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Abstract

Eigenvalue analyses of complex structures is a computationally intensive
task which can benefit significantly from new and impending parallel compu-
ters. This study reports on a parallel computer implementation of the Lanczos
method for free vibration analysis. The approach used here subdivides the
major Lanczos calculation tasks into subtasks and introduces parallelism down
to the subtask levels such as matrix decomposition and forward/backward
substitution. The method was implemented on a commercial parallel computer
and results were obtained for a long flexible space structure. While parallel
computing efficlency is problem and computer dependent, the efficiency for the
Lanczos method was good for a moderate number of processors for the test
problem. The greatest reduction in time was realized for the decomposition
of the stiffness matrix, a calculation which took 70 percent of the time in
the sequential program and which took 25 percent of the time on eight proces-
sors. For a sample calculation of the twenty lowest frequencies of a 486
degree of freedom problem, the total sequential computing time was reduced by
almost a factor of ten using 16 processors.

Nomenclature

B decomposition of mass matrix
D diagonal matrix
K stiffness matrix
L lower triangular matrix
M mass matrix
Tm tridiagonal matrix of mth order
Vi Lanczos vector
X vector of degrees of freedom
a,, ﬂi elements of tridiagonal matrix
') shift parameter
A eigenvalue

2
w frequency parameter

Introduction

The eigenvalue problem associated with free vibration analysis of complex
structures is one of the more computationally intensive tasks in the design of
modern aerospace vehicles. With more sophisticated vehicle designs and atten-
dant detailed analyses, structural models composed of thousands of degrees of
freedom are not uncommon and the associated free vibration analyses could
require hours of computing time.




Recent and impending advances in computing capabilities indicate that
effective computing speeds will soon approach 10 GIGA FLOPS (10° floating
point operations per second) (ref. 1). Such computing speeds are being
achieved by the development of innovative computer architectures consisting of
arrays of processors operating in parallel. These parallel computing archi-
tectures are also being scaled down to computers whose price range is less
than $1M and whose effective computer speeds approach 1 GIGA FLOPS. These
trends indicate that such parallel computers can significantly improve the
capability for large scale free vibration analyses. However, the hardware
development of this new class of computers has surpassed the necessary soft-
ware development needed to utilize fully the computational power available.
The key to achieving peak performance is the modification of existing
algorithms or the development of new methods tailored to parallel computers.

There are many sophisticated, efficient sequential eigenvalue solvers now
available (refs. 2-9). Parlett (ref. 9) discusses these methods and their
effectiveness. In order to adapt these or other algorithms to a parallel
computing environment these methods must be examined to identify the possi-
bility for parallelism in the computation steps and how the methods’ perform-
ances can be improved by parallel computations. This paper focusses on one
important method, the Lanczos method, (refs. 10-17) to develop a comprehensive
parallel strategy for vibration analysis. The study builds on earlier work
(ref. 17) with a parallel Lanczos method, introduces parallelism at lower
levels of the program by subdividing tasks into subtasks and develops software
capability to facilitate control of parallel eigenvalue calculations.

Parallel Implications for Eigenvalue Methods

Several of the available eigenvalue methods are roughly categorized as
determinant methods, rotation methods and iterative methods (refs. 2, 4, 18-
20). The type of method used for a specific application depends in large part
on the type of problem being solved, the size of the problem and the desired
results. Sparse matrix operations, of the type encountered in structural
problems, can provide special features which some algorithms do not address.
The number of eigenvalues desired and their location in the overall spectrum
may also require a specific strategy. Reference 9 indicates that, due to its
efficiency, the Lanczos method is a key method for structural applications.
In view of its growing acceptance, the Lanczos method was selected here for
study for parallel implementation.

The most comprehensive computer programs include several eigenvalue
methods. An investigation of the various methods shows that many have certain
calculation steps in common. These major calculation steps become areas of
attention for reducing calculation time on a parallel computer. Since some
methods, such as the Lanczos method, are mixed approaches, parallel algorithms

which speed up calculations at the subtask level can be easily integrated into
more than one method.

Levels of Parallelism

In dissecting a solution process for parallel implementation, one looks
for those tasks that can be carried out concurrently with a minimum exchange
of information or data dependencies. There are many levels or granularities




of parallelism. An example of a high-level, or coarse-grained, degree of
parallelism is the concurrent execution of large sections of a program on a
number of processors. Further decomposition can lead to subsequent levels of
parallelism, from the highest level to the very-fine-grained parallel execu-
tion of a few arithmetic operations simultaneously on several processors.
Parallelism always introduces overhead and by examining the amount of overhead
introduced, one can assess the benefits to be reaped and then decide when to
further divide a task into subtasks. The development of parallel algorithms
is complicated by the interactions of many processors operating concurrently.
The algorithm must consider such things as: communication overhead, memory
contention, critical regions which contain code that must be executed sequen-
tially, the time to initiate tasks, data interdependency, and idle time
resulting from an imbalance of the workload. Potential speedups may be
relatively small at the lowest level of granularity, i.e., individual
arithmetic expressions. This study investigates the level of granularity that
will produce the most efficient performance. ’

The Lanczos Method

For the implementation in this study, the Lanczos method was used as
representative of a multi-step process which lends itself to concurrent
calculations. The basic Lanczos method is briefly summarized in Appendix A.
The method seems well suited for the type of problems often encountered in
vibration studies of large space structures.

It is most efficient when solving for a few extreme eigenvalues of a very
large system. This same property makes the method applicable to parallel
processing since it is efficient to use several processors to compute a few
values rather than to solve for many values in a single sequential solution.
An implementation of the Lanczos method where parallelism is initiated at a
high level of granularity by introducing shifts and having separate processors
solve for eigenvalues in different areas of the spectrum is documented in
reference 17. An example of the speedups obtained for a truss vibration
example problem using this strategy is shown in figure 1. Speedup is defined
as the time it takes to do a calculation on one processor divided by the time
it takes on multiple processors. The theoretical speedup is the optimum
achievable when all processors are operating at 100 per cent efficiency.
Significant speedups were obtained for up to eight processors for the truss
problem in figure 1.

The next step in a parallel Lanczos implementation is to decompose the
major tasks into subtasks and map them onto several processors. The sequen-
tial order of steps in the basic Lanczos procedure is shown in figure 2. The
steps include initialization, which includes the introduction of the shift,
decomposition of the stiffness matrix, forward solution, back substitution,
calculation of the Lanczos vectors and, finally, the solution of the resulting
tridiagonal system of equations by the bisection method. By computing a
finite number of vectors, a tridiagonal matrix is constructed that approxi-
mates the eigenvalues of the original large problem. The parallel strategy is
to assign subtasks of these major tasks to available processors as needed.

An implementation of the parallel strategy was carried out on a Flexible
Computer Multi-computer FLEX/32.




The FLEX/32 is a multiple-instruction multiple-data (MIMD) computer with
both shared and local memory (ref. 21). The FLEX/32 configuration used in
this study consists of 20 processors. Two processors are dedicated to program
development and 18 are dedicated to parallel processing.

Although, in theory, all computed eigenvalues would be good approximations
to the actual answers, in practice this does not hold true. Due to the loss of
orthogonality in the computed vectors, only some results can be accepted.
Reference 11 clarifies orthogonalization issues; methods for best determining
acceptable eigenvalues is a subject of ongoing research (refs. 4, 9, 11, 14).
An extensive discussion of the method and reorthogonalization procedures can be
found in reference 14.

Some approaches include total or selective reorthogonalization with
respect to previously calculated vectors. Another less computationally
expensive approach recommended by Cullum and Willoughby (refs. 14, 17) provides
an easy test for selecting valid eigenvalues from those obtained through
Lanczos calculations. In this study, the Cullum and Willoughby test is used
because in comparison with reorthogonalization, it was found to be reliable and
efficient.

Space Mast Problem

The test problem used in this study is the 60-meter three-longeron truss
structure shown in figure 3 attached as a mast to the space shuttle orbiter
with an antenna attached. For this study, the mast is considered rigidly
connected to the orbiter and the antenna is not considered. The mast is
composed of extensional members and masses are concentrated at the nodes. The
details of the mast and node members are shown in the figure where the mast is
organized according to major substructures. For this problem, there are three
degrees of freedom at each unconstrained node resulting in a model of 486
degrees of freedom.

Representative vibration results for the space mast are shown in figure 4
and the sequential times for each Lanczos step on a single processor are shown
in figure 5. For the test problem, the decomposition of the stiffness matrix K
into the product of a diagonal matrix D and a lower triangular matrix L took 70
percent of the solution time. As the problem size grows, the time taken to
decompose the stiffness matrix grows accordingly. For this algorithm, the
decomposition is done once for each shift value. In a nonlinear analysis, the
decomposition would be done at every time step, making any reduction in calcu-
lation time even more meaningful. Since this step seemed to offer the most
benefits, it was incorporated into the parallel code first.

Parallel Implementation

The first strategy in parallelizing the decomposition step is shown in
figure 6 which depicts a four-processor implementation. This strategy repre-
sents a pre-scheduled assignment of tasks done in a row interleave fashion.
Each processor p 1is assigned the calculation necessary for rows p, p+n, p+2n,

., where n 1is the number of processors. The computed values are stored in
shared memory where they are accessible to all processors. The processors must
be synchronized to ensure that values needed for the next step are already




computed by the assigned processors and stored. In this implementation, the
synchronization accounts for most of the overhead associated with the
parallelism.

For comparison, a second strategy was adopted to parallelize the
decomposition step. In this case, a queue of tasks is set up in shared memory
and each processor takes its next work assignment from this queue. The timing
for this self-scheduled strategy was almost identical to the pre-scheduled task
assignment. Timings given in the following figures were obtained using this
self-scheduled task assignment. One advantage of the self-scheduling is that
if one processor should fall behind in its calculation or experience hardware
problems, the other processors would continue the calculations.

The timing results for decomposing the n x n matrix, where n 1is equal
to 486, into a lower triangle matrix and a diagonal array by using up to 16
processors are shown in figure 7. The speedups are shown in figure 8. Signifi-
cant speedups are obtained for up to eight processors for the decomposition of
the stiffness matrix. Using more than eight processors for this problem did
not result in significant time reduction. The size of the matrix and particu-
larly, the size of the bandwidth determines the amount of calculation in the
decomposition step. As the order of the matrix approaches infinity, the number
of arithmetic operations in the decomposition step approaches 1/2 (n) (s)
(s+l), where s is the semi-bandwidth and n is the order of the matrix.
Since the matrix is banded, the calculation of the zero elements is ignored.
This means that the work becomes equal on each processsor when the assigned row
number is equal to or greater than the semi-bandwidth, which in this case is
18. When 16 processors are working concurrently on the decomposition of the
same matrix, each processor must wait for 15 others to compute a needed value
at each step.

The forward solution and back substitution steps (fig. 9) were also
parallelized in a row interleave fashion. One of the decisions that has to be
made when using the Lanczos algorithm is to determine the order of the
resulting tridiagonal matrix. This order represents the number of times the
forward solution, back substitution and vector calculation steps are carried
out. If the order is m, then m eigenvalues will be found. Not all of these
eigenvalues are valid approximations to the eigenvalues of the original
problem, since redundant and/or spurious values may appear (refs. 14, 17). One
rule of thumb is to make m twice as large as the number of eigenvalues
desired.

To study the effect of the choice of m, various values were used to
calculate the eigenvalues of the space mast problem. A plot of the time for
computing one acceptable eigenvalue is shown in figure 10 for three values of
m. It was found that an m equal to 30 gave the most information for the
least time. The plot shows about the same time for m equal to 16 as for m
equal to 30. However, in addition to the acceptable values, approximate values
are obtained for additional eigenvalues for the larger value of m. The first
25 eigenvalues obtained for m equal to 30 are given in table 1. Tests were
then made to eliminate the multiple and spurious eigenvalues. The acceptable
values are marked with an asterisk. These values compare favorably to values
found using an independent structural analysis code (ref. 22).

Timing results for the forward solution with m equal to 30 are shown in
figure 11. This step consists of much less computation time compared to




synchronization time than in the decomposition step. The speedups shown in
figure 12 show a gain on up to four processors. For this size problem, there
is actually a decrease in the speedup when using eight processors for the
forward solution step.

The amount of computation in the back substitution step is less than in
the forward solution step. Timimg results shown in figure 13 indicate that
more than four processors dedicated to this step for this problem would be
ineffective.

A plot of the execution time versus the number of processors for the
overall Lanczos method is shown in figure 1l4. A plot of the speedups for the
overall method is shown in figure 15. The execution time for the various steps
on several processors is shown in table 2. The decrease in execution time is
due only to the parallelization of the decomposition, forward solution, and
back substitution steps. Steps which have not been done in parallel include:
initialization, calculation of the Lanczos vectors and the bisection. For this
problem these steps took a relatively small amount of time and implementation
of parallel processing is only of minor benefit.

To provide a measure of the total efficiency of a parallel Lanczos method,
timing results are shown in table 3 for the test problem where four shifts are
introduced and shift calculations are assigned to four separate sets of proces-
sors. An average of five valid eigenvalues was obtained for each shift region.
The table shows that it takes 876 seconds to run the sequential program using
four different shifts. When the four shifts are each assigned to a set of four
processors for a total of 16 processors, the time is reduced to 89 seconds.
Timing reductions resulting from a differing number of processors assigned to
each shift are shown in figure 16.

Concluding Remarks

This study has focussed on a parallel computer implementation of the
Lanczos method for free vibration analysis. The approach used extends previous
work by subdividing the major Lanczos calculation tasks into subtasks and
introducing parallelism at the subtask level.

Results were obtained for a long flexible space structure test problem and
the method was implemented on a commercial parallel computer. The results of
the study indicate the Lanczos method is a promising method for providing
calculation speedups when tasks are subdivided and assigned to several proces-
sors. Since the method is most efficient when solving for a few eigenvalues at
the extreme ends of the spectrum, several processors can be working concur-
rently in different areas of the eigenvalue spectrum. Subdividing the Lanczos
tasks among processors provides the best use of the parallel resources. The
decomposition step is the most time-consuming calculation step for large
problems when only a few Lanczos iterations are performed. The results show
that for this test problem, using eight processors for the decomposition of the
stiffness matrix was the optimum. In subtasks where the calculation time is
relatively short with respect to the synchronization time, such as in the
forward and backward solution steps, no more than eight processors were
effective. The efficiency is problem dependent and the number of processors
must be tailored to the specific application.




By assigning a set of processors to an interval in the eigenvalue
spectrum, eigenvalues can be obtained faster than on a sequential computer of
the same speed. A combination of coarse-grained parallelism at the program
level and fine-grained parallelism at the task level results in significant
reductions in solution time. Parallel processors offer the structural analyst
an effective tool for solving large structural problems in a timely fashion.

Appendix A

Lanczos Eigenvalue Method

The following briefly outlines the Lanczos algorithm strategy as
implemented in this study. Consider the eigenvalue problem

KX = w2 MX (A1)

where X 1is the displacement vector, K and M are symmetric stiffness and

mass matrices, respectively, and w2 is the frequency parameter. Introduce an
eigenvalue shift parameter § such that

W =§+w (A2)
and decompose M into

M = BBT (A3)

where B 1is a lower triangular matrix.

Equation (Al) is then transformed to the Lanczos format (ref. 7, 9-19)

AY = Y (AG)
where
A =BT [R'l] B Y - B'x (A5)
and
A=, R=K-4H (A6)
W

In equation (A4), A 1is symmetric since K is symmetric. The solution
to equation (A4) by the Lanczos algorithm yields increasingly good
approximations to the largest eigenvalues X which correspond to the smallest

62 and the closest w2 values to a reference value §. If a sufficient number
of Lanczos cycles are carried out, the method will theoretically yield all
eigenvalues.

The Lanczos transformation is




AV = VT

(A7)
where T 1is a symmetric tridiagonal matrix and V is an orthogonal
rectangular matrix with VTV = I.

Equation (A7) and the orthogonality condition imply

VTA V=T
which transforms equation (A4) into the eigenvalue problem

Q = AQ (A8)
where

Q - vy (A9)

One of the key features of the Lanczos method is that if V is rectangular the

larger eigenvalues of the reduced order equation (A8) are good approximations
of the larger eigenvalues of (A4).

Let the column vectors of V be denoted (Vl’ V2, V3, . . .) and the
elements of T be denoted
T = [ -
=[x A
By @ B
B, ay By (A10)
Pa-2 %1 Pa
L ﬂn-l “n
Equation (A7) gives
AVi - ﬁi-lvi-l + aiVi + ﬁivi+1 (All)

when Vi is the ith column of V.

To obtain AVi efficiently, note from (A5) that

a=-3T &1 (A12)

and decompose K into

g = 1oLt (A13)




where L 1is a unit triangular matrix and D 1is a diagonal matrix. Equation
(A12) results in

av, -8 L") ey, (Al4)
or
L Ty1 AV, - (LD)'IBVi - a (A15)
where a, is an intermediate vector. Equation (Al5) gives
LD ai - BVi (Al6)
and B'L T a, - &7y, (A17)
-T
Letting L a, = bi (A18)
T
results in L bi - a; (Al9)
T
and AVi =B bi (A20)

Equations (Al6), (Al9), and (A20) become the equations for determining
AVi. The sequence for determining the Vi uses an arbitrary starting vector

(e.g., Vo = (1, 0, 0, 0, . . . )) and then calculates AVi from equations
(Al6), (Al19), and (A20). The remaining steps to obtain a;, ﬂi and V1+1 are
based on the Gram-Schmidt orthogonalization as follows
Wi - AVi - ﬂi-l Vi-l where ﬂo =0
i=1,2,. . .,n (A21)
T,
@y = Vg Wy (A22)
C;, =W, -a V, (A23)
j-i-lT
NOTE: For reorthogonalization insert: ¢, = C, - & V. c /V (A23a)
i i j=1 ji'j
1
T 2
- A24
By [ci C1] (A24)
vV, . =L ¢ (A25)
i+1 B i
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The cycles are repeated to produce a set of m vectors Vi" . sV (mg
m

n) and associated ay and ﬂi. The eigenvalues may be obtained at any stage

for the m by m equation

TQ = AQ (A26)

where T 1is composed of the a, and ﬂi calculated to that point,

i

The eigenvalues of equation (A26) can be obtained by the Sturm sequence
and bisection methods. Let the principal minors of equation (A26) be denoted

P0 -1 Pl(A) -a; - b (A27)
L) = (@-MB, (V) - (B B ()
(i=2,...,m<n) (A28)

Direct calculation of these sequences can result in overflow or underflow; the
following sequence avoids the need to rescale.

P.(X)
q;(3) = P00

to give
qo - 1’ ql - ai - A (A29)
2
O) = (a -1y - A (A30)
4 i TPy,

The Sturm sequence property for equations (A27) and (A28) is that for a
specific value of X%, the disagreements in sign between consecutive numbers
of the sequence Pi(A*) is equal to the number of eigenvalues smaller than

A%,

In the bisection method, the Sturm sequence property is used to restrict
the interval in which a particular eigenvalue must lie, until the eigenvalue is
predicted to sufficient accuracy. An interval in question is halved and the
Sturm sequence calculated to determine the number of eigenvalues in the two
intervals. The interval containing the largest eigenvalue is subsequently
halved and the process repeated until the largest eigenvalue has been isolated
to sufficient accuracy. This approach is then applied to determine the next
lower eigenvalues in order of the relative size. When in the neighborhood of
an eigenvalue, it is often more efficient to switch from the bisection method
to an interpolation scheme; the bisection method is also well suited for

implementation on a parallel computer as any number of eigenvalues can be
calculated in parallel.




QK is found from equation (A26). The corresponding eigenvector of (A4) Y

11

For a given eigenvalue AK the associated eigenvector of equation (A26)

K

is then given by

YK =V QK (A31)

and the XK for equation (Al) can be found from

BY X, = Y, (A32)

The eigenvalue is transformed to the desired frequency parameter by

W = § 4 L. (A33)
K %
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Table 1 Multiprocessor Eigenvalue Approximations

Eigenvalue shift = 0.0 Order of tridiagonal matrix = 30

Eigenvalues calculated before NICE/SPAR results
elimination of multiplicities (ref. 22) error

380.
380.
380.

442,
442,

766.
766.
766.

2876.
3649.
7890,
7890,
18835,

.04 * 10.04 4x10-10

.74 * 11.76 6x10-9

* 380.1 1x10-3

0 * 443.8 5x10-3

3 1001. 1x10-1

* 2835. 2x10+1
3275, . 2x10+1

* accepted as valid approximation

Table 2 Time to solve for twenty valid eigenvalues

Number Number of processors Total number of Time Speedup
of assigned to each processors (seconds)

shifts shift region
4 1 1 876 1
4 1 4 227 3.9
4 2 8 130 6.7
4 4 16 87 9.8
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Table 3 Execution time for Lanczos operations

Initialization
K=K - 6N
Decomposition

R-LpDLT

Forward solution

LDa=V
Back substitution
l.T y=-a

Calculation of vectors

a, B, v

Bisection

T, Q= 2Q
m (opder of T) = 30

Total

Number of processors

1 2 4 8 16
5 5 5 5 5
156 78 39 20 17
32 18 16 26 20
17 10 8 15 15
6 6 6 6 6
3 3 3 3 "3
219 120 77 69 66

2

6 8

Number of processors

Fig. 1 Speedup for truss vibration problem.
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Decomposition
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K=10L

Forward solution
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Backward solution
LTy =a
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Calculate Lanczos
vectors
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Bisection solve:
10=2xQ

Fig. 2 Lanczos method sequential operations.

S e g % s

5 2 . W o

) ° e AR U PR T

i 6 o e X\

| yie 3 bo AN L W,

5__iy13 ko ” 4 ;21 46

N bl 4 ONATERE VA VTS

B 3y o1 2 Wis LS e

! " " N Lo /”3

I 8 ¢ Ws 1 o d «

60 - meter truss 165 nodes
composed of 54 bays 486 degrees of freedom

Fig. 3 Space mast problem.



Fig. 4 Representative mode shapes of 60-meter mast.

Lancos method operation

1. Initialization .

K=K-tM™m

2. Decomposition
R=ol"

3. Forward solution
LDa=V

4, Back substitution
LTy =a

5, Calculation of Lancoz vectors
a, BV

6. Bisection
TmQ=2Q

m (order of T) = 30

Time in seconds

156

17

219

Fig. 5 Execution time for sequential

Lanczos method.
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