
United States Patent 1191

Lahmeyer

[54] REED-SOLOMON DECODER

[75] Inventor: Charles R. Lahmeyer, Temple City,

1731 Assignee: The United States of America as
Calif.

represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, D.C.

[21] Appl. No.: 673,685
[22] Filed: Nov. 21,1984

[51] Int. Cl.4 .. CO6F 11/10
[52] U.S. Cl. ... 371/37; 371/40
[58] Field of Search 371/38, 37, 39, 40

1561 References Cited
U.S. PATENT DOCUMENTS

4,162,480 7/1979 Berlekamp 371/37
4,410,989 10/1983 Berlekamp 371/37
4,566,105 VI986 Oisel 371/37
4,567,594 1/1986 Deodhar 371/38

[i i] Patent Number: 4,649,541
[45] Date of Patent: Mar. 10, 1987

4,583,225 41’1986 Yamada 371/37

OTHER PUBLICATIONS
Lin, Shu, et al, Error Control Coding, Fundamentals
and Applications, Prentice-Hall, Englewood Cliffs,
N.J., 1983.

Primary Examiner-Michael R. Fleming
Attorney, Agent, or Firm-Paul F. McCaul; John R.
Manning; Thomas H. Jones

[571 ABSTRACT
A Reed-Solomon decoder with dedicated hardware for
five sequential algorithms is provided with overall pipe-
lining by memory swapping between input, processing
and output memories, and internal pipelining through
the five algorithms. The code definition to be used in
decoding is specified by a keyword received with each
block of data so that a number of different code formats
may be decoded by the same hardware.

9 Claims, 15 Drawing Figures

U.S. Patent MX io, 1987 Sheet 1 of 11 4,649,541

I
I
I
I
I
1
I
I
I

I
I
I
I
I -

I I

U.S. Patent MU. io, 1987

FIG. 2 a
DATA WORDS AS RECEIVED
FROM HOST PROCESSOR

KEYWORD

5 6
I

BLOCK

765

Sheet 2 of 11 4,649,541

D DA

FIG. 2 b

TA SYMBOLS AS ASSEMBLED
IN. DECODER RAM

7
I I
I I
I I
I I
I I
I I

TA SYMBOLS AS ASSEMBLED
IN DECODER RAM

7
I I
I I
I I
I I
I I
I I

CODE GENERATOR I , I F I E ~ D GENERATOR KEYWORD

I + ~ P IoLlla21 1 1 1 1 I ~ Z I z I z l z l z l z l z l z
I I I L I CODE DEPTH OF NUMBER OF

INTERLEAVING ZEROS TO INSERT
INSERTED FIRST
INSERTED LAST

DEFINITION
0 ZEROS
I ZEROS

L
FIG. 2 c

U.S. Patent MN. io, 1987

CORRECTED DATA SYMBOLS
AS STORED IN RAM

7 8 9
I
I
I

I

I
I

I I
I

I I
I I

I 1
I I
I I
I I

I 1 2 1 3

763

E l

4 1 5 1 6

764 765

E2 E3

670 1 671 I 672
I
I I I

I el 1 e2 I e3
ERROR BYTES

FIG. 3 a

Sheet 3 of 11 4,649,541

C O R R E C T E D
DATA WORDS AS S E N T
TO HOST PROCESSOR

1 I 1 2

DATA
' SYMBOLS

PARITY
* SYMBOLS

ERROR
COUNTS

FIG. 3 b

ei
NO. OF B Y T E ERRORS NO, OF B I T ERRORS

I = FAILURE T O C O R R E C T

FIG. 3c

U.S. Patent M=. io, 1987 Sheet 4 of 11 4,649,541

I P

Nh I

v) ”\
N

- --I

P
m 1

I
\

I‘ r \ I

I

I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I

U.S. Patent MU. io, 1987

I-

Sheet 5 of 11 4,649,541

L

T

U.S. Patent MW. io, 1987

n
In

"\

0
In

"\

U
In

("\

1

I

Sheet 6 of 11 4,649,541

F

1

L
I

U J

U.S. Patent MS. io, 1987 Sheet 7 of 11 4,649,541

' 0

e

I I

8
v)

1

U.S. Patent MS. io, 1987

y C
L
ti

a

c

5
3

Sheet 8 of 11 4,649,541

co
(3

LL

0
'u

U.S. Patent ~ a r . io, 1987 Sheet 9 of 11 4,649,541

(D
;5
0

00
I - W I\

a
W
-I
-I
0 a
t- z

0
8
a u

U.S. Patent MW. io, 1987 Sheet 10 of 11 4,649,541

f
C d- L
E -\

d-

-
X
Y

b

A

C
(D b
d- E
\

,

Q2

-7 LL

0
d- -

0

a u

U.S. Patent MN. io, 1987 Sheet 11 of 11 4,649,541

I

0
u)

1

REED-SOLOMON DECODER

ORIGIN OF INVENTION
The invention described herein was made in the per-

formance of work under a NASA contract and is sub-
ject to the provisions of Section 305 of the National
Aeronautics and Space Act of 1958, Public Law 85-568
(72 Stat. 435; 42 USC 2457).

BACKGROUND OF THE INVENTION
10

4,649,541

ond becomes the third for output of decoded data, the
third becomes the first for input of new data, and the
first becomes the second for decoding data. The decod-
ing means is comprised of a plurality of sections, each
for carrying out an algorithm step, and each internally
pipelined such that the data is pipelined through the
decoding means. The data received is encoded in a
Reed-Solomon code consisting of codewords made up
of K data and N-K check symbols, where N is an arbi-
trary number and K is a number smaller than N. Each
symbol is made up of J binary bits, encoded with a

This invention relates to decoding data that has been
encoded with a Reed-Solomon code for transmission,
and more specifically to decoding Reed-Solomon en-
coded data containing check bits.

When transmitting data from spacecraft, noise inter-
ference can be greatly reduced by encoding the data in
one of the known error correcting codes. However,
these codes require that extra “overhead” bits be trans-
mitted along with the data, which reduces the rate of
data transmission. Among the most sophisticated and
powerful codes, the Golay and the convolutional codes
require as much as a 50% overhead, thus effectively
halving the data rate. Reed-Solomon codes, discussed in
the article “Polynomial Codes Over Certain Finite
Field” by I. S. Reed and G. Solomon, J. SOC. Industr.
Appl. Math, Vol. 8, No. 2, pp 300-304, June, 1960,
require fewer overhead bits and are therefore quite
attractive.

Several space missions have Reed-Solomon encoders
on board, and Reed-Solomon decoders on the ground,
such as the Galileo Mission. However, commercial
Reed-Solomon decoders are unavailable for the code
format adopted for the Galileo Mission, a format which
requires only a 15% overhead. Only one Reed-Solomon
decoder has even been produced commercially; it oper-
ated with a different format and was too slow for the
required data rate from Galileo. This decoder, de-
scribed in U.S. Pat. No. 4,162,480 by Elwyn R. Ber-
lekamp, used general purpose microcomputers to oper-
ate the decoding processes, which required a minimum
of hardware but caused many internal delays during
processing.

The present invention has the ability to decode three
formats, including the Galileo and the potential of de-
coding other formats as well. The design philosophy is
to use dedicated hardware for higher speed operation,
and to pipeline data processing throughout, and inter-
nally within each stage as well. Although this requires
more hardware than the microprocessor approach,
which is tolerable on ground equipment, it eliminates
delays by allqwing processing to begin on a second
word before it is fully completed on a fvst word, and
calculations are. more direct. In addition, the dedicated
hardware can be operated at a higher clock rate than
can general purpose computers.

SUMMARY OF THE INVENTION
In accordance with the present invention, an encoded

data stream is pipelined through input means to memory
means having three identical memories, each with its
own addressing network and output terminals. There
the input data is stored in one while previously input
received data stored in another is decoded, and decoded
data stored in the third is transmitted out. When all
three functions (input, decoding and output) are done,
switching means automatically swaps memories, the
memories coupled to the three parts, such that the sec-

generator polynomial g(X) fo; the code and a field
generating polynomial M(X) which defines the repre-
sentation of the Galois field. The sequential algorithmic

1. Syndrome Generation for generating a syndrome
15 steps are:

S(X)=SmXm-’+Sm-1Xm-2 . . . +S2X+Si where
m = 2”.

2. Euclid’s Algorithm for determining the error loca-
2o tor polynomial c r (~) = u j ~ + a j - I x i - 1 . . . +ulx+u0

where lS jSm/2 and the error magnitude evaluator
polynomial o(X)=ojX’+oj-IX’-l . . . +ojX+oo
where i=j- 1.

3. Chien Search for computing the roots /3 of the
25 error locator polynomial u(X) to determine the loca-

tion of errors.
4. Error Magnitude Computation for determining the

error magnitudes Ep from the derivative u’(X) of the
3o error locator polynomial, the error magnitude evaluator

35

40

45

50

55

60

65

polynomial o(X) and the root f l of the error locator
polynomial by computing u‘@) and a@?), and the com-
puting E/3 = u’@)/~(@.
5. Correction of errors by adding the error magni-

tudes at the proper locations. The location of an error
associated with a root p is found by taking the negative
logrithm, -log p.

Once the five decoding steps have been completed in
sequence, the three memories are swapped so that the
data pipelined through the last step and stored in the
one of three memories used while decoding is automati-
cally presented to the output means.

The novel features of the invention are set forth with
particularity in the appended claims. The invention will
best be understood from the following description when
read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram of the decoder of the pres-

ent invention.
FIGS. 2u. b and c are illustrations of data transmission

and storage format for data transmission from host pro-
cessor to decoder.

FIGS. 3a, b and c illustrate data format for data trans-
mission from decoder to host computer.

FIG. 4 is a block diagram of a RAM module used in
the present invention.

FIG. 5 is a block diagram of an input module used in
the present invention.

FIG. 6 is a block diagram of a microprogrammed
controller used in several modules.

FIG. 7 is a block diagram of a syndrome generator
module.

FIG. 8 is a block diagram of an Euclid’s algorithm
module.

FIG. 9 is a block diagram of a Chien search module.
FIG. 10 is a block diagram of an error computation

and correction module.

4.649.54 1
3

FIG. 11 is a block diagram of an output module.

DETAILED DESCRIPTION OF THE
DRAWINGS

Referring to FIG. 1, a spacecraft 10 transmits data
(which has been encoded in one of a plurality of estab-
lished Reed-Solomon code formats for error detecting
and correcting) to a host processor 20 at a ground sta-
tion. The host processor then transmits the received
data, R(X) and a keyboard (which, among other things,
identifies the Reed-Solomon code being used), to a
Reed-Solomon decoder 22 for decoding and correction
of byte and bit errors in accordance with the present
invention.

The basic parameters for the Reed-Solomon code are
codeword length (N), symbol size (J), error correction
capability (E) and interleaving depth (I). Also of inter-
est are the field generating polynomial, M(X) and the
generator polynomial for the code g(X). In the present
invention:
N=255 symbols of J bits per symbol.
J = 8 bits.
E= 16, Le., the code will correct all patterns of 16 or

fewer symbol errors.
1=1 through 7. Interleaving depth may be any value

from 2 to 7 provided it is done on a symbol-by-sym-
bo1 basis not a bit-by-bit basis. 1=1 represents the
noninterleaved case.

M(X) = X8+ X4+ X3 + X2+ 1. This polynomial defines
the representation of the Galois field GF(28).

The generator polynomial for the code g(X) defines the
way decoding must be done. In Ehe example shown in
FIGS. 2a, b and c, daEa words, as received from the host
processor are arranged in code blocks of 765 symbols,
as shown in FIG. 2a, and Ehen assembled into three
codewords of 255 symbols each, as shown in FIG. 26.
Thus, as used herein, the term “symbol” refers to an
8-bit element from the Galois Field of 256 elements or
GF(28). A codeword is 255 symbols or 2040 bits. It
consists of 223 symbols of data and 32 parity check
symbols, for a total of 255 symbols. A code block is
three codewords, or 765 symbols, an amount of data
equal to 2040 bits Eimes the interleave depth. Several
codewords may be interleaved together to enhance the
code performance by allowing longer bursts of errors to
be corrected. Data within the code block is not rear-
ranged, but the codewords are interleaved within the
block.

When a spacecraft has less than a full block of data to
transmit to the decoder at a ground station, it inserts
enough zeros to fill 223 symbols per codeword, gener-
ates parity in the usual way then removes the zeros
before transmission through space. Each data block sent
to the decoder must contain the keyword followed by
(255-Z)XI bytes of data, where I is the interleave
depth and Z is the number of zeros to be inserted.

The host processor must determine how many zeros
to reinsert and inform the decoder by means of an 8-bit
binary number called Z which is contained in the key-
word shown in FIG. 2c. In addition, it is possible that
the zero symbols could be inserted either before the
data symbols or after the data symbols, but before the
parity symbols. Therefore, the keyword must contain
one bit to specify in which of the two locations the

4 .
zeros are to be reinserted. In order for decoding to take
place, the host processor at a ground station must trans-
mit a 16-bit keyword with a code block of 8-bit symbols
arranged in pairs, as shown in FIG. 2a. The keyword is

5 used by the decoder 22, which assembles the data sym-
bols in a decoder RAM 30 as shown in FIG. 26 After
decoding occurs, the decoder will return to the host
processor 20 the corrected data and information about
the number of bytes in error and the total bit errors as

Referring to the keyword format shown in FIG. 2,
the first bit 15 is not used at this time and should be set
to zero. Bit 14 specifies the position of the zeros to be
inserted (O=zeros inserted before the data; 1 =zeros

l5 inserted after data). Bit 13 specifies whether the code
generator polynomial is a palindrome (Bit 13= 1) or the
original polynomial (the product of the first 32 powers
of alpha). Bits 12 and 11 specify the field generator
polynomial used. For example, 00 calls for the Voyager

2o generator polynomial, and 01 calls for the Berlekamp
code. Thus, up to four different field polynomials may
be specified. Bits 10, 9 and 8 specify the depth of inter-
leaving, I (a 3 bit binary number from 1 to 7). Bits 0
through 7 comprise Z , Ehe number of zero bytes to be

25 inserted in each codeword. Z is an 8-bit binary number
and can have any value from 0 through 223.

The data block following a keyword is composed as
follows. First there are (223 - Z) X I data bytes followed

3o by 32x1 parity bytes. This string of bytes is down-
loaded to the decoder in 16-bit words with the first byte
being the most significant byte in the word. If the last
word contains only one useful byte then it becomes the
MSB and the other byte (X) may have any value. Thus,

35 the input E 0 the decoder 22 (FIG. 1) received from the
host processor is as shown in FIG. 28 is essentially the
Reed-Solomon code block transmitted by the space-
craft 10 (FIG. 1).

As directed by the interleaving value in the keyword,
the decoder 22 deinterleaves its incoming data and
stores it in its internal RAM memory 30 in reassembled
codeword form, as illustrated in FIG. 2b. Once pro-
cessed and corrected for errors, the codewords are
stored in the RAM as shown in FIG. 3a. After decod-

45 ing, the data block returned to the host processor will
contain the corrected data bytes followed by the error
counts as shown in FIG. db. The parity bytes are not
reEurned. The data bytes will be arranged exactly as
they were downloaded, Le., sent to the decoder by the

50 host processor. Immediately following the last byte of
data will be the error bytes shown in FIG. 3c. These are
called E (total bytes corrected) and e (total bits cor-
rected). E and e bytes give error counts for one code-
word only. Thus there will be one E and one e per

55 codeword and there are three codewords in a block for
I = 3. These are appended to the data with no gaps, and
this block is Ehen uploaded (Le., sent back) to the host
processor in I6bit words with the first 8-biE byte being
the most significant in a word. The last word may con-

60 tain an unnecessary byte (X) in the LSB position. The
first bit in the E byte is the “failure to correct” bit which
will only be set if the decoder was unable to perform
decoding on that codeword due to an excessive number
of errors. The decoder does not transmit the keyword

65 back to the host processor 20 (FIG. 1), and omits the
inserted zeros.

FIG. 1 shows the organization of the decoder 22 in
accordance with the present invention. It includes an

10 shown in FIGS. 3a, db and 3c.

5
input module 24, a RAM memory 30, processing means
40 and output module 26. The processing means 40 is
comprised of a syndrome generator module 42, an Eu-
clidian algorithm module 44, a Chien search module 46,
and an error computation and correction module 48.
The modules of the processing means 40 perform the
required operations in the sequence shown by the con-
necting lines using dedicated hardware. It employs
pipeline data processing throughout, both within the
modules (functional blocks) and within the overall de-
coder. The use of a RAM interface with the input and
output modules eliminates data transfer delays by keep-
ing data in place in memory while switching access to
modules 42 and 48 as needed. The processing means
operates on polynomials by passing them through
FIFOs, treating each term sequentially as it appears at
FIFO outputs. This allows processing to begin on a
second word before it is fully completed on a first word,
and calculations are more direct. In addition, the dedi-
cated hardware can operate at a higher clock rate than
can programmed microprocessors, or a general purpose
computer.

The RAM module shown in FIG. 4 consists of three
RAM segments 31, 32 and 33, each configured as 2K
word of 8 bits. Each RAM segment can thus store more
than one codeword. The RAM memory 30 is accessed
by two modules in the decoding means 40 during de-
coding, namely the syndrome generator module (SGM)
42 at the beginning end of the pipelined decoding means
40, and the error computation and correction module
(ECCM) 48 at the finishing end. It is also accessed by
the input module (INM) 24 and the output module
(OUTM) 26 which provide the necessary interface with
the host processor.

Thus the Reed-Solomon decoder 22 can be thought
of as having three main parts, each of which needs
access to the RAM. These three parts are the input
module 24, decoding means 40 and output module 26, as
shown in FIGS. 1 and 4. At any given instant in time,
each of the three parts is connected to one of three
RAMS through a 1-of-3 I/O selector gates 34,35 and 36.
Each of the three parts is also connected for control to
a 3-state counter 37 shown in FIG. 4. The 3-state
counter is coupled to a decoder 38 which in turn enables
a selected one of the I-of-3 I/O selector gates 34,35 and
36.

The state of the counter 37 is controlled by each of
the input module 24, processing means 40 and output
module 26 through AND gate 27 and NOR gate 28 at
respective set (S) and reset (R) input terminals of a
flip-flop 29. When gate 27 receives a DONE signal from
each of the three parts, 24,40 and 26, it sets the flip-flop,
which results in a clock pulse called SWAP being sent
to the 3-state counter 37. The SWAP signal is also sent
to all three parts 24, 40 and 26 which then drop their
respective DONE signals causing NOR gate 28 to be-
come active, which resets flip-flop 39. The SWAP sig-
nal causes counter 37 to advance one state and via de-
coder 38 to effect the swapping of all RAM data and

4.64934 1
6

allows overlapping, since all blocks of data are accessi-
ble to the input, processing and output modules at the
proper times. In that manner, overall pipelining is ac-
complished, as well as internal pipelining within the

5 decoding means 30. The output module 26 can begin
outputting the first code block while the modules in the
decoding means work on a second block, and the input
module takes in a third code block. This is shown in the
following table:

10

RAM
SEGMENT

1 2 3

15 State A INPUT PROC. OUTPUT
State E PROC. OUTPUT INPUT
State C OUTPUT INPUT PROC.

When the first RAM unit is in the input mode, the sec-
20 ond is in the processing mode and the third is in the

output mode. When the swap occurs under control of
the decoder 38, the gates 34,35 and 36 are switched and
now the first RAM unit is in the processing mode, the
second is in the output mode, and the third is in the

25 input mode. The next swap effects switching in each of
the selector gates 34,35 and 36, and then the first RAM
unit is in the output mode, the second in the input mode,
and the third in the processing mode.

The RAM “swapping” feature is central to the over-
30 all pipeline operation of the decoder. In summary, it

consists of the 3-state counter 37 which increments only ‘
after all three operations (input, data processing, out-
put) are “done” on three different code blocks. At this
point, the swap occurs and data effectively moves down

35 the overall pipeline, but in actuality remains in the same
RAM unit from the time it is input to the time it is
output. The swapping is accomplished by switching all
of the address lines and all of the data lines using 748244
tri-state buffer devices. The purpose of this approach is

40 to eliminate the delav time reauired to actually transfer

4 5

5 0

55

address lines in a sequentiai3-st;te pattern. This has the 60
effect of moving the data from one processing step to
the next, once all three parts are done with their steps,
without any physical movement of the data actually
taking place, where the processing steps are to input
data, process data and output data in code blocks. In the 65
second step, namely processing data through means 40,
the data is automatically pipelined through the modules
42, 44, and 48 shown in FIG. 1. This arrangement

data from one moduie to another inside the decoder 22,
where the decoding means 40 is considered as one mod-
ule, although comprised of several through which data
is pipelined so that there is both overall pipelining, as
described with reference to FIG. 4, and pipelining in
the data decoding means 40 where decoding and error
correcting takes place.

The organization of the input module 24 is shown in
FIG. 5. It is primarily a controller which must deter-
mine where to store incoming data in a RAM unit. The
data is received in input register 241, Code conversion,
shown by block 24b, may be optionally provided in
transferring the input data to the RAM 30 (FIG. 1). A
microcontroller (microprogrammed controller) 24c
generates a series of addresses for the RAM unit. It does
this by first examining the keyword (the first kpu!
word) to determine depth of interleaving (I) and the
number of zeros to reinsert (Z). It then presets an inter-
leave counter 24d and an address counter 24e which
generate the proper sequence of addresses. At the
proper time, it drives the data lines to zero and proceeds
to increment the RAM address counters 24e and 24d,
thus effecting the zero reinsertion. The keyword also
gets stored in RAM. It should be recalled that the 1-of-3
I/O selector gates determine which RAM unit is ad-
dressed to receive the input data. For example, if I, the
interleaved depth is equal to three and Z , the number of
zero bytes to be inserted is 7, then the data lines would

4.64934 11
7 8

be driven to zero and the address counter 24 started at
1. Then while the counters 24e and 24d are incremented
in turn and the address counter 24e tracks the Z number
(i.e., is decremented seven times) zero symbols will be
written into RAM to complete the zero insertion pro-
cess. In other words, for each count of the address
register Ne, the counter 24d increments from 1 to 3 and
back again. A similar cycle is performed for the data
transfer with the initial number stored in the address
counter %4e being 223 -7 or 2 16. When this process is
completed (255-Z)aI data symbols will have been loaded
into a RAM unit with Z.1 zeros inserted.

FIG. 6 shows an arrangement for a microcontroller
used in the modules of the processing means 40 (FIG.
1). It comprises a status multiplexer 2% which receives
status inputs of the module being controlled, a status
latch 256 and a microprogram memory (PROM) 2% A
pipeline register 25d receives control words from the
PROM as they are read out to provide control outputs
to the module, and status line select outputs which con-
trol the multiplexer to select the status input for the next
control word to be selected in conjunction with the next
address select code from the control word in the pipe-
line register. For a more complete description of the
organization and operation of this microcontroller (mi-
croprogrammed controller), reference is made to appli-
cation Ser. No. 587,749 filed by the same inventor on
Mar. 9, 1984, which is fully incorporated herein by
reference. What is central to the microprogrammed
controller is that the selected status signal and the next
address code of the current control word select the next
control word. Control is thus conditional in that the
next control word is taken from one section of PROM
or another, depending upon whether the selected status
signal is 1 or 0.

Before describing the processing means 40 in more
detail, the basic algorithm used will be described. It
consists of five steps, each of which is of itself conven-
tional, implemented by separate modules, as follows:

(1) Syndrome Generation (FIG. 7)
This algorithm consists of a matrix multiplication

composed of 16,320 individual arithmetic operations,
which yields the syndrome, S(X), which consists of 32
terms and has the form:

S (X) = S ~ Z X ~ ~ + S Z ~ X ~ ~ . . . +szx+sl

It is derived from the received codeword which may be
expressed as follows:

R (x) = R ~ + R ~ x + R ~ x ~ - ~
+ R ~ P X ~ ~ ~ + R ~ ~ ~ X ~ ' ~

Each of the 32 coefficients of the symdrome are evalu-
ated using the following expression:

254
S, = ,X R p E n

1=0

(2) Eudlid's Algorithm (FIG. 8)
This step consists of finding the greatest common

divisor of two polynomials by performing a series of
polynomial divisions. This yields the error locator poly-

5

10

15

20

25

30

35

40

45

50

55

60

65

nomial, a(X) and the error magnitude evaluator poly-
nomial o(X).

(3) Chien Search (FIG. 9)
This step is the process of locating the errors by find-

ing the roots of the error locator polynomial. These
roots are called p's.

(4) Error Magnitude Computation (FIG. 10)
This step is the determination of the error magnitudes

by first evaluating o(P) and a'@) and then dividing the
two, as shown below. This yields the error magnitudes,
called E's. The location of an error associated with a
root, B, is found by taking the negative logarithm, i.e.,

The magnitude of the error is found by evaluating the
following expressing at B:

Address of error= --log p

EP =oKva'(X),

where X=B

with n having a value equal to the number of errors,
and:

cr'(X)=cr&m+crm-lX2m-2+ . . . +crlX2+UO

(5) Error Correction (FIG. 10)
This is the process of adding the error magnitudes

(E's) to the received data at the locations corresponding
to the B's. This produces the corrected codeword,

Decoding Means 40
The modules for eaeh of the five steps of the decod-

ing means will now be deseribed in detail. In the syn-
drome generator module 42 shown in FIG. 7, data is
received from a RAM unit by pipeline register 102. This
module consists of a matrix multiplication of 16,320
individual arithmetic operations performed by a total of
32 almost identical calculator circuits 104 and accumu-
lator circuits 105. Each calculator circuit must perform
255 multiplications and 255 additions, via adders 106, in
order to calculate one syndrome symbol S(X). The
calculated syndrome is passed to the next module (the
Euclid's Algorithm module) by a multiplexer 109. All
operations are under control of a fmed sequence micro-
program stored in a dedicated microcontroller 108.

The syndrome generator module is by far the largest
circuit complex in the decoder. All 32 cdculator cir-
cuits 104 run simultaneously and calculate the complete
syndrome symbol in about 15 microseconds. This is an
equivalent rate of over a billion operations per second.
The rate is set this high in order that the decoding be
done in real time, and if the syndrome symbols turn out
to be all zero, as is often the case, that codeword is error
free and the next codeword can be processed immedi-
ately. The microcontroller allows the internal process-
ing of this module to be pipelined so that work can start
on the next codeword before the present one is entirely
completed.

The Euclid's algorithm module 44, shown in FIG. 8,
while not as large as the syndrome generator module,
has more functions to perform, and thus is the most
complex module in the decoder. It performs a series of

W).

496
9

polynomial divisions and multiplications to determine
the greatest common divisor between two polynomials
in order to compute the error locator polynomial v(X)
and the error magnitude evaluator polynomial o(X).

The syndrome S(X) polynomials are received from
the syndrome generator module and stored in a FIFO
112. The calculations of this step are performed serially
on the polynomial coefficients, as they are shifted out of
the FIFO 112, using coefficients R, T and A stored
FIFOs 114,116 and 118. When a predetermined condi-
tion is reached, as determined by select units 114a and
1180, the computation stops, except in unit 119 which
then extracts the derivative u'(X) of the error locator
u(X) by merely removing its odd powered terms, at
which time the module contains at outputs 1146, 1186
and 119c the error magnitude evaluator polynomial
o(X) and the error locator polynomial u(X), and the
derivative u'(X), all under control of a microcontroller
120. The various arithmetic operations required are
indicated by the arithmetic function symbols +, X and
+ in circles. Note that for division, two buffer registers
121 and 122 are provided. The output of the D register
121 is connected to a zero detect circuit 123 to deter-
mine when the syndrome S(X) is zero. This allows the
microcontroller to skip the step for the symbol and go
on to the next one. For a complete description of Eu-
clid's algorithm for polynomials, see The Theory of
Information and Coding by Robert J. McEliece, in
ENCYCLOPEDIA OF MATHEMATICS AND ITS
APPLICATIONS, Addison-Wesley Publishing Co.

The Chien search module shown in FIG. 9, also
under control of yet another microcontroller 130, lo-
cates the errors by finding the roots @) of the error
locating polynomial u@). These roots point to the
error locations in memory. The roots are found by di-
viding the error locating polynomial u(X) by some trial
divisor (X-pi) . If the remainder is zero, then piis a root
of u(X). The quotient now becomes the new dividend
and the process is repeated as necessary until all roots
are found. If the correct number of roots are not found,
that is, if the polynomial does not completely factor,
then the codeword contains more than 16 errors and is

.not correctable. The trial divisors are taken in order
from (X- 1) to (X-255). Implementation of the mod-
ule comprises FIFO's 131 and 132 to store and shift the
dividend and quotient, respectively, during division, a
multiplier 133, an adder 134 and a zero detector 135.
The adder actually performs the operation of subtract-
ing after multiplying in the decimal arithmetic example
below. Subtraction is equivalent to addition in this Ga-
lois Field, GF(28), and is performed by exclusive-OR
gates. A register 136 stores the remainder, and a counter
137 is incremented for producing the p's used in the
trial polynomials, all under control of the microcon-
troller 130.

The following is an example for the polynomial,
u(X)=X4+7X3+ 13xZ+5X+6. Decimal arithmetic is
used for illustration purposes; the actual arithmetic is
binary Galois Field arithmetic.

(1977), V O ~ . 3, pp 175-8.

49,541
10

4x3 + 12x2
x2 + 5x
x2 + 3x

W + 6

0
10 w+6

In the module shown in FIG. 10, both error magni-
tude computation and error correction are combined.

15 Error magnitude computation is performed in two
steps, under the direction of a microcontroller 140. In
the first step, the error magnitude evaluator polynomial
om) is received in a FIFO 142 and the derivative of the
error locator polynomial u'(X) is received in a FIFO

20 144. From these the error magnitudes Ep and location
p are evaluated using the roots p found by the Chien
search module and received in FIFO register 146. This
is done by shifting the two polynomials out of the
FIFO's 142 and 144, evaluating the terms one by one,

25 and accumulating the results in registers 1 4 8 ~ and 1486.
The evaluated error magnitude polynomial a@) stored
in the accumulator 148a is divided by the evaluated
derivative of the error locator polynomial r'@) in a
circuit 150. The results are the actual error magnitudes

30 EP. As noted hereinbefore, EP is the ratio of o(p) to

The second step is the actual correction of the errors.
The roots are used to access the symbol location in the
RAM through a logarithm table 152 which converts the

35 roots 8 into the address of the error by converting p
into -log p. Then the error magnitude Ep is added to
the symbol received from the RAM at that address to
correct it. For that purpose, the received symbol is
temporarily stored in a register 156. Lastly, the number

40 of errors in the codeword is totaled by an error counter
158 and then transmitted to the RAM (to be transmitted
to the host computer by the output module, as described
earlier, at the end of the corrected codeword), all under
control of the microcontroller 140.

In order to be able to decode in real time, the decoder
22 (FIG. 1) must be designed to process data at a mini-
mum rate of 1 megabit per second under worst-case
conditions. The worst case occurs at exactly 16 errors in
a codeword. Processing a codeword having fewer er-

50 rors requires less time; processing a codeword with
more than 16 errors causes an early indication of inabil-
ity to correct. The average data rate is roughly doubled
by having the incoming data in a continuous stream,
which is possible since the decoder can process in over-

55 lapping fashion by providing that the input, decoding,
and output data processing modules have simultaneous
access to various data sets in the RAM module.

The organization of the output module 26 is shown in
FIG. 11. This module essentially reverses the procedure

60 of the input module shown in FIG. 5. It is comprised of
a microcontroller 160, an interleave counter 162 and
address counter 164 used to address the RAM in mod-
ule 30, a converter 166 for code conversion and an
output register 168. A microcontroller 162 sequences

The output module reads the keyword from RAM to
determine the depth of interleaving and the number of
zeros to be reinserted. With these numbers, the mi-

r'@).

45

65 the outputting procedures.

4.649.541
7 -

11
crocontroller 160 presets the counters 162 and 164
which will generate the correct sequences of addresses
for output of data. As the data is read, it is transmitted
to the host processor 20 (FIG. 1).

The data block returned to the host processor will
contain the corrected data bytes followed by the error
counts. The parity bytes are not returned. The data
bytes will be arranged exactly as they were down-
loaded. Immediately following the last byte of data will
be the error bytes. These are called E (total bytes cor-
rected) and e (total bits corrected). E and e bytes give
error counts for one codeword only. Thus there will be
one E and one e per codeword and there are I code-
words in a block. These are appended to the data with
no gaps and this block is then uploaded to the host
processor in 16-bit words with the first byte being the
most significant in a word. The last word may contain
an unnecessary byte in the LSB position. The first bit in
the E byte is the "failure to correct" bit which will only
be set if the decoder was unable to perform decoding on
the codeword due to an excessive number of errors.

Although particular embodiments of the invention
have been described and illustrated herein, it is recog-
nized that modifications and variations may readily
occur to those skilled in the art. Consequently, it is
intended that the claims be interpreted to cover such
modifications and variations.

What is claimed is:
1. A decoder for decoding Reed-Solomon encoded

input means for receiving said encoded data in a
stream of code blocks,

memory means coupled to said input means for stor-
ing said received encoded data,

processing means coupled to said memory means for
performing decoding functions on said stored en-
coded data and returning processed data to said
memory,

output means coupled to said memory means for
transmitting decoded data from said decoder,

said memory means including three identical memo-
ries, one for storing encoded data to be decoded,
one for storing data being decoded, and one for
storing decoded data being transmitted out of the
decoder, each memory having its own addressing
means and data output terminals,

means for determining when each of said input
means, processing means and output means have
completed their respective functions on a different
code block, and

switching means responsive to said determining
means for sequentially swapping memories be-
tween said input means, processing means and out-
put means, whereby overall pipelining of code
blocks is provided through said decoder without
physically transferring code blocks through more
than one memory.

2. A decoder as defined in claim 1 wherein said pro-
cessing means is comprised of a plurality of sections,
each for carrying out an algorithm step, and each pipe-
lined such that data is pipelined through the decoding
means for decoding while overall pipelining is affected
by memory swapping.

3. A decoder as defined in claim 2 wherein said data
is encoded in a Reed-Solomon code consisting of code-
words made up of K data and N-K check symbols,
where K is an arbitrary number and K is a number
smaller than N, and each symbol is made up of J binary

data comprising

.

12
- 7 - -

bits encoded with a generator polynomial g(X) and a
field generating polynomial M(X) which defines the
representation of the Galois field, and said processing
means comprises the following sequentially pipelined

pipelined means for generating a syndrome polyno-
mial S(X) in response to each received codeword
R(X), wherein said syndrome consists of m terms
and has the form

s(X)=smx"-'+sm-lx"-2. . . + s z x + s i

5 processing means:

10

and said received code word is defined as

15 R(X)=Ro+RiX+R2X2.. . Rn-iXN-'+R,JN

pipelined means for computing Euclid's algorithm for
determining an error locator polynomial
a(X)=u,Xj+crj-lXj-1 . . . +alX+uo, where
l S j S m / 2 and an error magnitude evaluator
polymomial o(X) = wJ?+ a;- IS- 1 . . . o,X+ oo,
where i=j- 1,

pipelined means for computing the roots p of the
error locator polynomial w(X) to determine the

means for computing the error magnitudes EQ from
the derivative d (X] of the error locator polyno-
mial, the error magnitude evaluator polynomial
w(X) and the root /3 of the error locator polyno-
mial, comprising means for computing cr'(p) and
a(@, and means for computing EB = u(P)/o(P),
and

pipelined means for correction of error by adding the
error magnitudes at the proper locations found by
taking the negative logrithm of the error locator
root p.

4. A decoder as defined in claim 3 wherein each code
block received includes a keyword which specifies for
the decoder the generator polynomial g(X) to be used,

4o whereby said decoder may decode a number of differ-
ent Reed-Solomon codes generated with a different
generator polynomial.

5. A decoder as defined in claim 4 wherein each key-
word of a code block received specifies the depth of

45 interleaving of symbols, and including means for dein-
terleaving a code block and arranging it into codewords
for processing.
6. A method of decoding Reed-Solomon encoded

data received in a stream of encoded blocks comprised
5o of five sequential algorithms through which each block

of data is processed for decoding consisting of
generating a syndrome polynomial S (X) in response

to each received codeword R e) , wherein said
syndrome consists of m Eerms and has the form

2o

25 location of errors,

3o

35

55 s(X)=sx"-I+sm-*x"-2... +s2x+si

and said received code word is defined as

R(X)=R0+RlX+R2X2 ' . ' Rn-lXN-i+R,,XN
60

computing Euclid's algorithm for determining an
error locator polynomial u(X) = u,Xj+ crj- lXi- 1 . .
. + ulX+ uo, where 1 S j Sm/2 and an error mag-
nitude evaluator polynomial w(x) and w;X'+-
wj-lXi-1 ~ . . wlX+wo, where i is the ith term of
the evaluator polynomial w(X), and is equal to
j-1, where j is the jth term of the error locator
polynomial,

65

4,649,54 1
13 14

computing the roots p of the error locator polyno-
mial o(X) to determine the location of errors,

computing the error magnitudes ED from the deriva-
tive c r t (~) of the locator po~ynomial, the

the root /3 of the error locator polynomial, com-
prising means for computing d (p) and ow), and
means for computing ED = u(@)/o(p), and

7. A method of decoding Reed-Solomon encoded
data as defined in claim 6 wherein each keyword of a
code block received specifies the depth of interleaving
of symbols, and including means for deinterleaving a

and 5 code block and arranging it into codewords for process-
ing.

8. A method of decoding Reed-Solomon encoded
data as defined in claim 7 wherein codewords are pipe-
lined through the sequential algorithms, thereby elimi-

magnitude evaluator polynomial

correcting errors by adding the error ma@tudes at 10 nating delays by allowing processing to begin on a
codeword before decoding is completed on a first code- locations found by the negative logrithm of

the error locator root B, word.
wherein each code block received includes a key- 9. A method of decoding Reed-Solomon encoded

word which specifies for the decoder the generator data as defined in claim 8 wherein the number of errors
polynomial g G) to be used, whereby said decoder may 15 in a codeword is totaled for transrnsittal with the de-
decode a number of different Reed-Solomon codes coded data.
generated with a different generator polynomial. * * * * *

20

25

30

35

40

45

50

55

60

65

