THERMAL STABILITY ANALYSIS OF THE FINE STRUCTURE OF SOLAR PROMINENCES.

Pascal Démoulin
Jean-Marie Malherbe
Brigitte Schmieder

Observatoire de Paris - Section de Meudon
92 195 Meudon Cedex - France

and

Mickael A. Raadu

Royal Institute of Technology
Department of plasma physics
S- 100 44 Stockholm - Sweden

SUMMARY

We analyse the linear thermal stability of a 2D periodic structure (alternatively hot and cold) in a uniform magnetic field. The energy equation includes wave heating (assumed proportional to density), radiative cooling and both conduction parallel and orthogonal to magnetic lines. The equilibrium is perturbed at constant gas pressure. With parallel conduction only, it is found to be unstable when the length scale $l_{//}$ is greater than 45 Mm. In that case, orthogonal conduction becomes important and stabilizes the structure when the length scale l_{\perp} is smaller than 5 km. On the other hand, when l_{\perp} is greater than 5 km, the thermal equilibrium is unstable, and the corresponding time scale is about 10^4 s: this result may be compared to observations showing that the lifetime of the fine structure of solar prominences is about one hour; consequently, our computations suggest that the size of the unresolved threads could be of the order of 10 km only.

FUNDAMENTAL EQUATIONS OF THERMAL EQUILIBRIUM.

We use the 2D "chessboard" of figure 1, which displays a periodic hot (T1) and cold (T2) structure in a uniform magnetic field (this could be the case in the central parts of prominences, see Leroy et al., 1983). We write equations for thermal equilibrium of hot and cold cells, as:

\[
\begin{align*}
\rho_{1} \frac{h}{\ell_{//}} - \rho_{2} \frac{h_{i}}{\ell_{\perp}} + 2 \frac{F_{//}}{\ell_{//}} - 2 \frac{F_{\perp}}{\ell_{\perp}} &= 0 \\
\rho_{2} h - \rho_{\text{2}} h_{\text{i}} + 2 \frac{F_{\text{i}}}{\ell_{\text{i}}} + 2 \frac{F_{\text{\perp}}}{\ell_{\text{\perp}}} &= 0
\end{align*}
\]

Where $F_{//} = \frac{k_{o//}}{3.5} \frac{T_{1}^{3.5} - T_{2}^{3.5}}{\ell_{\parallel}}$ and $F_{\perp} = \frac{k_{o\perp}}{1.5} \frac{T_{1}^{1.5} - T_{2}^{1.5}}{\ell_{\perp}}$

are respectively the heat flux parallel and orthogonal to the magnetic field. ρ_{1} and ρ_{2} are the densities of respectively hot and cold cells. $k_{o//}$ and $k_{o\perp}$ are conduction coefficients; $k_{o\perp}$ depends on the strength of the magnetic field B.
We assume that the gas pressure remains constant \(p_1 T_1 = p_2 T_2 = \rho T = \text{constant} \) and use the cooling function \(Q(T) \) given by Hildner (1974). Unknown quantities are \(h, T_1, T_2 \). The equilibrium state \((h, T_2)\), when \(T_1 \) is fixed, is given by the set of 2 equations above. Possible solutions are shown in figure 2 (top).

ANALYSIS OF THERMAL STABILITY

We perturb the equilibrium at constant gas pressure \(P \) and heating \(h \) \((T \rightarrow T + \delta T) \). Equations are linearized assuming that \(\delta T \propto e^{\beta \xi} \), where \(\beta \) is a growth rate. We assume also that there is no motion in a direction perpendicular to the magnetic field, so that \(\mathbf{l} \parallel = \text{constant} \). Hence, mass conservation gives \(1//\rho = \text{constant} \). We get two solutions for \(\beta \): the first one is always negative (stable solution), but the second one can either be positive (unstable) or negative (stable). It depends on the values of equilibrium parameters \(1//, \mathbf{l} \perp \) and \(T_1 \). The magnetic field strength \(B \) was kept constant \((1 \text{ Gauss}) \).

RESULTS

Figure 2 (bottom) gives the growth rate as a function of \(\mathbf{l} \perp \) and hot temperature \(T_1 \) (parallel conduction was neglected there).

The thermal equilibrium is unstable when \(\beta > 0 \): this is always the case when \(\mathbf{l} \perp \) is too large \((> 10^6 \text{ m}) \). When \(\mathbf{l} \perp \) is smaller than \(10^5 \text{ m} \), the equilibrium may be stable if \(T_1 \) does not exceed a critical value \(T_{\text{max}} \) \((T_{\text{max}} = 10^6 \text{ K} \) for \(\mathbf{l} \perp = 10^4 \text{ m} \)).

Figure 3 gives \(\beta \) as a function of \(\mathbf{l} \perp \) and \(1// \) for a 2 D model \((T_1 \) was kept constant). It shows that, when \(1// < 45 \text{ Mm} \), the thermal equilibrium is stable; when \(1// > 45 \text{ Mm} \), it is unstable, unless \(\mathbf{l} \perp < 5 \text{ km} \). When \(\mathbf{l} \perp > 5 \text{ km} \), the time scale for instability is approximately equal to \(10^4 \text{ s} \) and corresponds to the observed life time of the fine structure in solar prominences. This result suggests that the size of thin threads could be as small as \(10 \text{ km} \).

The temperature of hot cells \((T_1) \) used in the computations was \(10^6 \text{ K} \).
Figure 1: The geometry of the model: the structure is periodic in x direction (length scale l_\parallel) and y direction (length scale $l_{//}$). The magnetic field B is parallel to y, z is the vertical axis. White areas are hot (T_1) and tenuous (ρ_1); dashed cells are cold (T_2 and dense (ρ_2).

Figure 2: Next page

Top: $\log Q(T) +\left(\text{orthogonal conduction}\right)/\rho^2$ as a function of $\log(T)$ for different values of the length scale l_\perp (1D calculation with $l_\perp = 10^3$, 10^4, 10^5, 10^6 and 10^7 m). Equilibrium solutions are located at points A, B, C (intersection with the straight line $\log(T) + \log(\rho_{\text{th}})$). When the heating becomes too large, the cold solution A does not exist any more.

Bottom: The growth rate as a function of hot temperature T_1 (1D calculation). The function $\text{sgn}(\beta)/\log|\beta|$ is displayed for different values of l_\perp (same as above).
COOLING

LOG₁₀(TEMPERATURE)

INSTABILITY RATE (INSTABLE FOR > 0 VALUE)

HOT TEMPERATURE

figure 2

146
Figure 3: The growth rate for the 2D calculation as a function of $I_{//}$ and I_{\perp}. Isocontours of $\text{sgn} (\mathcal{B}) \log |\mathcal{B}|$ are displayed. The dotted area is stable ($\mathcal{B} < 0$); the white one (top) is unstable ($\mathcal{B} > 0$). The dashed region (left and bottom) represents the domain where a cold equilibrium does not exist (see figure 2).

References

