
N87"21825

THE QUASI-LINEAR RELAXATION OF THICK-TARGET ELECTRON
BEAMS IN SOLAR FLARES

K. G. McClements and J. C. Brown

Department of Astronomy

The University
Glasgow GI2 8QQ, Scotland, UK

A. G. Emslie

Department of Physics
The University of Alabama in Huntsville

Huntsville, AL 35899, USA

ABSTRACT

The effects of quasi-linear interactions on thick-target electron beams

in the solar corona are investigated. Coulomb collisions produce regions of

positive gradient in electron distributions which are initially monotonic

decreasing functions of energy. In the resulting two-stream instability,

energy and momentum are transferred from electrons to Langmuir waves and the

region of positive slope in the electron distribution is replaced by a

plateau. In the corona, the timescale for this quasi-linear relaxation is

very short compared to the collision time. It is therefore possible to model

the effects of quasi-linear relaxation by replacing any region of positive

slope in the distribution by a plateau at each time step, in such a way as to

conserve particle number. The X-ray bremsstrahlung and collisional heating

rate produced by a relaxed beam are evaluated.

Although the analysis is strictly steady state, it is relevant to the

theoretical interpretation of hard X-ray bursts with durations of the order

of a few seconds (i.e. the majority of such bursts).

I. Introduction

It is widely accepted that hard X-ray bursts observed during solar flares

are produced by the bremsstrahlung of non-thermal electrons, but relatively

few authors have considered the possible consequences of collective plasma

effects on the dynamics of thick-target electron beams. Considerable

attention has been paid recently to the importance of reverse current Ohmic

losses due to collisional resistivity (e.g. Emslie 1980), but the effects of

plasma wave generation resulting from beam instability (as described by quasi-

linear theory) have been neglected by most authors. Emslie and Smith (1984)

pointed out that the effect of Coulomb collisions is to produce regions of

positive gradient in electron distributions which are initially monotonic

decreasing functions of energy: this gives rise to the well-known "bump on
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tail" instability, and Langmuir wave generation is set up.

In this paper we examine the effect of quasi-linear relaxation on the

bremsstrahlung emission and collisional heating rate associated with an

electron beam in the corona. In Section 2, the quasi-linear equations and

their asymptotic solutions are discussed. In Section 3, the collisional

energy loss rate of an electron in a warm target is used to infer the evolu-

tion of the electron beam in a collisionally dominated thick target.

Numerical computations of the distribution function, with and without quasi-

linear relaxation, are presented. Computations of the corresponding hard

X-ray spectra and heating rates are presented in Section 4. In Section 5 we

compare our results with those of previous authors and consider their

implications.

2. The Quasi-linear Equations

In the following we will assume that the source region is a homogeneous

fully ionized hydrogen plasma. The beam electrons will be assumed to be non-

relativistic and to be streaming in one direction only: for simplicity, pitch

angle scattering will be neglected. In order to simplify the quasi-linear

equations, only Langmuir waves propagating in the streaming direction will be

considered.

Let f(v) and W(v) denote respectively the electron velocity distribution

(differential in velocity space) and the energy density in Langmuir waves

(differential in phase velocity space). Then the quasi-linear equations may

be written as (Melrose 1980)

+v]df - _ _v v W(v) (I)
dt mn

_f
dW _ --_mD v2W(v) ___v (2)
dt n

where m is the electronic mass, n is the ambient density and mp is the electron
plasma frequency. In general, d/dt denotes the total (i.e. advective) time

derivative. We will now argue that, if there exists a region of positive slope

in the electron distribution (i.e. positive 3f corresponding to wave growth)

then quasi-linear interactions will dominate over Coulomb interactions in the

corona. The wave growth rate associated with equation (2) is

_w = _ _p v2 _f (3)
n 3v

Now consider the situation shown schematically in Figure i in which a beam

distribution is superimposed on a background Maxwellian, a region of sub-

stantial positive slope lying between v I and v 2. Putting

3f _ f (Av = v 2- Vl) and defining3v -- Av

n I - f dv _ f Av

v I
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Figure i. The form of the combined electron distribution giving rise to

the "bump on tail" instability. A region of positive slope lies between

velocities v I and v 2. The plateau of the relaxed distribution is defined

by the three parameters VA, v B and fp.

the growth rate may be written as

Yw =

while the eolllsional damping rate is given by (Ginzburg 1961)

Yc _ 7 %n i0_ _ 70
(4)

where T is the electron temperature, and the logarithmic factor has been set

equal to a constant with T _ IoTK and n _ 1010 cm -3 (i.e. typical coronal

values). From equations (3a) and (4) we obtain, assuming Av _ v (a

reasonable assumption in practice),

Yw /T _3A

r : 2500nlt ) .
(5)

The value of n I depends principally on the total injected electron flux. For

fluxes of the order of lol9cm-2s -I (fluxes as large as this are required by

the thick target interpretation of some hard X-ray bursts) it turns out that

nI _ 106 cm -3. Putting T _ IOTK and n _ iO I0 cm -3 as before indicates
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that r _ 105 , so that the timescale for quasi-linear relaxation is extremely

short compared to the collision time. This justifies the omission of

collisional terms in equation (i) and enables us to model the effects of

relaxation by applying the asymptotic solution of equations (i) and (2) (in

the chromosphere, F << i, so that the effects of quasi-linear relaxation may

be neglected in that region).

The quasi-linear equations can only be solved numerically. Grognard

(1975) obtained a solution of the one-dimensional quasi-linear equations

including spontaneous emission terms, with the initial conditions of zero

wavelevel and a Gaussian electron distribution. As expected, the asymptotic

solution for f(v) is a plateau in velocity space. However, Grognard points

out that the time for the plateau to be formed is considerably longer than

asymptotic solution is only valid for times T _ iOO/Yw: this does not,

however, alter our conclusion that quasi-linear interactions dominate over
Coulomb interactions in the Corona.

Although a numerical treatment of equations (I) and (2) is essential

for studying the details of the relaxation process, the asymptotic value of

the wavelevel may be readily determined for any given initial distribution

f(v, O). Melrose (1980) obtained such an asymptotic solution in the case of

a delta function velocity distribution. An explicit calculation of the wave-

level to be expected is important because of the (possibly observable) plasma

radiation it excites. In fact Emslie and Smith (1984), on the basis of their

calculation, estimated that the wavelevel would give rise to a microwaw_ flux

far in excess of that observed in a typical event, unless the microwaves are

strongly gyroresonance absorbed. A convincing explanation of this anomaly,

consistent with the thick-target model, does not yet exist.

3. The Evolution Of The Electron Distribution with Depth

We will assume that instability (i.e. wave generation) will always

occur whenever a region of positive slope appears in the electron distribu-

tion. The combined distribution function is given by

f(v) = fb(v) + fo(V) (6)

where fo is the distribution function for the background plasma and fb is
the distribution function of a vertically injected beam of electrons.

Following Knight and Sturrock (1977) we will consider the beam distribution

corresponding to the injected differential energy spectrum

Fo(Eo) (6 I) F E°°6-1= - (7)

oo (Eoo+ Eo)6

where Foo is the total injected flux (cm-2), and Eoo and _ are constants.

Neglecting pitch angle scattering, the instantaneous steady state electron

energy spectrum F(E) is given by the continuity equation

F(E) dE = Fo(Eo) dE o (8)

and the beam distribution function is given by
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i.eo

v fb(V) dv = F(E) dE

fb(v) -- mF(E). (9)

To evaluate Eo from any given E we require the beam electron energy loss rate.

It turns out that the relaxation process affects f(v) at energies of typically

a few kT (depending on the model parameters, such as Foo), and therefore it is

not self-conslstent here to use the cold target formula for the energy loss

rate assumed by, for example, Brown (1971). The energy loss rate of an

electron in a warm fully ionized target, taking into account only electron-

electron collisions (cf Emslie 1978), is given by

dE= 2_ e 4 _nA
nv (_(x) - 2x_' (x)) (i0)dt E

(Spitzer 1962) where £nA_ 25 is the Coulomb logarithm, e is the electronic

charge, x = (E/kT) I/2 and _ is the error function. Writing

_(x) = _(x) - 2x_'(x), K = 2_e _ £nA and defining the usual column depth
variable

N = n dz' = nz

O

equation (i0) becomes

dEd--N = - $(x). (IOa)

The numerical solution of equation (10a) yields Eo for prescribed E,N .

dEo/dE is then given by

where x° = (Eo/kT)_.

dE_.__o = E _(Xo) (II)

dE Eo _(x)

Using equations (9), (IOa), and (ii) we can evaluate f(v) (neglecting

the effects of quasi-linear relaxation) for any prescribed set of parameters

(Foo, Eoo , 6, T and n). Quasi-linear relaxation can be incorporated in the

scheme in the following way: if a region of positive slope is found in the

combined distribution, it is immediately replaced by a plateau which

conserves particle number. The three parameters which define the plateau

are, as indicated in Figure I, VA, vB and fp. These are (uniquely) defined
by the condition that

VB(f(v) - fp) dv = O. (12)

VA

Although there are three unknown parameters, only one of these is independent:

they may all be readily determined numerically. The smoothed-out distribution

function minus the background Maxwellian can then be taken to be the new

Fo(Eo) , and the distribution function F(E) corresponding to the subsequent

N-step can be evaluated as before. Eo- E is thus the energy lost by an
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electron in a single N-step. If Eo lies in the plateau region then

m Fo(E o) = fp- fo(Eo). (13)

Otherwise, Fo(Eo) is given by the function F(E) as evaluated in the previous

step.

In Figure 2 we present numerical computations of the combined distribu-

tion function f(v), for typical thick-target parameters, at a depth of

1021 cm-2. The plateau formed by relaxation extends from 13keV to 130keV.

' " ' ' ' I i , , , ! i , , l

IO-'

f(v)

4 5 6 7 IJ | iO I Z 3 4 | I T • | IO !

E

Figure 2. The combined distribution function for the model parameters

7 ii 3 19 2 1 TheT = i0 K, n = I0 cm- , Foo = i0 cm- s- ,Eoo = 20keV, 6 = 4.
h 21 2column dept is i0 cm- . The dotted line shows the plateau formed by

i 3 I 1relaxat'on. (f is measured in electrons cm- (cms-)- and E is

measured in keY.)

4. The Bremsstrahlun_ Emission and Heating Rate

Figure 3 shows the local bremsstrahlung spectrum corresponding to the

distribution function shown in Figure 2 (the non-relativistic Bethe-Heitler

cross-section, averaged over solid angle, was used). The dotted line shows

the spectrum obtained by including quasi-linear relaxation. It may be seen
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Figure 3. X-ray bremsstrahlung emissivity spectrum corresponding to the

distribution function shown in Figure 2. (dj/dc is measured in photons

cm -3 s-I keY and c is measured in keV.)

that relaxation has relatively little effect on the X-ray spectrum.

Qualitatively, the emissivity is reduced in an energy range corresponding

roughly to the plateau region in the electron distribution: the reduction

is never more than about 50%. If the X-ray emissivity is integrated over

the source volume, the overall effect of relaxation on the spectrum is much

smaller: the reduction is < 10%.

The above results are in qualitative agreement with those of Hoyng,

Melrose and Adams (1979). They may be attributed to the "filtering" property

of the Bethe-Heitler cross-section. What this means is that the source

function f(v) is very sensitive to small perturbations on the photon spectrum.

Conversely, different electron distributions can give rise to bremsstrahlung

spectra which are almost identical (cf Brown 1975, Craig 1979).

In Figure 4 the collisional heating rate is shown as a function of column

depth with the same beam and source parameters as before. The dotted line

again indicates the case in which quasi-linear interactions are included.

There is a considerable reduction in the heating rate for N _ 1020 cm -2
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Figure 4. Collisional heating rate as a function of column depth with the

same beam and plasma parameters as before. (IB is measured in ergs cm -3 s-I
and N is measured in cm-2.)

(_ 50% at N = 1021 cm-2): this is to be expected since energy is being lost

from the beam in the form of Langmuir waves. These waves are then damped and

thereby heat the plasma: the total energy deposition rate is therefore greater

than that indicated by the dotted line in Figure 4. The bremsstrahlung

efficiency is consequently reduced and greater fluxes of electrons are

required to explain hard X-ray bursts on the basis of a thick-target inter-

pretation.

5. Discussion

As indicated previously, our results are consistent with those of Hoyng,

Melrose and Adams (1979). These authors used a rather different technique,

involving a Legendre series expansion of the three-dimensional quasi-linear

equations. The form of the initial particle distribution was similar to that

considered in this paper. It was found that bremsstrahlung spectra were not

greatly affected by quasi-linear relaxation. It is quite likely, however,
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that the total energy requirement of the thick-target model (with the

inclusion of quasi-linear effects) may depend critically on the form of the

injected electron spectrum. Our choice of a modified power law was governed

by the aim of reproducing power law photon spectra, while at the same time

having an acceptably small beam density to plasma density ratio. As mentioned

previously, Melrose (1980) evaluated the asymptotic wave energy density in the

case of a delta function injected particle distribution and sho_ed that the

particles eventually lose two thirds of their initial energy to waves. We

would therefore expect the effects of quasi-linear relaxation on the energy

requirement and the beam lifetime to be quite substantial in this case. For

the beam and plasma parameters assumed in this paper, however, it appears that

wave-particle interactions have an observationally negligible effect on the

integrated bremsstrahlung emission.

There remains the problem of determining the wavelevel generated by a

thick-target electron beam - this requires the numerical solution of the quasi-

linear equations with collisional damping terms. The wavelevel so obtained may

exceed the threshold for strong turbulence, with important consequences for the

stability of both the beam and the reverse current (Vlahos and Rowland 1984,

Rowland and Vlahos 1985).

Acknowledgement

This work was supported by NASA, SERC and Glasgow University.

References

Brown, J.C. 1971, Solar Phys., 18, 489

Brown, J.C. 1975, in S.R. Kane (ed.) "Solar gamma-, X- and EUV radiation",

IAU Symp. No.68, 245

Craig, I.J.D. 1979, Astron. Astrophys., 79, 121

Emslie, A.G. 1978, Ap.J., 224, 241

Emslie, A.G. 1980, Ap.J., 235, 1055

Emslie, A.G. and Smith, D.F. 1984, Ap.J., 279, 882

Ginzburg, V.L. 1961, "Propagation of Electromagnetic Waves in Plasmas"

(Gordon and Breach)

Grognard, R.J.-M. 1975, Aust. J. Phys., 28, 731

Hoyng, P., Melrose, D.B., and Adams, J.C. 1979, Ap.J., 230, 950

Knight, J.W. and Sturrock, P.A. 1977, Ap.J., 218, 121

Melrose, D.B. 1980, "Plasma Astrophysics", Vol.2 (Gordon and Breach)

Rowland, H.L. and Vlahos, L. 1985, Astron. Astrophys., 142, 219

Spitzer, L.W. 1962, "Physics of Fully Ionized Gases" (Interscience)

Vlahos, L. and Rowland, H.L. 1984, Astron. Astrophys., 139, 263

381


