code is required. Desig-
nate these copies as Task 1 and Task 2 to distinguish them; however, they are
identical. Etach updates a column of nodes from left to right across the grid
with each successive call to that task. Processor set 1 always executes
Task 1, and Processor set 2 always executes Task 2. The time-partitioned sim-
ulation is executed on the Cray X-MP in the following manner. Task 1 is called
three successive times without calling Task 2. This updates the first three
columns of nodes at time interval 1, providing sufficient information to begin
updating the grid at time interval 2. Hence, on the fourth call to Task 1, and
on every call thereafter, a call is also made to Task 2. Thus, Processor set 1
is updating the grid at odd multiples of time, while Processor set 2 is simul-
taneously updating the grid at even multiples of time. The reason Task 2 must
lag Task 1 by three columns of nodes is that the solution finite-difference




scheme uses second-order central differences for the fluxes and a fourth-
difference (5 point) artificial viscosity operator for damping.

Since each of the tasks i1s updating a column of nodes with each task call,
they should also complete their respective column calculations at about the
same time. To maintain control of the simulation, however, task wait mecha-
nisms are incorporated into the code. This ensures that, as new calls to the
two tasks are made, they begin executing simultaneously. Hence, Task 2 is
guaranteed to be lagging Task 1 by precisely three columns of nodes.

By not using a task wait mechanism, the programmer would relinquish con-
trol of the simulation. If both processor sets were freewheeling- -that fis,
executing their tasks independently and as quickly as possible, Task 2 could
actually end up leading Task 1 by the end of the simulation run. ftor example,
a system interrupt to Processor set 1 could momentarily delay its calculations.
Task 2 would then be using data in its calculations which had not been updated
by Task 1.

COMPUTATIONAL RESULTS

For this initial study of time-partitioning, only Euler equations govern-
ing inviscid flow have been considered. However, time-partitioning techniques
are also applicable to Navier-Stokes equations governing viscous flow. Typical
results obtained from the simulation are the isomachs shown in figure 4. These
results were obtained for Mach 0.5 flow conditions. The 1ines of constant Mach
number form a profile of steady-state Mach number within the computational
element (figure 2) for these fiow conditions. The elapsed execution time of
the simulation, however, is what is important for this report.

As shown in table II, the two processor time-partitioned simulation
achieved steady-state conditions in 3.09 sec. A total of 1870 calculation
cycles were performed, and residuals were less than 4x10-11. Using the time-
partitioning techniques, an effective speedup factor of (5.47/3.09=) 1.77 was
realized. This represents an efficiency of 89 percent with respect to the
theoretical speedup factor of almost two (2 minus time to start the process).
This is consistent with the Cray X-MP multitasking overhead reported by Chen
(ref. 20). The speedup factor is significant insofar as if more processors
were available, a third task could have been set up to begin executing the
third time interval on the fourth call to Task 2, etc. Since a new task (and
time interval calculation) could begin every time three columns of nodes were
calculated, a total of eleven (that is, 33 = 3) processors could have been
used in the solution on this example problem, with a theoretical speedup in
solution time proportional to the number of processors used! (Notice that if
calculations were made row-wise instead of column-wise, only three processors
could have been used.)

More investigations of time-partitioning will be required in order to
answer queries raised by this initial study. Foremost, is determining how
using additional processors affects the execution speedup factor obtained.
Living in the real world that we do, attaining the predicted theorectical
linear relationship hardly seems realistic. Using two processors, the speedup
fell about 11 percent short. It is reasonable to assume that the task wait
mechanism incorporated into the code to maintain control of the simulation
accounts for at least a part of that difference. How the task wait will
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affect the execution time when three, four, eight, or more processors are used
is something that will have to be investigated. Moreover, the speedup factor
obtained using time-partitioning techniques theoretically should not depend
heavily on the code or the size of the tasks to be executed. wWhether time
savings dupiicate those obtained in this study when time-partitioning tech-
niques are applied to other codes and other applications is a question that
must be investigated. This initial study has given some encouraging results.
Time-partitioning shows potential for being a powerful paraliel processing
tool. Only through further investigation will its effectiveness be determined.

CONCLUDING REMARKS

Parallel processing promises to be a very effective tool for reducing
wallclock execution time for many complex simulations.

Time-partitioning techniques discussed in this report provide a means for
solving systems of Euler and Navier-Stokes equations at several different
time-steps simultaneously. The calculations take place in a time-staggered
fashion across the solution grid.

Time-partitioning techniques were used to determine the steady-state flow
pattern through a cascade of airfoils. This important computational fluid
mechanics problem is characterized by a set of Navier-Stokes partial differen-
tial equations. Solution was over a two-dimentional grid using a second-order
Runge-Kutta integration. An execution speedup factor of 1.77 was achieved,
using the two processors of the Lewis Research Center Cray X-MP computer.
Results from this initial study are encouraging. Time-partitioning has the
potential for providing an easy means of parallelizing explicit codes and
obtaining execution speedup factors proportional to the number of processors
used.

The application of time-partitioning techniques is not limited to a par-
ticular number of processors. All processors available can be used.

Further studies are required to investigate the relationship between the
execution speedup factor achieved and the number of processors used. Time-
partitioning should be applied to a variety of codes from different applica-
tions. Also, a computer system having at least four processors (preferably
more) should be used for that investigation.

The authors welcome discussions of the techniques presented in the paper,
related techniques, and developments in the many other aspects of multiproces-
sor simulation.
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TABLE I. — CHARACTERISTICS OF SOLUTION METHODS

Solution | Processor assignment | Basic unit Work load balance Processor Processors
method of work idle time required
Data Difficult, assigned Single Natural balance None Many
driven during execution operation
Equation | Pre-assigned Single Diffiicult; requires | Depends on FEW
uriven equation packing packing
Time Pre-assignec Set of Easily balanced Virtually FEW
partition equations none
TABLE I1. - COMPARISON OF SIMULATION EXECUTION
Simulation [Processors Calculation Execution | Speedup | Efficiency,

type used cycles executed | time, sec | factor percent

Serial 1 1870 5.47 1.00 100

Time- 2 1870 3.09 1.77 89

partitioned
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