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INTRODUCTION

It has recently been shown that for low-lylng loops with a maximum height of

5000 km there exists a "cool" solution to the static energy and force balance

equations (Antiochos and Noci, 1986; Hood and Priest, 1979). In contrast to

the well-known hot solution, with temperatures in the range of 106 K, the cool

solution reaches a maximum temperature of only a few tens of thousands of

degrees. Either of these solutions is possible for a given amount of energy

deposited in the loop.

The existence of cool solutions has important implications for the

interpretation of UV and X-ray observations, not only of the sun, but of all

late-type stars that exhibit transition regions and coronae. The apparently

universal rise in emission measure for decreasing temperature below 105 K might

be explained by an unresolved mixture of both hot and cool loops, for example.

In addition, certain kinds of solar features, such as fibrils and active region

filaments, may be accurately described as cool loops. Other possible

applications abound.

An important property of all static loops is their thermal stability. Even if

a solution to the governing equations exists, it may not be physically

realizable if it is unstable to small amplitude perturbations. Antiochos et

al___t.(1985), among others, have performed detailed linear analyses of the

stability of coronal loops. They find that for low-lying loops which admit

both a hot and a cool solution, the hot solution is thermally unstable while

the cool solution is thermally stable. This suggests that low-lying hot loops

do not occur in abundance. Higher arching hot loops appear to be thermally

stable, on the other hand, so their ubiquitous appearance on the sun is easy to
understand.

One implication of the linear results is that the solar atmosphere should have

a two component structure. For a dipole-like magnetic configuration, one

envisions a set of small, cool loops nested inside an arcade of larger, hot

loops, as indicated in Figure i. The boundary between these two regions may be

quite sharp, in which case there is a thin, secondary transition region several

thousand kilometers above the photosphere. Another implication is that the

compact X-ray bright points (bipolar regions) discussed elsewhere in these

proceedings should be short lived, even for steady energy input.

Any linear stability analysis is, of course, only valid in the limit of small

amplitude disturbances. It does not determine what happens to these

disturbances when they grow into the non-llnear, physically observable regime.

If they continue to grow, then the system is truly unstable; however, if the
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Figure I. A hypothetical magnetic arcade consisting of cool inner loops

surrounded by hot outer loops. Coronal temperatures and densities are given

for a heating rate that is proportional to the square of the magnetic field

strength. Notice that the cool loops have a maximum height on the order of the

gravitational scale height at 105 K, or roughly 5000 km.

disturbances quickly saturate, then the system is for all practical purposes

stable. We have therefore set out to study the non-linear evolution of loops

that are subjected to a variety of small but finite perturbations. Only

low-lying loops are considered, since the linear analysis suggests that higher

loops are stable.

THE MODEL

We perform our analysis numerically using a one-dimensional hydrodynamic model

developed at the Naval Research Laboratory. As described by Marlska et al.

(1982), the computer code solves the time-dependent equations for mass,

momentum, and energy transport. The radiation law of Raymond modified by a T3

dependence below i0_ K is employed, and uniform volumetric heating is assumed.

The bottom of the loop atmosphere contains two scale-helghts of chromosphere at

104 K, so the rigid wall boundary conditions should not be critical.

Our primary interest at this point is in active region filaments, hence we

consider a geometry appropriate to those structures. The loop is a total of

6x104 km long and is quite flat. Its maximum height is approximately 103 km
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Figure 2. The temperature structure of the hot and cool solutions to the

initial static loop. 0nly half of the symmetric loop is shown. The

temperature differences at the end of each perturbation simulation are

imperceptible on the scale of this plot.

above the chromosphere, so llnear theory predicts it to be unstable. The loop

has a very gradual dip in the center to form a gravitational well where dense

prominence material could collect. Although a linear stability analysis has

not been performed on loops with such a geometry, we expect that, if anything,

the central dip will have a destabilizing influence.

The upper curve in Figure 2 shows the temperature profile of the hot solution

in this geometry. 0nly half the loop is shown_ as we assume at the outset that

it is symmetric. The peak temperature is 2.6 x 10 6 K and occurs at the loop

midpoint. The pressure at the top of the chromosphere is 2.6 dynes cm -2.

The lower curve in the figure is the corresponding cool solution profile for

the same energy input. It peaks near the loop apex (where the dip begins) at a

value of only 4.7 x 10 4 K. The pressure of this solution is 0.2 dynes cm -2,

roughly an order of magnitude smaller than in the hot solution.

PERTURBATION SIMULATION

We have subjected both of these static solutions to moderate sized

perturbations and allowed them to evolve for several thousand seconds (several

cooling times and many sound travel times over the coronal portion of the

loop). The first perturbation we considered was a I0 % change in the energy

input rate--a decrease of I0 % for the hot solution, and an increase of I0 %

for the cool solution. As expected_ the temperatures begin to fall and rise,

respectlvely_ in response to the heating change. Fairly quickly, however, the
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evolution slows and the atmosphere appears to settle into a new equilibrium

state. This new state is very similar to the original one for both the hot and

the cool cases. At the end of the calculations the temperature has changed by

only a few percent at all locations. Therefore, the solutions appear to be

stable to small perturbations in the heating.

A second perturbation we considered was an instantaneous slnusoidal velocity

disturbance of 2 1/2 wavelengths across the half-loop. So as to remain well

below the sound speed, the amplitude was chosen to be I0 km s -I for the hot

solution, but only 2 km s -I for the cool solution. As before, the perturbation

quickly saturates, and the final state of the loop is essentially identical to

the original state. The hot and cool solutions are thus stable to this type of

perturbation, as well.

DISCUSSION

These results suggest that both hot and cool loops of the geometry considered

here are thermally stable against small amplitude perturbations of all kinds.

Presumably low-lying loops of other geometries are also Stable, but this

remains to be shown. Just what causes the linearly unstable modes identified

by Antlochos et al. (1985) to saturate is not clear. We are currently

investigating this question.

If correct, our stability conclusion has important ramifications for the nature

of low-lylng coronal loops. It implies that the current state of a loop is

strongly dependent upon the loop history. For example, a hot loop cannot

spontaneously evolve into a cool one without some sort of a major event (e.g.,

a dramatic decrease in the heating rate, or an injection of copious amounts of

cool material). In particular, active region filaments cannot spontaneously

condense out of the hot corona, as has been suggested in the past. For further

discussion of this point, see the contribution of Poland, Mariska, and Klimchuk

in these proceedings.

Another implication of stability is that not all low-lying loops must be cool.

The picture of Figure I may still be correct, but it need not be, as suggested

earlier.

And finally, we end with a word of caution. The numerical results presented

here must be considered only suggestive. A concern of ours is that the loop we

modelled may not have been properly resolved; the grid size of I0 km in the

transition region is only marginal. We are currently working on new

simulations with a much improved resolution. In addition, we are exploring

alternate geometries, such as the more traditional semi-circular loop. These

results will be discussed in a future publication.

Portions of this work were supported by the NASA Solar Terrestrial Theory
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Research Associate.
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