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ABSTRACT

Fully developed turbulent and laminar flows through symmetric

planar and axisymmetric expansians with heat transfer were modeled using

a finite-difference discretization of the boundary-layer equations. By

using the boundary-layer equations to model separated flow in place of

the Navier-Stokes equations, computational effort was reduced permitting

turbulence modeling studies to be economically carried out. The

continuity and momentum equations were solved in a coupled manner. The

validity of the once-through calculation scheme utilizing the FLARE

approximation was studied by using a multiple sweep procedure in which

the FLARE approximation is removed after the first sweep.

For laminar constant property flow, the e quations were

nodimensionalized so that the solution was independent of Reynolds

number. Two different dependent hydrodynamic variable sets were tried:

the primitive variable set (u-v), and the streamwise velocity stream

function variable set (u-,P). The predictions of the boundary-layer

equations were identical regardless of the varii_!31e set used. The

predictions of the boundary-layer equations for parameters associated

with the trapped eddy compared well with the predictions of the Navier-

Stokes equations and experimental measurements for laminar isothermal

flo%! + en the Reynolds number was above 200 and the ratio of inlet to

outlet channel diameter(width) was less than 1/3. The reattachment

length and the flow field outside of the trapped eddy were well

predicted for Reynolds numbers as low as twenty for laminar flow.
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The Boussinesq assumption was used to express the Reynolds stresses

in terms of a turbulent viscosity. Near-wall algebraic turbulence

models based on Prandtl's-mixing-length model and the maximum Reynolds

shear stress were compared. The near-wall models wera used with the

standard high-Reynolds-number k-e turbulence model. A low-turbulent-

Reynolds-number k-e model was also investigated but found to be

unsuitable for separated flow. The maximum-shear-stress near-wall model

gave better predictions than the Prandtl-mixing-length models,

especially for heat transfer. The predicted turbulent heat transfer is

primarily dependent on the turbulence model used in the near-wall

region. Globally iterating over the flow field had a more pronounced

effect on the !seat transfer solution than on the hydrodynamic solution.

I{
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NOMENCLATURE

Ai ,a
i
	coefficients appearing in the finite-difference expressions

A+	empirical constant used in turbulence modeling

[A)	 2x2 coefficient matrix (Eq. 3.21, Eq. 3.42)

Bi ,b
j
	coefficients appearing in the finite-difference expressions

[Bj	 2x2 coefficient matrix (Eq. 3.21, Eq. 3.42)

BL	 boundary-layer equations

c	 FLARE constant

cf	skin-friction coefficient (= 2tw/(pu2

Ci ,c^	 coefficients appearing in the finite -difference expressions

cu,cD,cl,

c21c31c40

turblence modeling constants (Table 2)

c Oi l c02'

c61w1cw

c
P	

specific heat

{C)	 2x1 matrix (Eq. 3.21, Eq. 3.42)

d	 inlet plate spacing or inlet pipe diameter

D

	

	 outlet plate spacing or outlet pipe diameter,
van Driest damping function (Eq. 2.57),
diffusion difference operator (Eq. 3.10)

Di , d
i
	 coefficients appearing in the finite -difference expressions

D 1
	 modified van Driest damping function (based on A+ = 15)

[D]	 2x2 coefficient matrix (Eq. 3.21, Eq. 3.42)

Ej,ei	 coefficients appearing in the finite-difference expressions

FDE	 finite-difference equation

h	 step height (except for Eq. 2.23 where it is the enthalpy)
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H	 total enthalpy (Eq. 2.23)

Hj	coefficient appearing in the finite-difference expressions

k	 turbulent kinetic energy (Eq. 2.67),
thermal conductivity coefficient

k 
	 effective turbulent thermal conductivity coefficient

B	 turbulent length scale (= KDy)

I 
	 reattachment length

L	 turbulent length scale (Eq. 2.68)

NJ	 j-index corresponding to the centerline

Nu.	 Nusselt number based on inlet diameter
i

Nu	 Nusselt number based on outlet diameter0

Nudb	0.023 Re 0.8 Pr 
0.4

NS	 Navier-Stokes equations

p	 pressure

P	 production of turbulent kinetic energy (= ut/p(au/ay)2)

Pe	 Peclet number (Re x Pr)

Pr	 Prandtl number

Pr 	 turbulent Prandtl wimber

q	 heat flux rate

Q	 dimensionless heat flux rate (Eq. 2.51)

r	 distance from the centerline

r	 outlet channel radius
0

R	 dimensionless distance from the centerline (= r/d)

Re Reynolds number (= puid/U)

Re  Reynolds number based on the step height (= puih/u)

0
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S®	source term (Table 4)

SO'c ,SO,d see Eq. (3.32)

St	 Stanton number

T temperature

T 
bulk temperature

TE truncation error

U average inlet velocity in the x-direction

U collision velocity (Eq. 2.34)

U dimensionless velocity (= u/ui)

U. dimensionless velocity (= u/ut)

uIC
turbulent velocity scale

(= (tw/P)1/2)

-u'v' m maximum Reynolds stress at a given x-position

(U) 2x1 unknown matrix (Eq. 3.21,	 Eq.	 3.42)

v velocity in the y-direction

V velocity vector

x distance from the step (Fig.	 2)

X dimensionless distance from the step (= x/(d Re))

X 
dimensionless reattachment length

Ax
xi+2 _ xi+l

Ax -
xi+l _ xi

AX Xi+l - Xi

y distance from the wall (Fig.	 2)

Y dimensionless distance from the wall (= y/d)

y+ dimensionless distance from the wall (= yuTOO

Dy+

E

E

}j+l	 - yj
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Ay -	 y; - yj-1

AY	 Y .	 - Y
+	 Jjl	 J

Y  - Yj-1

A symbols

turbulence modeling constant (Table 2)

dimensionless pressure gradient (Eq. 2.43b)

turbulence modeling constant (Table 2)

surrogate symbol (Tai'-e 4)

displacement thickness

central difference operator (Eq. 3.8)

stream function

dimensionless stream function (= y ►cp/(dl+0ui))

dissipation rate of turbulent kinetic energy

dimensionless total enthalpy (= H/u'i)

coordinate having equal grid spacing

C  Zj-1

von Karman constant (== 0.41)

viscosity

turbulent viscosity (Eq. 2.18)

density

shear stress

0	 surrogate symbol for variables

x	 -dp/dx'

W	 vorticity
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Subscripts

b	 bulk

cp	 constant property

e	 edge of the boundary layer

i	 inlet

j	 y-index

min	 minimum

max	 maximum

0	 outlet

r	 reattachment

w	 wall

Superscripts

i	 x-index

m	 constant (= 1 if axisymmetric; = 0 if 2-D planar)

( )'	 instantaneous variation from a mean turbulent
quantity (Eq. 2.2)

( )' 	 instantaneous variation from a mass averaged quantity
(Eq. 2.7)

( )	 designates a modified coefficient

( )	 time averaged turbulent quantity (Eq. 2.3)

(~)	 mass averaged turbulent quantity (Eq. 2.8)

( )	 provisional variable used in Newton linearization
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I. INTRODUCTION

A. Overview of Separated Flow

Flow with separation is often encountered in fluid mechanics

Separation can occur due to adverse pressure gradients, as on the upper

surface of an airfoil that has "stalled" or in a pipe with a sudden

expansion or contraction. This latter type of separation occurs in

engineering practice in heat exchangers and combustion chambers. The

flow separation causes a region of flow reversal immediately downstream

of the expansion that is sometimes referred to as a trapped eddy or

trapped vortex due to its "swirling" nature. The region of flow

reversal caused Li the t he flow separation can have an important effect

on the flow field.

Figure 1 introduces the physical nature of reattaching flow. The

boundary layer at the step develops into a shear layer which has high

levels of shearing stress. The recirculation region develops behind the

face of the expansion. The streamline that divides the recirculating

region from the rest of the flow is called the dividing streamline. The

point where the dividing streamline meets the wall is called the point

of reattachment. For "steady" turbulent flow, the point of reattachment

varies with time due to large turbulent eddies in the shear layer [1].

Thus, for turbulent flow, it may be more appropriate to define a

reattachment region that extends 20% of the reattachment length on both

sides of the average distance to reattachment [2]. After reattachment,



O
U
.b

V

q
H
v

i

t

v

0
G

T

C
O

v
4

W

3
_O

w
60

q

U

a^

N
W

O

G
O
.^4

41

f1.

N

U

N

4)
.d

V
.H

LO

a

as
N
a
0o

2

N
0)

ttl

a

T
N

ca
b
a
0
O
Aa

3
Nz



3

sides of the average distance to reattachment [2]. After reattachment,

a new sub-boundary layer begins to form. In the corner formed by the

step and the wall downstream of the step, a smaller eddy is formed that

rotates in a direction opposite to that of the larger eddy. An inviscid

core above the shear layer may or may not exist depending on whether the

flow is fully developed at the step.

The preser.t study deals with finite-difference solutions to partial

differential equations that govern the velocity and temperature of fluid

flow through rapid expansions. Since this geometry is one of the

simpler geometries involving regions of flow reversal, it is of value as

a test case to develop algorithms to be used with complex geometries.

The Navier-Stokes equations are the general set of governing

equations that are applicable for predicting the velocity field for this

geometry. However, solving the Nav ier-Stokes equations requires more

programming effort and computer time than solving equation sets that are

more approximate. One such equation set consists of the boundary-layer

equations.

In general, the boundary-layer equations provide a good model of

the flow field when the Reynolds number is very high. The boundary-

layer equations can be obtained from the Navier-Stokes equations by

assuming that the change of any variable of interest in the streamwise

direction and the transverse velocity are both very small. The

conservation of momentum equation in the transverse direction, y,

reduces to a statement that the pressure varies only in the streamwise

direction and is constant in the transverse direction (3p/3y=0).

i 3
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For flows in which the boundary-layer assumptions are valid, the

boundary-layer equations can be solved in place of the Navier-Stokes

equations with relative ease. However, with rapid expansions, there

exists a region of low Reynolds number flow immediately after the

expansion in the recirculating eddy where the fluid velocity is low.

The limitations of using the boundary-layer equations for this geometry

has not been thoroughly addressed in previous studies.

The boundary-layer equations are a parabolic set which means that

no information from the downstream direction can influence the solution.

Pe.rabolic equation sets are applicable to flows in which a predominant

direction of flow can be defined. This is in contrast to an elliptic

equation set (such as the Navier-Stokes equations) in which events

anywhere in the flow domain of interest can influence the solution.

Elliptic equations can be used to model flow with no predominant flow

direction. In regions of flow reversal, a predominant flow direction

cannot be clearly defined. This indicates that flow regions with flow

reversal are elliptic in nature.

If the flow is not fully developed at the sudden expansion, a core

region of inviscid fluid can be identified. Laplace's equation
K

(elliptic in type) can be effectively used to model flow in this

inviscid core if the flow is irrotational, making it unnecessary to

solve the full Navier-Stokes equations in this region. By using the

boundary-layer equations in the visccus region near the wall and

Laplace's equation in the inviscid free stream, elliptic effects can be
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included through the solution of Lsplace's equation. The idea of using

an equation set valid for the inviscid region and the boundary-layer

equations near the wall is commonly known as viscous-inviscid

interaction. However, if the flow is fully developed at the expansion,

no internal core of inviscid fluid can be identified, so viscous-

inviscid interaction cannot be used. For the flows predicted in this

study, no inviscid core existed.

When predicting turbulent flow, the governing equations are time

averaged over a short period of time. As a result of averaging, extra

terms are introduced into the momentum and energy equations and the

original variables are replaced with time averaged variables. The extra

terms in the momentum equations are called Reynolds stresses.

Turbulence modeling of the Reynolds stresses in regions of flow reversal

has been particularly challenging since many of the assumptions usually

made in turbulence modeling are invalid when recirculation is present.

The algebraic mixing length models neglect the diffusion and

convection of turbulent kinetic energy and turbulent length scales.

These algebraic models show good correlation wi'-.h experimental data for

turbulence that is in equilibrium. In equilibrium boundary layers, the

production of turbulent kinetic energy equals the dissipation of

turbulent kinetic energy The turbulence encountered in recirculation

flow is not equilibrium turbulence, so convection and diffusion of

turbulence parameters need to be accounted for by using turbulence

models more complex than the algebraic mixing length models.
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More complex turbulence models that require the solution of

partial-differential equations (PDEs) for the turbulence parameters are

at the present time being refined. These models employ additional PDEs

to take into account diffusion and convection of turbulence parameters.

The turbulent kinetic energy equation (k-equation) is a PDE generally

used : _,dons of high turbulence Reynolds number. Some modifications

ha# been proposed to make it applicable for regions of low turbulence

Remolds number and reversed flow. The k-equation requi es the

specification of a turbulent length scale either algebraically or

through the solution of an ordii:ary differential equation (ODE) or

another PDE. A popular PDE to provide this length scale is the

e-equation (equation for the dissipation rate of turbulent kinetic

energy). The e-equation, usually used in conjunction with the k-

equation, is the weakest link of the k-e model [3]. The k-r model is

the most widely used two equation model of turb^ience. The k-r model is

used with the assumption that the Reynolds stresses are proportional to

the mean rate of strain [4]. Other models do not make this assumption

but impose PDEs for the Reynolds stresses themselves. These Reynolds

stress models have riot been widely used due to their complexity.

However, algebraic equations that approximate the Reynolds stress PDE.

are often used in conjunction with the k-e model ['].

If the temperature field is desired, the energy equation is used to

solve for the temperature and to predict the heat transfer. If the flow

is turbulent, the turbulent transport of energy must be modeled. As
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with hydrodynamic turbulence models, there is a wide range of complexity

involved with modeling the turbulent heat transport. In general,

turbulence greatly enhances the heat transfer (and the skin friction).

B. Literature Review

In the last fifteen years, there has been a wealth of new

literature on the subject of reversed flow caused by a sudden

contraction or expansion. However, for laminar flow heat transfer data

sets are very scarce. There have been several studies of the heat

transfer for turbulent flow, but until recently these studies have not

included hydrodynamic data. Therefore, if differences appeared when

comparing the temperature fieid or heat transfer rates with other data

sets, one did not know if they were due to a faulty hydrodynamic

solution or if they were due to problems with the solution of the energy

equation, itself.

1. Laminar rapid expansion sLudies

a. Experimental hydrodynamic	 The laminar experimental

hydrodynamic data sets are divided into two groups. Those dealing with

axisymmet:ic and symm^tric planar expansions are discussed in the

symmetric section; those dealing with asymmetric planar expansions (also

call,2d backstops or rearward-facing steps) are grouped in the asymmetric

section

1) Symmetric	 The first experimental study of an abrupt

pipe expansion was carried out by Mace'gno and Hung [S) who used flow
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visualization with aluminum powder in oil. They cc,nsidered only an

expansion ratio of 1:2 (inlet diameter to outlet diameter) and found

that the flow remained axisymmetric and stable for Reynolds numbers less

than 4500. They also found that the distance from the step to the point

of reattachment varied linearly with Reynolds number.

Back and Roshko [61 used flow visualization to find the point of

reattachment for flows in a circular channel abrupt expansion for

Reynolds numbers between 20 and 4200. Dye was injected into water.

They used a nearly uniform inlet profile with a very thin bourdary layer

at the expansion and reported that as the Reynolds number was increased,

the distance to reattachment increased, reached a maximum, decreased,

and then stayed constant when the flow became turbulent. The shear

layer undulated for moderate Reynolds numbers with vortices appearing in

it as the Reynolds number was increased further. For most of the range

of Reynolds numbers studied, the flow was turbulent at reattachment.

A 1:2 pipe expansion was studied by Iribarne et al. [7]. They

found wave-like disturbances of the flow over a range of Revnolds

numbers varying from 9 to 1355. The velocity profile at the step was

nearly uniform with a very thin boundary layer. The shear layer

downstream of the expansion developed wave-like disturbances. They

reported that the frequency of the disturbances was a function of the

square root of the Reynolds number. The irregular sinusoidal motion of

the shear layer turned varicose for a F,aynolds number of 350 which

corresponded to the maximum reattachment length. There was considerable

1
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turbulence at reattachment when the Reynolds number was above 350. The

mean flow field remained symmetric.

Durst et al. [81, using a laser-Doppler anemometer, studied the

flow through a symmetric 1:3 plane expansion over a range of Reynold

numbers. The flow was fully developed at the inlet. Only for the

lowest Reynolds number tried (56 based on the maximum velocity upstream

of the expansion) was the flow symmetric. For Re of 252, the flow was

stable but very asymmetric with additional separation regions downstream

of the step. The two trapped eddies were of different length. An

additional region of separation appeared after the shorter of the

primary eddies for some Reynolds numbers. For Re above 252, the flow

was unsteady.

Feuerstein et al. [9) studied the fully developed flow through

three different axisymmetric channel expansions using high speed

photography of a fluid with tracer particles. They used the measured

velocity profiles after reattachment as inlet conditions to a linearized

boundary-layer problem to study the flow redevelopment. They gave a

correlation for the distance to reattachment for d/D = 0.63 and 300 < Re

< 1000 as

t r/h = 0.048 Red
1.1	

(1.1)

Equation (1.1) predicts longer reattachment lengths than were predicted

in this study.
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Cherdron et al. [lf] used a laser-Doppler anemometer to study flow

that was fully developed at a 1:2 planar symmetric expansion. They

found unequal reattachment lengths due to oscillations of the velocity

if the Reynolds number based on the maximum inlet velocity was over 150.

This caused antisymmetry due to the confinement of the flow. The

reattachment length was close to an integral number of the wavelength of

the disturbance in the shear layer. Disturbances at the lip were

amplified in the shear layer to cause the unsteadiness.

Restivo and Whitelaw [11] used the same channel as Durst et al. [8]

but with a uniform inlet profile with a very thin boundary layer at the

step. A laser-Doppler anemometer was used to measure the flow

velocities. The flow was asymmetric for all Reynolds numbers studied

(494 to 3865 based on the maximum inlet velocity). They studied a 1:2

and a 1:3 symmetric planar expansion with a uniform velocity profile at

the inlet. They reported a higher frequency of disturbance and so a

shorter wavelength than reported by Cherdron et al. [10]. They believed

that this caused the shorter distances to reattachment than those

measured by Cherdron et al. [10] since the distance to reattachment

remained the same integral number of wavelengths that Cherdron reported.

However, Pollard [12] used the Navier-Stokes equations to study the

effect of inlet conditions on flow over a step. He found that the

reattachment length for a uniform inlet was less than that of a fully

developed inlet for the same Reynolds number. Since Pollard's analysis

did not take into account any wave-like disturbances, it is likely that

M
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the shorter reattachment lengths measured by Restivo and Whitelaw [11]

are only a result of the uniform inlet velocity profile and not the

higher frequency of the shear layer disturbance.

It is important to note that all of the symmetric laminar expansion

experiments indicated that the flow has wave-like instabilities when the

Reynolds number is of order 100 to 1000. The instabilities are worse

for flows in which the boundary-layer thickness is approximately an

order of magnitude less than the step height. Those having a boundary-

layer thickness approximately the same order of magnitude as the step

height are more stable [13]. The planar expansions are more unstable

than the axisymmetric expansions because of the influence of the end

walls of the planar expansions which introduce three-dimensional

effects.

When the boundary layer is fully developed at the expansion,

experiments show that a laminar, two-dimensional, steady flow solution

commonly exists. For a planar expansion the steady, two-dimensional

flow was verified for a Reynolds number of 39 for a 1:3 expansion [8]

and 100 for s 1:2 expansion [10]. For an axisymmetric expansion,

steady, symretric flow was observed for Reynolds numbers up to 4500 by

Macagnc and Hung [5].

2) As mme tric	 Since most of the asymmetric channel

expansion (backward facing step) studies appearing in the literature

involved a thin boundary layer at the step and an inviscid core or

inviscid free stream, they were not used for comparison in the present

]
f

G
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work. For this reason, some of the backward facing step data sets will

only be briefly mentioned.

Moore [14] was the first to study flow over a rearward-facing step.

His study was carried out with air in a low speed wind tunnel. Leal and

Acrivos [15] studied the effect of base bleed on the separated flow.

O'Leary and Mueller [16] studied the flow over a backward facing step

that had a thin boundary layer at the expansion using flow visualization

with a water channel. Goldstein et al. [17] used a hot wire anemometer

and raised some doubts concerning the earlier measurements of Moore

[14]. The flow studied by Goldstein et al. had a thin boundary layer at

the step. Denham and Patrick [181 used a laser anemometer to measure

nominally fully developed flow over a back step. Matsui et al. [19]

used flow visualization. Armaly and Durst [20], using a laser-Doppler

anemometer to study the flow over a backward facing step, found

additional regions of recirculation not found by Denham and Patrick

[18]. Sinha et al. [21] studied flow in which the flow at the step had

a thick boundary layer in relation to the step height but thin in

relation to the channel height.

Armaly et al. [22] found qualitative similarities between the

stability of two-dimensional flow for symmetric and asymmetric

expansions. They used a laser-Doppler anemometer with air as the fluid

and found that the flow was two-dimensional for Reynolds numbers less

than 400 and greater than 6600, corresponding to laminar and turbulent

flow respectively. In the laminar range, the flow four step heights

E
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upstream of the inlet was nearly parabolic. At the step, there was only

a small variation from the parabolic profile. As the velocity was

increased, the reattachment length increased when the flow was laminar,

continued to increase as transition was reached, peaked, and then

decreased until the flow was totally turbulent. This is similar to the

findings of Back and Roshko [ 6] for an axisymmetric expansion. Once the

flow was totally turbulent, the reattachment length remained constant.

b. Experimental heat transfer 	 It is important to note that

there is no literature concerning experimental studies of heat transfer

for symmetric laminar sudden expansions. Those investigators

considering heat transfer for asymmetric planar expansions were Aung

[23, 24) and Armaly et al. [25].

Aung [23,24] used a Mach -Zender interferometer to measure the !peat

transfer after a rearward-facing step. He used a uniform wall

temper ure and a fairly thick (d /h — 1) boundary layer at separation.

Aung gives reattachment lengths, free stream velocities, heat transfer

coefficients, averavP Stanton numbers, temperature distributions, and

the following correlation for the average Stanton number.

St = 0.787 
Re-*55(s/xs)0.72
	

(1.2)

where Res is the Reynolds number based on the step height, s, and the

free stream velocity above the step, and x  is the distance from the

step. Au :ig found that the local heat transfer coefficient increased

tr_^._rJcally in the separated region but was always lower than that for
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flow over a flat plate. Regardless of this, for transitional flow, 1

total heat transfer can be significantly higher than for flow over a

flat plate. The maximum heat transfer was downstream of reattachment

Aung also found that the distance to reattachment peaked while the f:

was in transition, then decreased until it became turbulent. The sti

line curvature before the step was said to have increased the heat

transfer upstream of the step.

Armaly et al. [25] measured the momentum, heat and mass transfer

backward-facing step flows that were fully developed at the step. T1

reported heat transfer data show that the Reynolds analogy is invali(

the region of reversed flow. At Reynolds numbers near 400, the laminar

flow became three-dimensional.

c. Numerical hydrodynamic	 The numerous numerical solutions for

flows through rapid expansions can best be summarized in tabular form.

Table 1 shows the majority of the available computational solutions for

laminar flows through rapid expansions to date.

1) Symmetric	 Hung [26] was the first to calculate laminar

two-dimensional flows of this type using the Navier-Stokes equations.

He predicted the flow through a 1:2 symmetric planar expansion and a 1:2

axisymmetric expansion for Reynolds numbers less than 360. He found

that the distance from the step to the point of reattachment varied

linearly with Reynolds number. Macagno and Hung [5] compared the

axisymmetric Navier-Stokes solutions with their own measurements. The

correlation was excellent. Hung [26] and Macagno and Hung [5] used the



Author(s)

Acrivos &
Schrader (27]
Agarwal [28]
Armaly et al.
[22]

Atkins et al.
[29]
Chen et al.
[30]
Durst et al.

[8]
Giaquinta [31]
Hackman et al.
[32]
Halim & Hafez
[33]
Hall & Pletcher
[34]
Hung, T.K.[26]

Hutton & Smith
[35]
Huyakorn et al.
[36]
Yumar & Yajnik
[37]
Kwon et al.
[3s]
Kwon & Pletcher
[39]

Leschziner
[40]
Macagno & Hung
[.5]
Morihara [41]
Oosthuizen
[42]
Osswald et al.
[43]

Method

BL,Finite Dif.

NS,Finite Dif.
NS,Finite Dif.

NS,Finite Dif.

NS,Finite
Analytic
NS,Finite Dif.

NS,Finite Dif.
NS,Finite Volume

PPNS,Finite Dif.

Viscous/Inviscid
Interaction
NS,Finite Dif.

NS,Finite Elem.

NS,Finite Elem.

BL,eigenfunc-
tion expansion
BL,Finite Dif.

Viscous/Inviscid
Interaction

NS,Finite Dif.

NS,Finite Dif.

NS,Finite Dif.
BL,Finite Dif.

NS,Finite Dif.

Back-Step

Back-Step

Sym. Planar

Sym. Planar
Back-Step

Sym. Planar

Back-Step

Sym. Planar,
Axisymmetric
Back-Step

Back-Step

Sym. Planar

Sym. Planar

Sym. Planar

Back-Step,
Axisymmetric
Axisymmetric

Sym. Planar
Back-Step

Sym. Planar
Axisymmetric

Experimental 
Parabolic
Parabolic

Parabolic

Uniform
Parabolic,
Experimental
Parabolic

Thin boundary
layer
Parabolic

Parabolic

Parabolic

Parabolic

Parabolic,
Experimental
Parat.,lic,Thin
boundary layer,
Experimental
Parabolic

Parabolic

Parabolic
Parabolic,
4th order poly
Parabolic

a

Expansion Type Inlet Condition

Sym. Planar
	

Parabolic,
Uniform

Sym. Planar
	

Parabolic
Back-Step
	

Parabolic

a All the inlet conditions listed as experimental where nearly
parabolic.
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Author(s)

Plotkin [44]

Pollard [12,45]

Roache &
Mueller [46]
Taylor et al.
[47]
Thomas et al.
[48]

Method

BL,Fourier
Series approx.
NS,Finite Dif.

NS,Finite Dif.

NS,Finite Elem.

NS,Finite Elem.

Expansion Type

Sym. Planar

Axisymmetric

Back-Step

Back-Step

Back-Step

Inlet Condition

Parabolic

Parabolic
Uniform
4th order
Polhausen poly
Parabolic
Experimental
Parabolic

stream function and the vorticity (*-w) as variables in both a steady

and an unsteady approach.

Morihara [41] was next to solve the Navier-Stokes equations for

flow through symmetric channels. Instead of using the vorticity-stream

function variables he developed a primitive variable technique with the

pressure terms eliminated from the equations. He coupled the continuity

equation with the momentum equations and thus circumvented the need to

use a relaxation parameter. The algorithm appeared stable but required

large computer storage if the coefficient matrix was not broken into

smaller submatrices. He predicted .shorter reattachment lengths than

those predicted by Hung [26] for a 1:2 symmetric p:anar expansion.

Durst et al. [8] solved the Navier-Stokes equation- using the

vorticity-stream function .,ethod first developed by Gosman el. al . [49]

to compare with their experimental measurements through a 1:3 (d:D as in



Fig. 2) symmetric planar expansion. However, since the flow was

symmetric aitd two-dimensional for only the lowest Reynolds number tried

(56 based on the maximum inlet velocity), this was the only comparison

they were able to make.

Giaquinta [31) used two types of differencing molecules to solve

the unsteady 0-w form of the Navier-Stokes equations as a model for the

flow through a 2:5 symmetric planar expansion. He studied the

difference between an explicit time method and an implicit time method.

The flow was started from rest and allowed to reach a steady state. He

found that the implicit method was good for long time analyses,

particularly after flow initiation. The explicit time method was good

for predicting sudden changes in the fluid motion such as at start up.

The inlet velocity profile was uniform. The flows studied had Reynolds

numbers of 10 and 100.

Leschziner [40) used primitive variables to test the predictions of

the Navier-Stokes equations for three different types of finite

differencing of the convective terms for an axisymmetric and asymmetric

planar expansion. His predicted reattachment length compared well with

the measurements of Macagno and Hung [5) for an axisymmetric expansion.

He stated that artificial diffusion due to skewness of grid and

streamlines is unimportant for laminar flow.

Pollard [12,45) used a primitive variable formulation of the

Navier-Stokes equations to predict the flow through axisymmetric

expansions by finite-difference discretization. His computational
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algorithm was similar to the SIMPLE algorithm developed by Patankar and

Spalding [50]. He studied the effect of varying the Reynolds number,

expansion ratio, and inlet profile and found that the distance to

reattachment varied linearly with Reynolds number and nonlinearly with

expansion ratio. Reattachment lengths were shorter for uniform inlet

profiles than for parabolic inlet profiles. It should be noted that for

some Reynolds numbers his predictions of c  exceeded the known fully

developed c  values by as much as 11%. His predicted reattachment

lengths compared well with those predicted by Macagno and Hung [5].

Agarwal [28] used a third-order accurate upwind differencing scheme

to solve the *-w form of the Navier-Stokes equations. However, his

predictions do not compare well with the measurements of Durst et al.

[8] for a 1:3 symmetric planar expansion. For a 1:2 symmetric planar

expansion, the results compared well with the predictions of Kumar and

Yajnik [37] and Kwon and Pletcher [39]. The algorithm was stable and

accurate for high Reynolds numbers.

Osswald et al. [43] used a direct implicit time-dependent technique

to solve the vort'_city-stream function form of the Navier-Stokes

equations to predict the flow through a 1:3 symmetric planar expansion

and a 1:2 axisymmetric expansion. A generalized orthogonal coordinate

system with a cluster conformal transformation technique packed the grid

in the regions where the length scale was shorter. An ADI (alternating

direction implicit) scheme was used to solve the vorticity transport

equation; a block-Gaussian elimination scheme was used to solve the

stream function equation.
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Those who used the partially-parabolized Navier-Stokes equations

(PPNS) include Madavan [51] and Chiu [52]. They neglected the

streamwise diffusion terms in the Navier-Stokes equations.

Only recently have the boundary-layer equations been used to

predict the flow through the large regions of reversed flow behind

sudden expansions. Acrivos and Schrader [27] felt that the boundary-

layer equations were not valid near the step. In this "near region"

close to the F-ep, they stated that the flow was inviscid in nature, the

length of the inviscid region being of the same order of magnitude as

the inverse of the Reynolds number. To overcome Lhis, they modified the

initial velocity profile at the step to account for upstream influence

in the near region. Acrivos and Schrader used the unsteady boundary-

layer equations by marching in time until a steady state solution was

reached. They added damping to the viscous term in the momentum

equation to suppress instabilities in the fini`e-difference procedure.

They predicted the flow through symmetric planar expansions for various

expansion ratios.

Kumar and Yajnik [37] reported that by properly scaling the

coordinate parallel to the channel centerline, the region of inviscid

flow was shrunk to zero. They argued that a form of the boundary-layer

"	 f
equations, as a set of limit equations to the Navier-Stokes equations,

is applicable for this geometry for sufficiently high Reynolds numbers.

Kumar and Yajnik used an eigenfunction ex p ansion to reduce the set of

partial differential equations to a set of ordinary differential

1.
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equations. They predicted the flow through symmetric planar expansions.

Plotkin [44] solved the boundary-layer equations in a way similar to

Kumar and Yajnik (37]. However, instead of an eigenfur_ction expansion,

Plotkin used a concise Fourier series approximation technique.

Plotkin's results were similar to those of Kumar and Yajnik. Both

Plotkin [44] and Kumar and Yajnik [37] reported singular behavior when

attempting to predict separated flow if too many expansion terms were

included.

Kwon et al. [38] sc'ved the boundary-layer equations with a once

through marching procedure. In regions of reversed flow, the FLARE

approximation [53] removed the streamwise convective terms. The

momentum and continuity equations were solved in coupled manner. The

predicted reattachment length compared well with that predicted by the

Navier-Stokes equations and that measured experimentally.

2) Asymmetric	 Roache and Mueller [46] used a finite-

difference 3iscretization of the unsteady Navier-Stokes equations to

predict the flow field passing over an asymmetric planar expansion or

back-step. They used a 0-w form of the Navier-Stokes equations. They

marched explicitly in time until the solution stabilized.

Atkins et al. [29] solved the *-w form of the Navier-Stokes

equations with finite differences. Their laminar predictions used the

experimental , inlet profile of Denham [54] (2:3 asymmetric expansion).

They tried upwind and central differencing of the convective terms. The

predictions of both differencing schemes were very close to the
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aeasurements of Denham. For Reynolds numbers lower than those measured

by Denham, the upwind differences predicted reattachment lengths and

eddy intensities that were 8% less than those predicted by the central

differences.

Leschziner [40] used primitive variables to test three methods of

finite differencing the convective terms of the Navier-Stokes equations.

He compared his predictions with the measurements of Denham and Patrick

[18] for 2:3 asymmetric expansion. He predicted the minimum stream

function value in the eddy measured by Denham and Patrick but over

predicted the measured reattachment 'length. He stated that artificial

diffusion due to skewneF3 of grid and streamlines is unimportant for

laminar flow.

The TEACH code [55] was used by Armaly et al. [22] to solve the

Navier-Stokes equations. Their measurements and predictions compared

well as long as they used their measured inlet condition in their

computations and as long as the experimental flow remained two-

dimensional. The back-step they studied had an exparsion ratio of

1:1.94.

Hackman et al. [32] used a finite volume discretization of the

primitive variable Navier-Stokes equations to test two different

differencing schemes. They predicted the flow over a backward facing

step and compared the results with Denham and Patrick [18] for Reynolds

:,umbers of 73 and 229 based on the step height and average inlet

velocity. When the measured inlet profile at the step was used as the

F
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inlet condition for computations, the numerical predictions compared

well with experimental measurements. Their predictions did not compare

well with measurements when a parabolic inlet condition was used.

There have been three studies that used viscous-inviscid

interaction for back-step flows that had a thin boundary layer at the

step. Kwon and Pletcher [391 developed a hydrodynamic solution method.

In the viscous region, they used the boundary-layer equations with the

FLARE approximation`.s]; in the inviscid region they solved Laplace's

equation. Halim and Hafez [33] solved a fourth-order equation for the

stream function in the viscous region derived from the PPNS equations.

Halim and Hafez introduced an implicit coupling procedure for coupling

the viscous and inviscid solutions.

There have been several finite element solutions of the Navier-

Stokes equations for flow over back-steps. The usual method of using

the Galerkin formulation with weighted residuals that is so wide l y used

in structural mechanics often produces oscillations in the solution.

This is because the convection terms cannot be easily treated by the

symmetrical operators that are commonly used in structural mechanics.

Huyakorn et al. [36] predicted the fully developed flow through an

asymmetric expansion using different interpolation elements. Hutton and

Smith [35] predicted the same flow case.

Taylor et al. [47] used a weighted residual finite element

discretization of the primitive variable Na,ier-Stokes equations to

predict the laminar and turbulent flow over a back-step. They compared

]



^...
--• .

ate.--..g.a.s.+++r+.*,a^ . +ec	 ^, +L 	 _ - _ ,	 ^	 - _	 ^	 ._. _	 _..	 _

_	 ^ I

23

their predictions with the experimental measurements of Denham and

Patrick [181 and the finite -difference predictions of Atkins et al.

[291. The predictions of Taylor et al. did not match the measurements

as well as the finite - difference predictions of Atkins et al.

Thomas et al. [481 predicted the laminar and turbulent flow over a

back -step using primitive variables. They had to substitute upwind

weighting functions for the Galerkin weighting functions to get

convergence. This is similar to the need to sometimes use upwind

differencing instead of central differencing of the Navier -Stokes

equations to reach a stable finite -difference solution. The variable

coefficients of the convective terms were set to the previous global

iteration values. This provided a means of linearization and a means of

global iteration. The predictions of Thomas et al. compare reasonably

well with the measurements of Denham and Patrick [ 181 and the finite-

difference predications of Atkins et al. 129].

Chen et al. [301 used what they termed a finite-analytic procedure

to solve the Navier-Stakes equations. They predicted the flow over a

2:3 back-step. They predicted more mass trapped in the eddy behind the

step than that measured by Denham and Patrick [181.

Chiu [521 used the PPNS equations to predict the incompressible

flow over a back-step (see Numerical-symmetric section). His

predictions are in good agreement with the predictions of the full

Navier-Stokes equations and experimental measurements, indicating that

the streamwise diffusion tes-ms are unimportant for moderate Reynolds

numbers.
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Kwon and Pletcher [391 and Oosthuizen [42] used a finite-difference:

formulation of the boundary-layer equations to predict fully developed

flow over an asymmetric expansion. Oosthuizen was able to predict t'te

additional region of separation on the wall opposite the step that was

first reported by f rmaly and Durst [201. Both Kwon and Pletcher [391

and Oosthuizen [421 used the FLARE approximation to march through

regions of reversed flow.

The previous studies that used the boundary-layer equations have

provided only isolated comparisons indicating that the solution to the

boundary-layer equations may provide useful information for some sudden

expansion flows. However, the limitations of the boundary-layer

equations have not been clearly defined.

d. Numerical heat transfer	 Hall and Pletcher [341 modified the

algorithm of Kwon and Pletcher [391 to include a solution of the energy

equation. Theirs is the only laminar solution of the energy equation

for flow over a back-step in the literature.

2. Turbulent rapid expansion studies

The experimental studies are discussed first, followed by the

numerical studies. Both the experimenta l and numerical studies are

divided into two groups according to whether or not they include heat

transfer data.

Turbulent measurements are more difficult to make than laminar flow

measurements. The early studies used flow visualization, pitot tubes,

hot wires, and surface pressure transducers to measure flow parameters.

i
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At first, these data provided mostly qualitative, but important, flow

field information. Later as hot wire techniques were refined, more

accurate measurements were takers. With the introduction of laser-

Doppler anemometers and pulsed-wire anemometers, the measurements again

increased in accuracy. At thr_ present time, refinements are still being

made to increase the accuracy of turbulence measurements [2j.

A. Experimental hydrodynamic 	 The experimental-hydrodynamic

studies are divided into two groups. Those dealing with flow through an

axisymmetric or a planar symmetric channel expansion are grouped in the

symmetric category; those dealing with flow over a backward-facing step

are grouped in the asymmetric category.

1) Symmetric	 The studies giving only hydrodynamic data

for symmetric sudden expansions are summarized as follows:

Flow visualization: Drewry [56]

Pitot tubes: Kangovi and Page [57], Ha Mint. 	 '. Chassaing [58],

Mehta [59]

Hot-wire anemometers: Abbot and Kline [60], Chaturvedi [61], Ha Minh and

Chassaing [58], Mehta [59]

Laser-Doppler anemometers: Moon and Rudinger [62], Freeman [63],

Smyth [64], Lu [65], Stevenson et al. [66]

Abbot and Kline [60], Smyth [64], and Mehta [59] all studied the

flow through symmetric (double-sided) planar expansions. Abbot and

Kline [60] were the first to experimentally study the flow in asymmetric

and symmetric planar expansions using hot wire probes. Smyth [64] was
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the first to study the flow through a symmetric planar expansion using a

laser-Doppler anemometer. He provided mean velocity, turbulent kinetic

energy, Reynolds stress, and fluctuating velocity profiles. The flow

was fully developed and turbulent at the step. He found no appreciable

flow asymmetries. Mehta [591 found asymmetric unsteady flow through a

symmetric expansion when d/D was greater than 1.5. For d/D smaller than

1.5, the flew remained steady and symmetric. The asymmetries may have

been due to three dimensional effects caused by the small channel aspect

ratio (the ratio of the channel height to the width was only 1/4).

Mehta used hot wires and pitot tubes.

There have been numerous axisymmetric rapid expansion studies.

Chaturvedi [611 used pitot tubes and hot wire anemometry to study

axisymmetric expansion flow. He provided velocity, pressure, and

turbulence data for different step face wall angles.

Moon and Rudinger [62] studied fully developed turbulent flow

through a axisymmetric expansion using a laser-Doppier anemometer (LDA).

They published velocity profiles, centerline velocity curves, and eddy

shape diagrams. For the range of Reynolds numbers studied (103-106

based on the inlet diameter), the reattachment length was approximately

1.25 outlet tube diameters from the step and independent of Reynolds

number. They  also compared their measurements with numerical

predictions.

Freeman 1631 studied flows that had hot and cold co-flawing streams

at the expansion. He measured the reattachment length as 5 step heights

J
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from the expansion for Reynolds numbers between 20,000 and 40,000 using

It a laser anemometer. For this range of Reynolds numbers, he found that

the temperature profiles were independent of the Reynolds number.

Kangovi and Page [57] used pitot tubes to measure the flow through

an axisymmetric sudden expansion. They measured a reattachment length

of 8 step heights.

Ha Minh and Chassaing [58] used hot wires and pitot tubes to

measure flow that had a very thin boundary layer through a 1:2 pipe

N

expansion. They reported a turbulence intensity that was 19% of the

centerline velocity in the reattachment region. The turbulence

intensity decayed rapidly downstream of reattachment. They measured

reattachment at nine step heights from the step.

Stevenson et al. [66] measured the velocities of flow through an

axisymmetric expansion and an asymmetrical backstep using a laser

anemometer. They used frequency shifting and control of the seeding

density to eliminate bias errors. The axisymmetric case had a short

entry length before the expansion. The axisymmetric inlet profile was

measured with a pitot tube and found to be 'very flat". They found the

peak Reynolds stress was at the edge of the recirculation zone. They

published turbulent kinetic energy, Reynolds stress, and some

fluctuating velocity data. They also predicted the flow using a

modified 1 yersion of the SIMPLE computer code with a k-e turbulence

model. The E-trength of their paper is in the experimental measurements.
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Drewry [56] and Lu [65] studied flows having a constriction at the

inlet of a relatively short pipe. Lu [65] used a laser anemometer to

determine the velocities in a short tube with constrictions at both

ends. He provided the centerline velocity and a few velocity profiles.

The inlet conditions, which were not provided, were not that of fully

developed turbulent flow. Drewry used flow visualization.

2) Asymmetric	 Eaton and Johnston [l] gave an excellent

summary of the backward Pacing step experiments that were done before

1931. Rather than repeat their work, the main points of their summary

will now be listed and a detailed sketch of the experiments they

summarized will not be given.

Upon reviewing the early experiments, Eaton and Johnston made the

followin- conclusions.

• The reattaching shear layer is like a free shear layer except

on the ''wall side" where the flow is highly turbulent. Since

the outer part of the reattaching shear layer is similar to a

free plane shear layer, turbulence models that work well for

free shear layers should work well for the reattaching shear

layer except near the wall and reattachment point. Some

refinement will undoubtedly have to be done for these regions.

The outer part of the reattaching layer retains the

characteristics of a free shear layer for as many as 50 step

heights downstream of the step.
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• There is a rapid decrease in Reynolds stresses near

4
reattachment that is caused by either streamline curvature,

pressure gradient, wall interaction or some combination of the

above.

• The maximum reversed flow velocity is usually over 20% of the

free stream velocity.

• The boundary layer state (turbulent or not) at the step has an

important effect on the downstream flow. For fully turbulent

boundary layers, the flow is independent of the Reynolds

number. However, it is not clear how much the boundary layer

thickness affects the flow.

• increasing the free stream turbulence tends to decrease

reattachment lengths; increasing the expansion ratio tends to

increase reattachment lengths.

• Hot-wire probes tend to measure lower turbulence quantities

than laser anemometers. It was concluded that the hot-wire

anemometers under measure turbulence quantities.

• The y-position of the maximum turbulence intensity moves toward

the wall as reattachment is approached; it moves away from the

wall as reattachmert is passed.

• There still remains controversy on whether spanwise vortices

are the dominant structure in the plane mixing layer. Eaton

and Johnston concluded that this is the case. They concluded

that these vortices are the cause of the unsteady reattachment

point noted in several studies.
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• There is also controversy on what happens to the large eddies

at reattachment. Some feel these eddies are ripped apart while

others feel that some of the large eddies go upstream and some

go downstream.

Since Eaton and Johnston's review of backward facing step

experiments, there have been several new studies that have added insight

to the physics of the flow. Since the review, Driver and Seegmiller

[67], Pronchick and K1 4_ne [68], Adams [69], and Stevenson et al. [66]

have used laser anemometers to study the recirculating flow. Pronchick

and Kline also used flow visualization. Cheun et al. [70] and Moss and

Baker [71] used pulsed wire anemometers; Westphal et al. [2] used a

pulsed wall probe.

Along with using a pulsed wire an_mometer, Moss and Baker [71] also

measured the surface pressure for flow over small protuberances and a

backward facing step in a large wind tunnel. They found that "the line

of peak strssses diverges progressively outwards from the dividing

streamline with values rising to a maximum before falling away with

reattachment", which is in agreement with the summary of Eaton and

Johnston [1].

Cheun et al. [ 7u? studied the effects of the free stream turbulence

and the boundary layer thickness at the step. They reported that for

their experiments, the free stream turbulence had little effect on the

flow. This is different from the conclusion reached by Eaton and

Johnston [1] in their review. Cheun et al. also reported that the
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thinner the boundary layer at the step, the shorter the reattachment

length.

Chandrsuda and Bradshaw [72] studied the turbulent stresses and

turbulent energy balance in the reattachment region with hot-wire

anemometers. They concluded, in agreement with e-eryone else, that the

shear layer upstream of reattachment is similar to a plane mixing layer.

They said that the change of the turbulence structure near reattachment

is due to the confinement of the large eddies. They felt that an

accurate turbulence model should have a fairly sophisticated model for

the triple products, i.e., a triple product transport equation and that

the dissipation equation should include a wall effect term.

Driver and Seegmiller [67] measured the thickness of an oil film

with a laser to determine c f . They reported a sudden increase in

turbulent strew after separation which started to decrease two step

heights before reattachment. The triple cross products rapidly

disappeared at reattachment which suggested that the eddies were being

torn apart. They reported that the wall side of the shear layer was

highly turbulent. In comparing with numerical predictions, they

concluded that using an algebraic stress model improved predictions

because streamline curvature was important.

Pronchick and Kline [68] hopefully settled the dispute concerning

what happens to the eddies at reattachment. According to Pronchick and

Kline, the two earlier theories concerning the fate of the large eddies

are both correct. Pronchick and Kline concluded that some eddies are
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broken apart _it reattachment and some are either swept upstream or

downstream. Those swept downstream are the cause of the slow recovery

of the flow to typical boundary layer flow. They reported that the

unsteadiness of the reattachment point was caused by three-dimensional

eddies.

Westphal et al. [2] mainly used a newly devA oped pulsed wall probe

to study the flow in the back-flow region. They found a strong

dependence of the reattachment length on the boundary layer thickness.

The floT.s t'L: gy studied became similar when the x-coordinate was scaled

about the reattachment point. They felt that there was a laminar-like

than region of strong backflow next to the surface upstream of

reattachment 'that was not similar to attached turbulent boundary layers.

The investigation by Stevenson et al. [66] was mainly to study the

errors in velocity biasing when using laser anemometers for turbulen'

flow. Velocity bias is due to the fact that for turbulent flow, more

particles per unit time traverse the probe volume when the velocity is

high than when it is low. Velocity bias can be overcome by high uniform

seeding density and equal time velocity sampling. They found the peak

Reynolds stress at the edge of the recirculation zone. The channel was

so narrow that the measurements were not truly two-dimensional since the

side walls undoubtedly affected the flow. For this reason, the

asymmetric planar expansion measurements cannot be used as a comparison

for two-dimensional numerical predictions.

----.
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Walterick et al. [73] found relatively high free stream turbulence

in their backward facing step measurements. They concluded this was

caused by the unsteady motion of the shear layer that was noticed at the

rent,,achment point. However, it may have been due to inadequate flow

conditioning upstream of the test section [74]. The importance of free

stream turbulence is still unclear [1,70].

Lamb and McCotter [75] made surface pressure measurements over a

small step and protuberances in a large wind tunnel. They were able to

correlate the pressure in the recirculation region using reference

values at reattachment and the point of minimum pressure.

Adams [69] found that a laminar boundary layer at separation gave

shorter reattachment lengths than a turbulent boundary layer. The flow

remained Reynolds number independe*.t for the range of Reynolds numbers

studied (under 36,000 based on the step height). He, like Westphal et

al. [2], argued that the boundary layer in the recirculating region was

laminar-like. He found no bursting mechanism like that observed it

typical turbulent boundary layers.

The reversed flow studied by Simpson et al. [76] and Simpson [77]

was for flow that had separation induced by a pressure gradi- •-nt on a

flat plate but has application to rapid expansion flows. Simpson et al.

[76] reported that the eddy viscosity and mixing length models are poor

in the separation region. They claim that the normal law of the wall in

u+ and y+ coordinates is not valid in the recirculation bubble near the

wall. They say that the turbulence stress must be modelled according to
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the turbulence structure and not by the mean velocity gradients. They

state that the reason the eddy viscosity models are not good in the

reversed flow is because au/ay is based on averaging the large turbulent

fluctuations. These averages are not meaningful due to the relative

magnitudes of the ir.atantaneous velocity and the time averaged velocity.

Simpson [77] divides the flow into three layers: (1) a viscous layer

near the wall, (2) an intermediate layer that acts as an overlap or

buffer, and (3) an outer layer which is part of the large scale outer

flow. For the viscous layer near the wall., he proposes the following

equation

where N is the location of the maximum negative velocity in the bubble

and u  is the absolute value of the maximum negative velocity. Using

Eq. (1.3), he developed wall functions that can be used in place of the

law of the wall.

b. ExRerimental heat transfer	 There have been several reviews

of the heat transfer data for turbulent separated flows. Hanson and

Richardson [78] and Chilcott [79] were the earliest. Fletcher et al.

[80] reviewed a large number of papers published previous to 1974 fu:

both subsonic and supersonic separating reattaching flows for various

geotaetries. Aung and Watkins [81] and Aung [24] reviewed the turbulent

subsonic heat transfer studies in 1978 and 1983 respectively.
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Aung's review [24] emphasized the studies of recirculating flows

over steps and cavities for laminar, transitional, and turbulent flows

that were done after 1978. He noted that downstream of the step, the

pressure reaches a low value and then remains almost constant in the

axial direction for some distan;.e. He concluded that the curvature

effect of the streamlines enhances the heat transfer. The studies he

reviewed indicated that the thermal boundary idyer redeveloped to a form

that was typical of =tat plate flow quicker than the velocity field

redeveloped. 74e also pointed out the difference between laminar and

turbulent separation heat transfer. For laminar feat transfer, the heat

transfer rate in the recirculation bubble is always less that that for a

flat plate. it starts low and increases monotonically. On the other

hand, turbulent heat transfer greatly exceeds that of fully developed

flat plate flow in the recirculating region. The turbulent heat

transfer rate peaks at reatta:hment then drops to fully developed flat

plate or channel flow values. Aung states that high levels of

turbulence are generated in the Shea- layer where the turbulence

dissipation is small. The dissipation remains small until the length

scale decreases due to the flow approaching the wall. This is why the

turbulent stresses increase in the reattaching shear layer only to

decrease when reattachment is approached.

The different heal transfer studies listed by geometry are:

• Axisymmetri,; expansion: Ede et al. [82], Krall and Sparrow

[83], Zewanick and Dougall [841, Runchal [85], Back et al.

[86], 'Can,- et al. [87], Sparrow and O'Brien [88],

Of
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Amano et al. [891, and Baughn et al. 1901

• Planar symmetric: Filetti and Kays [911, Seki et al. [921, and

Seki et al. 1931

° Asymmetric rearward-facing step: Seban et al. [941, Seban [951,

Aung and Goldstein [961, Kottke ( 971, and Vogel and Eaton [741

There is some disagreement concerning the effect of Reynolds number

on the heat transfer. Most of the planar symmetric and rxisymmetric

expansion studies indicated that the maximum Nusselt number is

proportional to Re 
2/3 

[83, 84, 90, 92, 931. However, Amano et al. [891

found that for the smallest expansion ratio they studied (d/D = 0.195),

the Nusselt number was not a function of the Reynolds number and varied

according to Re0 '
5
 for the larger two expansion ratios that they

studied. Ede et al. [82], who used water as a fluid with heatin-

upstream of the expansion as well as downstream, found the variation of

the convective heat transfer coefficient substantially independent of Re

over a wide range of Reynolds numbers (3700-45,000). Filetti and Kays

[91] predicted two different reattachment lengths for their symmetric

planar expansion and so measured the Nusselt number as being

proportional to Rem , wnere the measured values of m bracketed 2/3.

Filetti and Kays [911 reported that the Nusselt number was proportional

to Re 
0.6. 

For rearward-facing step flows, Seban et al. [941 found the

maximum Nusselt number proportional to Re0 ' 8 . Sparrow and O'Brien [881

measured the heat transfer along the face of an axisymmetric expansion

and concluded that for high Reynolds numbers, the heat transfer rate



37

Most of the studies indicate that the maximum Nusselt number is at

the reattachment point [83, 93, 941. Vogel and Eaton [741 used a newly

developed pulsed wall probe that measures c  to verify that the point of

maximum heat transfer and zero shear stress correspond. However, Kan&

et al. [871 using flow visualization measured it to be upstream of

reattachment by 15% of the reattachment length. The value of the

maximum Nusselt number was higher than the fully developed Nusselt

number by a factor of 2.7 to 11, depending on the reference. The

maximum Nussult number is very geometry dependent [84].

Zemanick and Dougall [841 reported a small effect of Re on the

reattachment point except for very high and very low Reynolds numbers.

For the very high Reynolds numbers, compressibility might have had an

effect. They found that reattachment was a function of the expansion

ratio with smaller values of d/D giving longer reattachment lengths.

Baughn et al. [901, whose test was very similar to that of Zemanick and

Dougall, found that for a given expansion size, the bubble length varied

little with Re. Both the studies by Zemanick and Dougall and Baughn et

al. utilized fully developed flow at the axisymmetric expansion. Krall

and Sparrow [831 measured a reattachment length of 1.25 to 2.5 diameters

from the step. The reason why some studies showed little effect of

Reynolds number and expansion size on the distance to maximum Nusselt

number and others showed a large effect is probably due to differences

in the boundary layer thickness at the expansion.
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Several investigators found evidence of a small eddy in the cor-ier

near the step rotating in a direction opposite to that of the larger

eddy. Zemanick and Dougall [84] and Baughn et al. [90] both conclude

that since there is a local maximum in the heat transfer rate very near

the step, this indicates the existence of the small eddy. Sparrow and

O'Brien [88] said their napthalene sublimation method made the existence

of a secondary eddy obvious.

The studies point out that the heat transfer through the near wall

layer does not behave like that through a normal turbulent boundary

layer in the reattachment and redevelopment regions. Seban [95] found

large temperature gradients near the wall downstream of the step. Aung

and Goldstein [96] stated that near the step, the largest temperature

difference was in the shear layer. As the reattachment point was

reached, half of the temperature drop was across the shear layer and the

other half was across the fluid near the wall. Sogin [98] found that

for separation behind bluff bodies, most of the temperature drop was in

the thin layer near the body. Vogel and Eaton [74] studied both the

fluid dynamics and the heat transfer of flow through an asymmetric

planar expansion. They found that the near wall region is important in

determining the heat transfer rate. The sublayer dominates the heat

transfer and is the reason the Stanton number and skin-friction

coefficient are not well-correlated by tl.e Reynolds analogy. This

indicates that a constant turbulent Prandtl number is not correctly

modeling the physical behavior in the recirculating region. They found
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that the momentum thickness was much larger than the enthalpy thickness

following reattachment.

EThe reversed flow region affects the heat transfer well-beyond

reattachment. The flow measured by Filetti and Kays [91] had not

reached fully developed values after 14 step heights downstream of the

step. Aung and Goldstein [96] said that their results indicated that

the heat transfer values approached the flat plate values after 12 step

heights.

c. Numerical hydrodynamic	 Turbulent recirculating flows are

much more diffi ult to predict than laminar recirculating flows.

Turbulence models are well developed for attached boundary layers but

experimental evidence has shown that the attached boundary layer

assumptions are many times not valid in the recirculating flow. Most of

the recent numerical predictions have used a variation of the k-e model

of turbulence. Although relations for k and a can be rigorously derived

from the Navier-Stokes equations, new unknowns are introduced that

require modeling assumptions. These assumptions render the k-e

transport equations approximations at best. Much of the computational

research in turbulent recirculating flow has been carried out to improve

the k-e model for recirculating flow.

In the latter part of the 1970s, there was a sudden interest in

numerical predictions of rapid expansion flow.- Briggs et al. [99]

predicted the flow measured b Abbot and Kline [60]. Le Balleu- rnd

Mirande [100] and Kim et al. [101] u-,d viscous-inviscid interaction.
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Ha Minh and Chassaing [102] predicted flow, through an asymnetrial

expansion. Gosman et al. [103] predicted the flow through symmetric and

axisymmetric expansions using primitive variables. Oliver [104] and

Mehta [105] used vorticity-stream function variables. Taylor et al.

[47] used a finite element method to solve the primitive variable form

of the Navier-Stokes equations for flow over a backstep. He used a k-

equation turbulence model with an empirical mixing length formula.

Atkins et al. [1061 predicted the flow through an asymmetric channel

expansion. The above numerical predictiGns are discussed in more detail

in Kwon and Pletcher [391.

Kwon and Pletcher 1391 used viscous-inviscid interaction to predict

the flow measured by Kim et al. [107]. They solved Laplace's equation

in the inviscid region and the boundary layer equations in the viscous

region. The FLARE approximation was used to march the boundary-layer

equations through regions of reversed flow. They used the k-equation

and an ODE for the length scale upstream of the step, and the k-equation

and an algebraic equation for the length scale downstream of the step.

Lokrou and Shen [108] solved a fora of the houndary-layer equations

by using a normalization of the velocity profiler to make them invariant

in the streamwise direction. This reduced the PDFs to a system of ODES.

However, the theory fails near reattachment due tc flow curvature and

instability.

Sindir [109, 110] used four different turbulence models to predict

the flow through asymmetric expansions with parallel walls and
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nonparallel walls respectively. Two of the turbulence models were the

k-e model and an algebraic stress model (which still requires solutions

of the k and a equations). The other two were obtained by modifying the

production term in the e-equation. He found the modified algebraic

stress model superior in the reversed flow region. However, it

predicted too slow a recovery after reattachment. He found that t'.ie

best approach was to use the modified algebraic stress model in the

reversed flow region and the nonmodified algebraic stress model after

reattachment. The "best" model is thus regionally dependent. For the

near wall region, he used the wall functions of Chieng and Launder

[1111.

Hackman et al. [321 predicted the flow through an asymmetric

expansion with two types of differencing schemes: (1) an upstream

weighted difference scheme (UWDS) and (2) a skew hybrid upstream

differencing scheme (SHUDS) for both Cartesian and curvilinear meshes.

They solved the Navier-Stokes equations with the standard k-e turbulence

model with law-of-the-wall type wall functions near the wall. They

found that the UWDS predicted shorter reattachment lengths, gave

generally inferior predictions, and was much more sensitive to the mesh

size. SHUDS was less grid dependent and gave better overall correlation

with measurements. Hackman et al. thought that some of the poor

predictions for turbulent flows was a result of the numerical scheme and

not an inadequate turbulence model. Their computations over predicted

the turbulent stress in the shear layer. This may be the reason for the
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general under prediction of reattachment length by k -E turbulence

models. Their model predicted a sharper return to low kinetic energy in

the inviscid core than was measured. This effect is a common ailment of

the k -E turbulence model for this type of flow.

Srinivas and Fletcher [112] used a variation of an algebraic
1

turbulence model to predict flow over the trailing edge of a flat plate

f and backward facing step. They used the finite element method to solve

the compressible Navier-Stokes equations by a pseudo transient time

marching technique. Since their wall pressure and maximum shear stress

predictions were in good agreement with measurements, they argued that

the algebraic eddy viscosity models predict most flow features well for

t
wake and separated flow.

Walterick et al. [73] predicted the flow over a backstep

(asymmetric planar expansion) by solving the Navier-Stakes equations

with a k -E turbulence model with the pressure fluctuation term of the k-

equation modeled in a nonstandard way. Their method predicted

reattachment well. Thee predictions using plug flow at the inlet gave
G

shorter reattachment lengths than for the inlet condition with a

boundary layer.

d. Numerical heat transfer	 Chieng and Launder [111] used a

modification of the TEACH-2E code to predict the flow through

axisymmetric expansions. They tried the standard high-Reynolds-number

k -E equation turbulence model with much attention given to a new set of

wall functions, and a low-Reynolds-number k -E model. The low-Reynolds-
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number model converged very slowly and predicted heat transfer rates 5

times that of the measucen-ents of Zemanick and Dougall [84]. The high-

Reynolds-number turbulencQ model gave better predictions. However, in a

later publication [1131 it was reported that the original code had

errors in it. When these errors were corrected, the predicted heat

transfer was lowered by about 25%. The model was "fixed" by defining a

variable turbulent Reynolds number related to the laminar sublayer

thickness rather than assuming this turbulent Reynolds number to be a

constant as in the first paper. This shows a common ingredient of

turbulence modeling. Some models are so complex and contain so many

constants and ad hoc functions, that these can be altered until the

numerical predictions agree with experimental measurements. Even coding

errors can apparently be overcome with appropriate turbulence modeling.

Kang and Suzuki [114] computed the flow for a high speed jet in a

pipe using the standard k-e turbulence model with law-of-the-wall type

wall functions with constant values for cu and Pr 
t* 

They had to alter

the enthalpy law of the wall to make their heat transfer rate

predictions agree with experiments.

Watkins and Gooray [1151 and Gooray et al. [116] predicted the flow

through asymmetric planar expansions and pipe expansions using a k-e

turbulence model. The model was altered to include the effects of

pressure-strain interactions and streamline curvature by using

functional relations for cu in the viscosity definition and Pr 
t* 

The

expressions for cu and Pr  were derived by using algebraic stress



44

relations. They used a two pass procedure. The first pass was with a

high-Reynolds-number k-e with wall functions to find the point of

reattachment. The second pass consisted of the high-Reynolds-number k-e

turbulence model upstream of reattachment and the low-keinolds-number

k-e equations of Jones and Launder [117] downstream of reattachment.

The correlation between their predictions and experiments was very good.

However, their expression for Pr  for the Cartesian grid can be shown to

be between 0.2 and 0.3 for fully developed equilibrium flow in a channel

rather than the well accepted value of 0.9.

Chieng [118] used a low-Reynolds-number k-e turbulence model to

predict the heat transfer in abrupt pipe expansions. Chieng's

predictions do not agree with the measurements of Zemanick and Dougall

[84].

Amano [119] and Amano et al. [89] el.panded on the two equation wall

function method of Chien& and Launder [1111. Amano used a three zone

wall function and did not require local Equilibrium between production

and dissipation in the e-equation. The predictions compare well with

those of Zemanick and Dougall [84] for the d/D=0.54 expansion and high

Reynolds number but do not compare as well for the d/D=0.43 expansion.

The computations indicated that the maximum Stanton number was before

reattachment and that the dependency of the level of heat transfer on Re

is slightly less tha_i that of the experimental data. Tn Amano et al.

[89], the computer predictions were compared with a concurrent set of

experimental measurements.
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C. Scope and Contributions of the Present Study

The purpose of this stud) is to determine the degree to which the

boundary-layer equations can be used to model the flow through a region

of flow reversal caused by an abrupt channel expansion. Since the

previous studies that used the boundary-layer equations [39, 27, 421

provided only isolated comparisons with experiments and Navier-Stokes

su.:utions, the limitations of the boundary-layer equations have not been

previously defined. The purpose of the present work is to more clearly

define the limitations of such solutions for both two-dimensional and

axisymmetric expansion flows with respect to Reynolds number and

expansion ratio. Determining the range of applicability of the

boundary-layer equations is of practical importance since the effort

required to solve the boundary-layer equations is an order of magnitude

less than that required for the full Navier-Stokes equations.

Furthermore, the constant property laminar boundary-layer equations are

independent of Reynolds number. Therefore, the boundary-layer equations

need to be solved only once for any given expansion ratio and the

solution can then be applied through proper scaling for any channel

Reynolds number.

Figure 2 shows the geometry of the flows considered. Since both

axisymmetric and symmetric planar expansions occur in applications, both

types of geometry were considered. This allowed comparison with the

results of as many other studies as possible. Only flows that were

fully developed at the step were included in this work, so viscous-
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Figure 2. Symmetric expansion geometry

inviscie: interaction was not applicable. Compressibility effects were

negligible in the flow regimes considered so compressibility effects

could be neglected. However, for "lows with heat transfer, the

variation of fluid properties with temperature was taken into account.

Turbulence modeling of rapid expansion flows, especially with heat

transfer, is a major challenge. None of the conventional algebraic or

two-equation models work satisfactorily for the rapid expansion

geometry. A number of model combinations were evaluated in this study.

Turbulent flows were predicted by adding a turbulent viscosity to the

molecular viscosity as was first proposed by Boussinesq [120). The

effect of varicus improvements and modifications of the k-e turbulence



model was considered. Some of the modifications tried included extra

terms in the k and a equations, algebraic stress models, and variable

turbulent Prandtl numbers. Special attention was given to different,

methods of modeling the near-wall turbulence. The hydrodynamic and heat

transfer predictions of the boundary-layer formulation were compared

with other numerical results and with experimental measurements.

The contributions of the present study are as follows.

1. The limiting Reynolds number at which the laminar prediction

begins to be poor is defined.

2. The circumstances under which global iteration improves

predictions are found.

3. Those flow parameters well predicted by the boundary-layer

formulation for laminar and turbulent flow are defined.

4. Near-wall turbulence modeling was considered that did not

assume a special form for velocity or temperature, i.e., the

momentum, continuity, and energy equations were solved

throughout the flow field including the near-wall region.

5. A modification of the turbulent viscosity model of Johnson

and King [121] was developed that gives improved results over

the law-of-the-wall viscc icy model in the separated flow.

6. This is the first study using the boundary-layer equations to

predict turbulent flow with heat transfer through rapid

expansions.

7. An inexpensive numerical procedure is developed that has

practical applications in predicting the flow and heat

transfer in devices having large regions of separated flow.
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II. GOVERNING EQUATIONS

In this chapter, the theoretical background needed to solve the

problem of flow and heat transfer in a sudden expansion is developed.

The relevant partial-differential equations will be developed with their

associated boundary and initial conditions. The compressible, variable

property, turbulent boundary-layer equations will be developed first.

These equations are the most general needed in this thesis. Particular

simplifications of the compressible turbulent boundary-layer equations

will be made as needed. It is a simple matter to make the necessary

simplifications of the general turbulent boundary-layer equations to

obtain, for instance, the laminar incompressible equations. A special

form of the laminar incompressible equations cart then developed that is

independent of the Reynolds number. The turbulence models used will

then be discussed. Finally, the relevant engineering parameters are

presented.

A. Variable Property Turbulent Boundary-Layer Equations

The continuity equation is by far the easiest equation to derive.

For this reason, this equation will be developed in more detail than the

momentum or energy equations in order to show the methodology and

introduce the necessary background information.
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1. Conservation of mass

A mass balance of the i7nid passing through a fixed control volume

produces the fo:lowing equation

8t + V
• ( PV) = 0
	

(2.1)

Equation (2.1) is valid for any norreacting continuum of fluid,

including fluid with turbul--nce. However, to discretize the equation

fir computer simulation of the turbulent motion, a grid fine enough to

capture the very small length scales of the turbulent motion must be

r_sed. For a practical problem, this would require the solution of a

number of algebraic equations that is beyond the capabilities of a

pres-it day computer. Since turbulent motion is characterized as random

motion in which statistical averages are meaningful [122), time averaged

equations can be used in place of the instantaneous set. To average the

equations, the instantaneous velocity of the fl:tid 	 certain

properties) is considered as the sum of an averaged value and its

fluctuating value [1231.

f = f + f'	 (2.2)

Y.are, f represents a velocity component or property of the fluid and is

defined as

f :_ f t+At
f(t)dt	 (2.3)

t
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Note that by definition f' = 0.0, and f g = 0.0 where g is some averag:-d

variable. The time of averaging At is long enough to average out the

fluctuations due to turbulence but not long enough to influence the

variation of the mean flow with time. The density and velocity vector

are written in the following form

P = P + P'	 (2.4)

V = V + V'	 (2.5)

Equations (2.4) and (2.5) are substituted into (2.1) and the equation is

time averaged. After canceling the terms that are zero, a time averaged

equation results:

V • (PV + P v	0	 (2.6)

It is now convenient to introduce the following type of averaging that

is often used for gas mixtures [123]

= f + f"	 (2.7)

where

f = Pp	 (2.8)

It can be shown that
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Using (2.9) in (2.6) and making the assumption of steady flow, Eq. (2.6)

becomes

D • (pV) = 0	 (2.10)

Under the boundary-assumptions [123],

u = u	 (2.11)

Equation (2.10) is now written in expanded form for two dimensional

planar and axisymmetric flow with u substituted for U.

ax	 3Ym Pd) + ay ( rmFV) = 0 (2-12)

Equation (2.12) is valid for compressible flow for both two-dimensional

Cartesian and axisymmetric geometries. When the geometry is Cartesian,

m is taken as zero; Mahe: axisymmetric, m is taken as one.

It is convenient (but not essential [39]) when using the present

scheme to employ the stream function, *, in place of v as a variable.

This is done merely to make Lhe bquations more suitable for external

flows with separation. .'hen using the boundary-layer equations for

external flows with separation, the displacement thickness is specified

as a boundary condition to overcome the singularity at separation. If

u-v variables are used, the displacement thickness must be obtained by

integration of the velocity profile; if u-fir variables are used it is

obtained directly without integration. Au expression for the stream

function is

_ - rmpv'	 (2.13)
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Substituting Eq. (2.13) into the continuity Eq. (2.12) gives a new form

of the continuity equation

Note that the definition of # for compressible flow corresponds to a

mass flow rate rather than a volumetric flow rate as for incompressible

flows.

Equation (2.12) is the same as the continuity equation for laminar

flow neglecting the tilda and bar notation above the averaged variables.

2. Conservation of momentum

The momentum equation is merely a statement of Newton's second law

for fluid rlowing through a nonaccelerating control volume. In vector

form for compressible flows, it is [124)

pDt = - Vp - [ V • T) + pg
	

(2.15)

Note that T is the stress tensor and g is the gravity vector. To obtain

the equation valid for compressible turbulent boundary layers, a

`

	

	 derivation similar to that followed for the continuity equation must be

followed. However, for the momentum and energy equations this is so

lengthy that the steps will only be outlined here. (See Cebeci and

Smith [123) and Anderson et al. [4) for the details of the derivation.)

The main steps required to obtain the compressible turbulent

F

boundary-layer momentum equations are as follows.
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(1) Substitute the sum of the averaged and fluctuating value for each of

the instantaneous velocity components, density, and pressure.

(2) Time average the equations and cancel the terms that are zero due to

the time averaging.

(3) Substitute the continuity equation into the momentum equation.

(4) Neglect the body forces and the mean or averaged unsteady terms.

(5) Make the boundary-layer assumptions and cancel the higher order

terms by doing an order of magnitude analysis. The main assumptions

made are:

ay >> 	
u>>v u='u

For subsonic flow, the x-momentum boundary-layer equation is then

PuBx + Pv —	 dx + 1m 8y r
m (UaY - Au'v')	 (2.16)

r

The y-momentum equation reduces to

The pressure gradient in the y-direction is assumed to be small compared

to the one in the x-direction, so the y-momentum equation can be

neglected [4].

Equation (2.16), neglecting the bars indicating a time averaged

quantity and the Reynolds stress term, pu'v', is the s gme as the x-

momentum equation governing laminar boundary-layer flow. The extra term

(-pu'v') arises due to the convection of turbulence. It is grouped with
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the laminar-like viscous term becasse u':' can be thought of as

increasing the stress through exihange of momentum in the fluid. Due to

the -pu'v' term, there are presently more unknowns than equations. The

extra equations needed to solve the systei are obtained through

turbulence modeling.

At this point, it is convenient to introduce a turbulent viscosity

pt defined as

au, ,
lit ay= - pu v

S

(2.18)

as u as first suggested by Boussinesq in 1877 [122]. The Boussinesq

assumption is actually the first turbulent modeling assumption made.

Further turbulence modeling assumptions and the evaluation of the

turbulent viscosity is discussed in Section C of this chapter. Of

course if the flow being predicted is laminar, all turbulenot fluctuation

v^locities are zero, so 
p  

is also zero.

At this point, it is convenient to drop the bars and tildas in Eqs.

(2.12) and (2.16). By substituting Eq. (2.18) into Eq. (2.16), the

momentum equation becomes

PULU
 
+ 

Pvay	 d +lm ay rm(u+ut )au	
(2.19)

r

The unbarred variables are recognized to represent time averaged

quantities in turbulent flow.

Equation (2.19) is a parabolic equation in x. It is normally

solved by marching from a starting position to the desired location in
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the x-direction. As the solution is marched down the channel for u > 0,

the solution should only be influenced by the domain behind the x-

position that has been reached by marching. What is beyond the point

reached by marching in the x-direction (d,-*;nstream) should not influencer"' •

Vie solution of a truly parabolic equation, or the formulation becomes

unstable. However, with flow reversal, flow moving in the negative x-

direction will influence the solution from downstream. This downstream

influence causes the streamwise marching solution of the parabolic

equations to be unstable unless special measures are taken. The problem

lies in the x-convective term uau/ax since it is the term that

contributes the downstream influence.

Reyhner and Flugge-Lutz [53] proposed that the convective term in

the x-direction be replaced by clulau/ax where c is a small positive

constant or zero. This approximation is referred to as the FLARE

approximation. For rapid expansions, the velocity in the reversed flow

is about 10% to 20% that of the main flow stream, so this assumption

seems valid. For the momentum and energy equations, c will be taken as

one if u is positive; c will be taken as zero if u is negative. Thus,

any downstream influence to the parabolic e quations is cancelled and the

formulation is stable. Governing partial-differential equations for

variables associated with turbulence will be developed in following

sections that have an x-convective term similar to Eq. (2.19). In

solving these turbulence modeling equations, taking c as 0.0 when u was

negative caused numerical instabilities near the wall associated with
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round-off errors in the computer. For stability reasons, c was set to

1.0 in the turbulence modeling equations when using the FLARE

approximation.

Repetitive global iteration through the flow field can be used in

place of the FLARE approximation to provide stability to the boundary-

layer equation marching proced» re. The x-convective term can be

approximated with a local-upwind finite-difference as opposed to

disregarding or approximating this term as is done with the FLARE

approximation.

We can also use the previously introduced stream function to

eliminate v from Eq. (2.19). After making the FLARE approximation and

using Eq. (2.13) to eliminate v from Eq. (2.32a), the resulting x-

momentum equation valid for turbulent compressible flow is

cpuau - 1 4 au = -dam + 1 a r (u+u )au 	 (2.20)
ax 

rm 
ax ay	 dx rm ay	 t ay

Equation (2.20) is singular at the centerline for axisymmetric

geometries. When r = 0, the y-convective term can be removed from Eq.

(2.20) since v is zero and no convection in the y direction will occur.

1'Hospital's rule can then be used to find the valid representation of

the diffusion term as r approaches zero. The momentum equation valid

for axisymmetric flow with r = 0 is

cpuax = 
-ax + 2ay (u+ut ) ay	 (2.21)
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3. Conservition of ener

Me ene ,:ay equation is simply a statement of the first law of

thermodynamics for fluid passing through a stationary control volume.

For flows -ihich are not isothermal, the energy equation must be solved

along with the continuity and momentum equations. There are two main

reasons why the energy equation must be introduced: (1) heat transfer

quantities or temperature fields are desired or (2) the change of the

fluid properties with temperature will affect the hydrodynamic

predictions.

The energy equation can be written in terms of the total enthalpy,

H.

at	 at+ 0• ( pHV ) = 2 + 0• {[T•Vj - q}	 (2.22)

H is defined as

H = h + 
1
2uiui	 (2.23)

The stress tensor, i, depends on the coordinate system (see Anderson et

al. [4] for the different forms). The heat flux vector, q, can be

written in indic ial form as

q i
	- kaz.	

(2.24)
1

The body forces have bean. neglected.

Cebeci and Smith [123] show the details of obtaining the form of

the energy equation used in this thesis.. An outline of the steps
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required to obtain the desired form of the energy equation follows.

Equation (2.22) is time averaged in the same way as the continuity and

momentum equations discussed in the previous sections. The boundary-

layer assumptions are then used to eliminate the higher order terms

through an order of magnitude analysis. Under boundary-layer

assumptions, H = H. For steady, subsonic, compressible flow, the energy

equation becomes

puax + pvay lm ayl rm1Pr ay pc
pv'T' + uI Pr

)uay pu^v^N
r

(2.25)

Equation (2.25) is the same as the laminar energy equation except

for the two extra terms involving the fluctuating turbulent quantities,

-PC pT V and -pu'v'. The heat flux caused by the TV term is assumed

to be proportional to 8T/ay. A turbulent Prandtl number, Pr t , is

defined by the following equation

-PCpv'T' = C-P
u 
t ay	 (2.26)
t

Pr  must be determined by turbulence modeling. When Eqs. (2.18),

(2.26), and (2.13) are substituted into Eq. (2.25) and after making the

FLARE approximation in the same way as was done for the momentum

equation, the turbulent compressible boundary-layer energy equation

becomes

ax _ 1 ate, ax
cpu x
	

r  
ax ay

V

rmtay rm l[Fr + Prt ,ay + Ip(1-Pr) + 
Nt(1-Prt )

l uay),	 (2.27)
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The bars have been dropped from Eq. (2.27) and all the flow variables

are understood to be averaged values.

Equation (2.27) is singular when r = 0 for axisymmetric geometries.

By removing the y-convective term and using 1'Hospital's rule, the

singularity can be removed. Equation (2.27) becomes

Puax — 2a Pr + Prt lay
 + ^u(1-Pr ) + ut(1-Prt) ^uaY^	

(2.28)

Equation (2.28) is the governing momentum equation when r = 0 for

axisymmetric geometries.

4. Boundary and initial conditions

a. Boundary conditions	 Two boundary conditions for both u and

H were used, one at y = 0 and one at the centerline. One boundary

condition at the wall was specified for *. In addition to the wall

boundary condition for P, another restriction the solution must satisfy

is the channel mass flow constraint. The mass flow constraint is merely

a mass balance across the entire channel cross section. The channel

mass flow constraint is not actually used as a boundary condition but

will be necessary later in order to solve for dp/dx.

The no-slip condition at the wall and the symmetry condition at the

channel centerline give the boundary conditions for the velocity as

(2.29)u(x,0) = 0
(x'y	

= 0
ayceaterlin.e)

The stream function boundary condition and mass flow constraint for

the channel cross section are respectively
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*(x,0) = 0	 O(x,Y	 ) = f D12 Prmu (O , y ) dy	 (2.30)
centerline	 0

The boundary condition for H at the centerline is the symmetry

condition

ay	 centerline) — 0
	

(2.31)

Two different H boundary conditions are possible at the wall depending

on whether the temperature or the heat transfer r:^.:e is specified. For

specified wall temperature, Tw (x), the boundary condition is

H(x,0) = cpTw (x)
	

(2.3 ^.a)

For specified heat flux, qw (x), the boundary condition is

-kay(H- !!	= cpgw (x)	 (2.321)

	b. Initial conditions	 The initial conditions depend on whether

the flow is turbulent or laminar. Above the lip of the step (y > h), a

fully developed turbulent or fully developed laminar inlet profile was

used as the inlet condition for u. .Hong the face of the step, the

logical condition due to the no slip requirement is

c

u(O,y) = 0,	 0 <_ y < h	 (2.33)

}
Howe,	 Acrivos and Schrader (27) argue that this is not correct for

the boundary-layer equation set. They say that a nonzero velocity

fR	
should be used to take into account the effect of the fluid returning

from downstream in the recirculating region. Acrivos and Schrader used

the following initial condition on the face of the step.



aH
ax ( O ,Y) = 0,	 0 S y <_ h (2.36a)

61

u(O,y) = uc (y),	 0 S y S h/2

u (O ,Y) _ - uc (h-y),	 h/2 < y S h

(2.34)

The fluid velocity was taken as zero for this Etudy except for in a few

cases used to determine *_hi a-'eat of the nonzero velocity on the face

of the step.

Once the initial velocity is decided upon, the f:,llowing integral

gives

0( 0 ,Y) = f yprmu ( 0 ,t) dt 	 (2.35)
0

where t is a dummy variable of ii:^egration.

Since the experimental studies compared w'-4 th used an insulated step

face and a fully developed temperature profile, the inlet condition for

H is

H(O,y) = cpT(O,y) + 2u 2 (O,y),	 h < y <_ D/2	 (2.36b)

For a fully developed inlet profile and an unheated entry length,

T ( O ,Y) = Tb(0)	 (2.3'x)

Where Tb (x) is the mean or bulk temperature.

5. Equation of state

In order to solve the above conservat 4 on equations, p, u, k, and Pr

must be specified. This is done by introducing an equation of .a,e.
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In general, any property of the fluid, f, is a function of temperature

and pressure, i.e.,

f = f(T,P)
	

(2.38)

Since one of the main purposes of this study is to compare with

experimental measurements, the fluids of interest are water and air at

moderate temperatures and nearly atmospheric pressures. For these

restrictions, all the properties of water are very weak functions of

pressure [125]. The density of water for all practical purposes is

constant. For air near atmospheric pressure, u, k, and Pr are all very

weak functions of pressure. For air, the density is found from the

ideal gas equation

P	 RT
	 (2.39)

where R is the gas constant. Thus, all properties except the density

for air vary only with temperature and can be expressed as

f = f (T)
	

(2.40)

The particular functions used to approximate the fluid properties as a

function of temperature for air and water are given in Appendix A.

B. Laminar Constant Property Nondimensionalized Equations

For laminar constant property flews, the boundary-layer equations

can be nondimensionalized such that they are independent of the Reynolds
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number. The aethcd of nondimensionalizing has been previously used for

developing flow in _hannels. it reduces the hydrodynamic solution to a

function of the size of the expansion, the inlet conditions, and the

boundary conditions.

For constant density, p can be removed from the partial-

differential operators of Eq. (2.12) and canceled from the equation. A

different stream function must be defined for the incompressii ; le case

than was used for the compressible case in the previous section. The

stream function for incompressible flow is defined as

V = - ax (* )	
(2.41)

The constant property continuity equation can be written as

U = a- (*cp)	 (2.42)

To .ondimensionalize the conservation equations, the following

dimensionless variabla;, are introduced:

U = u , X= X- , Y = Y 	 =Hs
i	

;2.43a)
u.	 dRe	 d	 u
1 

Y= 
GP	

R=r ^_- HZ
4p	 (2.43b)

d 1+M .	 d	 PU: dx1
1

Again, m is zerc if the geometry is Iwo-dimensional; m is one if the

geometry Is axisymmetric. The Reynolds number is based on u  ani d.

Using Eq. (2.43) in Eq. (2.42) gives the dimensioniess continuity

equation

U = R  3Y	
(2.4
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—(x, l +0= 0 (2.49)
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Substituting Eq. (2.43) into ti :C laminar .form of Eq. (2.16) gives the

dimensionless x-momentum equation

aU _ 1 a? au _	 1 a m aU
cUax 

Rm 
ax ay — Q + R  aY (R ay)	 (2.45)

Equations (2.43) with the laminar ene -V equation (Eq. 2.27) gives -ne

dimensionless energy equation

an _ 1 8T an __ 1 3 j m(1 aq	 _ 1	 aL I	 )
cUax R  ax ay 

R% 
aY R Pr 3Y + (1 Pr)rl?'-	 (2.46

Note that the FLARE approxima •_ion has been made i.	 way as done

for the dimensional equations in the previous sect, ..

The boundary conditions "or U arc

u(x,o) = 0 , a^(x,l + a) = 0
	

(2.47)

The stream function is set to zero at the caannel wall (Y(X,0) = 0).

The stream function at the centerline is determined from the inlet

pro.	 at the step. For a parabolic, fully developed inlet

Y(X,1 + d) = 2,	 planar expansion	 (2.48a)

Y(X,1 + a) = 8,	 axisymmetric expansion 	 (2.48h)

The boundary .;ondition for n at the cente r line is the symmetry

condition

. gyp►
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- s

There are two possible boundary conditions for q at the wall depending

on if the heat flux or the wall temperature is specified. If the wall

temperature is specified, the condition is

AMO) = U7 	 MO)	 (2.50a)

If the heat flux at the wall is specified, the condition is

aq p	 :`
aY (X,O)	 ^r + 8Y 2 ;y--0	

(2.SOb)

where Qw is a dimensionless wall heat flux given by

Pe qw
Q4 =	 -y	 (2.51)

Pui

Pe is the Peclet number (fie = Re x Pr).

A parabolic initial condition for U at the inlet vas specz-:Id. U

was taken as zero along the face of the step. The initial condition for

the stream funct` .on is obtained by integrating U from the wall to the

centerline as follows

7(O,Y) = I YRmU(0,E)g	 (2.52)
0

The initial condition for the nondimensional total enthalpy is

c T(O,Y)
140,Y) = -p u = 	 + 2 =( 0,°)	 (2.53)

i



In a previous section, Eq. (2.18) defined a turbulent viscosity, pt

according to the Boussinesq approximation. Equation (2.26) defined a 	 -

turbulent Prandtl number, Pr t . In order to predict turbulent flow, ut

and Pr  must be approximated by turbulence modeling. The modeling used

in this work is discussed in this section.

1. Equilibrium turbulence equations

Turbulent boundary - layer flow with no separation can be divided

into two main regions: ( 1) the inner region which is not highly

influenced by the pressure gradient, and (2) the outer region which is

highly affected by the pressure graelent. The inrs ^r region can be

further divided into three parts: a laminar sublayer, a buffer region,

and a fully turbulent region. In the laminar sublayer, the molecular

viscosity dominates; in the fully turbulent region, the Reynolds

stresses dominate. Both the stresses due to molecular viscosity and

Reynolds stresses are important in the buffer region.

Dimensional analysis shows that a nondimensional velocity, u and

a nondimensional distance from the wall, y+ , are important in describing

the flow in the inner region. They are defined as

+	 uTYP	 +	 u	 (2.5'4)
y = u , u = u

where u  is a turbulent velocity scale ( Tw/ P ) 1/2 and T  is the shear

stress at the wall. When y+ and u+ are used to plot turbulent boundary-

I
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layer velocity profiles with no separation, the profiles collapse into

one curve in the inner region. Experiments have shown that the time

averaged thicknesses of these three layers for smooth walls ..re

approximately

laminar sublayer 	 0 < y+ < 5

buffer layer	 5 < y+ < 30

fuily turbulent layer 30 < y+

The molecular viscosity of gases can be calculated by

F^

pt = p(length scale)(velocity scale)
	

(2.55)

Prandtl adopted this idea for turbulent g low and proposed a length

scale, t, for the inner region that is proportional to tae distance from

the wall. Van Driest later modified A by multiplying it by an

experimentally determined damping function D [1261. The modified length

scale becomes

A = KDy	 (2.56)

where ; = 0.41. The van Driest damping function, D, is givan by

D = 1 - exp(-y+/A+)	 (2.57)

where AT is usually taken as 25 or 26. Prandtl proposed a velocity

scale as

(velocity scale) = tlauj	 (2.58)
y

The turbulent viscosity for the inner region can then be expressed as
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ut = Pt2 1ayY

Equation (2.59) is known as the Prandtl mixing length model for

turbulent viscosity. With ut specified, uhe governing equations can be

integrated for the inner region.

By making the Couette flow assumption (au/ax is very small and can

be neglected) the momentum equation is reduced to an ODE [127]. This

assumption is valid near the wall. By neglecting the turbulent

viscosity, this ODE can be integrated in the laminar sublayer cf the

inner region to show that

U = y
	

(2.60)

This is equivalent to saying that the shear stress is constant in the

near-wall region. Similarly, by neglecting the laminar viscosity in the

fully turbulent part of the inner region and using Eq. (2.59), this ODE

can be integrated to show that

u+ = 1In(y+) + B
	

(2.61)

where B is a constant near 5.0. The region for which Eq. (2.61) is

valid is some es referred to as the logarithmic layer. Equation

(2.61) is often called the "law of the wall". The velocity in the

buffer region, u+ = f(y+) must be obtaineu experimentally.

There have been attempts to modify Eq. (2.56) to make the mixing

length more applicable for reversed flow. Reeves [123] and

McD Galbraith and Head [1291 recommend that Eq. (2.56) be multiplied by

( ,r 	 The mixing length for the inner region then becomes
r
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T

= K 
Tmax Dy	

(2.62)
w

Carter and Wornom [1301 and Pletcher [131) recommend that the van Driest

damping function, D, by based -n the maximum shear stress in the

boundary layer instead of Lhe wall shear stress. The modified van

Driest damping factor is then

D = 1 - exp[-(Pul8ylmax)1/2y/A+1

	
(2.63)

For an attached boundary layer, Eqs. (2.63) and (2.63) reduce to Eqs.

F-	 (2.56) and (2.57).

The value of 25 for A+ corresponds to a boundary layer with a zero

pressure gradient. Kays and Moffat [132] proposed an empirically '-ased

function for A+ valid for nonzero pressure gradients as

A+ = 25.0/(ap+ + 1)	 (2.64)

where p+ is given by

+ kj4pLdxj
p = P 1/2 T 3/2

w

and

a = 30.2, p } < G

a = ?0.6, p+ ? 0

Johnson and King [121; expressed the turbul;^nt viscosity according

to Eq. (2.55) but used the square root of the maximum Reynolds stress,

(u'v'm)1/2, as the turbulent velocity scale. They used D1 5K y as the

length scale where 
D15 

is the van Driest damping function based cn an A+

value of 15 instead of the usual 25. The expression for 
V  

then becomes



i
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k	 Ut — P D 15 K
y(-u'v' m )

;/2
	-"-(2.65)

Equation (2.65) can be used in place of Eq. (2.59) for the turbulent - -

viscosity expression in the inner region.

For the outer region, A is often taken as proportional to the

boundary layer thickness with Eq. (2.58) used as the v ..)city scale [4).

Another common method is to use a constant times the i^splacement

thickness as the length scale anti the velocity at the outer edge of the

boundary layer as the velocity scale. The expression for the turbulent

viscosity in the outer region tr.en becomes

Ut = P(K6 )( u e )
	

(2.66)

where K is a constant (= 0.016), 6 is the displacement thickness as

evaluated for incompressible flow (145], and u  is the velocity at the

edge of the boundary layer.

Equations (2.59), (2.65), and (2.66) describe zero equation

turbulence models. One wav of classifying turbulence models is to add

the nimber of PDEs used in the turbulence model. Each PDE counts as one

equation; each ODE counts as one-half an equation; each algebraic

equation counts as zero equations.

Zero equation turbulence models are not able to take into account

tle e:fects of diffusion or convection of turbulence length scales or

velocity scales. They only balance the production and dissipation of

turbulence quantities [3). To account for convection and diffusion,

PDEs are required to introduce directional rates of change. When the
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ut	 pcu E (2.69)
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T	 _	 dissipa'.%on of turbulence balances the production, the turbulence is

-said to 5e in local equilibrium. Therefore, zero or algebraic

turbulence models are valid for regions in local equilibrium. In the

shear layer for flow over a step, turbulent kinetic energy production

exceeds dissipation [24]. This turbulent kinetic energy must be

C

corx:-ected and diffused away. This indicates that in the region affected

by the shear layer, a zero equation model is inadequate a_.d models

involving one or more PDEs 3r ODEs must be used.

2. kk=E equations

In this section, the two-equation turbulence rr.-)dels investigated in

this work are described. For the k -E model, turbulent length and

velocity scales for use in Eq. (2.5`) are described b y PDEs [3]. The

velocity scale used is k l/2 , where k is called the turbulent kinetic

energy and is defined as

k = 2 
(u.2 + v

12 + w' 2 )	 (2.67)

The length scale is defined as

L = cr £ 3/2
	

(2.68)

wh-re c  is a constant listed in Table 2 and a is the dissipation rate

of k. The expression for the turbulent viscosity is given by

where cu is usually 0.09.
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Table 2. Turbulent Modeling Constants

Constant Value Reference

cu 0.09 [1331

r"D
0.164 [391

c l 1.35 [135]

c2 1.8 [135]

c3 0.0115 [135]

c4 0.5 [1351

Constant Value Reference

a 2.2 [134]

T 0.55 [134]

c9l 3.0 [115]

c82 0.33 [1151

c91w
0.5 [115]

cw 2.44 [115]

At this poi;.., the unknown ut has been expressed in terms of two

other unknowns, k and e. Transport PDEs can be derived for both k and e

from the Navier-Stokes equations, but these PDEs involve other unknowns.

The formulation must be "closed" by modeling assumptions to provide the

necessary equations for the additional unknown:. After these modeling

assumptions, the k and a equations can be written as

cPlul ax	 r aX ay	 r 
a
y [rrm Y] + S0	(2.70)

where 0 is either k or e, depending on the equation desired. S 0 is a

source term.

Two different sets of source ter- and r s were used in this study:

a high Reynolds number form used by Launder and Spalding [1331, and a

low Reynolds number form developed by Chien [135]. Chien added extra



terms to TO and S0 to make

equations used by Launder and Spalding applicable in regions of low

turbulent Reynolds number flow near the wall.

In referring to turbulence models, the Reynolds number of

turbulence or turbulent Reynolds number is not the same as the Reynoi4_

number based on the the channel width or pipe diameter and the average

inlet velocity. The dividing line between the iow and high turbulent

Reynolds number regions is not universally or clearly defined for all

types of flow. There are several ways to define the turbulent Reynolds

number depending on the velocity scale and the length scale used. If y

is the length scale and u  the velocity scale, the turbulent Reynolds

number is merely y+ . For this definition, the high turbulent Reynolds

number flow for an attached boundary layer would be that part of the

flow for which y+ > 30. The low Reynolds number flow would correspond

to y+ < 30. Hereafter, the high and low turbulent Reynolds number k-E

models will be referred to as thu high-Reynolds-number k- • E model and the

low-Reynolds-number k-E model respectively, realizing that the Reynolds

number referred to in these cases is the Reynolds number of turbulence.

The expressions for 1& 0 and S0 for the k and E equations for both

the high and low Reynolds number cases are given in Table 3. Those

terms within the dotted vertical lines are those addea by Chian in his

low Reynolds number model. Chien ilso found it necessary to modify the

turbulent viscosity relation by multiplying Eq. (2.69) by an empirical

function as follows

2
li t = pcu E [1-exp(-c 3 	(^	 )
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Table 3. Expressions for S
0
 and r^ for the k- •E turbulence model

0	 r0	 S^

k	 u + ut	 ut (ay) z - P E ^- 2-.

y 
21

E	 u + lt3
	 c1 kut(8y)2 _ 

Pk [c21f ; E +: ye(-coy+)i]

(f = 1 - 0.222e[( Pk2/6uE)2J)

The boundary conditions for the low-Reynolds-number k-e equation

are applied dt the wall as

	

k = E = 0
	

(2.72)

The high-Reynolds-number k-E equations are not valid near the wall.

Boundary conditions must be applied away from the wall or wall functio-as

must be used to approximate k and E near the wall [4].

Two expressions for k and E in ,.he near-wall region were used in

this study when solving the high Reynolds number k-E equations. One is

based on the turbulent viscosity near the wall as expressed by Eq.

(2.5°^ ..nu' the other is based on V  as given by Eq. (2.65).

•:lie wall model based on Prandtl's mixing length model was derived

as fcllc,os. Fcr flow in equilibrium (production = dissipation), the

convective and diffusive terms of the high Reynolds number case of Eq.

(2.71) are neglecter. Inserting the expression for the mixing length

gives
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3/2
11 t ( ay)2 — PcD L	

(2.73)

For this equilibrium case and the constants given in Table 2, it can be

shown that [3]

I = cu/2 /C
D
 L = 1.002 L = L

Using Eq. (2.59) to eliminate 
V  

give,3

2 au 3	 k3/2
A 

lay	 — cD A

Solving for k gives

k = c
-2/3

I
2 ( au ) 2	 (2.74)

D	 ay

Equation (2.74) can be used to find k in the near-wall region and as a

boundary condition foi the k-equation PDE. Once k is known ; E is found

from

k3/2
E = cD L	 (2.75)

Equations (2.74) and (2.75) should be used in place of the PDEs

expressing k &,id E for y+ < 30 to 100.

Simpson et al. [76] argues that measurements in a separation bubble

on a flat plate caused by pressuze gradients indicates that that the

law-of-the-wall model (which is based on Eq. 2.54) is not valid even at

the wall in the separated flow. He states that the flow is dominated by

turbulent fluctuations that are comparable in magnitude to the mean

velocities. However, several investigators have used the equ-iibrium
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law-of-the-wall model for the near-wall flow in conjunction with two-

equation models away from the wall with good success [32, 1161.

The near-wall expressions for k and E based upon the inner

viscosity model of Johnson and King [121] were derived by first

substituting Eq. (2.65) into the a uilibrium expression given by Eq.

(2.73). After assuming L is given by KDy and solving for k gives

I

[ 1 (KyD	 au ) 2D(-;7	 )1/2]2/3k = C
D	15 ay	 m

(2.76)

Once k is known, the expressions for p t given by Eqs. (2.65) and (2.69)

are equated and solved for s to give

E = cuk2/[ D ry(-uPvtm)1/2]
	

(2.77)

Equations (2.76) and (2.77) provide alternative expressions for k and E

in the near-wall region.

3. Algebraic stress model

The algebraic stress model (ASM) is becoming a popular variation of

the k-E turbulence model. In the ASM, an expression for cu is derived

that is used in place of the constant value of 0.09. The functional cu

is used in conjunction with the k -E equations and Eq. (2.69) to

calculate the turbulent viscosity. The ASM includes some effects of

pressure-strain interaction and streamline curvature.

The algebraic stress model used is that developed by Rodi [3].

Exact PDEs can be derived for the six different Reynolds stresses of

which only u'v' is significant for boundary-layer flow. After modeling,

,a
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cu a ay

(2.79)
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these transport equations for the Reynolds stresses contain gradients of

the Reynolds stresses only in the convection and diffusion terms. Rodi

assumes that the transport of uiu^ i s proportional to the transport of

k. An equation for the transport of k can be obtained from Eq. (2.70)

a3

Dk _ Diff(k) = S,,
Dt	 -

where D( )/Dt represents the :octl derivative, and Diff( ) represents

the diffusion operator. Rodi assumes the proportionality constant

between the transport of u.'u' and the transport of k as u:u'/k. The
1	 i j

following equation can then be written for the transport of the Reynolds

stresses

— U. -Diff(uiu^) = u /k [L-Diff(k))	 (2.78)

Equation (2.78) is used in the Reynolds stress transport equations with

modeling assumptions to derive algebraic equations for the Reynolds

stresses. This is possible since the gradient terms have been removed

by the proportionality assumption expressed as Eq. (2.78). For thin

shear layers with no bouyancy terms included, u'v' is

W'&-

(an eddy viscosity relationship) where cu is now a function given by

c = ?(1-1) ac-1+^P( E

u	 3	 (1-1+P/e)2

and P is

(2.80)
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P = JA

t P(ay)2

The values of a and I are given in fable 2.

4. Turbulent prandtl number

When solving the energy equation for turbulent flow, the effects of

turbulent mixing are included in the turbulent Prandtl number, Prt , as

defined by Eq. (2.26). The Reynolds analogy [1271 states that the

turbulent diffusivity for momentum, ut/p, is equal to the turbulent

thermal diffusivity, k t/(pcp), where k  is an effective thermal

conductivity coefficient. This is based on the idea that if the

turbulent motion of the fluid is dominant over molecular diffusion, the

heat and the momentum turbulent diffusion should proceed at nearly the

same rate since the same mechanism is responsible for both. For

molecular diffusion, the Prandtl number is equal to the molecular

diffusivity of momentum (kinematic viscosity) divided by the molecular

thermal diffusivity. If the turbulent Prandtl number is describe A in

the same way, it would equal one, since the two diffusivities are equal

under the Reynolds analogy.

Experimental measurements have shown that for molecular Prandtl

numbers greater than 0.5, Pr  is closer to 0.9 if it must be a constant.

However, Pr  c,n be as high as 2.0 near the wall and as low as 0 8 in

the fully turbulent region [1271. Pr t = 0.9 seems to be an average

value that works well for air. Several recent turbulent heat transfer

predictions have used P- t = 0.9 with reasonable success [111, 1151.
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ft is possible to derive expressions for Pr  in a method similar to

►sed to derive an expression for cu . First, transport equations

to three turbulent scalar fluxes uu iT^ are derived. The gradient

terms in these equations are removed by modeling assumptions to leave an

algebraic expression for Pr 
t* 

Gibson and Launder [136) assumed that the

transport of the scalar fluxes was proportional to the transport of k as

Rodi did to derive an expression for cu.

Watkins and Gooray [115] derived an expression for Pr  in

streamline and Cartesian coordinates. Their derivation was for a

general elliptic problem. When the boundary-layer assumptions are

applied in Cartesian coordinates, Pr  is given by

Prt = L cp [1 FOt (1-ce2 )ay]	 (2.81)
t

where

Ot = cel + celwf' + 0.5(P/e-1)

f' = 0.41 £ 3/2 (y-1/2 + x-1/2)2

The last term in the brackets in the expression for f' is to include the

effect of the step face in rapid expansion flow. For normal boundary-

layer flow, this term would be deleted [131].

D. Engineering Parameters

This section introduces the form of the engineering parameters used

later in this study.
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It is possible to derive expressions for Pr  in a method similar to

that used to derive an expression for c u . First, transport equations

for the three turbulent scalar fluxes uiTT are derived. The gradient

terms in these equations are removed by modeling assumptions to leave an

algebraic expression for Pr 
t* 

iibson and Launder [136] assumed that the

transport of the scalar fluxes was proportional to the transport of k as

Rodi did to derive an expression for cu.

Watkins and Gooray [115] derived an expression for Pr  in

streamline and Cartesian coordinates. Their derivation was for a

general elliptic problem. When the boundary-layer assumptions are

applied in Cartesian coordinates, Pr  is given by

Prt = m cp [1 FOt ( 1 - c82)ay](2.81)
t

where

Ot = c91 + celwf' + 0.5(P
/E -1)

f' = 0.41 e 3/2 (Y
-1/2 + x-1/2)2

The last term in the brackets in the expression for f' is to include the

effect of the step face in rapid expansion flow. For normal boundary-

layer flow, this term would be deleted [137].

D. Engineering Parameters

This section introduces the form of the engineering parameters used

later in this study.

-1
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1. Wall shear stress

The shear stress at the wall for internal flow can be evaluated in

two ways. The first way is by using the definition of t for a Newtonian

fluid as follows

tw (x) = t(x,0) = u u (x,0)
	

(2.82)

For internal flows, a second expression for 
T  

can be derived by

equating the forces and momentum fluxes entering and leaving a control

volume spanning the channel width. The following expression results

tw (x)	 -(2-mr0 dx + ro dM	 (2.83)

where

r
M = 10prmuzdy	

(2.84)
0

Equation (2.83) applies since, for the boundary-layer equations, the

pressure gradient is aligned with the x-coordinate and so can be

expressed as a total derivative. The fact that the two expressions for

t  should be equal, was used as an internal check in the computer

program.

2. Bulk temperature

The mean or bulk temperature for variable pruperty flow is given by

the equation

r	 r
T  = (I oprmuc Tdy)/(I oprmuc dy)	 (2.85)

0	 p	 0	 p
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A second expression for the bulk temperature can be derived by an energy

balance on a control volume spanning the channel. The resulting

expression is

Tb (r:2 ) = xix2 gwdx - 2 l o roP 2u3dy +2	
f oP l u3dy +	 (2.86)

r	 r
Tb(xl) 

U 
0P iU (x 1 ,Y) cpldY / O oPlu(xl,Y)cpldY

The "1" and 112 " subscripts refer to two different x-positions. The two

expressions for T  should be equal and so provide an internal check on

the present predictions.



This chapter describes the method used to solve the equations

developed in the previous chapter. The computational grid will be

presented. The finite-difference discretization will then be discussed

followed by the method used to solve the resulting system of equations.

The method used to discretize the boundary conditions will also be

presented. Finally, convergence, truncation error, and stability will

be discussed.

The equations are discretized i4,an implicit manner. When using

implicit methods for parabolic marching problems, a system of equations

must be solved for the unknowns at the next station beyond the known

values. It is generally felt that implicit procedures are well-suited

for parabolic marching problems [4j.

A. Computational Grid

The finite-difference equations used arc valid for uniform and

nonuniform grids. A representative example of the orthogonal Cartesian

grid used for this study is shown in Fig. 3. The mesh shown in Fig. 3

is much coarser than those actually used. Grid refinement studies

showed that 81 to 121 y-grid points and 135 x-grid points were adequate

to resolve the flow field. The j index is used to specify y-position

with j = 1 corresponding to the points on the wall, and j = NJ

corresponding to the points on the centerline. The i index is used to

specify x-position. For x = 0, i = 1.
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Constant y-grid spacing was used for laminar flows. When

predicting turbulent flows, it was necessary to use variable y-grid

spacing in order to have a small Ay near the wall and a larger Ay away

from the wall. For turbulent flow, inverses of the general stretching

transformations of Roberts [138] as given in Anderson et al. [4]

provided the y-grid spacing. The exact form of the -tretching

transformations is given in Appendix F. The y-grid spacing was fine

enough near the wall to ensure that at least two to three grid points

were in the laminar sublayer.

A geometric progression x-grid spacing was used that was defined by

	

Ax+ = KAx -	(3.1)

where K is a variable greater than or equal to one. Ax - , and Ax+ are

shown in Fig. 3. The distance between x = 0 and the first solution

station r'.:: 1 is given by

Axl NSTPp'	
K = 1

xston(
1-K) 	

K > 1
Ax1 = 1-KNSTP

(3.2)

where NSTP is the number of steps to be taken in the x-direction, and

Xstop is the largest x-value in the solution domain. For flow with

reattachment, K was set to one in order to provide adequate resolution

at the point of reattachment. A value of K not equal to one was only

used in flows with no step.
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B. Velocity/Strewn Function (u-tp) Variable Equations

The stream function and the streamwise velocity were used as the

hydrodynamic variables in most of the computations done in this study.

This section describes the finite-difference discretization of the

governing PDEs with u, *, H, k and E as the variables.

The continuity and momentum equations were solved in a coupled

manner in the present study. Since they are coupled, solutions for both

u and 0 (or u and v for the u-v equation set) are obtained

simultaneously. This is different from the usual method of solving the

boundary-layer equations. Usually, the momentum equation is solved

first to find u using lagged values of v from the previous marching

station. Then, the continuity equation is solved using the recently

obtained u values to find v. By using the coupled procedure, the v (or

0) values are not lagged in the momentum equation so the predictions of

u will be more accurate. Solving the momentum and continuity equations

in a coupled implicit way is more complicated since the resulting system

of equations is block tridiagonal with the tridiagonal elements being

two by two matrices. When using an uncoupled implicit method, a

tridiagonal system results where the tridiagonal elements are only

single elements. Kwon and Pletcher [39] reported that the velocity

profiles and pressure gradient predicted by the uncoupled scheme showed

wiggles in regions of flow separation. When they coupled the continuity

and momentum equations, the wiggles disappeared.
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The energy, k and a equations were solved uncoupled. The

continuity and momentum equations were solved first to obtain u and 0 at

a specific x. If the temperature f-eld was desired, or if the flow was

turbulent, the u's and O ' s were used in the energy, k and E equations.

1. Continuity equation finite-difference discretizrition

The discretization of the continuity equation will be discussed

first because it does not have the same general form as the other four

PDEs. Figure 4a shows the difference molecule used for the continuity

equation, Eq. (2.14). The finite-difference approximation of Eq. (2.14)

is

m i+1	 1	 i+1	 i+1
(Pr u) j _i = Ey- ( Oj	 - 03 _ 1 ) (3.3)

When a subscript or a superscript is i or j plus or minus 1/2 as in Eq.

(3.3), the value of the variable is taken as the average of the values

at the two adjacent nodes, i.e.,

m j _ 1 = (mj + 0j-1)/2.

The finite-difference form of the continuity equation is then

l i+1 m i+1	 i+1 m	 i+1	 1	 i+1	 i+1
2 (Pj rj uj	 + Pj-l rj _ l uj _ 1 ) _ Ay- (^Vj	^j_1) (3.4)

At this time, the density, p, is unknown at the i+1 station. In order

to decouple the momentum and continuity equations from the energy

equation, the density values will be lagged in the x-direction by

setting
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(3.5)
i+1_ i

P .l	 = P.]

The fluid properties at the i+1 marching station will always be lagged

in this way. The continuity equation is now of the form

b . ul+l + e ui+1 _ Oi+1+ *i+1 = 0	 (3.6)
J' 1 	J J	 J	 J-1

The expressions for b  and e  are found in Appendix B.

2. General finite-difference discretization

The momentum (Eq. 2.20), energy (Eq. 2.27), k (Eq. 2.68), and E

(Eq. 2.68) equations can all by written in the same form as Eq. (2.68)

as follows

LO- ap 30 _ 1 a	 a0
- r aX ay - r ay [rr 0 sy) + -cPlulax (3.7)

The values of the r 0 's and the S0 's for each of the different equations

are given in Table 4. It 4.s sssumed at this point that U  
and Pr  have

been found through the appropr'_dte turbulence model as discussed in

Section II.C. The m superscripts on the is have been dropped since it

is more efficient to simply set r(y) = 1 for planar geometries and let

r(y) be the distance from the centerline for axisymmetric geometries.

The terms enclosed by the dotted -artical lines in the k and E equations

shown in Table 4 are the low-Reynolds-number terms added by Chien [135)

to make the model valid in regions having a low Reynolds number of

turbulence.
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This section discusses those points of the finite -difference

procedure that are common to all of the equations (momentum, energy, k,

and s) fitting the form of Eq. (3.7). In the following sections, the

details specific to a particular equation will be discussed.

Table 4. Expressions for S 4 and r0 for the general equation

	

0	 r4	
S4

	

Au 	 ut+u	 dx

u

	

H	
Pr + Pr	 ray[r(ru-rx)ay(u2/2)J

t

au z, 2 k 1

	

k	 u + ut	 ut (ay) - P e ," y I

	

ut 	 a	 8u :	 c	 , ,	 ,2uk (-c y 
	£	 u + 1.3	 cl kut(ay) - pk[c

2 , f,e +^ Y e 4

(f = 1 - 0.222e[( Pk2/6uc)2J)

Six different finite-difference molecules were used to discretize

Eq. (3.7). The particular molecule used depended on the direction of

the flow. Figure 4 shows the six different molecules and the direction

of the "wind" for each. The molecules shown in Figs. 4b and 4e which

use central differencing in the y-direction were used for the majority

of the grid points. The others were used only when the velocity in the
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y direction caused nonviscous behavior when the molecules of Figs. 4b or

4e were used. This nonviscous behavior is discussed further in the

Stability section.

	

a. Firstlg obal iteration using FLARE 	 Equation (3.7) in

finite-difference form for the case when the FLARE approximation is in

effect or when the flow is in the positive x-direction is

1 cp ui+1 (4 i+1 _ 0 i) _	 1 (4,	 _	 i)6*0i+1 =
E
x_ j J	 i	 ]	 riAx_ .]	 l	 y J

c^ + = D(r;. rj.0j
+1 )	

(3.8)

J

where 6  is a central difference operator valid for nonuniform grids

given by

aye; - ey++ey_^e^y'+(d^ +1 - 0 ) + e^(mi-0i - 1 )1 	(3.9)

and D is a specialized diffusion difference operator used to discretize

the term

ay ( =r0 ay)
The form of D is

D(r3 ,rj .0,+1 ) _	
(3.10)

T.r.
2	 IY_	 i+l i+i	 ^-ems 1 -1

ey++Ay(ey+): =^+ r^+j(o^ + 1 -^^ ) + IAY  ey+]ey++ey-

I
Y--(Oi+ l -Oi+l) + 4Y_*(4i+1_0i+1) _ eye 2r	

r	 (0i+l_0i+l)

ey+ J+1 J	 Ay_ J	 .i 1	 (,&Y-)]-') J -i i	 J 1
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b. After firstlg obal iteration	 After the first global

iteration, the FLOM approximation was discarded and the x-convective

term of Eq. (3.7) was differenced in a local upwind manner according to

the local streamwise velocity. If u was positive then the difference

molecule shown in Fig. 4b was used; i f u was negative, the molecule

shown in Fig. 4e was used. For the case with negative u, the finite-

difference discretization of Eq. (3.7) is

1 i i+1 (0 i+2_0 i+l ) -	 1 (4,i+2-0 i+1 )a*0 i+lJ	
=A+ J J	 .l	 l	 r  Ax+ .l	 i	 y J

S0 + = D(rj.T;.4,+1)	 (3.11)

J

This allows downstream flow information in the global sense to influence

the solution in the reversed flow region. For positive u, the

discretization procedure was the same as that used for the first global

iteration with FLARE.

For turbulent flow calculations, the Newton linearization was

dropped after the first global iteration and the nonlinear terms were

linearized using values from the previous global iteration.

S. Upwind discretization	 Equations (3.8) ai:d (3.11) can both

be written in the form

b
i

0
+l +d^0 +1 +a^0

+F1
-c^	 (3.12)

For positive di , the coefficients b  and a  must be negative for Eq.

(3.12) to correctly model viscous behavior [4]. For laminar flows,

nonviscous behavior was not a problem. However, for turbulent flows, a 
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and b. did become positive at positions near the step and near the

reattachment point.

Upstream differencing of the y-derivative in the y-convective term

when either a  or b  was positive ensured that both a^ and b  were both

negative. Central differencing was still used in the diffusion operator

D. If a  was positive, the finite-difference molecules "c" and "f" of

Fig. 4 were used; if b  was positive, molecules "d" and "g" were used

for the y-convective term. This is easily done by substituting the

correct upwind finite-difference for the central difference operator 6 

as

6y0i+i

J	

=> (0 i+1J-0i+1J-1)/6y-, for a. > 0
Y 

b*O
i+1 

=> (0 
j+1 J

i+1)/^Y +
	

for b.J > 0
Y J	 J+1 

3. Momentum equation finite-difference discretization

In this study, the momentum and continuity equations were solved to

the wall for laminar and turbulent flows. Most other investigators used

wall functions near the wall for turbulent flows so that the solution

point nearest the wall is well-away from wall effects. A turbulence

model valid in reversed flow that is accurate near the wall as well as

in the high-Reynolds-number region away from the wal 	 highly

desirable.

	

a. Linearization	 For the momentum equation with m = u, Eq.

(3.8) is nonlinear since two unknown u values at the i+l station are



i+1	 .•2+1 + d^
j
 = 0 	

0
(3.13)

;In

93

multiplied together. There are several ways to linearize the

coefficients of Eq. (3.8):

• lag the coefficients
• extrapolate the coefficients
• update of the coefficients by simple iteration
• update of the coefficients by Newton linearization

A detailed description of each type of coefficient linearization can be

found in Anderson et al. [4].

Kwon and Pletcher [ 39] studied the effect of several linearization

schemes. They reported that only Newton linearization while coupling

the continuity and momentum equations gave well-behaved predictions when

there were large areas of recirculation. Newton linearization also

greatly enhanced the rate of convergence of the linearization iteration.

Due to the findings of Kwon and Pletcher, Newton linearization with

coupling was the linearization scheme used in the present study.

The main 'dea behind Newton linearization is to replace the

coefficients of the convective terms that cause the nonlinearity with

where b 0 is a small change between the converged value at the i+1 level

and 0i is a provisional value from a previous Newton linearization

iteration. After each of the variable coefficients of Eq. (3.8) is

replaced with Eq. (3.13) and the d? terms dropped, a linear equation

results. For the first Newton iteration, the provisional values are

lagged and the solution is stepped from the i marching station to the

i+l marching station. The provisional values are then updated with the
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predicted values at the i+1 level and the equation is solved again for

the unknowns at the i+1 marching station. In 6-!is study, the iteration

was continued until the average solution change was less than 5.0x10-4.

The average solution change was defined as

maximum(E
i
lu^+1 u

i
1/1 u i i, E^i*^+1 ► ^I / ELI;i1)

The solution was then advanced to the i+2 marching station in the same

way.

After using Newton linearization to linearize Eq. (3.8) and

grouping the coefficients for each of the different unknowns, the

following equation results

B u
i+1 + D . ui+1 + A u1+1 + E 

*i+1 = HA + C.
J J- 1	i J	 3 J+1	 J J	 i	 i

(3.14)

The pressure gradient, -dp/dx, has been expressed as X. The

coefficients of Eq. (3.14) are given in Appendix B.

After the first global iteration, if u was negative, Eq. (3.11) was

used it place of Eq. (3.8). Equation (3.11) was linearized in the same

way as Eq. (3.8). After grouping the coefficients of the unknown

variables, the same form an given by Eq. (3.14) results. The variables

with i+2 superscripts a:7 ,7^ considered as knowns since the values used are

obtained from the previous global iteration. The coefficients of Eq.

(3.14) for the case of negative u are given in Appendix B.

b. Boundary conditions	 The boundary conditions for u and 0 for

use in solving the momentum and continuity equations follow. At the

-
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wall (y = 0), ui ) and tl+i ) are simply set to zero. At the

centerline, au/ay = 0 is specified in the following way. The equation

valid on the centerline for both axisymmetric and planer geometries is

(see Eq. 2.20 and 2.21)

cpuax = X + 2m ay (u+ut )ay
	

(3.15)

To specify the symmetry condition at the wall, a reflection boundary

condition is used by defining a pseudopoint, yNJ+l' beyond the y-value

corresponding to the centerline, y NJ . Equation (3.15) is finite

differenced using the molecule of Fig. 4b to give

1 i i+1 i+1_ i	 m	 i+l
°x - PNJuNJ (uNJ	 uNJ) — X + 2 D(1,Tu,N UNJ )	 ( 3.16)

Due to symmetry, for j = NJ

uNJ+1 — uNJ ) 1' °y - — °y+' ru,NJ+j — ru,NJ-j	
(3.17)

Substituting Eq. (3.17) into Eq. (3.16) gives

BNJuNJ i l + DNAJ 1 %JX + CNJ	 (3.18)

The expressions for the constants cf Eq. (3.18) are given in Appendix B.

4. Solution of coupled finite-difference hydrodynamic equation system

This section outlines tha methcd used to solve the finite-

difference approximations of the continuity and momentum boundary-layer

equations for compressible variable property flow with u-* as the

i+1	 i+1
variables. Since Eqs. (3.6) and (3.14) both involve uj-1 , uj ,

Oor



where

and ^^+1, they must be solved simultaneously. For j = 2 to NJ-1, the

following finite-difference equation holds

Bj	0 u^ -1 Dj	 Ej u^+1
A,	

0 u +i HjX+Cj

;- + _ (3.19)
bj	 1

^J+1̂ 3ej	
- 1 +1  p	 p ^j+1 0

J.

Assembling the set of equations consisting of Eq. (3.19) written for

each y-grid point at a given x-position results in a system of linear

equations that must be solved simultaneously. The resulting system is

block tridiagonal with each block consisting of a two by two matrix as

follows

.Dl l 	[A ] l	 [pl

B l2 [ D ] 2 	[A J2 [01

pl	 [B]3	
[D 
]3 

[A 13 [0]

[01	 [ B ] j 	[ D ) j 	[A ] j 	[0]

(3.20)

(U) 1	(C)1

(U) 2	{C)2

(U) 3	{C)3

(U) i	 (C)j

[pl	 [B)NJ [DINJIi{U)NJI 	 I{C}NJI
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+ -k

A	 D

	

[A] •	

01

= j	 ; [B] . = jB	 0 ; [D ] . = j	 E j

	

3	 0	 0	 3	 bj 	1	 3	 e j	-1

3 I

Hj x + C 	 ui +1l

G i x + d 	 3	 '0;+1

(3.21)

The coefficients of Eq. (3.21) are the same as those listed in Appendix

B.

Equation ( 3.20) was reduced to upper triangular form by using a

modified Thomas algorithm. The Thomas algorithm is commonly used to

efficiently solve tridiagonal systems of equations in which the elements

are single coefficients. The same method can easily be applied to solve

Eq. (3.20) due to the sparseness of the submatrices [A] j and (B) 
j* 

To

eliminate the submatrices below the diagonal on the jth row of

submatrices, the j-1 row is multiplied by -[B] j [DI- 1 1 and added to

the jth row. [ D] j 1 is the inverse of [ D] j . Since it is known that

[B] j will be zeroed and that [A] j will not change because all the

elements above it are zero, it is only necessary to modify [D] i and

{C) j, The eliminatic!-t process is started with j = 2 and proceeds to j =

NJ. The new diagonal and right hand submatrices become

[D]
i
 = -[B] j [D] j 1 1 [A] j _ 1 + [D]j	 (3.22)

{C}i = -[B]j[D]^11{C}j-1 + (C) j
	(3.23)

The exact form of the new submatrices is given in Appendix C.
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The pressure gradient parameter X has been grouped with known

coefficients on the right-hand side of Eq. (3.20) even though it has

been unknown to this point. However, after the system of equations is

in upper triangular form, the mass flc .w constraint which specifies 'P at

the centerline (Eq. 2.30) is implemented to solve for the unknown

pressure gradient, X. This is done by Noting that after Eq. (3.20) is

reduced to upper triangular form, the reduced form of the momentum and

conti, iuity equations for j = NJ is

[D]NJ{U)NJl = {C)N
J	(3.24)

{C)NJ contains the unknown X; [U) containscontains only the unknown uNJ

since *NJ is a known boundary condition. Since thera are only two

unknowns and two equations, 
ui+1 

and X can be algebraically

determined. The resulting expressions for 
uNJl 

and X are given in

Appendix C.

After determining 
ui+l 

and X, a matrix form of back substitution
NJ

was used to find {U) j for j # NJ as follows

{U} i = ([D]^)-l({C}^+1 - [A]j{U)j+l) 	 (3.25)

Appendix C shows the specific form of the back substitution.

S. Energy equation finite-difference discretization

As was done when discretizing the momentum equation, two types of

discretizations were used depending on whether the FLARE approximation

was being used and the sign of u. After the first global iteration, the
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FLARE approximation for the energy equation was discarded. The x-

derivatives in the energy equation were then differenced in a local

upwind manner to allow energy to be convected from the globally

downstream direction when flow reversal was present. Upstream

differencing for the y-derivative in the y-convective term was used as

necessary to ensure viscous behavior of the predictions.

The discretization of the energy equation for a general point

removed from the boundaries is given by Eqs. (3.8) and (3.11) with

= H. Equation (3.8) was used for the first global sweep and when u

was positive; Eq. (3.11) was used when for the second and subsequent

global sweeps when u was negative. The u's and *'s are known since the

momentum and continuity equations were solved first. Thus, the

resulting finite-difference equation is linear in H. The source term of

the energy equation as given in Table 4 is discretized as

1	 ,	 i+1:

SH , j	 r. 
D ` rj , S j ,(u

j 
) )

J

When the coefficients of the unknown Hs are grouped, the result is

bHl
+1

+d Hi
+1 +a Hi+1=c

j J- 1	j J	 J J+1	 j
(3.26)

The expressions for the coefficients are given in Appendix D.

a. Boundary conditions Now that the governing FDEs away from

the boundary have been determined ; the appropriate boundary conditions

must be discretized in order to obtain the complete system of governing

equations. The requirement that the flow be symmetric about the



g

100

centerline is used as the boundary condition at the centerline. The two

possible boundary conditions at y = 0 are: a specified surface

temperature (Eq. 2.32a), and a specified heat flux (Eq. 2.32b).

At the centerline, the symmetry condition leads to the following

equation for j = NJ

I i i+1 i+1	 i
Ax PNJuNJ (HNJ - HNJ)

2mD(1'rh
, ^gJ'HNJ1) + 2mD (1 ' SH ^ NJ' i (uNJ l ) 2 )	 (3.27)

The symmetry condition states that 
HNJ i

l = HNJ1. Using this fact

with Eq. ( 3.17), Eq. ( 3.27) becomes

bNJHNJ i l + dNJHNJ l — cNJ	
(3.28)

The values o: the coefficients are listed in Appendix D.

1) Specified wall surface temperature	 For a specified

temperature boundary condition at the wall, H1 ) = c pTw (x). The wall

boundary condition is implemented by using Eq. (3.26) for j = 2 as

follows

d2Hi+i + a2H3
i+1 

= c2 - b2H1
+1	(3.29)

Since H1
+1
 is known, It has been moved to the right hand side with c2.

Using Eq. (3.29), Eq. ( 3.26) for j-3 to NJ - 1, and Eq. ( 3.28) for j = NJ

gives a tridiagonal system that can easily be solved by Gaussian

elimination.

fi
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2) Specified wall heat flux 	 For a specified heat flux at

the wall, a one-sided three point finite-difference approximation of

aT/ay in Eq. (2.32b) gives

d Hi+l + a H
i+1 

+aH
l+1 

=
C

1 1	 1 2	 3	 1
(3.30)

where d i , all a, and c  are given in Appendix D. In obtaining Eq.

(3.30), c  was assumed to be locally constant.

Equations (3.30), (3.26) for j = 2 to NJ-1, and (3.28) for j = NJ

make up the system to be solved for the case of a specified wall heat

flux. Eq. (3.30) destroys the tridiagonal form of the system of

equations. This is easily overcome by adding -X/a 2 times Eq. (3.26)

with j = 2 to Eq. (3.30). This modification of the first row of the

coefficient matrix and right hand column matrix does not harm ti-e

diagonal dominance of the algebraic system. The Thomas algorithm can

now be used to efficiently solve for the unknown Hs at the i+1 x-

position.

b. Lnitial conditions 	 At x = 0, initial conditions must be

specified for H. For an unheated channel upstream of the step, the

initial condition for the temperature above the step is simply

T(O,y) = Tinlet

Since the experimental data sets to be compared with had an insulated

step, the initial condition below the face is aT /ax = 0.0. For the

first sweep down the channel, 3T/ax in the x-convective term of the
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energy equations was set to zero. This removed any influence of the

temperature along the face of the step for the first sweep down the

channel. For subsequent sweeps, a three-point finite-difference

representation of aT/ax = 0.0 was used to extrapolate backwards to the

face of the step from the first two x-grid stations beyond the step.

The extrapolated face temperatures were then used in the next sweep down

the channel.

6. k -E equation finite-difference discretization

The E-equation was solved before the k-equation since it is the

more approximate of the two equations [3]. Lagged values of k or values

of k from a previous iteration were used in the source term of the E

equation to uncouple the two equations. The k-equation was then solved

using the recently computed values of E. Upon knowing k and E, 
V  

was

then calculated by Eq. (2.67).

The convective and diffusive terms of the k and E equations were

finite differenced using Eqs. (3.8) and (3.11) with upwind differencing

of Vle y-derivative in the y-convective term as needed. The resulting

equation is of the form

]

b.kl+1 + d ki+1 + a.kl+1 = c
l - 1	i J	 J J+1	 J

(3.31)

The values of the coefficients in Eq. (3.31) and the similar equation

for E are listed in Appendix D.

a. Source terms	 Unlike the momentum and energy equations, the

source terms of the k and E equations need special treatment. As the
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wall is approached, the source terms begin to dominate the diffusion and

convection terms [122]. Special handling of the source terms in the k-

equation is needed to ensure that k remains positive [139].

The source term of a PDE must be written in the following linear

form when approximating the PDE:

So = SO,d 0 + SO'c	 (3.32)

where SOid is the part that is included in the d coefficient of Eq.

(3.31) and SO'c is the part that is included in c  of Eq. (3.31). If

SO'c is always positive and S O,d is always negative, for initial

positive 0, 0 will always be positive. The source term of the k-

equation written in the form of Eq. (3.32) is

Sk = (-?i)k + (2µ (au)2 _ PE)	 (3.33)
y	 t ay

If S
k,c 

was positive, Eq. (3.33) was used as the expression for the

source term. When Sk c became negative, S k c was set to zero and Sk,d

took the form

Skid = -yz + (2ut(ay)2 - p E )/k	 (3.34)

where k is a lagged value of k or a k given by a previous iteration.

The E-equation source term is

^r

SE = (-k c2 fE' - 
2v )E + clut(ay)2 

k*	
(3.35)
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Equation (3.35) shows that SE'c is always positive and Seed is always

negative as they should be to ensure positive e.

The previous discussion of the source terms for the k and e

equations included the terms added by Chien [1351 for low-Reynolds-

number regions. If the low-Reynolds-number form is not desired, the

terms in the vertical dotted lines of Table 3 must be deleted.

b. Near-wall models	 For the high-Reynolds-number k-E model

that was used for all the separated flow calculations, the near-wall

region must be modeled differently than the rest of the flow. There

were three different methods used for specifying the turbulent viscosity

near the wall: (1) the maximum-shear-stress model, (2) the Prandtl-

mixing-length model and, (3) the Prandtl-mixing-length model with

variable A

The maximum shear stress model is based on the inner viscosity

model of Johnson and King [1211. The point at which the switch was made

from the wall model to the k -E high-Reynolds-number PDE model was at a

constant y value, yb . The value of yb was specified as the y

corresponding to a y+ of 30.0 to 50.0 for fully developed turbulent flow

at the same Reynolds number (based on D and and the average outlet

velocity). The predictions were not sensitive to the value of y b within

this range. The curbulent viscosity in the near wall region for me-chod

1 was given by Eq. (2.65). Equations (2.76) and (2.77) give the

expressions used for k(yb ) and E(yb).
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For method 2, the boundary conditions were applied at a y + value of

30.0 to 50.0 with similar results for both values. For method 3, the

boundary conditions for k and E were applied at

y+ = 2.0 A+

For method 3, A+ was varied according to Eq. (2.64). In the

recirculation region and near reattachment, A + reached values as low as

1.0. Ordinarily, this is well-into the viscous sublayer and much too

small a value of y+ for the high-Reynolds-number k -E equations to be

valid. Johnson and Launder [1131 found that by reducing the thickness

of the laminar sublayer below that normally found in turbulent boundary

layers, the wall functions of Chien& and Launder [1111 gave much better

predictions of the heat transfer in recirculating flow.

Since the value of y at which the k -E boundary conditions were

applied varied for methods 2 and 3, it was necessary to specify values

for k and s for y values corresponding to y + less than 30. For methods

2 and 3, the k and E values for y+ < 30.0 were given by Eqs. (2.74) and

(2.75). Equation (2.69) then gave the near-wall turbulent viscosity.

c. Initial conditions	 To start the marching procedure for the

first sweep down the channel, lagged values for k must be used in the

source terms. Since the source terms of the k and E equations contain

k-1 , zero :: values are inappropriate. To remove the singularity, the

values for k and E on the face of the step were set to the values of the

point just above the lip of the step at the inlet to the channel Q =

j

3
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NH+1, i = 1 as in Fig. 3). Sometimes these values caused the solution

to diverge for fine grids and large expansions as the solution was

marched from the step on the first iteration. This divergence could

sometimes be overcome by using the k and a values at a point further

above the lip for the face values (j = NH+2 or NH+3).

C. Primitive Variable Hydrodynamic Equations

This section describes the method used to solve the constant

property continuity and momentum equations in a coupled manner using

primitive variables, that is, without introducing the stream function.

Previous primitive variable boundary-layer calculations for separated

flow with the momentum and continuity equations uncoupled predicted a

solution with small unphysical "wiggles" [39]. The main reason for

predicting the flow with the primitive variable equations was to see if

the use of * was essential to obtain a satisfactory solution when large

regions of separation were present. It will be shown in Section

IV.A.l.d that the primitive variable formulation gives predictions

identical to those of the u-# predictions under similar assumptions.

This indicates that the equation coupling overcomes the small

oscillations and not the choice of variables. Only the planar two-

dimensional equations for constant property laminar flow will be

developed. The predictions of the primitive variable formulation would

give the same predictions as the u-* variable case for axisymmetric

geometries, for problems with heat transfer, and for variable property
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flows. The effect of iterating globally over the flow field was not

studied for the primitive var;.able case.
i

For planar 2-D coordinates, the transverse dimensionless velocity V
i

can be given in terms of the dimensionless stream function as

aY __ v_Re
V

ax	 U.
(3.36)

i
• S

Substituting Eq. (3.36) into Eq. (2.45) gives

au__CUE
aX + VaY — + ay ay(3.37)

The continuity equation is

avau
aX + aY — 0	

(3.38)

Equations (3.37) and (3.38) are for constant property laminar flow and

are nondimensionalized in a way so that they are independent of the

Reynolds number.

1. Finite-difference discretization

Equation (3.38) is finite differenced in the following manner

AY_	 i+1	 i	 i+1	 i	 i+1	 i+1

2AX_^(Uj	
Uj) + (U i+1- Uj-1)^ + V j	- V; -1 — 0
	 (3.39)

The finite-difference discretization of Eq. (3.37) is

1 
cu

i+l (Ui+l _ Ui +	 1	 Vi+1 i+1	 i+1
AX_ j	 J	 j)	 AY++AY- j (U i+1 - Uj-1)

+ AY 2	 S AY (U1+1 _ 
U1 )	 1 (U i+l	 Ui+l 	

(3.40)
+	 _	 + J	 J	 AY_ J	 j-1
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Note that the FLARE approximation is in effect to allow the solution to

be marched through regions of reversed flow. Equation (3.40) is

linearized with Newton linearization as was done for the u-# variable

scheme. Equation (3.39) and the linearized form of Eq. (3.40) can be

combined into a coupled equation as

IB]j{U}j-1 + [DJ j {U} j + [ A] j {U} j+l = {C} j 	(3.41)

where

A.	 0	 B.	 0	 D.	 E.

[ A J • = J	 ; I B J • = J	 IDJ . = 
J	 J

J	 0	 0	 J	 bj -1	 J	 ej	1

(3.42)
H.

J	 J
R + C,	 i+1

J Gj s + d.	 J	

u

 Vi+1
J

Writing Eq. (3.41) for each value of j gives a linear system of

equations. Appendix E gives the fc r^ of the coefficients of Eq. (3.42).

2. Solution of the system

Two different methods were used to solve the system of equations

consisting of Eq. (3.41) for different values of j. Regardless of the

method used, the pressure derivative, S, was obtained as part of the

solution similar to what is done when using an inverse bouridary-layer

method. Two different methods were used to solve for S: solving for B

algebraically as was done for the u-* variable method, and solving for S

using an iterative secant numerical procedure.
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a. Modified Thomas algorithm	 When Eq. (3.41) is assembled for

all values of j, the resulting equation is the same form as Eq. (3.20),

and so can be solved by the modified Thomas algorithm. The submatrices

below the diagonal are eliminated by row operations on each row of

submatrices. Appendix E gives the resulting values of the components of

the submatrices.

After the system of equations is in upper triangular form, the

coupled momentum and continuity equations for j = NJ are given by

*	 i+1
NJLNJ ENJ UNJ	 HNJ^ + U

*	 i+1	 *	 *
eNJ	 1 VNJ	 GNJS + DNJ

The primes denote that the coefficients are for the upper triangular

system of equations. Since VNJ l = 0, Eq. (3.43) has two unknowns, S

and UM T . which can be obtained algebraically. Now a matrix form of

back substitution (Eq. 3.25) is used to solve for the unknown Us and Vs

at the i+1 marching station. Appendix E gives the exact form of the

submatrices used in the back substitution.

b. Pressure-derivative secant 	 If 0 were known, the system of

equations consisting of Eq. (3.40) for each grid mode could be directly

solved by any suitable solution scheme for a system of equations. To

start the secant procedure, S is simply guessed and the system of

equations solved. If the guessed S is correct, then the boundary

condition that VNJ = 0 will be satisfied. For each incorrect S guessed,

there will correspond a nonzero VNJ . After two guesses for B, a secant
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procedure can be used to predict a new guess for S that will yield a

E.	 value of 
VNJ 

closer to zero.

f'	 Three different variations of the secant method were tried:p
F

1. A secant procedure to find the correct pressure derivative

was nested in the Newton linearization loop.

2. The Newton linearization loop was nested in the secant loop

to find the correct pressure derivative.

3. The Newton linearization loon was removed resulting in lagged

coefficient linearization with a pressure secant procedure to

find the correct pressure derivative.

Figure S shows a block d;agram of the method used for variation 1.

For variation 1 above, the provisional valves used in the Newton

linearization were set to the values from the previous channel station.

A secant method was used to determine the correct value of the pressure

derivative in the following way. Two guesses for the pressure

derivative were obtained by multiplying the pressure derivative at the

previous station by 1.04 and 0.96. The pressure gradient for the first

step was taken as the pressure gradient that would occur in fully

developed channel flow. The general block solver NBTRIP provided by

Sukumar R. Chakravarthy of Stanford University [4] provided two

solutic..s to the system resulting from these guessed pressure gradients.

For the correct pressure derivative, the transverse velocity at the

centerline, VNJ should be zero. The centerline Vs obtained from the

first two guesses were used in a secant procedure to predict a new
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OV

Figure 5. Block diagram for the pressure secant algorithms
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pressure derivative. NBTRIP gave a new solution based upon this new

pressure derivative. The secant iteration continued trying to force VNJ

to zero until the relative change of the pressure derivative was less

than some small prescribed value. At this point, the provisional

variables used in Newton linearization were updated and the process

repeated. Thus, ti ne pressure iteration was nested in the Newton

linearization iteration for each step down the channel.

Variation 2 is similar to variation one except that the Newton

linearization loop was nested in the pressure secant loop. A first

guess for the pressure derivative was chosen in the same way as in

variation 1. NBTRIP gave a prediction for the velocity profiles at the

new step from the input guessed pressure derivative and the velocity

profiles at the previous step. The Newton linearization algorithm thin

looped until the provisional velocities stopped changing. At this

point, a second guess for the pressure derivative was input to the

linearization loop and the process repeated. The secant method then

predicted a new pressure derivative. This new pressure derivative was

used as input to NBTRIP to predict new velocity profiles and the

linearization iteration was repeated. The pressure loop (with

linearization loop nested in it) was repeated until the pressure

derivative change was very small.

Variation 3 only has the pressure secant loop. It is the Name as

variation 1 except that there was no Newton linearization loop (see Fig.

5).
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Section IV.A.l.d gives the results of the different primitive

variable schemes.

D. Convergence

With any numerical approximation to a partial differential equation

(PDE), one must be concerned with the errors in the approximation. It

is hoped that a finite-difference equation (FDE) solution is close to

the exact solution of the PDE. If the FDE formulation is consistent and

stable, it converges to the solution of the PDE as the grid is refined
F

[4j.

1. Consistency and truncation error

A FDE formulation is consistent if the truncation error (TE) goes

to zero as the computational grid is refined. The truncation error is

defined as

TE = PDE - FDE
	

(3.44)

The truncation error was found by using Taylor series expansions of

the derivatives in the PDEs. The truncation error of the continuity

equation is 0(Ay2 ); the truncation error of all the other FDEs is

0(Ax,Ay_Ay+ ,Ay_-Ay+) when central differencing of am/ay is used in the

y-convective term. (The truncation error degrades to 0(Ax,Ay) for the

upwind differencing of the y-convective term but this usually only takes

place near the step where the solution procedure is admittedly

approximate.) Note that for uniform grid spacing, the TE becomes



formally C(ex,ey2 ). Sin ,:e ex,ey -+ 0 as the mesh is refined, the FDE

discretization is consistent.

Even though the TE is only formally first order in Ay, it can be

shown that the TE in the y-direcf.io--a behaves in a second order fashion

as was suggested by Blottner [1401. The dominant term of the truncation

error is

(ey+ - 
'&y.) 83U

ay3 = (Yj+1 - 2yj + yj- 1 ) 
33u
ay

(3.45)

If y is defined by a stretching transformation, y = y(C), of the C space

which has a uniform grid spacing, AC, then

92	
1

H. -_ = e- (Yj+l -2yj + Yj-1) + 0(ez^)
	

(3.46)

Equation (3.46) is introduced to merely establish a link between the

nonuniform y-grid spacing and the uniform C-grid spacing. Equation

(3.46) can be rearranged to give

yj+1	 2y  + yj-1 = 0(AC
2 )
	

(3.47)

The finite -difference discretization has a formal truncation error of

0(g 2 ) for the uniform grid space. Equation (3.47) indicates, that the

largest term of the truncation error of the nonuniform grid behaves in a

second order manner with respect to the uniformly divided 4 space. If

more y-grid points are added, an additional corresponding number of

4-grid points will be added. Therefore, the finite-difference

discretization in the nonuniform grid space, y, behaves in a second

order fashion (TE = 0(A4 2 )) as long as y can be defined as y = y(4).
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2. Stability

The second requirement for convergence is stability. A solution

meth-,.d is stable if the round-off errors in the computer and the

truncation errors do not grow as the solution progresses. For linear

PDEs, a von Neumann stability analysis can determine if a FDE

discretization is stable [4]. The implicit method used in this study is

unconditionally stable for linear initial-value PDEs and was assumed to

be stable for the nonlinear boundary-layer equations of the present

study.

For linear initial-value PDEs that are solved in a marching manner,

Lax's Equivalence Theorem shows that for a consistent FDE

discretization, stability is a sufficient condition for convergence [4].

Lax's theo • em has not been proved for the nonlinear case but is

generally accepted as valid. Since the present finite-difference

formulation is consistent and stable, it is convergent.

Even though most implicit marching schemes for parabolic PDEs can

be shown to be unconditionally stable in the von Neumann sense, an

inappropriate grid can cause wiggles in the solution due an unphysical

modeling of the PDE. This is easily shown by looking at the following

momentum equation for an uncoupled implicit marching scheme

B,ul+l + D ul+l + E,u
i+l = C

j-1	 j j	 J J+l
(3.48)

To realistically model viscous flows, E j and Aj should be opposite in

sign to D [4]. This gives the flowing mesh Reynolds number constraintj 

v.hy
^-- < 2
v

(3.49)
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If Ay cr v
i
 is too large, the mesh Reynolds number constraint is

violated and unphysical behavior is predicted.

Nonviscous behavior due to the violation of the mesh Reynolds

number has not been documented for the case when the momentum and

continuity equations are coupled. Kwon and Pletcher [ 39] have suggested

that proper viscous modeling is achieved because v in the vau/ay term is

treated as a variable when the momentum equation is solved.

The continuity equation is a mass balance and does not involve the

viscosity so its efr .̂. ct when coupled with the momentum equation should

not change the required character of the coefficients in the momentum

equation. This suggests that A  and B  of Eqs. ( 3.19) and (3.31)

should remain negative.

Two common ways to ensure negative off-diagonal terms is to upwind

difference the y -derivative in the y-convective term and to refine the

grid. Since a large number of grid points were already being used in

this study, upwind differencing was used to ensure proper viscous

modeling.
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IV. RESULTS

This chapter presents the results of this study. The laminar

results will be discussed first followed by the turbulent results. The

laminar and turbulent sections are each divided into hydrodynamic and

heat transfer sections.

A. Laminar

The laminar results were promising in general and shed light on the

nature of the boundary-layer equations as compared to the Navier-Stoke:

equations. The solution algorithm is quite robust and well-behaved for

all the cases studied. No artificial damping or overrelaxation of any

kind was needed for the laminar predictions. A typical laminar run

required 3-5 seconds of NAS AS/6 computer time per global sweep through

the flow field.

1. Hydrodynamic constant temperature

The constant temperature laminar results are presented in this

section. The conLinuity and momentum equations (Eqs. 2.44 and 2.45)

were nondimensionalized so that the Reynolds number dependence was

removed. Calculations were made for expansion ratios of 1:1.2 through

1:4 (d:D as in Fig. 2) for both symmetrical planar and axisymmetrical

expansion flows. This range of expansion ratios included the range of

those studied by others with experimental tests and numerical

predictions for this type of geometry. Comparisons were made with



available experimental results and solutions of the Navier-Stokes

equations. Particular attention was given to the influence of expansion

ratio and Reynolds number on the level of agreement between the

predictions of the boundary-layer equations and measurements or Navier-

Stokes solutions. Some flow parameters were predicted better than

others. Whose generally well-predicted were velocity and reattachment

length. The higher the Reynolds number, the better the predictions.

a. Convergence	 When marching through a region of reversed flow

using the boundary-layer equations, it is important to ensure that the

solution does not become unstable as the grid is refined. Blo:tner

[141] reported that his solution to the slender-channel equations

diverged as he refined the grid when in the reversed flow region. For

this reason, grid refinement was carefully studied to verify that the

solution by the present method did not become unstable when the grid was

refined. Figure 6 shows the effect of reducing AX on the reattachment

length and the location and value of 
T 
min . Figure 6 shows the solution

asymptotically approaches definite values as the grid is refined and

does not diverge.

Figure 7 shows the relative change of key parameters per global

iteration. In Fig. 7, Z is a surrogate variable that takes on the value

of Xr , the X-distance to 
Tmin' 

the Y-distance to 
Tmin' or T min . Since

the relative change of these four parameters goes to zero with

increasing iteration number (i), it is obv ;.ous that the global iteration

converges to steady-state values.
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b. Comparison with other data sets	 Reattachment length was

well-predicted over a wide range of expansion ratios and Reynolds

numbers. Figures 8 through 10 compare the reattachment lengths

predicted by the boundary-layer equations with those of experiments and

other mathematical models. The boundary-layer predictions of Figs. 8,

9, and 10 are all for only one global sweep through the floc* domain.

Global iteration over the flow field had almost no affect on the

reattachment length predicted by the boundary-layer method.

Figure 8 coml. p.rc- the reattachment length and distance to the

vortex center predicted by the boundary-layer equations using the FLARE

approximation with the experimental and computational results of Macagno

and Hung [5] for a 1:2 axisymmetric expansion. The comparison between

reattachment lengths predicted by the boundary-layer solution and the

results of Macagno and iNng are excellent for Reynolds numbers above

twenty.

Figure 9 compares the reattachment lengths from the boundary-layer

solution with that of other investigators for different Reynolds numbers

and expansion ratios for symmetric planar expansions. The reattachment

length measured by Durst et al. [8] was taken from s photo of smoke in

air from which it was difficult to tell accurately where reattachment

occurred. From Fig. 9 it appears tt:.: the agreement is very good for

h/d from 0.0 to 0.5 and at least marginal fror 0.5 to 1.0.

Table 5 compares the predictions of the boundary-layer equations

and the Navier-Stokes equations [43] for the location of flow

y
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reattachment, the location of the minimum stream function (T min )' and

the absolute value of T min . The ratio of the inlet to outlet plate

-pacing was 1:3; the Reynolds number was 37.3. Even for this large

expansion ratio and low Reynolds number, the distance to reattachment

predicted by the boundary-layer equations is within 5% of that predicted

by the Navier-Stokes equations.

Table 5. Comparison of Navier-Stokes acid bour.3ar s. -'ayer predictions for
a 1:3 planar expansion

STUDY	
X 
	 X tv Y'miR ,Y to Ymin	 Amin

Osswald et al. [43]	 0.103n	 0290,0.615	 0.0515
.resent	 0.0981	 0.0227,0.647	 0.0668

Figure 10 shows the axisymmetric analog of Fig. 9. Comparisons are

made with Pollard's [12] and Macagno and Hung's [5] solutions of he

Navier-Stokes equations. Again the agreement appears excellent for h/d

less than 0.5 and good for values as high as 1.0.

A fourth ordei polynomial fits the boundary-layer predictions of

Figs. 9 and 10 to within 3%. The reattachment it!ngth caa be expressed

as

Xr = A + B(a) + C(d) 2 + D(d) 3 + E(h ) 6	(4.1)

Table 6 gives the values of the constants of Eq. (4.1). Equation (4.1)

is valid for 0.1 < h/d < 1.5.



y

u

t

125

• t

r

0

S
c

O

C
C

(^ r

Z b

c1ccIn	 o

	

J ¢ o	 a

r O O 30 a Z N
CD N

N N U

F— f 0

	

Z tn O	 C
	W > (l:	 %C

I	 `N O O 11
	 C

d Q N N
.>.	 CL'

J N to cn

co 2-1 Z Z
C

00 0
C

C
N

O

	

^	 o
0

w
O

A
O

.,.1

a^

W O

ow
01 w

ca 0)

•.•1
s~ >

co

h
q a)
cn ^

k
m •o

a
u ca

sa u1

d O
E •^
E +^

ca
V) .'y

cr
K 0)
ca

as
ca

N^
O
w

f4
41 ca
G b
a) G
E O

u 
4

cv
-W a)
4
CO

.a
O
4 b

d

V u
q •H
co 'Y
4j a) --
U1 w M
-4 a
b

O N
ca +1
9 co u1
O w

•14

O O z0 •H O
E v1	 •'1

•H q 41
'd cb	 td
a as

^z (1)	 ai



126

Table 6. Coefficients for Eq. (4.1)

Geometry A B C D E

Symmetric Planar
Axisymmetric

-0.001277
-0.003749

0.004262
0.0213

0.1748
0.222

-0.09451
-0.1769

0.02086
0.04717

Velocity comparisons with the Navier-Stokes predictions were also

encouraging. The velocity predicted by the boundary-layer equations

compares well with the Navier-Stokes solution of Macagno and Hung 15]

(Fig. 11) for Re = 60 and a 1:2 pipe expansion. Lven in the region of

reversed flow the agreement is good. Figure 12 shows the centerline

velocities for axisymmetric flow for three different expansion ratios.

The boundary-layer solution used for this plot is again that for just

one sweep down the channel since global iteration did not affect this

parameter. The agreement between the boundary-layer solution and the

Navier-Stokes solution of Macagno and Hunk; [5] for the 1:2 expansion

ratio is almost perfect. Pollard's 1121 predictions do not compare as

well.

The constant property boundary-layer solution, which is independent

of Reynolds number (see Section II.B), can be thought of as the

asymptotic limit to the solution of the Navier-Stokes equations as the

Reynolds number becomes large. Figure 13 shows the Reynolds number at

which the boundary-layer equations can be used in place of the Navier-

Stokes equations for symmetric expansions with J/D = 1/2. For Reynolds

• -s

J
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numbers below 100, the boundary - layer predictions of 
Tmin 

are greatly in

error. This trend is consistent with the T
min 

comparison shown in Table

S. For the case shown in Table S (Re = 37.3 1), the prediction of Tmin by

the boundary-layer equations was 30110 higher than that predicted by the

Navier-Stokes equations; the X-location of 
Ymin 

was 22% lower. Figure 8

shows that the distance to the vortex center predicted by the boundary-

layer equations is less than that predicted by the Navier-Stokes

equations and measured experimentally by what appears to be a constant

amount for all Reynolds numbers. The relati-e error becomes less at

larger Reynolds numbers. Global iterative sweeps down the channel

affected 
Tmin 

by less than 1'.

Figure 14 compares c  predicted by the boundary-layer method and

that predicted by Chiu [1421. Chiu used a partially-parabolized Navier-

Stokes (PPNS) model that neglected the streamwise diffusion terms but

included the elliptic effects of pressure and convection. The geometry

was that of a 1:3 two-dimensional expansion; the Reynolds number was 39.

Figure 14 shows that global iteration has little effect on the

reattachment length (where c f = 0.0). The first sweep down the channel

using the boundary-layer equations predicts smaller absolute minimum

values of c  in the reversed flow region than the PPNS equations.

Global iteration produces the same minimum value of c  as the PPNS

predictions, but this value occurs at a smaller X. Figure 14 hints that

the bounda-v-layer predictions tend to "squeeze ` the region of flow

reversal closer to the step. Hence, the c  curve re-^_hes a minimum
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sooner than the PPNS model, and the distance to the vortex center is

underpredicted as is shown by Fig. 8.

Figure 14 also compares central differencing and upwind

differencing of the X-derivative in the reversed flow region. A few

test calculations with central differencing of the X-derivative in the

X-convective term were compared with the lo yal upwind differencing that

was usually used when FLARE was not in effect. Figure 14 shows that the

predictions are very similar for the two types of differencing.

Figure 15 shows a comparison of c  predicted by the boundary-layer

equations and c  predicted by Pollard [45] using the Navier-Stokes

equations for a 1:2 pipe expansion. For less severe pipe expansions, as

for the 1:2 expansion case, global iteration has very little effect, as

is shown by Fig. 15. It should be noted that Pollard's prediction for

the Re = 250 case shown in Fig. 15 overshoots the known fully-developed

c  Reynolds number product of 2.0 by 11%. Since Pollard provides very

few details of his computational procedure other than that it is similar

to the SIMPLE method of Patankar and Spalding [50], it is not clear why

c  exceeds the fully-developed values in some cases.

Figure 16 shows a plot of c  similar to Fig. 15 for d/D = 0.7 and

Re = 250 which is a relatively mild expansion and a high Reynolds

number. For a Reynolds number this large, the agreement was expected to

have been better. Pollard's c  predictions do not support the

supposition that the boundary-layer solution tends to "push" the

recirculation region closer to the step as doss Chiu's [142] and Macagno

and Hung's [5].
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Figures 17 and 18 show predicted values of the skin-friction

coefficient for different values of h/d for planar and axisymmetric

expansions respectively. Both figures show results obtained using the

"once-through" method with the FLARE approximation. When using these

curves, one should realize that they many not be accurate in the

recirculation region for low Reynolds r.-nmbers (less than 100).

135

Figure 19 shows the effect of global iteration on the pressure

gradient for a 1:3 two-dimensional expansion. The pressure gradient

appears to be the parameter most affected by global iteration. The

predicted dP/dX was very similar whether local upwind or central

differencing of the X-derivative in the X-convective term was used when

flow reversal was present.

One interesting prediction of the boundary-layer equations using

FLARE was the existence of a small secondary eddy in the corner formed

by the wall and the step. For d/D = 0.5, this eddy was less than

1/220th the length of the primary eddy. This eddy was discovered while

using an extremely small AX for mesh refinement studies. The second

eddy rotates in a direction opposite that of the large one. The flow

situation very near the corner is similar to Stokes flow across the top

of a wedge cut in a wall. The solution to this Stokes flow is a "stack"

of eddies in the wedge, decreasing in size anct intensity as one moves

down in the wedge [143]. For runs employing global iteration, a grid

fine enough to predict the secondary eddy was not used due to expense.

(AX would had to have been less that 1/400th the distance to
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reattachment to place one marching station beyond the step in the

secondary eddy for d/D = 0.5.) Those solving the Navier-Stnkas

equations usually do not use a grid fine enough to resolve the secondary

corner eddy.

c. Initial conditions	 Modifying the initial conditions along

the face of the step as proposed by Acrivos and Schrader [27] to take

into account the "collision velocity" at the face of the step as was

discussed in Section II.A.4.b was found to be of minor importance. The

algorithm to determine the necessary velocity at the step face [1441

predicted nonzero velocities for moderately fine grids but predicted

zero velocities as the grid was refined. To test :.he effect a

if
	 velocity" could have had on the solution, the effect of the

following sinusoidal velocity along the face of the step was studied:

U (O,y) = -A sin(2h ),	 0 <_ y < h
	

(4.2)

where A is an arbitrary amplitude. The predictions of the boundary-

layer equations with global iteration for flow thrjugh a 1:2 planar

expansion was used as a test case. An extreme case a *h A = 0.15, ;which

caused velocities at the step to be greater than those normally in the

recirculation region, predicted the reattachment length, location of

ymin' and value of 
Tmin 

to within 2% of the A = 0 case. (For a 1:2

expansion, the maximum speed of the fluid in the recirculation region

was 0.12 in the negative X-direction.) Figure 20 shows that the

difference between the cf predicted by the A = 0 case and the A = 0.15
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case is not significant. Since a "collision velocity" was not predicted

and would have had very little effect if it were predicted, a zero face

velocity was used for all other calculations of the present study.

d. Primitive variable results 	 The primitive variable

formulation was used to test methods for determining the pressure

gradient in the channel. The most efficient method is similar to that

used for the u-* variable formulation where the 2x2 me — ices below the

diagonal are eliminated. Then, Eq. (3.43) with VNJ = 0.0 is used to

algebraically give an expression for 0 in terms of known coefficients.

The results using this method were the same as those predicted by the

U-T variable formulation. For internal flows, the U-V form is in fact

somewhat easier to program.

If one desires to use one of the availab^e general block solvers,

the channel mass flow constraint cannot be included in tIL2 algorithm

before the back-substitution step without adding an extra equation used

to determine the pressure gradient to each block of equations as was

dot.e by Cebeci [145]. If the extra equation is not added, an iterative

procedure as discussed in Section III.B . 2.b cf the F-evious chapter i::

required. The three different variations of the secant method

investigated in this study had different levels of success. Variation 1

was by far the superior algorithms. A planar expansion with a 1:2

expansion provided a test case.

1) Variation 1	 As described in Section III.C.2.b,

variation 1 nested the pressure secant loop in the Newton linearization
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loop. This ensured that an accurate value of the dimensionless pressure

gradient, 0, was obtained before making the next Newton linearization

iteration. The secant iteration continued until the net,ly 2r.edicted
F'
5

had a relative change from the old value less than sc.,e prisc•-ibed

limit. The relative difference between the first and se,-.ond secant

predictions for a was less than 5.0x10
-4 

and usually lrs^, than 5.0x10-6.

(The first secant iteration is the first prediction after the two

calculations were done using the guessed values of a.) A relative

change of 5.0x10 -5 was used as the criterion for convergence. Since

only one secant iteration was usually sufficient, it appears that there

is a nearly linear re'.ationship between the pressure gradient error and

the error in V at the centerline.

A comparison of the results using variation 1 and the U-T variable

solution showed the velocities, pressure, and c  agreeing to four

significant digits. In general, the results were within 0.5% of the U-T

scheme. There were no oscillations of c f as predicted by Kwon and

Pletcher [39] when the continuity and momentum equations were not

coupled. The execution time waF three times slower than the U-7 scheme.

This ratio seems reasonable since the pressure secant method had to

solve the system of equations three times in order to find the correct

a.

The uUmber of Newton linearization iterations was counted for each

step down tl:e channel. Generally, only one update of the provisional

coefficients was necessary. For the smallest AX used, the relative
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l change between iterations was less than 0.0005 on the second calculation

of the velocitieii at a given X-position.

2)	 Variation 2	 The Newton linearization loop inside the
t

z
pressure loop caused the solution to converge to an erroneous solution

_ and then diverge when predicting the expansion flow.	 It makes little	 -

sense to use Newton linearization iteration when the initial pressure

derivative is inaccurate.	 The failure of variation 2 shows the

importance of leaving the pressu-e derivative as a variable and solving

K
for it along with the velocities at each X-station. 	 Variation 2

predicted the correct velocity profile wren modeling the inlet flow

-= bets-•een two parallel plates which involved no separation.

3)	 Variation 3	 Removing the Newton linearization loop

_ from variation 1 	 large oscillations for the first few X-stations

beyond the step.	 Figure 21 comiares the predictions of c 	 for variation

1 and variation 3 for a Reynolris ..umber of 50.

2. Heat trans fer

The results of this section are tur variable property flow unless

specified otherwise. Both specified heat flux and specified wall

temperature boundary condition predictions will be discussed. Global

iteration was importan' when predicting the temperature field.

a. Comparison with other data sets	 As mentioned in the

Literature Review, there are no experimental laminar heat transfer data
s

sets for symmetric rapid expansions. For this reason, comparisons were

made with pipe entry flows to check the program.
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Figure 22 compares the Nusselt number predictions of the present

study with 4 constant property eigen-function solution [127] for air

f .wing in a pipe. The temperature profile is uniform at the inlet and

the velocity profile is fully-developed. The boundary condition at the

wall is given by a constant wall temperature.

Figure 23 shows the predicted bulk temperature, Tb , for variable

property inlet flow in a pipe with a constant specified heat flux at the

wa.1. The velocity and temperature profiles at the inlet are both

uniform. Figure 23 compares the finite-difference solution of the

boundary-layer equations by Bankston and McEligot [146] with the present

predictions using the ASHRAE property e).-pressions given in Appendix A

and the power-law property expressions used by Bankston and McEligot.

The the wall heat flux was

qw(d/2)

k.T.
10

i i

where k  and Ti are respectively the thermal conductivity at the inlet

and the absolute temperature at the inlet.

b. Predictions 	 Flow through a 1:2 pipe rapid expansion was

predicted for a constant wall temperature and a constant wall heat flux.

The inlet diameter in both cases was 50mm; the i:ile*. temperature profile

was uniform at 10°C.

11 Constant heat flux	 For the specified heat flux

boundary condition predictions, Re = 200 based on inlet conditions, and

qw = 25 W/m = . The constant heat flux prediction converged much slower.

.4

1
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than tha specified wall temperature prediction. For the specified heat

flux, the temperature field boundary conditions are specified by the

slope everywhere except at the inlet above the step. Since the actual

value of the temperature is "tied" down only for a small portion of the

boundary, the solution for the specified heat flux boundary condition

converges very slowly. Figure 24 shows the relative change of the wall

temperature at three different x-values with respect to global

iteration. The momentum and continuity equations were snot solved each

time the solution of the energy equation was obtained due to the

computational expense. A hydrodynamic solution was computed on energy

global iteration numbers 1, 3, 10, 30, and 4°-50. The large "burp" in

Fig. 24 at iteration 30 is caused by the u-* values being recomputed.

Figure 25 shows the effect of global iteration on she Nusselt number.

There is very little difference between the 30th and 50th iterations.

This indic5tes that 30 iterations are sufficient for convergence.

Figure 26 shows the wall temperature and the bulk temperature computed

by Eq. (2.%1) and Eq. (2.82). Ideally, the two bulk temperature curves

should exactly correspond.

2) Constant wall temperature 	 The predictions for the

const.nit wall temperature boundary condition were obtained for Re = 1000

based on inlet conditions and T  = 100°C. Only six global iterations

were required for convergence of the specified wall temperature

predictions. By specifying the temperature along the wall as opposed to

the slope of the temperature as for the specified wall heat flux, the
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solution responds to the boundary conditions much quicker. Figure 27

shows the Nusselt number for the first and six6h global iterations for a

constant wall temperature boundary condition. Figure 28 shows the

Nusselt number for three different mesh sizes after convergence.

B. Turbulent

This section describes the turbulent flow results. The differences

between the predictions using the low-Reynolds-number k -E equations and

the high-Rev:.,lds-number k -E equations with the different near-wall

models will be presented.

The turbulent calculations were done using a Perkin Elmer 3240

computer. An average run using a 121x120 grid required 3.5 minutes of

CPU time for the first iteration and 1.2 minutes for subsequent

iterations. The reason for the different CPU time requirements is due

to the linearization procedure used after the first global iteration for

the turbulent flow calculations. For the turbulent flow calculations,

the Newton linearization was dropped after the first global iteration

and the nonlinear terms were linearized using values from the previous

global iteration.

1. Hydrodynamic constant temperature

a. Fu_ lly developed pipe flow 	 The hydrodynamic solution

procedure was first tested by comparing with the well-documented fully

developed pipe flow. Air at 17°C flowing in a pipe of internal radius

of 0.1235m with a Reynolds number of 41,680 was used as a test case.
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Uniform inlet conditions for u, k; and a were specified; the inlet

condition for 0 was obt&ined by integrating the u profile. There were

80 unequal grid divi.b'ons in y so that at least two grid points above

the wall were in the viscous ,sublayer.

Figure 29 shows the compu,.er predictions of the velocity compared

with Eqs. (2.60) and (2 61) in law-of-the-wall coordinates. Three

different methods of specifying the turbulent 'Length scale were used in

conjunction with the low-Reynolds-number k-equation: (1) an algebraic

mixing length given by Eq. (2.56), (2) the high-Reynolds-number

r-equation with the r boundary condition applied at y+ = 30 and Eqs.

(2.56) and (2.75) for y < 30, and (3) the low-Reynolds-numb*;

e-equation solved throughout the flow field. Figure 29 shows that for

fully developed pipe flow, all three methods give similar velocity

»redictions.

Figures 30 and 31 show that the three different methods of

specifying the near-wall mixing length predict widely varying values of

k and Reynolds stress near the wall. The turbulent kinatic energy

predicted by the low-Reynolds-number s-equation is much closer to

experimental values near the wall (Fig. 30). However, the Reynolds

stress predictions using the low-Reynolds-number e-equation do not

correspond to the experimentally measured values as well as those using

the high-Reynolds-number e-equation.

For separated flow, the first global sweep with the low-Reynolds-

number model predicted reattachment lengths thaw were more than twice as
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long as measurements. It also proved to be unstable when iterating

globally. H,^edever, due to the good correlation between experimental

measurements of k and those predicted by the low-Reynolds-number

turbulence model, this model was used to provide the fully developed

inlet values for u, #, k, and t for the step flow predictions using the

higu-Reynolds-number k-e models.

b. Rapid expansion flow	 The laser anemometer measurements of

flow through a symmetric planar expansion obtained by Smyth [64] were

used as the test case for the constant temperature hydrodynamic

predictions since ho gives the most extensive sPt of data to date for

symmetric expansion. flms. For -myth's measur e ments, water flowed

through a 1:i.5 planar expansion at a Reynolds number of 20,140 based on

the inlet plate spacing and the inlet average velocity, u i . The flow

was fully developed at the step. The initial conditions for the

computer predictions were obtained by solving the channel flow case

upstream of the step using the low -Reynolds -number k- E equations. An

38x81 computational grid was used for th, computer predictions compared

with the measurements of Smyth.

Of the three different near-wall models mentioned in Section

III.B . 6.b, the maximum-shea _-stress model gave the best predictions.

The variable- A+ ..tar-wall model gave generally better predic t ions than

the constant -A+ model in which the boundary conditions for k and a were

given at y+ = 30. Only the results of the maximum-shear-stress and

variable-A+ models will be presented for the constant temperature

turk-;ulent flow calculations.
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All of the predictions for the flow except very near the wall were

similar regardless of the near-wall model that was used. Watkins and

Gooray [1151 noticed similar behavior for their predictions using the

Navier-Stokes equations. When they modified the wall functior used with

tha high-Reynolds -number turbulence model, the reattachment length and

near-wall solution was affected but the predictions away from the -call

were not. Since the predictions away from the wall ire similar for all

the near-wall models, they will be discussed below with the results of

the maximum -shear -stress near -wall model.

The predicted reattachment lengths were longer than that measured

^-xncriwentally. The experimental reattachment pe 4 nt, deduced from the

velocity profiles provided by Smyth [i41, was

1.2 < Rr/ro < 1.5

The predicted re rt=.chmen,. lengths according to iteration number and

near-wall turbulence model were

Rr/ro = 2.2 variable-A+ , first iteration

1.8 variable-A
+
, fiftieth iteration

2.2 maximum-Reynolds-stress, first iteratior.

2.1 oz-.mum-Reynolds-stress, fiftieth iteration

Again, the reattachment length is a strong function of the near-wall

turbulence model.

The two main short comings of the variable -A+ model were slow

convergence with respect to global iteration and the prediction of small

unphysical irregularities near the wall. For the 88x81 grid used for
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the comparisons with Smytt, 300 iterations were required for convergence

of the variable-A+ model. Figure 32 shows dp/dx at an x position

approximately half-way to reattachment with respect to global iteration.

Figure 32 shows that the computer predictions were not highly stable ;or

the first 250 iterations even though all the variables were underrelaxed

by 0.25 (the allowable change between global iterations was only 1/4 the

predicted change). Due to the high number of iterations, the

computational cost of solving the boundary-layer equations W4_th this

near-wall model is approaching the cost of solving the Navier-Stokes

c:;-:ations using coarse grids and wall functions near the wall.

Figures 33 through 35 show the unphysical irregularities near the

r,a - 1 for the variable-A+ case. These irregularities are very noticeable

in the velocity profile for x/ro = 0.8 in Fig. 33, and the velocity and

Reynolds stress profiles for x/ro = 1.2 and 2.0 in Figs. 34 and 35.

Figures 33 through 35 are the predictions for the converged solution

after 600 iterations.

For the predictions of she present study, the same mass flow down

the channel was used as was reported in Smyth [641. However, Figs. 33

a:d 34 suggest that for some experimental profiles (especially the inlet

profile), more fluid is flowing down the channel than the predictions

indicate. The experimental profiles were integrated using a trapezoidal

rule t.- find ; Ile mass flow rate in the channel. The mass flow measured

experimentally was found t- vary fr ,)m 1% be3ow to 13% above that

r-^por.ted by Smyth. if anything, the trapezoidal rule integration would
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of his u/u i measurements as f 0.05, this author is uncertain of the

cause of the discrepancy.

The wall functions based on the maximum Reynolds stress with the

boundary conditions applied at a y position corresponding to a y+ of 30

to 50 for a Ully developed turbulent profile gave the overall best

results. This method converged much faste: than the variable-A + method.

Only 50 global iterations were required for convergence with ar

underrelaxation factor of 0.5. The unphysical irregularities in the

velocity profiles were not predicted with the maximum-shear-stress near-

wall model. However, irregularities ir , the Reynolds stress profiles

were still predicted near the wall.

Figures 36 through 39 compare the velocity profi: ,^s for the first

and last (fiftieth) global iterations with the experimental measurements

of Smyth [64]. The predictions for the last global iteration (Fi3s. 38

and 39; are generally better than the predictions for the first (Figs.

36 and 37) but not remarkably so. Other than in the separated .egioa

itself, global iteration has no noticeable effect en the velocity

profiles. This indicates that the flow outside the separation bubble is

not affected by the way the x-coivective term is approximated. The

rfison for the different predictions for the first and last global

iterations in the separation bubble is due to convection in the negative

x-direction in this region. The velocity predictions on the first and

the last global iterations in the recovery region downstream of
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reattachment are very similar to each other and are not in good

agreement with experimental measurements.

Figures 40 and 41 compare the predictions of the turbulent kinetic

energy on the first and last global iterations with the experimental

measurements of Smyth. The predicted turbulent kinetic energy varied

little between the first and last global iterations except near the

step. The maximum k predicted numerically is less than that measured

experimentally by Smyth. The k values also drop off too rapidly as the

channel centerline is approached. This last point is not too important

because near the centerline, 2u/8y is small so any error in the

turbulent viscosity will not have a very large effect.

Global iteration has some effect on the Reynolds stress as is shown

by Figs. 42 and 43. On the last iteration, the Reynolds stresses were

observed to be hig'ter in the recirculation region (x/r o = 0.4 1 than on

the first global iteration. The distance from the wall to the point of

the peak Reynolds stress does not decrease as reattachment is approached

and then increase after reattachment has been passed as experiments have

shown should be the case [1]. The maximum Reynolds stress is also too

large after reattachment in the redeveloping boundary layer.

2. Heat transfer

The turbulent heat transfer results are discussed in this section.

For the predictions, the variable property relations for air given in

Appendix A were used. The computational field had a 120x121 grid for

the heat transfer predictions. The predictions of the present study
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will be compared with the Nusselt number measurements of Zemanick and

Dougall [84] and Baughn et al. [90], and the numerical predictions of

Johnson and Launder [113] and Watkins and Gooray [115].

To verify the computer program, the fully developed temperature

profile in law-of-the-wall coordinates was calculated for pipe flow.

The dimensionless temperature measured experimentally in a fully

developed flat plate turbulent boundary layer [127] is compared with the

predictions for fully developed turbulent pipe flow in Fig. 44. It

would have been better to compare with experimental measurements of

fully developed pipe flow but none were readily available. The velocity

law-of-the-wall profiles for boundary-layer flow and fully developed

pipe flow are very similar. For this reason, the temperature law-of-

wall profiles for the two flows should also be very similar in the

logarithmic region, although one might expect minor differences. The

dimensionless temperature, T+ is given by

T+ = pcp (Tw - T)u 11 /qw

The agreement between the two curves is acceptable.

The variable turbulent Prandtl number developed by Watkins and

Gooray [115] reduces to a value near 0.2 for fully developed turbulent

pipe flow (Eq. 2.81). Thus, one would expect the Pr  expression of

Watkins and Gooray to greatly increase the heat transfer predictions

over those predicted using a constant Pr  of 0.9. When the Pr 

expression of Watkins and Gooray was used in the computer program of the
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present study, the heat transfer predictions in the separated flow were

generally more than 100% higher than the experimental measurements.

Since predictions using the variable Pr  expression given by Eq. (2.81)

predicted extremely high heat transfer, the results using a variable Pr 

will not be discussed further. The remaining heat transfer predictions

are for Pr  equal to 0.9. Several other recent numerical predictions

successfully used a constant Pr  of 0.9 when predicting the heat

transfer in a pipe expansion using the Navier-Stokes equations [89, 113,

119].

The maximum-shear-stress inner viscosity model giver. by Eqs.

(2.65), (2.76), and (2.77) not only gave the best hydrodynamic

predictions but also gave the best predictions for heat transfer. The

Nusselt number predictions obtained using the maximum-shear-stress

iru►er-model and the constant-A+ model are compared to experimental

measurements [84, 90] in Fig. 45 for d/D of 0.8 and Re near 20,000.

Figure 45 shows that global iteration improves the heat transfer

predictions in the recirculating flow. The overall agreement is quite

good considering the difficulty in predicting turbulent heat transfer in

separated flea.

Figure 46 is a comparison similar to Fig. 45 but for a more extreme

expansion, d/D = 0.53, and a lower Reynolds number, Re = 10950. The

predictions of Watkins and Gooray [115] and Johnson and Launder [113]

for the same flew case are also included. For this large expansion, it

was very difficult to specify initial values for k and a along the face



O

U')m

O
m

U)
N

O
N

LO
—4

O

f:

179

O	 I
q*
CDN	 N	 * I

N dal L 6 N ^+

O	 +)	 C
N ^_ •+

XW C a) 4J M O	 * I
Ix

3 .-. IJ
..	 I

Go 0 E E
d Y L L	 j	

I
42 4j

L [ 
pl dl

3 O	 C C	 '	

Im"X: xaa

I	 I	 '	 +	 I

w
C c	 /	 #ai	 o
m U	 /	 *	 r
N

W a	 /	 }*
l

/ + *	 J

	

*	 A

*

O a.
LO

Ln
N N

O

Ln

X00 .7
r.
d 

co

00 ^+

•.Oi N

d

: A

4J
	 O

ro E '^

a. 0 n,

0
++ 6 z

9 ti

r

X	 H N

0 d
.4
d)

o
z 1
'd 3 A

v v

d O
N U) •.^

4 ^ a.
yd N W

14W
O to U

O to 41

• ^ e e
ae>,
a •^ w
e x
o cc x
U e co

V;

y
N
^o

w

O
O	 Ln	 O	 U7	 O	 Ln	 O	 LO	 O

4 m m N	 O

9PnN/nN



O
L^	 (D	 Lr)	 qt	 m	 N	 1-4	 O

t

^+

* I

+* I
I

i+
+

1 + t*

`	 I+ t

qPnN/nN

0̂
N^pp

Vj 

p
m m

O fir' O 0

0 O 0 +) L >, 
Ir r v

J '' '0 L

•^ 4J O 0
v o^od itr)

+3 o^ eD

0 4J 4J
C .- C C O Cz C of W	 •rq
3YE

0 0Z 4J
O IN L L 0 0
M N d 0— Z

I I	 I
*	 + I I

I

41 rn

0 O
E ..
a +J

0 a
i a

0
cir.

N

0

N

In	 L

X

0

Ln

r,
^ to
3 +^

^ E A
E k O
to to 'Oy cc W
w E 0
4 a
rn —4

w 1 
z

e 0 0
C+I

E x
•^ d it
xco
 *j

O0

•H 04
d at

4bcl

Q co Ln
a
.+	 o
En in
0 - u

$4

E

[ to O

0 n
c, •,.I a

41 ca

z b 00
a au
41	 fa

w 0
N 4
aW y

4
a^ >a x

0 r41 -.+

w C Co0z
sa

0 4J w
.^ 3 0

en .-4 rn

E" b s
0 0 co

^o
J

60
w



181

of the step so that the prediction algorithm was stable for the first

sweep mown the channel. For the algorithm to be stable, the variable

expression for cu (Eq. 2.80) had to be discarded in favor of a constant

value of 0.09. Figure 46 shows that the heat transfer is overpredicted

in the recirculating region and in the initial redeveloping boundary

laver but is then underpredictad as the boundary layer develops. Again,

?s was indicated by Fig. 45, globai iteration greatly affects the heat

transfer predictions in the reversed flow region.

The rredicted x-posC-ion of Nu max , x/h = 5.4 for the fiftieth

6lobai iteration, wa: near the value measured by Baughn et al. (90] for

d/D = 0.8 ( ,; 45). the predicted reattachment point was f r/h = 6.0,

slight;_; downFt.eem of the point of maximum Nu. For d/D = 0.553, the

p_^dic-7-1 reattachment point was upstream of the predicted point of

maximum Nu. The predicted reattachment length and point of maximum Nu

were 9 2 and 10.1, respectively. This predicted point of maximum Nu was

near the value measured by Baughn et al. but downstream of the other

studies shown in Fig. 46.
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V. CONCLUSIONS

A. Laminar

From the results of the laminar predictions mentioned in the

previous section, one can draw the following conclusions.

1. The distance to flow reattachment and velocities outside of

the trapped eddy are very well-predicted by the boundary-

layer equations for Reynolds numbers above 20 and expansion

ratios below 1:3.

2. The eddy structure is not well-predicted for low Reynolds

numbers (Re < 200 for a 1:2 pipe and planar expansion). This

is shown by the poor predictions of the magnitude and

position of T . . For planar expansions, when the Reynolds
min

number is approaching the point where the eddy structure can

be predicted by the boundary-layer equations, experiments

have shown the flow tends to be either asymmetric or unsteady

[10].

3. The flow can be qualitatively divided into two regions. An

elliptic region made up of the trapped eddy and a parabolic

region including the rest of the flow field. The eddy

asserts only a weak influence on the rest: of the typically

parabolic flow.

4. Global iteration over the flow field using the boundary-layer

equations does not significantly change the hydrodynamic
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constant temperature predictions and offers little

improvement over the "once through" method using FLARE.

However, global iteration is important when predicting the

heat transfer for an insulated step face, as was the case for

the present study. When the heat flux is specified at the

wall, the convergence of the global iteration to determine

the temperature field is approximately five Ames slower than

when the wall temperature is specified as a boundary

condition.

S. A zero velocity initial condition on the face of the step is

adequate. A nonzero velocity on the step face was not

predicted by the algorithm of Acrivos and Schrader [271 as

the grid was refined. A small nonzero velocity on the face

of the step did not significantly affect the solution.

6. The primitive variable formulation (U-V) predictions were the

same as the U-T formulation predictions. Thus, the "wiggles"

previously noted with primitive variable solutions [391, were

due to uncoupling of the continuity and momentum equations

and not the choice of variables.

B. Turbulent

This section describes the conclusions that can be drawn from the

turbulent hydrodynamic and heat transfer predictions.



1. Although the low-Reynolds-number k-e turbulence model of

Chien [135] gave excellent results for attached flow in

channels and pipes, it greatly overpredicted the reattachment

length wh-n used for rapid expansion geometries. The low-

Reynolds-number model was also unstable when iterating

globally. The high-Reynolds-number k-e turbulence model with

near-wall turbulence models gave better predictions.

2. The near-wall turbulence model exerted a very weak influence

on the flew field away from the wall. It had a very strong

influence on the near-wall flow and the point of reattachment

as was reported by Watkins and Gooray [1151. The near-wall

model had a primary role in determining the heat transfer

rate.

3. The near-wall maximum-shear-stress turbulent viscosity model

based on the inner viscosity model of Johnson and King [1211

gave better predictions than the near-wall models based on

Prandtl's mixing length. The maximum-shear-stress model

required less underrelaxation when iterating globally,

required fewer global iterations to converge, and predicted

the heat transfer much better than the Prandtl mixing length

near-wall models. The maximum-shear-stress model did not

predict small irregularities in the velocity profiles near

the wall as did the variable-A+ model.
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4. A modification of the turbulent Prandtl number expression,

Prt , derived by Watkins and Gooray [1151 when used in the

computer code of the present study, predicted values of Prt

between 0.2 and 0.3. This caused the heat transfer

predictions for attached pipe flow to be greatly

overpredicted. The near-wall models based on Prandtl's

mixing length underpredicted the heat transfer in the

recirculating region when using Pr t = 0.9. Using the

expression for Pr t of Watkins and Gooray with the near-wall

models based on Prandtl's mixing length for the separated

flow may give reasonable heat transfer predictions in

separated flow but does not appear to be applicable for flows

with no separation.

5. Global iteration, as for laminar flow, was not very

important for the hydrodynamic predictions. However, it was

even more important than for laminar flow when predicting the

heat transfer.

6. The computer algorithm was sensitive to the initial values of

k and a specified at the step necessary to start the first

sweep down the channel. The larger the expansion, the more

critical the initial values of k and a became.

7. As for laminar flow, the parabolic region of the flow outside

the separation bubble was not affected by global iteration.

= r
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8. The predictions of the peak turbulent kinetic energy were

less than those measured by Smyth [64].

9. The overprediction of the Reynolds stress in the

redevelopment region caused the underprediction of u in this

region. The predicted peak value of -u'v' did not dip toward

the wall as reattachment was approached and then move away

from the wall as it was passed as indicated by experiments

[1]-

10. For the less extreme of the two pipe expansions examined, the

heat transfer was well-predicted in the separated region and

slightly overpredicted as the flow developed. For the more

extreme expansion, the heat transfer was overpredicted in the

separated region and near reattachment.

11. The boundary-layer equation method of this study provided a

relatively inexpensive way to evaluate turbulence models

applicable to separated flow that occurs with such devices ;s

turbines, heat exchangers, airfoils, and ramjets.

C. Recommendations for Future Research

The present study indicated that the near-wall model derived from

the inner viscosity model of Johnson and King [121] improved the heat

transfer predictions. It may be desirable to study the use of this

near-wall model based on the maximum Reynolds stress with the Navier-

Stokes equations to predict the heat transfer in separated flow. Since
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the correct prediction of the heat transfer rate is so sensitive to the

near-wall model, heat transfer predictions should not be ignored when

developing turbulent models valid in reversed flow.

The use of wall functions for velocity for the near -wall flow, in

contrast to solving the momentum, continuity, and energy equations up to

the wall as was done in the present study, is becoming widely accepted

as the most economical and robust method of predicting turbulent flow

with separation. However, these three PDE's are valid near the wall and

might be used to provide insight to turbulence modeling of the wall

dominated region. The fact that the wall is not approached with the

wall-function methods points to the lack of the ability to model the

turbulence in this region. More research should be conducted in solving

the actual momentum, continuity, and energy partial-differential

equations with the turbulence model input as either a turbulent

viscosity or the Reynolds stresses themselves in the near -wall region.

This would clearly show the shortcomings of the near-wall turbulence

models and hopefully lead to more universal ones. It is understood that

solving the momentum, continuity, and energy equations in tta near-wall

region may not be the most cost effective way to predict turbulent flow

at the presen, time, but information from doing so may help in the

development of more universal wall models.

f^



188

VI. REFERENCES

1. Eaton, J. K., and Johnston, J. P. "A Review of Research on
Subsonic Turbulent Flow Reattachment." AIAA J. 19, No. 9 (1981):
1093-1100.

2. Westphal, R. V., Johnston, J. P., and Eaton, J. K. "Experimental
Study of Flow Reattachment in a Single-Sided Sudden Expansion."
NASA Contractor Report 3765. Stanford Univ., 1984.

3. Rodi, W. R. Turbulence Models and Their Application in
Hydraulics. University of Karlsruhe, Karlsruhe, Federal Republic
of Germany, 1980.

4. Anderson, D. A., Tannehill, J. C., and Pletcher, R. H.
Computational Fluid Mech. and Heat _Transfer. New York: McGraw-
Hill, 1984.

5. Macagno, E. 0., and Hung, T. K. "Computational and Experimental
Study of a Captive Annular Eddy." J. Fluid Mech_ 28, No. 1
(1967): 43-64.

6. Back, L. H., and Roshko, E. J. "Shear-Layer Flow Regions, Wave
Instabilities and Reattachment Lengths Downstream of an Abrupt
Circular Channel Expansion." J. Applied Mech. 39 (1972):
677-681.

7. Iribarne, A., Franti.sak, F., Hummel, R. L., and Smith, J. W. "An
Experimental Study of Instabilities and Other Flow Properties of
a Laminar Pipe Jet." AIChE J. 18 (1972): 689-698.

8. Durst F., Melling A., and Whitelaw, J. H. "Low Reynolds Number
Flow over a Plane Symmetric Sudden Expansion." J. Fluid Mech.
64, No. 1 (1974): 111-128.

9. Feuerstein, J. A., Pike, G. K., and Rounds, G. F. "Flow in an
Abrupt Expansion as a Model for Biological Mass Transfer
Experiments." J. Biomech. 8 (1975): 41-51.

10. Cherdron, W., Durst, F., and Whitelaw, J. H. "Asymmetric Flows
and Instabilities in Symmetric Ducts with Sudden Expansions." J.
Fluid Mech. 84 (1978): 13-31.

11. Restivo, A., and Whitelaw, J. H. "Turbulence Characteristics of
the Flow Downstream of a Symmetric Plane Sudden Expansion." J.
Fliids Engrg. 100 (1978): 308-310.



189

12. Pollard, A. "Entrance and Diameter Effects on the Laminar Flow
in Sudden Expansions." In Komentum and Heat Transfer Processes
in Recirculating Flows, pp. 21-26. Edited by B. E. Launder and
J. A. C. Humphrey. New York: ASME, 1980.

13. Back, L. H., and Roshko, E. J. "The Influence of Upstream
Conditions on Reattachment Lengths Downstream of an Abrupt
Circular Expansion." J. Biomech. 9, No. 7 (1976): 481.

14. Moore, T. W. F. "Some Experiments on the Reattachment of Laminar
Boundary Layer Separating from a Rearward Facing Step on a Flat
Plate Airfoil." J. Royal Aeronautical Society 64 (1960):
668-672.

15. Leal, L. G., and Acrivos, A. "The Effects of Base Bleed on the
Steady Separated Flow Past Bluff Objects." J. Fluid Mech. 34
(1968): 25-48.

16. O'Leary, R. A, and Mueller, T. J. "Correlation of Physical and
Numerical Experiments for Incompressible Laminar Separation
Flows." Technical Report No. THEMIS-UND-69-4. University of
Notre Dame, 1969.

17. Goldstein, R. J., Eriksen, V. L., Olson, R. M., and Eckert, E. R.
G. "Laminar Separation, Reattachment, and Transition of the Flow
over a Downstream-Facing Step." J. Basic Engrg. 92 (1970):
732-741.

18. Denham, M. K., and Patrick, M. A. "Laminar Flow over a
Downstream-Facing Step in a Two-Dimensional Flow Channel."
Trans. Instn. Chemical Engineers 52 (1974): 361-367.

19. Matsui, T., Hiramatsu, M., and Hanaki, M. "Separation of Low
Reynolds Number Flow around a Corner." In Turbulence in Liquid,
pp. 283-288. Edited by T. J. Hanratty, R. J. Hansen, A. K. M. F.
Hussain, and L. C. Thomas. Princeton: Science Press, 1977.

20. Armaly, B. F., and Durst, F. "Reattachment Length and
Circulation Regions Downstream of a Two-Dimensional Single
Backward Facing Step." In Momentum and Heat Transfer Process in
Recirculating Flows pp. 1-7. Edited by J. A. C. Humphrey and B.
E. Launder. New York: ASME, 1980.

21. Sinha, S. N., Gupta, A. K., and Oberai, M. M. "Laminar
Separating Flow over Backsteps and Cavities Part I: Backsteps."
AIAA J. 19 (1981): 1527-1530.

22. Armaly, B. F., Durst, F., Pereira, J. C. F., and Schonung, B.
"Experimental and Theoretical Investigation of Backward-Facing
Step Flow." J. Fluid Mech. 127 (1983): 473-496.



190

23. Aung, W. "Heat Transfer in Separated Region beyond a Rearward
Facing Step." Ph.D. Thesis. University of Minnesota, 1969.

24. Aung, W. "An Experimental Study of Laminar Heat Transfer
Downstream of Backsteps." J. Heat Transfer 105, No. 4 (1983):
823-829.

25. Armaly, B. F., Durst, F., and Kottke, V. "Momentum, Heat and
Mass Transfer in Bacward-Facing Step Flows." Symposium on
Turbulent Shear Flows 3. University of California, Davis, Sept.,
1981.

26. Hung, T. K. "Laminar Flow in Conduit Expansions." Ph.D. Thesis.
University of Iowa, Iowa City, Iowa, 1966.

27. Acrivos, A., and Schrader, M. L. "Steady Flow in a Sudden
Expansion at High Reynolds Numbers." Phys. Fluids 25, No. 6
(1982): 923-930.

28. Agarwal, R. K. "A Third-Order-Accurate Upwind Scheme for Navier-
Stokes Solutions at High Reynolds Numbers." AIAA Paper No.
AIAA-81-0112, 1981.

29. Atkins, D. J., Maskell, S. J., and Patrick, M. A. "Numerical
Prediction of Separated Flows." Int. J. Numerical Methods in
Engrg. 15 (1980): 129-144.

30. Chen, C. J., Ho, K. S., and Cheng, W. S. "The Finite Analytic
Method." IIHR Report No. 232-V. Iowa Institute of Hydraulic
Research, University of Iowa, Iowa City, Iowa, 1982.

31. Giaquinta, A. R. "Numerical Modeling of Unsteady, Separated
Viscous Flow." In Numerical/Laboratory Computer Methods in Fluid
Mechanics, pp. 279-301. Edited by A. A. Pouring and V. L Shah.
New York: ASME, 279-301.

32. Hackman, L. P., Raithby, G. D., and Strong, A. B. "Numerical
Predictions of Flows over Backward-Facing Steps." International
J. Numerical Methods in Fluids 4 (1984): 711-724.

33. Halim, A., and Hafez, M. "Calculations of Separation Bubbles
Using Boundary-Layer-Type Equations - Part I." In Recent
Advances in Numerical Methods in Fluids 3. Edited by Habashi,
1984.

34. Hall, E. J.., and Pletcher R. H. "Application of a Viscous-
Inviscid Interaction Procedure to Predict Separated Flows with
Heat Transfer." J. Heat Transfer, (1985), In press.



191

35. Hutton, A. G., and Smith R. M. "The Prediction of Laminar Flow
over a Downstream Facing Step." C.E.G.B. Report RD/B/B 3600,
1979.

36. Huyakorn, P. S., Taylor, C., Lee, R. L., and Gresho, P. M. "A
Comparison of Various Mixed-Interpolation Finite Elements in the
Velocity-Pressure Formulation of the Navier-Stokes Equations."
Computers and Fluids 6 (1978): 25-35.

37. Kumar, A., and Yajnik, K. S. "Internal Separated Flows at Large
Reynolds Number." J. Fluid Mech. 97, No. 1 (1980): 27-51.

38. Kwon, 0. K., Pletcher, R. H., and Lewis, J. P. "Prediction of
Sudden Expansion Flows Using the Boundary-Layer Equations." J.
Fluids Engrg. 106, No. 3 (1984): 285-291.

39. Kwon, 0. K., and Pletcher, R. H. "Prediction of the
Incompressible Flow over a Rearward-Facing Step." Technical
Report No. HTL-26, CFD-4, ISU-ERI-Ames-82019. Engrg. Research
Institute, Iowa State University, Ames, Iowa, 1981.

40. Leschziner, M. A. "Practical Evaluation of Three Finite
Difference Schemes for the Computation of Steady-State
Recirculating Flows." Computer Methods in Applied Mech. and
Engrg. 23 (1980): 293-312.

41. Morihara, H. "Numerical Integration of the Navier-Stokes
Equations." Ph.D. Thesis. University of New York at Buffalo,
1972.

42. Oosthuizen, P. H. "A Numerical Study of Laminar Flow through a
Stepped Channel Using the Boundary Layer Equations with
Particular Emphasis on 'Secondary' Separation." ASME Paper No.
84-FE-7, 1984.

43. Osswald, G. A., Ghia K. N., and Ghia, U. "Unsteady Navier-Stokes
Simulation of Internal Separated Flows over Plane and
Axisymmetric Sudden Expansions." AIAA Paper No. AIAA-84-1584,
1984.

44. Plotkin, A. "Spectral Method Solutions for some Laminar Channel
Flows with Separation." AIAA J. 20, No. 12 (1982): 1713-1719.

45. Pollard, A. "A Contribution on the Effects of Inlet Conditions
when Modeling Stenoses Using Sudden Expansions." J. Biomech. 14,
No. 5 (1981): 349-355.

46. Roache, P. J., and Mueller, T. J. "Numerical Solutions of
Laminar Separated Flows." AIAA J. 8, No. 3 (1970): 530-538.



47. Taylor, C., Thomas, C. E., and Morgan,
Flow Utilizing the Finite Element Meth
Method for Convection Dominated Flows,
J. R. Hughes. New York: ASME, 1979.

48. Thomas, C. E., Morgan, K., and Taylor,

K. "Confined Turbulent
od." In Finite Element
pp. 213-224. Edited by T.

C. "A Finite-Element
11Analysis of a Flow over a Backward Facing Step. 	 Computers and

Fluids 9 (1981): 265-276.

49. Gosman, A. D., Pun, W. M., Runchal, A. K., Spalding, D., and
Wolfshtein, M. Heat and Mass Transfer in Recirculating Flows.
London: Academic Press, 1969.

50. Patankar, S. V., and Spalding, D. B. "A Calculation Procedure
for Heat, Mass and Momentum Transfer in Three-Dimensional
Parabolic Flows." Int. J. Heat Mass Transfer 15 (1972):
1781-1806.

51. Madavan, N. K. "Predictions of Incompressible Laminar Separated
Flows Using the Partially-Parabolized Navier-Stokes Equations."
M.S. Thesis. Iowa State University, Ames, Iowa, 1981.

52. Chiu, I. T. "Prediction of Laminar Flows over a Rearward-Facing
Step Using the Partially-Parabolized Navier-Stokes Equations."
M.S. Thesis. Iowa State University, Ames, Iowa, 1984.

53. Reyhner, T. A., and Flugge-Lotz, I. "The Interaction of a Shock
Wave with a Laminar Boundary Layer." Int. J. Nonlinear Mech. 3
(1968): 173-199.

54. Denham, M. K. "The Development of a Laser Anemometer for
Recirculating Fluid Flow Measurements." Ph.D. Thesis. University
of Exeter, Great Britian, 1974.

55. Gosman, A. D., and Pun, W. M. Lecture notes for course entitled:
"Calculation of Recirculating Flow." Heat Transfer Rep HTS/74/2.
Imperial College, London, 1974.

56. Drewry, J. E. "Fluid Dynamic Characterization of Sudden
Expansion Ramjet Combustor Flowfields." AIAA J. 16 (1978):
313-319.

57. Kangovi, S. and Page, R. H. "Subsonic Turbulent Flow Past a
Downstream Facing Annular Step." ASME Paper No. 78-WA/FE-15,
1978.

58. Ha Minh, H. Ii, and Chassaing, P. "Perturbations of Turbulent
Pipe Flows." In Turbulent Shear Flows I, pp. 178-19'. New York:
Springer-Verlag, 1979.



193

59. Mehta, P. R. "Separated Flow Through Large Sudden Expansions."

J. Hyd. Div. ASCE 107 (1981): 451-460.

60. Abbot, D. E., and Kline, S. J. "Experimental Investigation of
Subsonic Flow Over Single and Double Backward Facing Steps." J.
Basic En r	 84 (1962): 317-325.

61. Chaturvedi, M. C. "Flow Characteristics of Axisymmetric

ExpanEion." J. Hydraulics 89 (1963): 61-92.

62. Moon, L. F., and Rudinger, G. "Velocity Distributions in an
Abruptly Expanding Circular Duct." J. Fluids Engrg. 99 (1977):
226-230.

63. Freeman, A. R. "Measurements of Velocity and Temperature in the
Region Downstream of a Sudden Pipe Expansion." CEGB Report No.
RD/B/N4306, Jule, 1978.

64. Smyth, R. "Turbulent Flow Over a Plane Symmetric Sudden
Expansion." J. Fluids Engrg. 101 (1979): 348-353.

65. Lu, C. C. "Measurements of Turbulent Flow Velocity for Sudden
Expansion Cylindrical Tube Using Laser Doppler Velocimenter
(LVD)." AIChE J. 26 (1980): 303-305.

66. Stevenson, W. H., Thompson, H. D., Craig, R. R. "Laser
Velocimeter Measurements in Highly Turbulent Recirculating
Flows." J. Fluids Enter&. 106 (1984): 173-180.

67. Driver, D. M., and Seegmiller, H. L. "Features of a Reattaching
Turbulent Shear Layer." AIAA Paper No. AIAA-82-1029, 1982.

68. Pronchick, S. W., and Kline, S. J. "An Experimental
Investigation of the Structure of a Turbulent Reattaching Flow
Behind a BackwardFacing Step." Report MD-42. Thermosciences
Div., Mech. Engrg. Dept., Stanford University, Stanford, 1983.

69. Adams E. "Experiments on the Structure of Turbulent Reattaching
Flow." Ph.D. Thesis. Stanford University, Stanford, 1984.

70. Cheun, B. S., Toy, N., and Moss, W. D. "The Effect of Upstream
Boundary Layer Thickness Upon Flow Past a Backward-Facing Step."
from the 1981 Conference at the University of Missouri-Rolla,

1981.

71. Moss, W. D., and Baker, S. "Recirculating Flows Associated with
Two-Dimensional Steps." The Aeronautical Q. 31, No. 3 (1980):

151-172.



72. Chandrsuda, C., and Bradshaw; P. "Turbulence Structure of a
Reattaching Mixing Layer." J. Fluid Mech. 110 (1931): 171-194.

73. Walterick, R. E., Jagoda, J. I., Richardson, C. R. C., DeGroot,
W. A. Strahle, W. C., and Hubbartt, J. H. 	 'Experiments and
Computations on Two-Dimensional Turbulent Flow over a Backward-
Facing Step." AIAA Paper No. AIAA-84-0013, 1984.

74. Vogel, J., and Eaton, J. P. "Heat Transfer and Fluid Mechanics
Measurements in the Turbulent Reattaching Flow Behind a Backward-
Facing Step." Report MD-44. Thermosciences Div, Mech. Engrg.
Dept., Stanford University, Stanford, 1984.

75. Lamb, J. P., and McCotter, F. "Correlation of Mean Flow
Parameters for Subsonic Recirculating Flows." ASME Paper No.
84-FE-8, 1984.

76. Simpson, R. L., Chew, Y. J., and Shivaprasad, B. G. "The
Structure of a Separating Turbulent Boundary Layer, Part I: Mean
Flow and Reynolds Stress." J. Fluid Mech. 113 (1981): 23-51.

77. Simpson, R. "A Model for the Backflow Mean Velocity Profile."
AIAA J. 21, No. 1 (1983): 142-143.

78. Hanson F., and Richardson, P. "Mechanics of Turbulent Separated
Flows as Indicated by Heat Transfer: A Review." from the ASME
Symposium on Fully Turbulent Flows, New York, 1964.

79. Chilcott, R. E. "A Review of Separated and Reattaching Flows
with Heat Transfer." Int. J. Heat and Mass Transfer 10 (1967):
783-797.	 — -	 —	 -

80. Fletcher, L. S., Briggs, D. G., and Page, R. H. "Heat Transfer
in Separated and Reattached Flows: an Annotated Review." Israel
J. Technology 12 (1974): 236-261.

81. Aung, W., and Watkins, C. B. "Heat Transfer Mechanisms in
Separated Forced Convection." In Turbulent Forced Convection in
Channels and Bundles _ Theory and Applications to Heat Exchangers
and Nuclear Reactors, pp. 233-256. Edited by S Kakac and D. R.
S palding. Washington, D. C.: Hemisphere Pub. Corp., 1979.

82. Ede, A. J., Hislop, C. I., and Morris, R. "Effect on the Local
Heat Transfer Coefficient in a Pipe of an Abrupt Disturbance of
the Fluid Flow: Abrupt Convergence and Divergence of Dia. Ratio
2/1." Proceedings Institution Mech. Engineers 170, No. 38
(1956): 1113-1126.



195

83. Krall, K. M., and Sparrow, E. M. "Turbulent Heat Transfer in the
Separated, Reattached and Redevelopment Regions of a Circular
Tube." J. Heat Transfer 88, No. 1 (1966): 131-136.

84. Zemanick, P. P., and Dougall, R. S. "Local Heat Transfer
Downstream of Abrupt Circular Channel Expansion." J. Heat
Transfer 92 (1970): 53-60.

85. Runchal, A. K. "Mass Transfer Investigation in Turbulent Flow
Downstream of Sudden Enlargement of a Circular Pipe for Very High
Schmidt Numbers." Int. J. Heat and Mass Transfer 14 (1971):
781-791.

86. Back, L. H., Massier, P. F., and Roschke, E. J. "Parridlly
Ionized Gas Flow and Heat Transfer in the Separatiun..,
Reattachment, and Redevelopment Regions Downstream of an Abrupt
Circular Channel Expansion." J. Heat Transfer 14, No. 1 (1972):
119-227.

87. Kang, Y., Nishino, J., Suzuki, K., and Sato, T. "Applications of
Flow and Surface Temperature Visualization Techniques to a Study
of Heat Transfer in Recirculating Flow Regions." In Flow
Visualization II. Edited by Wolfgang Merzkich. W. Germany:
Hemisphere Pub Corp., 1980.

88. Sparrow, E. M., and O'Brien, J. E. "Heat Transfer Coefficients
on the Downstream Face of an Abrupt Enlargement or Inlet
Constriction in a Pipe." J. Heat Transfer 102 (1960): 408-414.

89. Amano, R. S., Jensen, M. K., and Goel, P. "A Numerical and
Experimental Investigation of Turbulent Heat Transport Downstream
from an Abrupt Pipe Expan s ion." J. Heat Transfer 105 (1983):
862-869.

90. Baughn, J. W., Hoffman, M. A., Takahashi, R. K., and Launder, B.
E. "Local Heat Transfer Downstream of an Abrupt Expansion in a
Circular Channel with Constant Wall Heat Flux." J. Heat Transfer
106 (1984): 789-796.

91. Filetti, E. G., and Kays, W. M. "Heat Transfer in Separated,
Reattached, and Redevelopment Regions Behind a Double Step at
Entrance to a Flat Duct." J. Heat Transfer 89 (1967): 163-167.

92. Seki, N., Fukusako, S.
'
and Hirata, T. "Effect of Stall Length

on Heat Transfer in Reattached Region Behind a Double Step s
Entrance to an Enlarged Flat Duct." Int_. J. Heat and Mass
Transfer 19 (1976): 700-702.



196

93. Seki, N., Fukusako, S., and Hirata, T. "Turbulent Fluctuations
and Heat Transfer for Separated Flow Associated with a Double
Step at Entrance to an Enlarged Flat Duct." J. Heat Transfer 98
(1976): 588-593.

94. Seban, R. A., Emery, A., and Levy, A. "Heat Transfer to
Separated and Reattached Subsonic Turbulent Flows Obtained
Downstreami of a Surface Step." J. Aero/Space Sciences 26 (1959):
809-814.

95. Seban, R. A. "Heat Transfer to the Turbulent Separated Flow of
Ai: Downstream of a Step in the Surface of a Plate." J. Heat
Transfer 86 (1964): 259-263.

96. Aung, W., and Goldstein, R. J. "Heat Transfer in Turbulent
Separated Flow Downstream of a Rearward-Facing Step." Israel J.
Technology 10 (1972): 35-41.

97. Kottke, V. "Heat, Mass and Momentum Transfer in Separated
Flows." Int. J. Chem. Engrg. 24, No. 1 (1984): 86-94.

98. Sogin, H. "A Summary of Experiments on Local Heat Transfer from
the Rear of Bluff Obstacles to a Low-Speed Airstream." J. Heat
Transfer 86 (1964): 200-202.

99. Briggs, M., Mellor, G., and Yamada, T. "A Second Moment
Turbulence Model Applied to Fully Separated Flows." In
T_urbulen-e in Internal Flows, pp. 249-281. Edited by S. N. B.
Murthy. Washington, D. C.: Hemisphere Pub. Corp., 1977.

100. Le Balleur, J. C., and Mirande, J. "Experimental and Theoretical
Study of Two•11imensional Turbulent, Incompressible Reattachment."
AGARD Conference Proceeding, No. 168 (1975): 17.1-17.13.

101. Kim, J., Kline, S. J., and Johnston, J. P. "Investigation of
Separation and Reattachment of a Turbulent Shear Layer: Flow over
a Backward-Facing Step." Report MD-37. Thermosciences Div.,
Mech. Engrg. Dept., Stanford University, Stanford, 1978.

102. Ha Minh, H., and Chassaing, P. "Some Numerical Prediction of
Incompressible Turbulent Flows." In Nui^.2rical Methods in Laminar
and Turbulent Flow, pp. 287-300. Edited by C. Taylor, K. Morgan,
and C. A. Brehbia. New York: John Wiley 6 Sons, 1978.

103. Gosman, A. D., Khail, E. E., - ,nd Whitelaw, J. H. "The
Calculation of Two-Dimensiona, Turbulent Recirculating Flows."
Paper Presented at Symposium of Turbulent Shear Flows,
Pennsylvania State Univ., 1977.



197

104. Oliver, A. J. "A Finite Difference Solution for Turbulent Flow
and Heat Transfer over a Backward Facing Step in an Annular
Duct." In Numerical Methods in Laminar and Turbulent Flow, pp.
467-478. Edited by C. Taylor, K. Morgan, and C. A. Brebbia. New
York: John Wiley & Sons, 1978.

105. Mehta, P. R. "Flow Characteristics in Two-Dimensional
Expansions." J. Hydraulics 105 (1979): 501-517.

106. Atkins, D. J., Maskell, S. J., and Patrick, M. A. "Numerical
Predictions of Separated Flows." Int. J. Numerical Methods in
Engrg. 15 (1980): 129-144.

107. Kim, J., Kline, S. J., and Johnston, J. P. "Investigations of a
Reattaching Turbulent Shear Layer: Flo*: over a Backward-Facing
Step." J. Fluids En r . 102, No. 3 (1980): 302-308.

108. Lokrou, V. P., and Shen, H. W. "Analysis of the Characteristics
of Flow in Sudden Expansion by Similarity Approach." J.
Hydraulic Research 21, No. 2 (1983): 119-132.

109. Sindir, M. M. "Effects of Expansion Ratio on the Calculation of
Parallel-Walled Backward-Facing Step Flows: Comparison of Four
Models of Turbulence." ASME Paper No. 83-FE-10, 1983.

110. Sindir, M. M. "Calculation of Deflected-Walled Backward-Facing
Step Flows: Effects of Angle of Deflection on the Performance of
Four Models of Turbulence." ASME Paper No. 83-FE-16, 1983.

111. Chieng, C. C., and Launder, B. E. "On the Calculation of
Turbulent Heat Transport Downstream from an Abrupt Pipe
Expansion." Numerical Heat Transfer 3 (1980): 189-207.

112. Srinivas, K. and Fletcher, C. A. J. "Eddy Viscosity Models for
Wakes and Separated Flows." AIAA J. 22, No. 1 (1984): 147-148.

113. Johnson, R. W., and Launder, B. E. "Discussion of 'On the
Calculation of Turbulent Heat Transport Downstream from an Abrupt
Pipe Expansion'." Numerical Heat Transfer 5 (1982): 493-:96.

114. Kang, Y., and q,izuki, K. "Numerical Study of Wall Heat Transfer
in Recirculating,; Flow Region of a Confined Jet." Heat Transfer _
Japanese Research 11, No. 1 (1982): 44-69.

115. Watkins, C. B., and Gooray, A. M. "Numerical Calculations of
Turbulent Recirculating Heat 'Transfer Beyond Two-Dimensional
Back-Steps and Sudden Pipe Expansions." Final Report ONR
Contract No. N0014 .-80C-0545, Howard University, 1982.



198

116. Gooray, A. M., Watkins, C. B., and Aung, W. "k-t Calculations of
Heat Transfer in Redeveloping Turbulent Boundary Layers
Downstream of Reattachment." J. Heat Transfer 107 (1985): 70-76.

117. Jones, W. P., and Launder, B. E. "The Prediction of
Laminarization with a 2-Equation Model of Turbulence." Int. J.
Heat Mass Transfer 15 (1972): 301-313.

118. Chieng, C. C. "An Investigation of Turbulence Modeling for the
Abrupt Pipe Expansion." ASME Paper 83-FE-15, 1983.

119. Amano, R. S. "A Study of Turbulent Flow Downst ream of an Abrupt
Pipe Expansion." AIAA J. 21, No. 10 (1938): 14J0-1405.

120. Boussinesq, J. "Theorie de 1'ecoulement tourbillant." Mem.
pres. Acad. Sci. 23 (1877): 46.	 =-

121. Johnson, D. A, and King, L. S. "A New Turbulence Closure Model 	 =
for Boundary Layer Flows with Strong Adverse Pressure Gradients
and Separation." AIAA Paper No. AIAA-84-0175, 1984.

122. Hinze, J. 0. Turbulence. 2nd edition. New York: McGraw-Hill,
1975.

123. Cebeci, T., and Smith, A. M. 0. Analysis of Turbulent Boundary
Layers. New York: Academic Press, 1974.

124. Bird, R. B., Stewart, W. E., and Lightfoot, E. N. Transport
Phenomena. New York: John Wiley & Sons, 1960.

125. Keenan, J. H., Frederick, C. K., Hill, P. G., and Moore, J. G.
Steam Tables (SI Unite. New York: John Wiley & Sons, 1978.

126. van Driest, E. R. "On Turbulent Flow near a Wall." J.
Aeronautical Sciences 23 (1956): 1007-1011,1036.

127. Kays, W. M., and Crawford, M. E. Convective Heat and Mass
Transfc . 2nd edition. New York: McGraw-Hill, 1980.

128. Reeves, B. L. "Two-Layer Model of Turbulent Boundary Layers."
AIAA J. 12 (1974): 932-939.

129. McD Galbraith, R. A., and Head, M. R. "Eddy Viscosity and Mixing
Length from Measured Boundary-Layer Developments." Aeronautical
3. 26 (1975): 133-154.

130. Carter, J. E., and Wornom, S. F. "Solutions for Incompressible
Separated Boundary Layers Including Viscous-Inviscid
Interaction." NASA Report No. NASA SP 347, 1975.



199

1 . Pletcher R. H. "Prediction f I	 es IncompressibleTurbulent31o ncompr si 
Separating Flow." J. Fluid Mech. 100 (1978): 427-433.

132. Kays, W. M., and Moffat, R. J. In Studies in _Convection, Vol. 1,
pp. 213-319. London: Academic Press, 1975.

133. Launder, B. E., and Spalding, D. B. "The Numerical Computation
of Turbulent Flow." Computer Methods in Applied Mech_. and E_: igrg.
3 (1974): 269.

134. Launder, B. E. "On the Effect of a Gravitational Field on the
Turbulent Transport of Heat acid Momentum." J. Fluie Mich. 67
(1975): 569-581.

135. Chien, K. Y. "Predictions of ' haatrel and Boundary-Layer Flows
with a Low-Reynolds -Number Turbulence Model." AIAA J. 20, No. 1
(1982): 33-38.

136. Gibson, M. M., and Launder, B. E. "On the Calculation of
Horizontal Turbulent Fiee Shear Flow Under Gravitational
Influence." J. He-t Transfer 98 (1976): 81-87.

137. Launder, B. E., Reece, G. J., and Rodi, W. "Progress in the
Development of a Revnolds Stress Turbulence Closure." J. Fluid
Mech. 68, No. 3 (t9'5): 537-566.

138. Roberts, G. 0. "Computational Meshes for Boundary Layer
Problems." Proceedings Second Int. Conf. Num. Methods Fluid Dyn.
Lecture Notes in "hysics, Vol. 8, pp. 171-177. New York:
Springer -Verlag, 1971.

139. Patankar, S. V. Numerical Heat Transfer and Fluid Flow.
Washington, D. C.: Hemisphere Pub. Corp., 1980.

140. Blottner, F. G. '' Variable Grid Scheme Applied to Turbulent
Boundary Layers " Computer Methods in implied Mech. and _E^ 1 rg. 4
(1974): 179-191._

141. Blottner, F. 0. 'Numerical Solution of Slender Channel Laminar
Flows." Computer 4ethods in Applied Mech. and Engrg. 11, No. 3
(1977): 319 339.	

-

142. Chiu, I. T. Personal Communication. Mech. Engrg. Dept., Iowa
State Uni----sity, Ames, Iowa, 1984.

143. Moffat, H. Y.	 "Viscous and Resistive Eddies near a Sharp
Corner " J. Fluid Mech. 18 (1964): 1-18.

144. Brady, J. F., and Acrivos, A. "Closed-Cavity Laminar Flows at
Moderate Reynolds Numbers." J. Fluid "tech. 115 (1982): 427-442.



lamomm-

200

145. Cebeci, T. "Finite-Difference Solution of Boundary-Layer Flows
with Separation." Report ME-84-4. Dept. Mech. Engrg.,
California State Univ., Long Beach, 1984.

146. Bankston, C. A., and McEligot, D. M. "Turbulent and Laminar Heat
Transfer to Gases with Varying Properties in the Entry Region of
Circular Ducts." Int. J. Heat and Mass Transfer 13 (1970):
319-344.

147. Thermophysical Properties of Refrigerants. New York: ASHRAE,
1973.



201

VII. ACKNOWLEDGMENTS

This work was financially supported by the National Aeronautics ar

Space Administration (NASA Training Grant No. NGT-016-002-801), the

National Science Foundation (NSF Grant No MEA-8211713 redesignated as

CBT-8211713), the Iowa State Engineering Research Institute, and the

Iowa State University Mechanical Engineering Department.



202

VIII. APPENDIX A: VARIABLE PROPERTIES FOR AIR AND WATER

The equations used to approximate the properties of air and water

as a function of temperature were taken from Thermophysical Properties

of Refrigerants [145].

A. Air

The density of air is given by the perfect gas law

p (kg/m') = RT
	

(A.1)

where T is the absolute temperature, R is 287.0 J/(kg •K), and p is the

pressure in Pascals.

The viscosity is approximated by

p(10 " Ns/m 2 ) _ x/(0.671692 + 85.22974/T - 2111.475/T2

+ 106417/T 2 )	 (A.2)

for 60 < T < 1000 K. Equation (A.2) has a maximum deviation of ± 0.7%

and an average deviation of ± 0.2%.

The thermal conductivity is given by

k(W/(m•K)) _ ,rT/U + B/T + C/T 2 + D/T')	 (A.3)

where A, B, C, and L have the following values

Range (K)	 A	 B	 C	 D

80-300 385.859 9.11440x10 4 -2.68667x10 5.52604x10
300-600 328.052 1.67320x10 f -3.02953x10' 3.05682x10'
600-1000 539.544 -3.32903x10 s 3.59756x10 -9.67202x1019
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The maximum error of Equation (A.3) is t 0.23%.

The specific heat at one atmosphere is given by

cp(k.J/(kg•K)) = A + BT + CT' + DT'
	

(A.4)

The constants in Eq. (A.4) have the following values

Range (K)	 A	 B	 C
	

D

90-260 1.03200 -1.22500x10-+ 0.0 0.0

260-610 1.04466 -3.15967x10' 7.07909x10 -7 -2.70340x10-'O

610-900 1.00205 -1.62983x10-4 5.69525x10 -7 -2.68081x10-io

Equation (A.4) is accurate to within ± 0.018% for T > 260 K and accurate

to within ± 0.8% for T < 260 K.

B. Water

Water is considered an incompressible fluid with p equal to

995.6 kg/m'.

The viscosity of water is highly temperature dependent. The

recommended equation is

uj;10 -3Ns /m 2 ) = e(A 
+ B/T + C/T')	 (A.5)

the constants are

Range (K) A B C

273-350 0.030185 -2191.60 6.38605x10s
350-500 -•3.22950 13.18574 2.65531x10'
500-620 -8.77361 5875.F- -1.28275x10s

The maximum deviation of Eq.	 (A.5)	 is t 1.5% from measured values.
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Tht thermal conductivity of water can be approximated by

k(W/(m •K)) = A + BT + CT  + DT'
	

(A.6)

to within ± 0.19% with the following constants

Range (K) A B	 C	 D

	273-400	 -0.61694	 7.17851x10-' -1.16700x10_
s
	4.70358x10-'

	

400-600	 -0.14532	 4.02217x10 -3 -4.64993x10'° -4.89257x10-1*

The following equation gives tue specific heat of water for 237 < T

< 450 K to within ± 0.13%.

cp (kJ/(kg • K)) = 17.6611 - 0.147914T + 6.186!9x10-° T2

-1.11867x 10 -6 T 3 + 7.80297x10 -1OT'	 (A.7)
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IX. APPENDIX B: RESULTING COEFFICIENTS FROM THE DISCRETIZATION OF THE

MOMENTUM AND CONTINUITY EQUATIONS (u-# VARIABLES)

The coefficients in the continuity equation are

e. = bj = 1 (P^_ rj _ AY_)

The coefficients of Eq. (3.14) when the FLARE approximation is in use or

when u is nonnegative (j#NJ) are

A. =	 1= ( 1 -^+.) - ? Ay r. M.	 + M.r.(Ay -Ay_)
J	 ejAY+ Ax- j J	 Ay+ [- J+j J+ 	J J	 +	 J

B. =	 1 (Ay-'-(0j-'Pi) - ?[Ayr.M_ -M.r.(AY -AY-
JeAy_Ax 	 J	 Ay-	 + J-'^ J	 J J	 +	 !

C. = 1 [cp l (u.) 2 + l ►̂ .(^	 - A- '̂-u	 - Su
J	 Ax 

_ 
LL j	 ej J Ay_ j-1	 AY+ j+l	 j)]

Dj = Az - [cp 
(2g

j - uj) - 8 ^j _ tl+ji)l+

	

J	 J
Y

s (o-y+r j+ Mj+ - (Aye+Ai:A rj + ^r j _ Mj _ )
1 ^,.	 _

 AY-1a
	 q

E -j	 0 Ax_ (Ay_uj-1	 Ay+ j+1	 S j)

H. = 1.0
J

3 _ (	 - AY-)	 (B.1)
Ay_ Ay+

e. = r .( AY + Ay_)	 (B.2)
s	 J	 J	 +

After the first global iteration, if u is negative the coefficients

of Eq. (3.14) are

Aj	 e.Ay+^A (a j -V+^+2 ) - Ay+ [AY_ rj+j j+j + Mjrj(Ay+-6y_1)
J	 J
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Bj =
e.Ay- 1A (

#j+2_$j)

Ax
J

- 
Ay-[Ay+rj-#Mj'# - 

MJrj (Ay+-
 
Ay_ )])

J

Cj =
+eX+ (

p j (uj )2 s ^j (ey uj-1 - e .	
- Suj))

j

pj _ +2 -lAx+[pJ(ui

2uj) 
+ 9 ^j _ tyji+2 )l+

.Jj

2 (fir	 Mej AY+ j+i j+1
-	 V2	

M
( AY++AY_) j

r	 + ^-	 r.	 M	 )
j	 AY_ J''^ j'#

_
Ej

1
0 j Ax+

(Ay*-
Ay_j-1 Ay+uj+1	 suj

H. =
J

1.0

S and 0 1 are the same as in Eqs. ( B.1) and (B.2).

For j=NJ, the coefficients of Eq. (3.14) are

AJ=ENJ=0.0
2m+1

BNJ	 Ay MNJ-

_ _	 :
CNJ Ax - pNJ^NJ)

m+l

DNJ Ax- pj(2uNJ - uNJ ) + y "NJ`- j

HNJ = 1.0

4h
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f
f

X. APPENDIX. C: MODIFIED THOMAS ALGORITHM

Upon reducing Eq. (3.20) to an upper triangular matrix, the

diagonal submatrices [ D]^ and right hand vector of knowns (C)^ are

sf
D.	 F.

tM1r	 de

H.x + C.

[ D ] _ (C)

J e;	 _ 1 J G.x + dj

E 
	 remains unchanged from the value given in Appendix B.	 The modified

coefficients in terms of the coefficients of Appendix B are (j=2,NJ)

t

D 
= TBjAj-i + D (C.2)

e.
J

= TA.
J' 1	J

(b.	
J

+ e.'1 ) + e
j (C•3)

H.
J

_ TB .(H,	 + E	 G.	 ) +
J	 J-1	 j-1 J-1

H
j iC.4)

C.
J

_ TB.
J	 J
(C.

-1 	 J
E,

-1 j-1	 j
d	 ) + C (C.5)

G.
J
= T[H*	 (b.

-1	 j- 1
+ e*	 ) + GJ'1	 J	 J

(b. E .
-1	

- D^
j-1)]

(C.6)
J 	 J

d 
= T[Ci-

1 (bj 
+ ej

- 1 ) + dj- 1 (bj Ej-1 - 1)-1)] (C.7)j
F

_

I =
^	 y

-1/(Dj - 1+ej-1Ej - 1) (C.8)

A  and E  are unchanged by the transformation to upper triangular form

so are not starred.

The boundary conditions at the wall are used to determine the

coefficients for j=1. The following is true for j=1,
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*

D1
	 E-

 ul

i+1	 ^A1
el	 -1 p1+1	 0

0 u2+1	
H1X+C1

0 0i+l	
0

2

(C.9)

Since Ui
+1 

= ^1+1 = 0, D E l , and el are arbitrary, they are set

** *
equal to 1. A 1 , H 1 , C 1 , c 

1 
G i , and d l = 0 cause Eq. (C.9) to be

satisfied. Now that the coefficients for j =1 are specified, Eqs. (C.2)

through (C.8) can be evaluated starting with j=2 and continuing until

j=NJ.

Solving the reduced continuity and momentum equations fir j=NJ (E,1.

3.24) gives the following expressions for u i+l and X.
NJ

uNJ
i+1	

(ENJGNJ+HNJ)'NJ-GNJCNJ+-NJHNJ'	 NJHNJ-GNJDNJ)

i+1	 _	 *( e*eN J'lNJ - ^'NJ	 dNJ) GNJ

Back substitution is now used to solve for the unknowns u^ +l and ;P+1
for 2<j-NJ-1 with the following expressions

ui+l = 
I(H* +F,G.)X - A,ui+l + C. + E.d.l(D.+E.e.)j	 J J J	 J j+l	 J	 J J	 J J J

X =

^i+l = e*u
i+l - G X - dj	 j j	 j	 j
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XI. APPENDIX D: RESULTING COEFFICIENTS FROM THE DISCRETIZATION OF THE

ENERGY, k, AND E EQUATIONS

The coefficients of Eqs. ( 1 .26) and (3.31) using the FLARE

approximation ar-i when u is positive are

aj 	 B.Ay+[A—x (^V^
+1_wj) 

+ P1.1
J

bj	 B.Av_[e - j
+1_^j) - P2]

J

cj = ez_cp^u3
+1

0j + S0'c

dJ = Ax_[cP^u^+1 - 8 (V+^
+1 j	 ^d)1+ P

3 - SO
J	 JJ

P 1	
ny+ [Ay_rj+,I,,j+, + (,&y+-Ay_)rm,jr.j

P2 = [Ay _ Ay+ri _,r4,J-f - (Ay+-Ay.. ) r,,Jrj1

P3 = 8 j [ y rj+ r m,5 + 	Ay++Ay_S2rm,jrj + Y rj-1r0,j-1]

where B and 8 j are the same as in Eqs. (B.1) and (B.2) and 0 takes the

value of H, k or E depending of the transport equation being solved.

The source terms for the cases when 4 is k or E arP given in

Section III.B.6.1. For the energy equation,

SH,c	 8 .f Ay+rj+jLj+j[(uj+l)2-(uj+1)sl+
J	

J

1	 SL r.[A-}'_- (ui+l)z +11(ui+l)s-^ ( ui+l)sl -
Ay+ 	

J+Ay_ J	 AY	 J+1	 J	 Ay_ j-1 J

Ay- r J " L
J _I[(uj+1) z _ (uj±1) $11

SH,d = 0.0
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where L = Fu - T x as given in Table 4.

After the first iteration when the FLARE approximation was not

used, the following coefficients apply when u < 0:

a. _ - 1 ^'-(*i+2_#i+i) + P l
J	 0jAy+ Ax+ j	 J	 1J

b. =	 1	 Ayt(,Pi+2_#i+1 ) _ P 1

J	 B j &y _ Ax+ j	 J	 2J

c. _ - 1 i
ui+1 i+2 + S

J	 Ax+pj j ^ j	 O,c

1	 i i+1	 i+2 i+1d  = - Ax+ [ j uj + 8J (,pj -^+j ) + P3 - S`,d

P1' P2 , P3 , S4'c and Said are defined above.

For j=vJ, the following set of coefficients apply

aNJ-00

b	 2m+lrNJ	 Ay?01 H

-NJ Ax-_P +1
ju^Oj + Si'c

d	 1 p iu i+l + 1y2m+1T
	 - S

NJ	 Ax_ J J	 Ay+	 4,j-#	 mid

Equation (3.30) implements the wall boundary condition for the

energy equation when a heat flux is specified. The coefficients are

obtained from a three-point finite-difference approximation of aT/ay and

are given as follows:

2Av,+Ay2
d 1 = - ay1^Ay1+Ay2)

_ Ayl+Ay2
a1 AylAy2



MEMO

211.

Ay 
a = - 

°y2 (AY 1+°Y2)

c = - ^ux + 1 a (u
i+l ) 2 

+ a(ui+1) 2^

1	 TH,l	 2^ 1 2	 3

where

°yl = Y2 Y1 ' °Y2 = Y3 Y2

61
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XII.	 APPENDIX E: RESULTING COEFFICIENTS FROM THE DISCRETIZATIOA OF THE

MOMENTUM AND CONT1NUITY EQUATIONS (U-V VARIABLES)

The coefficients of Eq. (3.42) are

Aj 1 (E.1)(VjAY++AY_	
y

AY+)

B j AY++AY_ (^j	 Ay-) (E.2)

D. _	 c (20 -U.) +	
2	 ( 1 +	 1 ) (E.3)

J AX_	 J	 J	 AY++AY_ AY+ 	dY_

C '
 
Ax - (Uj )2	 AY+SY_ (-Uj+1^j + Uj-1Vj) (E.4)

+

E

1	 w	 n

- Uj AY++AY-(Uj+1	 -1) (E-5)

H 
= 1.0 (E.6)

bj = ej = 2AX_
(E.7)

di b.(Ui + Ul_ ) (E.8)
J J	 J	 J	 1

G 
= 0.0 (E.9)

R'	
Equations (E.1) through (E.9) are valid for j=1 to NJ except that BNJ is

twice the value given by Eq. (E.2).

After the system of equations (Eq. 3.41) is reduced to upper

r	 triangular form, the elements of [D]	 and (C), are

*	 1
D  = Dj - 

iAj'1Bj

1
e  = ej - 

i'Aj_1(ej + ej-1)
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Hj — Hj ^B j (Hj-1 - Gj-lEj-1)

j - 1 j-1 3-1

G*j = G. -
J

1 [e (H*
j	 j-1

- G*	E	 ) +
j-1 j-1 ( e*	 H*j -1 3-1

- D*	G*	 )j
j-1 j-1

*
dj = d 	 -

1

 
[ej(Cj-1

- dj-lEj-1 ) + (ej-1Cj-1 - Dj -ldj-1))

Dj-1 - Ej-lej-1

The above equations give the modified coefficients at the j level

as a function of those at the j-1 level. A. and E. are not affected by
J

the change to upper triangular form. Those for j =1 are found from the

i+l i+1
boundary conditions U1 =V1 =0. Taking A l , H i s C 1 , GI, dl, El,

*	 *
and el all equal tc, zaro and D1 equal to one satisfies the boundary

conditions.

After reducing the coefficient matrix to block upper triangular

form, Eq. (3.43) with j--NJ is used to solve for UNJ 1 and S. The

result is

UNJ1 — (dNJHhJ-C NJGNJ)^(eNJHNJ-DNJGNJ)

_	 * Ti+1
B	 (eNJ U NJ	 °iNJ)IGNJ

After knowing A and UNJ 1 , back substitution can be used to find

the rest of the Us and I's for j =NJ-1 to j=2. 
Ui+1, 

and Vi+1 are given

by
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i+l	 1	 i+l	 *	 *vj 	 = Q [-Ajvj+l + (H 	 Ej Gj )B + cj - EjdjJ

Vi+1 __ l * i+1J	 Q[ejAjUj+l + (2Gj - ej (H. - EjG M +

d j f2 - e
i 

 (C3 - 
Ejd3) J

Q = D* - E.e*
J	 J J
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XIII. APPENDIX F: Y-GRID STRETCHING TRANSFORMATIONS

The inverses of the general stretching transformations of Roberts

[138] as cited in Anderson et al. [4] were used to transform a uniform

grid spacing (Z-s;ace, AC = constant) to a nonuniform grid spacing (y-

space). The x = 0 line was divided into two regions, the step face and

the inlet region. In both of these regions, 0 <_ Z 5 1.

Along the face of the step, 0 S y 5 h, the transformation was given

[ I	 by

0+1 (2{-1)

(0+1) (0-1^
	

- 0 + 1

y =

	

	 h

Ira+1 24 -1)
2 

l 
1 +IQ-1	 J 1

At the inlet, h < y 5 yNJ$ the transformation was

(0+1 (1-Z)
0+1 - (0-1) 0-1)

y=	 r i + h	 -
0+1(1-Z)
(0-1)+ 1

The values of NJ, 0, and the number of grid points below the lip of

the step (y = h) were adjusted until there was a smooth variation of Ay

near y = h and enough grid points near the wall to resolve the laminar

sublayer regions. The values of 0 typically ranged from 1.005 to 1.05.

t*

I
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