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SUMMARY

This report is a sequel to the earlier report titled "Aeroelastic Effects
in Multi-Rotor Vehicles with Application to Hybrid Heavy Lift System, Part I:
Formulation of Equations of Motion". The trim and stability equations are
presented for a twin rotor system with a buoyant envelope and an underslung load
attached to a flexible supporting structure. These equations are specialized
for the case of hovering flight. The stability equations are written in multi-
blade coordinates. The total number of degrees of freedom for hybrid heavy
lift vehicle consisting of two four bladed rotors is 31. Hence the stability
analysis yields a total of 62 eigenvalues corresponding to these 31 degrees of
freedom. A careful parametric study is performed, and used subsequently to
identify the various blade and vehicle modes. The eigenvalues are identified
by relating them to the physical degrees of freedom present in the system.
This identification is based on a parametric study in which the fundamental
parameters governing the system are varied. The co
blade modes and vehicle modes is identified. Finally, it is shown that the
coupled rotor/vehicle stability analysis provides information on both the
aeroelastic stability as well as complete vehicle dynamic stability in the
longitudinal and lateral planes. Also presented, in this report, are the
results of an analytical study aimed at predicting the aeromechanical stability
of a single rotor helicopter in ground resonance. The theoretical results are
found to be in good agreement with the experimental results available in the
literature, thereby validating the analytical model for the dynamics of the

coupled rotor/support system.



1. INTRODUCTION

This report is a sequel to the previous report entitled '"Aeroelastic Effects
in Multi-Rotor Vehicles with Application to Hybrid Heavy Lift System, Part I:
Formulation of Equations of Motion'" [Ref. 1], in which the equations of motion
governing the aeroelastic behavior of an approximate model representing an Hybrid
Heavy Lift Airship (HHLA) (Fig. 1) were derived. The equations derived in Ref. 1
were representative of a somewhat simplified model shown in Fig. 2. The model
consists of two rotors, a buoyant envelope and an underslung load, attached to a
flexible supporting structuref: The various degrees of freedom, considered in
deriving the equations of motion, are flap, lag, torsion for each blade, rigid
body translation and rotation of the complete vehicle and the degrees of freedom
representing the normal modes of vibration of the flexible supporting structure.
It is useful to review some of the more important assumptions used in deriving
the equations of motion, namely:

1) The rotor consists of three or more blades.

2) The rotors are lightly loaded.

3) The rotors are in uniform inflow.

4) There is no aerodynamic interference between the rotor and the buoyant
envelope. The aerodynamic model used for the rotor blade is the quasi-
steady aerodynamic model with apparent mass terms.

5) The rotor blade is modeled as a rigid blade with orthogonal springs
located at the root of the blade (Fig. 3). This model enables one to
represent simultaneously configurations employing either hingeless
or articulated rotor system. The hinge sequence is given in Ref. 1.

6) Since the geometrical nonlinearities due to moderate deflections of the

blade are known to have significant role in rotary wing aeroelasticity

*
The flexible portion consists of the elements having a length zFl and QFZ shown
in Fig. 2 .
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[Ref. 2], these nonlinearities are included in the analysis. Retention
of the nonlinear terms is based upon an ordering scheme [Refs. 1 and 2].
The blade degrees of freedom, representing the blade slopes, are assigned
an order 0(g), where 0.1 < € < 0.15. The rigid body degrees of freedom

3/2)

of the vehicle are assumed to be of a slightly smaller magnitude 0(¢c
and the elastic deformations of the supporting structure are of the order
magnitude 0(62). This assumption is quite important for obtaining

equations which are manageable from an algebraic point of view. The order-
ing scheme consists of neglecting terms of the order 0(82) when compared to

unity, thus 1 + O(EZ) ~ 1.

The equations of motion for the model vehicle (Fig. 2) are nonlinear coupled

differential equations and they represent the coupled rotors/vehicle dynamics
in forward flight. These coupled equations are classified in three groups, each
group representing an appropriate sub-system equations. They are:

1) rotor blade equations of motion in flap, lead-lag and torsion,

2) rigid body equations of motion of the complete vehicle,

3) equations of motion of the flexible supporting structure.

The main advantage, due to separating the equations into various groups,

rotor aeroelastic stability or coupled single rotor/fuselage stability, etc.,
in a convenient manner. The coupled equations have considerable versatility and
they can be used to study a number of diverse problems which are listed
below:
1. Isolated rotor aeroelastic stability.
2. Coupled single rotor/fuselage dynamics.
3. Response to cyclic and collective pitch inputs.

4. Response to higher harmonic control inputs.



5. Stability analysis of twin rotor system connected by a flexible

structure.

6. Dynamics of a Hybrid Heavy Lift Airship.

Depending on the type of analysis desired, the equations are simplified and
modified to obtain an appropriate solution.

Because of the unique nature of the multirotor model (Fig. 2), the results
of the stability analysis could not be compared with any other results available
in the literature. But on the other hand, experimental results are available,
in the literature, for the aeromechanical stability of a single rotor helicopter
in ground resonance. Hence, solving this problem analytically will provide an
opportunity to validate both the equations of motion for the coupled rotor/vehicle
system and also the method of solution. Therefore, two different types of pro-
blems are solved using the analytical model, for the coupled rotor/vehicle dyn-
amics, presented in Ref. 1. 1In the first case, the equations of motion are used
to predict the aeromechanical stability of a single rotor helicopter in ground
resonan<e. It was found that the analytical results are in good agreement with
the experimental results indicating that both the equations of motion for coupled
rotor/vehicle system and the method of solution are wvalid.

In the second case, the stability of a model vehicle (Fig. 2) representing
an HHLA in hover is analyzed. The total number of degrees of freedom for the
model HHIA consisting of two four bladed rotors is 31 . Hence, the stability
analysis yields a total of 62 eigenvalues corresponding to these 31 degrees of
freedom. Based on a careful parametric study, various blade and vehicle modes
have been identified. A physical interpretation of the eigenvalues is obtained
from a systematic study of the eigenvalue variations as a consequence of the

variations of the vehicle system parameters. Finally the coupling between various




blade modes and vehicle modes is identified.

In this report, the method of solution, the relevant trim (equilibrium)
and linearized stability equations for the two applications mentioned above

are considered and explored in detail.



2, METHOD OF SOLUTION

The equations of motion representing the dynamics of the coupled rotor/
vehicle system, presented in Ref. 1, can be used to obtain either the response
or the stability of the vehicle. The method of solution depends on the
type of problem being considered, i.e. whether a response or stability analysis
is required. For a stability analysis, one must distinguish between the case of
hover which is relatively simple and the case of forward flight which is much
more complicated. In this section, the method of solution used for the aero-
elastic stability of a multirotor vehicle in hover is presented.

The equations of motion, for coupled rotor/vehicle problem, are usually
nonlinear coupled differential equations with periodic coefficients. These
differential equations can be either ordinary or partial depending on the type of
model used for the representation of the blade. If the blade is modelled as a
rigid blade with root springs, the resulting equations will be nonlinear ordinary
differential equations. On the other hand, if the blade is modelled as a flexible
beam, the final equations will be nonlinear partial differential equations. 1In
this case, the partial differential equations are first transformed into ordinary
differential equations using Galerkin's method. Thereafter, the method of solu-
tion is the same, irrespective of the modelling of the blade. 1In the present case,
because the blade is modelled as a rigid blade with root springs (Fig. 3), the
equations of motion are nonlinear coupled ordinary differential equations with
periodic coefficients. To obtain the stability of the vehicle the following
procedure 1is used:

1. Evaluation of the trim or equilibrium state.

2. Linearization of the nonlinear ordinary differential equations about the

equilibrium position (linearized equations will have periodic coefficients).




3. Transformation of the linearized equations with periodic coefficients
to linearized equations with constant coefficients, by applying multi-
blade coordinate transformation.

4. Evaluation of the eigenvalues of the linearized equations with constant
coefficients to obtain the information on the stability of the system.

These four steps can be separated into two stages of analysis, namely, (i) a
trim analysis intended to establish the nonlinear equilibrium position of the
blade, and (ii) a stability analysis of the linearized perturbation equations
about the equilbrium state. A description of these two analyses are pro-
vided in the following sections.

2.1 Trim or Equilibrium State Solution

In the trim analysis, the force and moment equilibrium of the complete ve-
hicle together with the moment equilibrium of the individual blade about its root
in flap, lead-lag and torsion aresatisfied respectively. It is important to re-
cognize that only the generalized coordinates representing the blade degrees of
freedom will have a steady state value representing the equilibrium position. The
generalized coordinates associated with the rigid body motions of the vehicle are
essentially perturbational quantities and hence their equilibrium, or trim, values
are identically zero. In deriving the equations of motion for the flexible sup-
porting structure, it was assumed that the vibrations of the structure occur about
a deflected equilibrium position. The determination of the equilibrium position
of the supporting structure is unimportant in the case considered here, for the
following reasons: (a) this equilibrium position is not going to affect the
equilibrium values of the blade degrees of freedom, since the blade equations
contain only the time derivatives of the degrees of freedom representing the

elastic modes of the supporting structure. The physical reason for this



mathematical dependence is due to the fact that blade inertia and aerodynamic
loads depend on the hub motion and not on the hub equilibrium position. The

hub motion is related to the fuselage motion and the vibration of the supporting
structure, and (b) the final linearized differential equations used for the
stability analysis do not contain any term dependent on the static equilibrium

of the supporting structure because only the perturbational blade inertia and
aerodynamic loads excite the vehicle rigid body motion and the vibration of the
supporting structure. Hence, the generalized coordinates for the vibration modes
of the supporting structure are again perturbational quantities.

The kth blade degrees of freedom can be written as

By = Bro T 4B (W) Flap
= Tt bt () Lead Lag (2.1)
¢k = ¢k0 + A¢k ) Torsion

where BkO’ QkO’ ¢k0 are the steady state values and ABk, Agk, A¢k are the per-
turbational quantities.

Linearization of the equations is accomplished by substituting these expres-
sions into the nonlinear coupled differential equations and neglecting terms con-
taining the products or squares of the perturbational quantities. The remaining
terms will have either the steady state quantities as coefficients or the time
dependent perturbational quantities, multiplied by the steady state values
or some appropriate constants. Separation of these terms yields two
groups: one group of terms contains only the steady state quantities and con-
stants (i.e., time independent quantities). These represent the trim or equilibrium
equations. These are nonlinear algebraic equations which represent force and
moment equilibrium equations determining the steady state. The second group con-—

tains the time dependent perturbational quantities and represents the linearized

8




equations of motion about the equilibrium position. These linearized dynamic
equations of equilibrium are used for the stability analysis. The steady state
equilibrium equations can be written symbolically as
for the complete vehicle
F=F=F =0 (2.2)
M =M=M_ =0 (2.3)
and for the individual blade
Mo=M =M, = 0 (2.4)
where FX, Fy and Fz represent the forces of the vehicle in X,Y,Z directions,
respectively; Mx’My’Mz represent the moments on the vehicle about X,Y,Z axes res-

pectively; and MB’MC’M¢ represent the moments of the blade forces about the root;

respectively.

In these equations, Fx’ Fy and MX are identically zero. The remaining

equations for the vehicle can be written as

— S — =
F, =T, +Ty+P3 -W=0 (2.5)
M =0 (2.6)
y
M =0 (2.7)
z
where Tl and Tzarethe magnitude of the thrust developed by the two rotor systems
. S . - . . . _
Rl and R2, Pi is the static buoyancy on the envelope, and W is the weight of

the completce vehicle.

The quantities Tl and T2 are functions of the steady state flap, lag and torsion
angles, collective pitch angles and the operating conditions of the rotors.
Equation (2.7) for Mz represents the torques developed by the two rotor systems,
These torques can be either balanced by having a tail rotor for each main rotor
or by having two counter-rotating main rotors. For the case where the rotors
are assumed to be counter-rotating, the blade loads are to be evaluated for

A A
the two rotor system with angular velocities + Qez and - Qez respectively.



In Ref. 1, the rotor loads are derived for a typical rotor with angular velocity

+ Qe
z

and the same expressions for loads are used both rotors.

Thus we assume

that the torque developed by each main rotor is compensated by a tail rotor.

Equation (2.6) for My consists of the pitching moments developed by the

thrust of the rotors and gravity loads on the various components.

The steady state moment equilibrium equations for the individual blade

will have the following symbolic form

Mg

My

My

where 1 = 1,2 refers

and k refers to the kth blade in the ith

i i

= £ By To tor %) = O (2.8)
- £ Bio Lo o0 %) = O (2.9)
= €5 Brgr o0 P00 O = O (2.10)
to the two rotor systems R1 and R2 respectively

system. For the case of steady

state, all the blades in each rotor System will have the same steady state

values (or equilibrium quantities) and thus the supscript 'k' can be deleted.

Equations (2.5),

There is a total of 8 equations and 8 variables (Bé, Cé, ¢é, 66 3 1=

(2.6),

(2.8) ~ (2.10) are nonlinear algebraic equations.

1,2).

These eight equations can be solved iteratively by the Newton-Raphson method,

to obtain the steady state values.

attributed to the divergence or static instability of the blade.

Failure to converge during iteration can be

(These equili-

brium equations are given in the next chapter.)

In deriving the equations of motion, the inflow ratio A is assumed to be

constant over the disc.

value at 757 of the blade span.

A

where 60 is

ga
16

10

The typical value chosen for the inflow ratio is its
It is given as [Ref. 3]

24 60

(-1+ N1+

the collective pitch of the blade.

— ) (2.11)



2.2 TIterative Procedure for the Trim Solution

The equilibrium equations of the blade (Eq. 2.8 - 2.10) and the equations
of the complete vehicle (Eq. 2.5 and 2.6) have to be solved numerically to obtain
the steady state values of the blade deflections in flap, lag and torsion
(Bé, ;é, ¢é ; 1 = 1,2) and the collective pitch angles ( eé, i=1,2) of the
rotor systems Rl and RZ' Blade equilibrium is obtained by an iterative procedure.
It can be seen from the equilibrium equations of the blade (Eq. 2.8--2.10) that the
equations for the blade in ith rotor system consists only the variables corres-
ponding to that rotor system. Hence these equations can be solved separately for
each rotor. By assuming a collective pitch angle of eé, —thé equations
(2.8) - (2.10) are solved to obtain the equilibrium angles (Bé, Qé, ¢é) of the
blade in rotor system Rl' Then by assuming a collective pitch angle 63, the
equilibrium equations are solved again for the equilibrium angles (8%, cg, ¢g)

of the blade in rotor system R It is important to recognize that these equili-

2°

brium angles of the blades can be different for the two rotor systems R, and R2’

1
because these angles depend upon the operating conditions and the blade parameters
which can be different for the two rotor systems. However all the blades in each
rotor system will have the same equilibrium angles. After obtaining Bé, Cé’ ¢é
and 83, Cg, ¢O’ these quantities are substituted in the vehicle equilibrium
equations (Eq. 2.5 and 2.6) and these two equations are solved simultaneously

to get the updated values for the collective pitch angles (8; and 83) for the two
rotor systems. With these updated collective pitch angles, the blade equilibrium
equations, for the two rotor systems, are solved again to obtain a new set of
equilibrium angles for the blade (Bg, cé, ¢é ; i =1,2). These equilibrium angles

of the blades are again substituted in the vehicle equilibrium equations to get

the second stage updated values for the collective pitch angles Gé and 63. These

11



steps are repeated until convergence is achieved. This procedure is also il-
lustrated by the following flow chart. A computer program implementing this
calculation for the trim (or equilibrium) position of the blade was developed.

A check on the number of iterations.is provided in the computer program to avoid

excessive use of computer time in case of divergence.

; Assume 68
[ & 3
1 :

Evaluate Ai

Lusing Eq. (2.11)‘

r Solve equations (2.8)—(2.10)~

iteratively for Bg, Cg, ¢8

L
N
i <
: If i < 2 True ,
i=1i+1
s i

False
poo - ; K .
Using By, Lo, 03 1= 1, 2
solve equations (2.5)-(2.6)

1 2
for 8o and 9,
Y .
Check for convergence. Convergence is

1

[ 38 +

| False . achieved if the differences between
’ initial and final values of eé and eé are<1.0 x lO_'5 |
True
I
[" A
Stop
(. <

Flow Chart Illustrating the Solution Procedure for

the Blade Equilibrium Position
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The procedure described above is restricted to the case of hover where the
coordinates describing blade equilibrium are not time dependent. For the case of
forward flight, the equilibrium values will be time dependent and a more complicated
procedure, described in Ref. 4, is required to determine the trim quantities. The
basic difference is that, for the case of hover the trim values can be obtained by
solving a system of nonlinear algebraic equations, while for forward flight the
solution of a system of nonlinear coupled ordinary differential equations is
required.

2.3 Description of the Stability Analysis

The perturbational equations of motion, linearized about the equilibrium

position, can be written in the following form
Ml {q} + ¢l {q} + [kl {q} =0 (2.12)

where {q} contains all the degrees of freedom representing the blade motion,
the rigid body motions of the vehicle and the flexible modes of the supporting
structure.

The matrices [M], [C], [K] can be identified as mass, damping and stiffness
matrices respectively and the elements of these matrices are functions of the
equilibrium values.

The stability of the vehicle about the trim condition is obtained by solving

the eigenvalue problem represented by Equation (2.12). For convenience Equation

(2.12) is written in state variable form

{;z} = [F] {y} (2.13)
where {Y}T= L{Yl}T, {yZ}T_J
and b= 1@ 5 {y,} = (@

13



and -1

Assuming a solution of the form {y} = {y} eSW’ Equation (2.13) reduces to a

standard eigenvalue problem

(F] {y} = siy} (2.14)

The eigenvalues of Eq. (2.14) can be either real or complex conjugate pairs.

Sk = % * iw (2.15)

The complex part of the eigenvalue (wk) represents the modal frequency and the
real part (Ok)representsthe modal damping. The system is stable when Oy < 0
and the stability boundary is given by Oy = 0.

This relatively simple procedure can become complicated depending on the
form of the matrices [M], [C] and [K]. In the aeroelastic stability analysis
of isolated rotor in hover, these matrices contain constant elements. Thus
solution of this eigenvalue problem is straight-forward. However, in the case of
coupled rotor/body system stability analysis in hover or for stability of iso-
lated rotors in forward flight, these matrices will have elements which are time
dependent. The reason for the appearance of time dependent or periodic coef-
ficients, for these two cases, is different. For coupled rotor/body problem,
these matrices become time dependent due to the fuselage perturbational motion.
This fuselage perturbational motion introduces, through the hub motion, periodic
terms in inertia and aerodynamic loads of the blade. In the case of isolated
rotor in forward flight, these matrices become time dependent due to the per-
iodic aerodynamic excitation associated with forward flight.

When the coefficient matrices of the linearized perturbational equations

are periodic the stability analysis can be performed by applying
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one of two possible techniques. One can use either Floquet theory or introduce
a multiblade coordinate transformation [Refs. 3,5]. For the coupled rotor/
body type of analysis in hover, which is the main objective of this study,
the multiblade coordinate transformation is successful in eliminating the
time dependent coefficients from the equations of motion. During this coordin-
ate transformation, the blade degrees of freedom in the rotating coordinate
system are transformed into a nonrotating hub fixed coordinate system. It is
worthwhile mentioning that this transformation is also frequently denoted by
the term Fourier coordinate transformation, Coleman transformation and more
recently rotor plane coordinate transformation.

The multiblade coordinate transformation is implemented by applying the oper-

ators, given below, to the blade equations.

L 2: (.00) collective operator
N

k=1

N k
1 z: -1 (...) alternating operator
N k=1

(2.16)
1 N
= 2: cos ni, (...) n-cosine operator
k

k=1
1 N
N ggi sin nwk (...) n-sine operator

where N is the number of blades

T
L

and n=1,....L L= for odd N

N’

Z
|
N

for even N

N|

The resulting equations are identified according to the operator used in the

transformation. These operators are applied only to the blade equations because
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only the blade equations are written in the rotating coordinate system. The
vehicle equations are written in the nonrotating frame and in these equations,
rotor loads appear as a sum of various loads due to the individual blade. A
clear description of the theory of this transformation is presented in Refs. 3
and 5. A brief summary of this transformation is also given in Appendix A.

During the derivation of the final trim and linearized perturbation equations,
two items are noteworthy. First, in Ref. 1, the ©blade 1loads are
derived for typical rotor blade rotating with angular speed . During
nondimensionalization of various quantities, the time is nondimensionalized as
y = Qt. When the general expressions for the blade loads are applied to two
different rotors operating at different values of {2, then the nondimensional time ¢
will be different for the two rotor systems. Consider the two rotor systems
R1 and R2 to be operating at angular speeds Ql and 92 respectively. Then Qlt
is the nondimensional time used in the rotor load expressions for the rotor system
R1 and ta is the corresponding nondimensional time for rotor system RZ' For

the sake of consistency, the nondimensional time should be made the same for all

rotor systems. Assuming that Ql is the reference R.P.M. for the non-
dimensionalization of time. Then the time derivative termswhich appear in the
Q2
blade loads of rotor system R2 must be multiplied by a factor ( ﬁl ). The power
2

of this factor depends on the order of the time derivative.
A similar problem is also encountered when multiblade coordinate
transformation is applied to a multirotor system. In the n-cosine and n-sine

transformation Eq. (2.16), wk refers to the azimuth angle of the kP blade

wk = Qt + 27k/N (2.17)
where it is understood that Q is the angular speed or R.P.M. corresponding to
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the particular rotor, and N is the number of blades in the rotor system.
In the case of multiple rotor systems, this equation can be written for the

kth blade in the ith rotor system as

w;= Q.+ (2.18)

Note that the above equation contains the R.P.M. or angular speed of the ith

rotor system. This value of wi, Eq. (2.18), must be used in the n-cosine and
n-sine transformation operators for the ith rotor system, and care should be
exercised when applying these operators in transforming the time derivatives
of the blade degrees of freedom. For consistency in nondimensionalization,
the time derivative terms in the ith rotor system are nondimensionalized with
respect to the reference angular speed Ql of the rotor Rl' These statements
imply that for multirotor systems the expressions provided in Ref. 3 and 5,
for transforming the time derivatives of the rotating blade degrees of freedom
to the nonrotating system, should not be used directly. The correct form for
implementing this transformation for a multirotor vehicle where each rotor is
operating at different angular speeds, i.e. Ql and Qz, is provided in Appendix B.
Consistency in nondimensionalization of time and the multiblade coordimate trams-—
formation for multiple rotor systems can be both achieved by mul&iplying the first
and second time derivative terms, in the transformed multiblade coordinates for

2 Q, 2
the ith rotor system by ( ﬁl ) and ( E}-) respectively, where Qi is the ith

i i

rotor R.P.M. and Ql is the reference angular speed.
(2) The second noteworthy item is related to the rotor hub loads. When deriv-
ing the equations of motion of the vehicle, the rotor hub loads have to be eval-
uated. The rotor hub loads are obtained by summing up the contributions from the

individual blade loads. The expression for the individual blade load will have

the centrifugal term as the leading term, the order of magnitude of this

17



term is 0(l). After summing up the individual blade loads, the resulting hub
load expressions will have a leading term of order of magnitude 0(g) only,
because the centrifugal contributions from the blades cancel each other and
thus the net contribution due to these terms is zero. Therefore, care must
be taken to retain terms up to order 0(85/2) in the individual blade load ex-
pressions, so that the resulting coupled rotor/vehicle equations of motion will
represent a consistent nonlinear mathematical model.

The two items, discussed above, have been carefully implemented in the
equations which have been derived in this report. Next these equations are
specialized to study air resonance type problems. For this class of problems,

it is common practice to suppress the vertical motion motion and the yaw

degree of freedom, thus in the final equations

RZS =0, st =0, st =0 (2.19)

and ezs =0, st =0, st =0 (2.20)

have been substituted. The final equations for the equilibrium position (trim)

and for the stability analysis are given in the next chapter.
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3.

EQUATIONS FOR TRIM AND STABILITY ANALYSIS

In this chapter, the complete set of equations, used for the equilibrium

position and stability analysis, are presented.

equations are given in multiblade or rotor-plane coordinate system.

chapter is divided into two major sectionms.
tions pertaining to the twin rotor model (Fig.
presented. Two sets of equations are provided
articulated rotors and the other for hingeless
presents the equations used for predicting the
a single rotor helicopter in ground resonance,

aerodynamic loads.

3.1 Equations for Twin Rotor Model of an HHLA

The degrees of freedom included in the

an HHLA are listed below.
Blade degrees of freedom

i i i i

Flap BM ’ B—M i Bnc ’ an

i i i i

Lead-lag v * Sy %ac’ Cns

. i i i i

Torsion by » Oy Pne s Pns

The linearized stability

This

In the first section, the equa-

2) representing an HHLA, are
for the HHLA model: one for
rotors. The second section
aeromechanical stability of

including the effect of the

analysis of twin rotor model of

i = 1,2 refers to the two rotor

systems Rl and R2

The subscript M refers to the collective mode, -M refers to the alternating

mode (only for rotors with even number of blades), nc refers to the n-cosine

mode, ns refers to the n-sine mode.

Rigid body degrees of freedom of the vehicle

X - Translat.on R
XS

Y - Translation

ys
Roll 3]

X
Pitch 6

y
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Degrees of freedom for the flexible supporting structure

&
-l
Bending in X-Y plane (Horizontal plane) i%
Bending in X-7 plane (Vertical plane) 7%
T .
orsion 53

These degrees of freedom represent the three normal modes of vibration of the
supporting structure, two for bending in two orthogonal planes and one for torsion.
Thus the total number of degrees of freedom for a vehicle consisting of
two four bladed rotor systems is 31.

3.1.1 Static Equilibrium Equations (Trim Equations)

In the following, the nonlinear algebraic equations required for the calculatior
of the trim quantities, for a hovering vehicle, are presented. These equations are
solved to obtain Bi (i ¢i 61 and A,, where i=1,2, refers to the
k0 * k0’ k0o 0 i’
two rotor systems. Since the form of the equations are the same for the blades
in both rotor systems Rl and R2, only one set of blade equations is needed.

It should be noted that these blade equations are solved separately for each rotor
system with its own parameters. Furthermore for convenience in writing these equa=-

tions the superscript, i, is deleted from the equilibrium quantities only.

Flap Equation

Bko FT(l,i) + Cko FT(Z,i) + ¢k0 FT(B,i)

+ Bro Sko Fr (41 + 90 T Fp (5,1) + &y By Fp (6,1) + F (7,i) = 0
(3.1)
i= 1,2, refers to the two rotor systems Rl and R2
=3 =2
o =2 -2 -2 . 2 2 -
FT(l,l) = wp + (wL - wF) sin 60 + 3 + & 5
=4
oy =2 =2 . L
FT(2,1) = (wL - wF) 51n60 cosG0 + v Bp
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=4 =3
N 2 2 -
FT(3’1) = -—v( 5 3 2e )
=4
By o= v
FT(4,1) = Vv
=2 =2 =20 2
FT(5,1) = wp - (m mF) sin 60
F_(6,i) = (32 - ©2) sinb . cosB
T ? L F 0 0
3 - 4 =3 =2
_ 2 e - 1 ) - e -
F(7,1)— BP(T +—§—e)—\)[ 60+?(—>\+2e60)—7e)\
where KB
aZ _ B
F szR3
K
aZ - CB
L mQZRB
T = 1-¢
e = =
R
p,abR
v = -A&
m
Lead-Lag Equation
T Oo Bro Lp(4s D) F Op Ly Lp(5eD) + B Ty Ly(6,8) + Lo(7,1) =
- =4 =3
N =2 -2 . 2 27 - L 2
LT(l,l) = - + (w wF) sin 60 -5 et V(- 4 Bp@o -3 2 BP)
L.(2,i) = - (&2 - 52) sinf . cosH
T 7?2 L F 0 0
=3 =2
N 2 2= =
LT(3,1) =v (- 3 A - 3 A e)
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=2 -2 =20 2
LT(4,1) = - + (wL - wF) sin 60
L_(5,i) = (@2 - 52) sin®, cosfB, - Vv zﬂ B
T 2> L~ “F 0 0 L "p

R A
LT(6,1) =V 3 hy

c =4 = 3 52

. w0 L, .2 R

L.(7,1) = v - (7 +25 e)- F A6 + =) (A-eeo)}

Torsion Equation

b Tpllod) + L0 T1(2,1) + By T1(3,1)

+ B C T. (4,i) + E ¢ T.(5,1) + C T (6,i)

kO °k0 T kO T kO 'T

3 3

+8 o Tr&:1 + By Lo

. 2
TT(7,1) + Bko z

k0 %Ko TT(9 i)

B T (10,1i) + B T (11,1i) + B T .(12,1)

K0 °k0 k0 %xo0 Pxo Tr K0 Cko %0 Tr

+ B T _(13,i) + B T (14,i) + B

3
k0 °k0 %0 Tr k0 “k0 ®x0 Tt 0 ®xo Tp(5,1)

+ 8 ¢, . T _(16,i) + To (17,1) = (3.3)

k0 k0 ®ko Tt

I I
=2 =2 20 2 MB3 MB2
TT(l,l) = - mTl - mTz + 2 (sin 80 cos 60)(

=2
1 _
5 2 e )

EZ

=3
. 2 -
TT(2,1) 5. + 7;>(~K+2e60) -5

]
I
w
o
~

ex)

TMB3 2 Typ2

. 2
sin 60) Bp

TT(3,i)

I
|
<
N

A (~\+eb )] - X

1

cosb

!
N. 3

= M3 2 MB2 . 2 i
sin 60)+ V7 Bpeo

do

a

- =4
T . (4,1) = 83 ! "
T 3

|
£
!
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=3 =3
2 - £
—\)—3-‘ 2)\Bp —\)XA 3
=2 4 -3
N o= = L L L =
'I‘T(S,l)——xIcoseO 5 + v{( i + 3 2 e)
=4
N o L
TT(6,1) = - \)Bp A
=4 c 4 =3 53 52
A __40 &~ LSRN O _ X =
TT(7,1) = \)4 V][ 2 ( A + 2 3 e ) 3 A 90 7 A(-A+e60)]
=4 =3
N P 2
TT(S’I)_—\)(_A 60+23>\)
") =3
O N
TT(9,1) =\ 4 Bp@o v 3 2>\Bp
T.(10,i) = - \)(—z B +2£>\)
T et = 4z Y0 3
=4
A 2
TT(ll,l) = \)T
=4
A A
TT(12,1) = v
=4
N
TT(13,1)— A Bp
24
TT(14,1) = \)T BP
=3 =2
N = 2 I
Tp(15,1) = V(5 A+ 2 e)
-3 =2
N = 2 -
TT(16,1)— v ( 3 A+ 5 A e )
=2 I I
T (17,1) = X cos8y [- 8 ( % + 18] + 1 [-( M";f" - Mgz ) sinf cosf]
P mR mR
-9 7 - -
+VxA(7 eo+ 7(—)\+2e60)-e2>\)

Equations (3.1)~(3.3are valid for both articulated as well as hingeless blades.

For articulated rotors w, =0
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Tl 0
K, K
-2 KQ % ¢
and wT = 53 ; K¢ = IR
2 m R dg O
K
For hingeless rotors 5% = ——%%Tg
1 m? R
and GT =0

In the above blade equilibrium equations, the inflow ratio A is [Ref. 3]

oa \f 1 .56.0
A= TE‘ (-1+ 1+ ?8;7Tgy ) (3.4)

Force Equilibrium Relation

For hover, the thrust developed by the two rotors and the buoyancy force
on the envelope must balance the weight of the complete vehicle. Also, the

pitching moment due to the various forces about Y-axis (Fig. 2) must be

zZero.
L 73
L0 20 mRT AV 5 8y + &y = ToBy ~ Typ Bro )
i=1 k=1
3> . . - -
+ 5 (-2+ 2 eeo + 2 e ¢k0) -2 ex]} ]i
S -
+ PZ - ( WFl + WF2 + wUN + WEN + WS) = 0 (3.5)
Moment Equilibrium Relation
2 N, o, 73
;4;1[' fpy k{:I mERT <V B+ dyp ~ Tkofp T Cko Bro?

=2
2 - - - -
+7(-A+2eeo+ze¢k0)—sLeA]>}]i

+ QF WF1 + £ + h WS =0 (3.6)

1 r2 "p2 t Bs
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In equations (3.5) and (3.6) the symbol 'i' outside the brackets indicates
that all the quantities within the bracket refer to the ith rotor. The
quantities within the bracket can be different for different rotor systems.

In total, these are eight equations, three blade equilibrium equations
for each rotor (total 6) and two vehicle equilibrium equations. As explained
in the previous chapter, these equations are solved iteratively to obtain
the equilibrium state. The solution consists of Bio s Qké . ¢io .
0 3y 1 =1,2, these equilbrium quantities are the same for all the blades

in one rotor system.

3.1.2 Stability Equations

The equations of motion for the blade as well as for the vehicle are
linearized about the equilibrium state. These linearized equations are then
transformed into multiblade or rotor plane coordinates., The final linearized
equations, written in the multiblade coordinates are given below.

Collective Flap Equation

i . i ) i .
By F (1,1 + gy F (2,1) + ¢y F.(3,1)

+ aé F_(4,1) + ;é F_(5,1) + ¢§ F_(6,1)
ui . . . 2 .
+ BM Fc(7’1) + Gy Fc (8,i) + X Fc(9,1)
} . £, .
+8 F (10,1) + & F (LD =0 (3.7)

i=1,2 refers to the ith rotor

oo -2 =20 2 —2 -2
Fc(l,l) = W + (wL - wF) sin 60 + ¢k0 (wL wF) sinGO cose0
4 -3 )
2 2 e -
VY ot 3T 7T
o -2 =2 =2, .2 —2 -2
FC(Z,I) = - ¢k0{ wp + (wL - wF) sin 90} + (wL wF) 51n60 cose°
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2
+ Vg (Bp + BkO)

-V

N -2
F (3,1) = - CkO{ W
=4 =3 Q
N AR S |
Fc(4,1) = (gSF + V7 + Vv 3 e) Qi
23 7
F (5,1) = [25 (B + B - 2V (6 + dpg) + V
=3 =3 Q
oW BeL s 2 !
Fc(6,ﬂ = [- Vv 3 b - > vb 3 coseo] Qi
=3 =3 Q 2
R AN SR S 1
Fg(7’1) = [ 3 + 7 V 3 b cosG0 1 ¢ Qi )
=3 Q
Dl B
Fc(g’l) -7 QFi v 3 ( Qi )
=3 9]
N 2 1
=2 Q 2
T Gt
Fc(logl) - = Q‘Fi 2 ( Qi )
EZ Ql 2
Fc(ll,l) = nz(lFi) -5 ( ﬁ; )

=l
s|=L

_2 _2 2 _.2 _2
- i (o - ¢
et (wL wF) sin 80 } + BkO (wy wF) 31n60 cosf

1
Q.

1

It should be mentioned that the angular speed  can be different for the two

rotors, and thus the blade static equilibrium represented by BkO’ Cko? ¢k0’

60, A can differ from one rotor to another. Thus the coefficients Fc can

be different for the two rotors, Actually Eq. (3.7) represents two equations,

one for each rotor system.

Alternating Flap Equation (For even N only)

i . i . i .
B_u FA(l,l) + Ty FA(2,1) + 0y FA(3,1)

i ) * i ) * i .
+ B—M FA(4,1) + E—M FA(5,1) + ¢—M FA(6,1)
+8lr .0 =0

M Art =
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oy o =2 =2 =2y .2 -2 =20 .
FA(l,l) = Wy + (u)L wF) sin eo + ¢k0 (wL wF) smeo c0360
=4 -3 =2
[ 2 [ A
+ Vv A Cko + 3 + T e
N -2 -2 -2 .2 -2 -2
FA(2,1) = ¢k0 { wg + (wL wF) sin 60 } + (wL wF) smeo coseO
4
+ Vo (Bp + BkO)
N -2 -2 -2, .2 -2 -2, .
FA(3,1) = CkO { Wy + (mL - wF) sin 60}+ BkO(wL - wF)smeocoseo
- \)E_:S 2 = ﬁ
3 ¢ 4
=4 =3 94
RN AN SN |
FA(4,1) = (gsF tV 4+ vy e) Qi
73 T 2%
F,(5,1) = {2 5 Bt Bp) —2VvG By b))+ VG A }ﬁif
=3 =3 Q
Y = 2t 15 _1
FA(6,1) = {- v 3 b - > Vb 3 cose0 } Qi
=3 =3 Q, 2
3 = (2 105 22 _1
FA(7,1) = { 5 + 3 Vb 3 coseo} ( Qi
n-Cosine Flap Equation
Bt F(L,i) +BL F (2,1 +ck F G0 4+t F (4,1)
nc nc ’ ns nc'? nc nc 7’ ns nc
+ ¢\nz Fnc(s’i) + ¢rlxs Fnc(s’i) + Br::c Fnc(7’i) + 8rlls Fnc(g’i)
.i . .i . l.i ) .e ]
+ Ce Fnc(9,1) + ¢nc Fnc(lo,l) + Bnc Fnc(ll,l) + ey Fnc(lz’l)

+ Gy Fnc(13’i) + Gx Fnc(14,i) +

w [, e

R Fpe(15:1) + F_(16,1)

+ &y F (17,i) = 0 (3.9)
k2 =2 =20 2 -2 -2
Fnc(l,l) = W + (wL - wF) sin 60 + d)ko(wL W ) sineo cose0
=4 =3 =2 =3 =3
2 2 - - 2 % 21 - 2
+ Vo Ck0+—3—+ ;7 e -n 3 —nz\)b3cos€)0
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Fnc(3’i) = -

Fnc(2,1)

Fnc(4,i)

Fnc(5,1) = -

Fnc(6’i)

F.(7,1)

FnC(S,i)

Fnc(9,1) =

F__(11,1)

Fnc(12,1)

F
nc

(13,1)

Fnc(14,i)

Fnc(15,1)

Fnc(lé,i)

Fnc(lo,l) =

=4 3 -
n( Vv 4 tvg e + gSF)

I R N _2 -2
¢k0{ Wp + (wL - wF) sin 60 }+ (wL wF) s1n60 cose0

74
+ v (B, * B

4 -3

n{ 2% + Bp) -2V %r-(eo + o) VY %r A}

cosB

-2 A
wF) 31n80 0

- Bi) sinzeU b+ B (ai -

o

27
3 + 6

2
3
-3

)
(—(SnZ\)—:;-

{+ dn 2 = 2V

2V S

0+

b
3
2
2
(- (Sn \)—2—
;!12_

60 nl(zFi) +ny (kFi) v A Gn)
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. 7> = = 72 S
Fnc(17,1) = ( cSn 2\)? 60 h2 N3 (ILFi) - hz Ny (lFi) V5 A 6‘n) R
where ]
6n =1 when n = 1
=0 n#1

n-Sine Flap Equation

i . i . i . i .
an Fns(l’l) + Bnc Fns(z’l) + Cns Fns(3’l) + Cnc Fns(a’l)

i . i . °i . °i .
+ ¢ns Fns(S,l) + ¢nc Fns(6,1) + an Fns(7,1) + Bnc Fns(8,1)

°i . "1 Lo N .
+ T Fns(9,1) + ¢ns FnS(IO,l) + an Fns(ll,l) + ex Fns(12,1)

: N . N . =2 o
+0, F (3,0 + 0 F (14,1 + R _F (15,1 + & F (16,1 = 0 (3.10)

o =2 =2 -2 . 2 =2 =2 .
Fns(l,l) = Wgp + (wL - wF) sin 60 + ¢k0 (wL - wF) 31n60 cose0
4 -3 ) -3 -3
2 3 2 - 2 9 1 = % 2
+\)"Z— Ck0+§—+—2—e-n—§---2-\)b?-n cose0
-4 B )
Fns(2,1) =n{-v G S VE e gSF]
oo —2 =2 -2 .2 -2 -2
Fns(3,1) = ¢k0 { wp + (wL - wF) sin 60 }+ (wL wF) s1n60 cose0
7
73 7 z
FretH® =nl-273 (Bg+8) +2Vv I (8, + ¢ -V Al
o 2 -2 -2 .2 -2 -2, .
Fns(5,1) = - CkO{ wy + (wL - wF) sin”0 }+ Bro (mL - wF) sinf, cosb
\)i -vﬁ 2 e
TV 4 3
=3 =3
. 27 = 1 - £
= [y = Z
F .(6,i) =n (v b+ vDh 3 coseo}
-4 -3 Q
PN AN A S |
F (7,1 = {v i tVvg e + gSF} ,
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=3 =3 2
N = LN § L 1
Fns(8,1) =n{-2 3 5 2vb 3 c0860 } Qi
73 4 22 . . %
Fns(g,l) = {2 —5—' (Bko + Bp) ZVT (90 + ¢k0) + v 3 K}Q—i‘
=3 =3 Q
) = A s _1s 2 _1
F 0D ={-v3 b-5vb 3 coseo} i,
=3 %3 Q, 2
o= (2 105 L _1
Fns(ll,l) = ( 3 + > v b 3 coseo) ( g )
=3 Q 2
iy = 1
F (12,1) = + 8 3 7, )
4 Q
iy = 2 1
Fns(13,1) =8 v 3 ( N )
=3 =3 =2 Q
) = L 2 SR SN 2 1
Fns(l4,1) = {+<Sn2 3 +<Sn2\)3 60 h2 h, v 5 AcSn }Qi
=3 2 Q
) = 2 Ll 1
Fns(15,1) = (Gn 2v 3 60 -V A Sn) Qi
3 _ 22 2
Fns(lﬁ’l) = R{- dn 2 .v7?-90 h2 r‘2,x (lFi) + h2 n2,x (gFi)\rif >\(Sn} ﬁ;
Collective Lead-Lag Equation
Ty L (1,1 + By L (2,1) + ¢y L (3,1)
"i X o1 ) ! i
+ oy Lc(4,1) + BM Lc(5,1) + by LC(6,1)
i ) pet . : ) =2 N
+ QM Lc(7’1) + BM LC(8,1) + Gy LC(9,1) + R Lc(10,1) =0 (3.11)

Lc(l,i)

LC(Z,i)

Lc(3’i) =

- ﬁi + (&f - 5%) sinze0 + ¢k0 (5% 5;) sine0 coseo
- %2 e - \)Z:— 898,
¢k0 { aﬁ - (Gi &;) sin260 } - (55 - 5%) sineo cosBo
- BkO{ 5% - (af - 5%) sin260:}+ Z10 (@i - 5;) sine0 cose0
—\)Z;-A
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c =4 =3 Q
o= [oo9y-90 2 A7 -z 1L
Lc(a’l) = {-2v a 4 \)3 eOX gSL} Qi
L (5,1) = {2 5 (B * Sp) - Vv B+t 4 ) - v (2h + e 8)) }-@
=3 Q
N e Loyg L o4 1
Lc(6,1) = -3V b 3 smeo Qi
=3 Q. 2
o= 2L
LC(7’1) = = 3 ( Q. )
i
=3 Q. 2
S log B oA
Lc(8,1) = 5 vb - sinfy ( 7, )
=3 - Q
Py = N - &_ 'Q' _i
L, (9,1) = - 2. { -v3 (O 0) +Vv 5 2>\}Qi
LB 22 )
L (10,1) = m,(R ) { -v3 (B + ¢ ) +v S5 2 )\}Q—i
Alternating Lead-Lag Equation (for even N only)
i . i . i .
&y LA(1,1) + B_y LA(2,1) t oy LA(3,1)
* i . - i : S i .
Ty LA(4,1) + B-—M LA(5,1) + (b_M LA(6,1)
+ iL(7')+éiL(3')=0 (3.12)
tm At au Epleed .
N -2 -2, .2 -2 -2,
LA(l,l) = - w + ( W= wF) sin 60 + (bko((uL - mF) 51n60 cose0
=2 =4
2 - [}
7 VT B
N oo 2 -2 =2 .2 =2 =2
LA(2,1) = - 0 { w (wL wF) sin"8 } (u)L wF) sinf cosf,
L3, = - B { & - G - @D sin®8 } + g0 @ - @2) sindy cost
A~ k0 ‘*’L g k0 “L F 0 0
=3
L
- V3 A
c =4 =3 Q
i) = _do £ = - o _1
LA(4,1)-{—2\) " 4 ~ V3 BOX gSL} Qi
7,3 -9:4 E3 Q



y=-Lvh EL. i 1

LA(6,1) =-5V b 3 51n60 Qi
=3 Q, 2

3= o 2oL

LA(7,1) =- 3 ( Qi )
=3 Q, 2

h= Lyg 2 1

LA(8,1) = Vb 5 sinf, ( %, )

n-Cosine Lead-Lag Equation

i . i . i . i .
Cnc an(l,l) + Cns an(2,1) + Bnc an(3,1) + an an(4,1)

i , i ) i ) i )
+ ¢nc an(5,1) + ¢ns an(6’1) + Cnc an(7’1) + Cns an(8,1)

) i ) i . Ci .
+8 an(9,1) + an an(10,1) + ¢nc an(ll’l) + Cnc an(12,1)

Al ‘ . “ . “ . - .
+ B c an(13,1) + ex an(14,1) + Gy an(15,1) + ey an(l6,1)

n
= N L= . 21 ) £, .
+ Rys an(17,1) + Rxs an(18,1) +—R- an(19,1) + % an(zo,l)
+ 53 an(21,i) =0 (3.13)

N =2 =2 =20 2 _2 -2

an(l,l) = - + (wL wF) sin 60 + ¢k0 (wL mF) 31n60 coseO
- Zt_z. e + 2 2 -V Ei ;)
2 €T Rm 73 L “pYo
c =4 =3

o d0 L~ 2 -
an(2,1) = -n {2V - & T V3 8o A+ BgL. }

o -2 -2 =2 2 -2 -2,
an(3,1) = - ¢k0 { Wy (wL - wF) sin 60 } - (wL wF) s1n60 cose0

=3
1 = R .
-3 vb 3 31n60 n
23 2 3 _

L4 =nl{25 B4+ Bp) Vv (Bt ) -VvF (-2A+e 0}

Lo —2 -2 =2, .2 -2 -2
an(S,l) = BkO{ W' - (mL - wF) sin 60}-+ Z10 (mL mF) s1n60 cose0
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L (17,9
L (18,1)
L .(19,1)
L__(20,1)

an(Zl,i)

L
—\)3>\
=3
1 -~ 2 .
- -2—\)b 3 31n60n
c =4 =3 Q
B (U N = 1
t-2v—" 4 - vg A8y -8 ) o
=3 Q
2 1
—ZHT ?2—.
1
=3 =4 =3 Q
i Ea = = _1
{23 (3k0+sp)-\)4 (eo+¢ko)-\)3 (-2 X +e eo)}Qi
=3 Q
1 2
T,)_‘\)b 3 51n602n -Q—l-
=3 Q
1 L 1
—-2—\)b 3 31n60§];
P A
3 Q.
i
=3 Q. 2
1 ) , 1
?\)bT Slneo(‘s-g)
=3 =2 Q. 2
2 2 1
{6n'—3—(8 +Bko)+6 h2 —2—}(5;)
=2 Q
[ 1.2
S T CkOhZ(Q—i)
:‘:.._2_4_/,\ Y AT f_n\‘i}_l_
04 Yo T Yo T a3 <MY 2,
- Q
s B
n 2 i
R
n 2 ko0 N
=2 Q
L )
"% M Gy (Qi)
EZ _ Ql 2
—én—z—- Ckohz nZ,x(Q'F)R(ﬁi_)
=2 Q
7 %
8y 77 Py ng gy (g
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n-Sine Lead-Lag Equation

i . i .
Cns (1 i) + an ns(z i) + B Lns(3,1) + Bnc Lns(4,1)
i . i ) i X i ,
+ ¢>ns Lns(s,l) + ¢>nc Lns(é,l) + Cos Lns(7,1) +zo Lns(8,1)
°i ) i . i . °i A
+ an Lns(9,1) + Bnc Lns(lo,l) + q)ns Lns(ll,l) + r,ns Lns(lz,l)
+ an Lns(13,1) + Gy Lns(14,1) + ex Lns(15,1) + Gx Lns(16,1)
= . = . &1 . &, .
+ Rxs Lns(17,1) + Rys Lns(18,1) + Y Lns(19,1) + Y Lns(20,1)
+ €3 I-ns(Zl,i) =0 (3.14)
N =2 -2 =20 2 -2 -2
Lns(l,l) =-uw + (u)L wF) sin GO + ¢k0 (u)L wF) sme0 cose0
- =3 =4
L5 = 3 2 2
-5 e + 3 n -v oW Bpeo
A =3
5 - fa0 T, B "
Lns(2,1) =n{2v— ;v 3 )\80 + gSL}
o -2 =2 -2 .2 _ =2 =28
Lns(3’ i) = - ¢k0{mL (mL wF) sin 60 } (wL wF) 31n60 cose0
=3
1 - £ . 2
-3 v b 3 31n60 n
Lns(4,1)=n{—23(8 +B)+\)—4— (e +¢k0)+v (2>\+e6)}
L (5,i) = - B {w (w —w)sm6}+?;(2 _z)sinG cosb
ns"”? k0 ‘*’L W k0 Wg 0 0
=3
£
-V —3— A
=3
L (6,1) = %\) b &3— sinf, n
c =4 =3 Q
) = _do &7 _ 27 -3 1
L (71 ={-2v 3 - Vg A8, gSL} 2,
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Lns(8,i)

Lns(9,i)

Lns(lo,i) =

Lns(ll,i)
L__(12,1)
L (13,1
L (14,1)
L (15,9)
L (16,1)
L__(17,1)

L__(18,1)

-
-~
(ted

L
ns

Lns(20,i)

Lns(Zl,i)

Collective Torsion Equation

I
W[

i . i . i ,
Py Tc(l,l) :l- BM Tc(2,1) + oy T, (3,1)
+ LT (D + R (5,0 +

+ 3; T (7,1) + H; T, (8,1) + Eé T (9,1)

;; T_(6,1)

(-2 1+ Eeo)}



&2

X . =2 N . 2 o
+0 T (10,0 + 3 TALD 406 7,02, + T_(13,1) = 0 (3.15)

]

Tc(l,l) T1

Tc(2,1) = T2

Tc(3,i) = T3
Ql
Tc(4,i) = T4 _Q_
1
oo s 9L
Tc(5,1) = TS5 B
i
Q1
T (6,1) = T6 &
i
T (7,i) = T7 (El ?
c al) - Q )
i
9]
- 142
Tc(sai) = TS ( Q, )
i
Q
N _l_ 2
Tc(g,l) = T9 ( Q. )
i
Q1
Tc(lo,l) = - QFi T18 ?z;
Q1
Tc(ll,l) = nz (QFi) T18 -ﬁz
9]
N_ 7 %152
Tg(lZ,l) = - R, T2l ( o )
Q1 2
TC(13,1) =", (ﬂFi) T21 ( ﬁr')

i

Alternating Torsion Equation (For even N only)

i . i . i .
oL T(LD + 8L, T,(2,D + gl T,(3,1)

°i , o1 , "1 .
0 Tp4,0) + 85, T,(51) + iy T,(6,1)
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g

TA(l,i)
T, (2,1)
T,(3,1)
T, (4,1)
T,(5,1)

TA(6,i)

TA(7,i)
TA(S,i)

T,(9,1)

¢—M TA

7,1 + 8Ly 1,80 + ¢l T,09,1) =0
= Tl
= T2
= T3
Q
o L
= T4 Qi
Q
R
= T5 Qi
2
-6 L
= T6 Qi
Q
2
=17 ()
i
Q
2
=18 (h)
i
Q
2
=19 ()
i

n-Cosine Torsion Equation

nc

+ Qi

nc

1
+ Bnc

-5
+
¢nc

+06 T
y

+ R
ys

i
¢ T

. i . i . i .
C(1,1) + o Tnc(2,1) +8 T .G, + Brs Tpe(4»1)
T (5,0 +2 T (6,i) +6F T (7,040 T (8,1
nc 7 ns nc- ° nc nc ? ns nc
. °i . ‘i . °i .
Tnc(9,1) + an Tnc(lo’l) + Cnc Tnc(ll,l) + Cns TnC(IZ,l)
“ . “y . . .
Tnc(13’i) + Bnc Tnc(14,1) + an Tnc(15,1) + ex Tnc(16,1)
nc(l7,i) + ex Tnc(18,i) + Gy Tnc(19,i) + Rxs Tnc(20,i)

Tnc(Zl,i) + Rxs Tnc(22,1) + Rys Tnc(23,1)

37

(3.16)



Tnc(24,i) + Tnc(zs,i) + £3 Tnc(26,i)

| Y |
JJISEINAE

T (27,1) + T (28,1) + &, T (29,1) = 0 (3.17)
T (1.i) = T1 - n? T7

nec 7 ?

Tnc(z,i) =n T4

T (3,i) = T2 - n® T8

nc ?

Tnc(4,i) =n T5

T (5,1) = T3 = n” T9

T .(6,i) = n T6

Q1
T (7,1 = T4 5=
1
Ql
T (8,i) = 2 n T7 ==
nc Q.
1
Ql
Tnc(g,l) = T5 I'N
1
Ql
T (10,1) =2n T8 &=
1
Ql
T (1,1 = T6 o=
1
Q1
Tnc(12,1) =2nT9 o
1
Q
o 1.2
T (13,1 =17 (g=)
1
Q
N 1.2
Tnc(14,1) = T8 ( ﬁi-)
1
Q
R
Tnc(ls,i) =19 (g)
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Q
N = 1,2
T .(16,1) ={§ T13(1) - h, § T20(1) } (-Qi—)

T (17,1) =18 TLH(D) + By 8 T119(1) } ( % )2
Q 1
T (18,1) =18 TIO(D) - K, & T17(1) } 9_1
Q1
T (19,4 ={8 T11(1) + 5, §_ T16(1) } Q—i
&
T o(20,1) = T19(1) & ( ﬁ-; )
T (21,i) = T20(1) 8 (gl )2
nc o1 n ‘Qi :
Q1
T_ (22,1) = T16(1) §_ (_Q—i)
. s.Zl
T (23,1) = TI7(1) §_ (-Q-i- )
Ql 2
T (24,1) = n (L) 8 T20(D) (Q—i)
Ql 2
T .(25,1) = - h, "2 x (Lp4) T19Q1) 8 R (.5; )
- S-21 2
T (26,1 = - B, n, (4;,) T201) §_ (Q—i-)
Q.
T (27,1 =n, (2. T17(1) & ?2-*-
- ) Ql
Tnc(28,i) = - h2 n2,x (lFi) T16(1) Gn R -ﬁz
- Q]_
T (29,1) = - B, ny () TV 8 &F

n-Sine Torsion Equation

i

i N i . i N
ns Tns(l’i) + ¢nc Tns(z’l) + an Tns(B’i) + 8nc Tns(é’l)

¢

i . i . i . i .
+ Cns Tns(s’l) + Cnc Tns(6’l) + ¢ns Tns(7’1) + ¢nc Tns(s’l)
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i i . “i i i .

+ an Tns(9,1) + Bnc Tns(lo,l) + Ens Tns(ll,l) + cnc Tns(lz,l)

sol T @3 +et T D) +CE T (15,4) +6 T (16.1)
ns ’ ns ns > ns ns ’ y “'ns ?

ns

+ ex Tns(l7,1) + ey Tns(lS,i) + ex Tns(19,i) + Rys Tns(ZO,i)

+ R TnS(Zl,i) + Rys Tns(zz,l) + Rxs Tns(23,1)

XS

+iT(241)+—-2-T(251)+§T(261)
R ns ¢ R ns ? 3 "ns ’

+ L r @7+ 22 1 (28,4) +E T (29.4) = 0 (3.18)
R ns > R ns >4 3 "ns ’ ‘

o\ 2
Tns(l,l) =Tl - n° T7
TnS(Z,l) = -n T4
T (3,i) = T2 -n> T8
ns ?
Tns(4,i) = -nT5

2

TnS(S,i) =T3 - n" T9

Tns(6,i) = -n T6

Q]_
Tns(7,1) = T4 R
1
Ql
TnS(B,l) = =2n T7 a.
1
Ql
Tns(g,l) = T5 'l
1
Ql
Tns(lo,l) = -2n T8 6._
1
Q1
Tns(ll,l) = T6 'ﬁ-j-:
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Q‘K)
-

T (12,i) = - 20 T9 -
Q
T ((13,1) = T7 ( 51— )2
Q
T__(14,1) = T8 ( -g% )2
T__(15,1) = 19 ( —2% )2
- & 2
T (16,1) = {an T14(2) + h, 8 T19(2) } (h—i)
Q
T__(17,1) = {5 T13(2) - B, § T202)} (,-ﬁ% )2
— Q]_ ’
T (18,1) = {an T11(2) + h, & T16(2)} o
S-21
Tns(19,i) = {Gn T10(2) - Ez 8, T17(2)} 9—1
4 2
T (20,1) = & T20(2) ( 5—1— )
T (21,i) = &_ T19(2) (?l )2
ns n Qi
!
T (22,1) = 8 T17(2) ﬁl-
4
T (23,i) = § T16(2) Q—l
& 9
T o(24,1) = n;(Bg,) T20(2) & (Q—;)
- 4 o2
T (25,1) = - b, nz’x(zFi) T19(2) § R (.@-i- )
- Y 2
Tns(26,i) =-h, ng (zFi) T20(2) §_ (ﬁi—)
!
T (27,1) = n; (0py) T17(2) 8_ (,h—i)
- 4
T .(28,i) = - h, nZ,x('Q'Fi) T16(2) 8 -

i
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Q
.y - 1
T (29,1) = - B, N, (B,) T17(2) & T,

The various coefficients for the torsional equations are:

=2 2
-2 -2 2 = 3 =
TL = = Wpy = Opy = G Lyo Xp cosby + 5= B, X; sin®

0

I I
+ (1-e) [ _M]23_§_ - 11232 ] (sin260 - cosze )
oR 0

%

EA 13 14

+ w;ko (5 + 5 2e) + kao (1 + cio)[ v ;ko (Bko+8p)

73 |
+ —3— A+ —E— A e ]

3 g2
- 2 I -
+ VK, ( 3 t 5 2e)
73 1 1 4
=2 2 =y _MB3 2 .2 1" 2
“r1 o T3 Pro T Bl — g cosT 0t — 5 sinhl -V T Lo

=4 13 ﬁ

2 | _
T VB B+ T 7 Lo B + dg) - 25 AL 0] -5 X cosby

T2

2 g0 , 7% .. ¢ _
R L e o S R YOI

A By ¥ b = 2 LBy = 2 TygByg)

+

ol Y
Nl ) “" w

)\()\—'é(60+¢k0))}-\)}—(

b

w
Y

5

3 -2

-2 TR

Wry o ~ B (5 + 5 @ -8
I

T3
P

- MB3 2 MB2 2 £
+ (1—e)(8p + Bko) [ — cos 60 + > sin 60 ] -V EkO(Bp + Bko)

mR mR

74 73 o 22 -

+ V[ e (80 + ¢k0 - CkOBp - CkOBkO) + —3—(—>\+2e60+2e¢k0) -5 e Al
2 7" 2>

+ VB o (1 + Ceo) [ v (Bko + Bp) (90 + o) — 2 3 A (Bp + BkO)]

- V2B { - S@ ( 2 + 1_3 2 e LA + 6, + )
K0%KO a 4 T3 28 - Ty (Beg t B By + 9y
73

T3 A Bt o - 2508, - 2008,0)
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72 73

+ S A (- e (8 + ¢4)) } - K, 5 (Bp + B o)
I 1 =3
2 MB2 2 2 -
2 C (1-e) [ sin“6 . + cos"8.] + v— ,. b
) ) 0" 2 0 3 °k0
=3 -2
1 r 2 s X -
+ 2 Vv gkO 3 cose0 +\)XA 5 b
+ VB (1+C2) [ﬁ)\ﬁ-*- lgf_ (sinb, + ¢, . cosb,.)]
k0 k0 2 2°73 0" %o 0
- -2 - =2
ToeF by 2~ 1 = b, 8" 7=y _ 3
+§Vb(XA—2) > 2\)b2(2 + 2 e) gST
73
-2 5 BkO B + BkO) T XI 51n60 (B + Bko)
I I =4 =3
_2 (1-e) [ B3 gin% +MBZ % 1-ovw (2 o+ A2 o)
2 0 2 0 k0 - & 3
mR mR
2 74 74
+ VB A+ Tg) T Op+ &g = Tofy = T Bro) = 7 Zo By * Bio)
73 - - 73 7% -
+ 5 -2 A+ e (eo+¢k0))] -va(—é— + 5 e )
73 2= . 2 -
-2 5 CkO (Bp + BkO) -2 XI 31n60 CkO - Bp ) XI (:ose0
1 1 4
- MB3 . 2 MB2 2 il
+ 2 ¢k0 (1-e) [ 5> sin 00 +———2 cos 90 1+ v A 2 CkO (60 + d)ko)
mR mR
1 1 3
- 29, (1-9) [ M]233 coszeo + —M—g—z si‘nzeo ] - v 3—53— Lo )
: mR nR
1
~ 2 (1-8) ( IM12‘3 - Mgz ) cosb, sind
mR mR
—4 3
2 Ca0 % 1 A -
+ VB (LT ) L2— T+ F Og+d,r]
3 =2
- 2 [
+vXA{2—j—(eo+¢kO) T)‘]
1 1 =2
o (1-3) [ B3, MB2 lygbh g
2 2 2 2
mR
=3 =2 =2
2 [ 2 .
- ';kO 3 - 7 XI cose0 + 2 ¢k0 XI 51n60



I I =3
- MB3 2 MB2 ., 2 1 - 2
+ (1-e) ¢ [ —= cos“6, + sin®® ] ~=vbzr  ~— cosb
k0 mRz 0 mR2 o 2 kO 3 0
3 = 2
1 = 2 . 1 - = b, ¥
- FV b BkO (1 + Z;ko) 3 (31n60 + ¢k0 cos@o) - 2\)b (XA - E) 5
=3 = =2
- 2 2 X 2z 1
T9 = 3 BkO + 5 ¢k0 XI cose0 + 5 XI 51n80
I I =3
- MB3 2 MB2 . 2 1 = 2 ,
+ (1-e) BkO [ — cos 60 + 5 sin 60 ] + 5 Vv b Bko(l + Cko) 3 eosme
mR mR
E3 _ EZ 2 _ o
T10(1) = - 3 Cko - 2e = ?;ko -2 5 XI Coseo -2 22 e XI Coseo
2 I I
7 = . - MB 2 B2 . 2
+T 2¢ko XI 51n60 + ZCkO (1-e) [ > cos 60 + 5~ sin 90 ]
mR mR
=4 -
27 1 -2 .
VB (I CkO) [ % %kof = 3 b5 singj ]
+3 2
) 2 I3
T10(2) = 2 T Cko + 2 T CkO XI COSGO
I I 4 3
- M 2 s s X
+ 2 (1-e) [ cos" 0, + sin"®, 1 -vg, .5+ - Vv X, =
mR2 0 mRZ 0 k0O 4 A 3
2, 1 73 i,
FVBL A LE) [ Gy + o) - 25 (-6
=3 =2
= 2'_ 2 'Q'_ X
T11(1l) = - 2 3 EkO -2 7 Z;kO XI cose0
I I 4 3
MB3 2 MB2 . 2 3 = X
-2 (1-e) [ 5 C 60+ > sin 90]+\)?;k0 A +\)XAT
mR mR
4 -
2 2 73
S VB (LT ) [ 5 (B + 0, 0) - 25 (A =36 ]
z _ 32 22 - R
T11(2) = - 2 3 Cko -2 e 5 Cko -2 -5 XI (‘,Ose0 -2 % e XI Coseo
2 I I
T = - 3 2 M 2
+—5-2 ¢ . X_sinb_+ 2 ¢ (1-e) [ cos 0. + sin“ 0. ]
2 kO "I 0 kO mRZ 0 mR2 0
4 =3
- 1 - 2 .
13 5,3 -2-'2 _ E2 _
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T13(2)

T14 (1)

T14(2)

T16(1)

T16(2)

T17(1)

T17(2)

T18

T19(1)

T19(2)

T20(1)

T20(2)

(]

e + ]
"% mR?
3 =2 =2
2 [ [ - -
-3 CkO - e Cko - 5 XI cose0 - 2 e XI cose0
-2 1 I
z = . - MB3 2 MB3 2
5 9., X sinf_  + (1 - @) ¢ [ —= cos“® _ + sin“6 ]
2 %0 “1 0 n
K0 "2 0" 2 0
3
1= 2 z )
2 VB B I+ F sing
ZE'E + z ez + Z X 6, + 2 e X cosp
3 %07 3 tot 7 %y cosfy e & cos9
72 - - IMB3 2 IMBZ 2
- ¢, X_ sinf, ~ (1l-e) L [ —— cos“6_ + sin“0_ ]
2 ko %1 0 k0 b2 0" 22 0
3
1 = 2 3 .
VD B (1 +15 ) 3 sing
3 3 2 2
2 2 |2 ') = 7 -
=3 fxo " Puo B, * Brg) T - 5 Gy Xy cosby - 7 X (B #Byp)sind,
1 I
1-o [ 22 + B2,
mR mR
o, A+ o @ se
k0 k0’ 3 0 “*p T ko’
=3 C.. =3 =2 =2
z 2 a0 T T = I
T Vo3 20 T VB (Bt og) 2T 3+ A 8] -vE, T 28,
=3 c =3 =2 2
2 2 do 2 [ )
V3 Bko P00t VBg o) 27 g M0l +vE, 528,
2 73
=3 =3 =2 2
2 2 2 3 - - X
“VF G T VB U H Ll T (B + 0y ) + 5 (-2 A+e ) VK, -
72 - s
'2— Bp Cko + ZBP XI COSe0
72 . = o
-5 BkO - ¢k0 L XI cose0 - % XI 51n60
72 - < .
BkO 5 ¢k0 2 X cosGO + 2 XI 51n60
72 -
5 Bp EkO + 28 XI cose0
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I = 1. = 2 . 22
T21=-Ck0—é——2XI coseo+2¢ko XI sineo—-i\)kao (1+Cko)—-2—sin60
Rigid Body Equations
X-Translation
%i};{mgzi Rz[ﬁié _\)-9—“; +\>_T2>\+-:%2~3P+12 Bko —v—%z—(-zx+éeo)
9',3
= Vg (B + ) 2
+Bis<"%i By + \’1—33' Bro * E_:' O Leo * 3V B "23 sinfy ~
+;ic<12 ;ko—z\)c—i— %3— - \)-;-Z;—)\eo>
+Cis<'“§3i Bpeo*"’%E k0%0 ”
+¢i<-v8%i-—%v5 sin60>
+éic<v8pz;i + \)%3— Bko+2%\)5 %—2— sineo> %i-
+.1s<‘§28ko+"Lj(eoJ"bko)*\’:zz"(’ZA*Eeo”%
+£ic<-2\)8pi—:— 60>§_li
+.is<—E2 z;k0+2\)ic::l—Q %3— +\)—7“—23 A8y > g—i
+<;is< %vB E;— sin60> g-i—
+ B < E;— Bp>(%)2
+8l <2V %2— sin60>(_%]il)2
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I?_

—— sinB

2

B

[ 1) Iz - Ql 2
+ey<-7 (28p+8k0)-22h2>(g—i)
. - -2 3 Q
2 3 2 1
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It should be noted that equations (3.7) - (3.20) are valid for both
articulated and hingeless rotors.

For articulated blades, the following quantities should be set equal to
zero.

w,=0 |, =0

F 0

s Wpy T

while for hingeless blades

Wpy =0

Depending on the type of rotor, articulated or hingeless, the appropriate
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substitutions indicated above, have to be made in Egqs. (3.7) - (3.20) and the
resulting equations represent the linearized stability equations. The equations
for pitch, roll and the supporting structure elastic modes, presented in the
following pages, are different for the case of articulated or the case of
hingeless rotors. This difference is primarily due to the terms representing

the transfer of moments at the hub due to the blades. 1In articulated rotors,
without lag dampers or hinge springs, flap and lead-lag moments at the hinge are
zero, whereas in the case of hingeless rotors, these moments are nonzero. Hence,
two sets of equations have to be given, These equations are provided below and
they are identified as applicable to "Hingeless Rotors'" and "Articulated Rotors"

respectively.
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Elastic Mode Equations of the Supporting Structure

Symmetric Bending in X-Y plane (Horizontal)
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In the relatively long set of equations presented in the preceding pages,
Eqs. (3.1) - (3.6) represent the equilibrium position or trim equations, while
Egs. (3.7) - (3.30) are the linearized stability equations written in the rotor-
plane or multiblade coordinates. The trim equations are the same for both
articulated and hingeless rotors. .For the case of hingeless rotors, the stability
equations are given by Eqs. (3.7) - (3.25) and for the case of articulated rotors,
the stability equations are given by Eqs. (3.7) - (3.20) and (3.26) - (3.30).
These equations can be used to analyze the aeroelastic and aeromechanical stability
of a twin rotor system, with a buoyant envelope (Fig. 2), in hover.

The stability equations can be written more compactly by using a matrix re-

presentation

M] {q} + [c] {c}} + [k] {q} = 0 (3.31)

where [M], [c], [K] are constant coefficient matrices in which the elements
are dependent on the equilibrium quantities, and {q} is the generalized coordinate

vector, which can be written as

rql\

{¢} = 1> ¢

For a four bladed rotor, the value of n, in the blade equations, is 1. The

corresponding generalized coordinates are
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It can be seen from the equations associated with alternating modes, Eq. (3.8),
(3.12) and (3.16), that these equations are decoupled from other degrees of freedom.
Similarly, the equations corresponding to the other degrees of freedom do not depend
on the alternating modes. Hence, Eqs. (3.8), (3.12) and (3.16) can be solved inde-
pendently, thereby reducing the size of the matrices [M], [C] and [K]. Based on this
property of the alternating modes, Eq. (3.31) can be split into three groups of

equations, namely:
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M,] {55} + [c,] {4l + [K,] {4} =0 (3.33)
M) (4 + [o] (G} + (K] {§) =0 (3.34)

The order of the various matrices is given below

[Mll, [cll, [Kl] 25 x 25

[M3}, [c3], [K3] 3x3

After obtaining the equilibrium state, the three groups of Equations (3.32) -
(3.34) can be solved separately for the stability analysis. The information about
system stability is obtained from an eigenanalysis of Equations (3.32) - (3.34).
The various results obtained together with the physical interpretation of these
results are presented in the next chapter.

3.2 Equations for Single Coupled Rotor/Body Model

It is evident from the preceding discussion that the mathematical model of a
multiple rotor system, coupled with a supporting structure, is algebraically compli-
cated. To develop confidence in this model it seemed prudent to use it first for
simulating the behavior of a single rotor system coupled with a fuselage. For a
coupled rotor/body system, in ground resonance, including the effect of the aero-
dynamic loads, high quality experimental data has been published by Bousman in Ref. 6.
A comparison of the results obtained from the analytical model developed in this report,
with experimental data [Ref. 6] is a reasonable approach for validating the equatioms.

In this section, the equations of motion for the multirotor model, derived in the
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previous sections are modified to study the aeromechanical stability of a single
rotor/body model of a helicopter in ground resonance. The modifications intro-
duced consist of deleting a number of degrees of freedom so as to simulate the
particular configuration tested by Bousman [Ref. 6]. A brief description of this
test is provided below.

Bousman [Ref. 6] has obtained excellent experimental data for the aeromech-
anical stability of a hingeless rotor on a special gimbaled support, simulating
body pitch and roll degrees of freedom. The rotor consisted of three blades and
five different configurations were tested. The different configurations re-
present different blade parameters characterized by the nonrotating natural fre-
quencies of the blade in flap and lag, pitch-lag coupling and flap-lag coupling.
The rotor was designed such that most of the blade flexibility was concentrated
at the root by building in root flexures. The rotor assembly was supported on
gimbal which had pitch and roll degrees of freedom. In this report, the analyti-
cal results obtained are compared with the experimental results, presented by
Bousman, for rotor configuration 1, where the designation of this configuration
is consistent with that in Bousman's paper [Ref. 6]. Configuration 1 had dif-
ferent stiffnesses in flap and lag respectively, the corresponding non-rotating
flap frequency was 3.13 Hz and that for lead-lag was 6.70 Hz. The airfoil
cross-section of the blade was cambered and has a zero 1lift angle of attack
equal to -1.5 degrees. A substantial part of the experimental data was
obtained for zero pitch setting, however, due to the presence of camber the rotor
produces a small amount of thrust at this pitch setting. The rotor blades were
rigid outboard of the flap and lag flexures which were located at a radial station
0.105R. There was no flap-pitch or pitch-lag couplings for this configuration.

Furthermore, the blade was very stiff in torsion. In the case of the experiments
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conducted for pitch angles other than zero, the experimental set up was so de-
signed as to introduce the changes in pitch angle outboard of the flexures and
hence there was no flap-lag structural coupling for these cases. The structural
damping in body roll was very small in comparison with that for body pitch. The
body pitch and roll frequencies were controlled by cantilever springs on which

the gimbal was mounted. It was stated in Ref. 6 that the body pitch spring was
selected to provide a dimensionless body pitch frequency of about 0.12 at a nominal
rotor speed of 720 R.P.M. and the roll spring was selected to give a dimensionless
roll frequency of about 0.28. (The frequencies are nondimensionalized by dividing
by rotor speed.) As indicated in a letter by Bousman to the authors the design
objectives for the model were dimensional frequencies of 1.44 Hz in pitch and

3.36 Hz in roll. However the actual measured frequencies were 2 Hz in pitch and

4 Hz in roll. From the experimental results presented in Ref. 6 it is evident
that over a wide range of {2(200~1000 R.M.) the pitch and roll frequencies are very
close to 2 Hz and 4 Hz respectively. Hence, for the present study, the pitch

and roll frequencies are chosen to be 2 Hz and 4 Hz. With this combination of
frequencies, at a rotor speed of 750 R.P.M., the lead-lag regressing mode fre-
quency coalesces with the body roll frequency causing an aeromechanical in-
stability.

The degrees of freedom required to study this aeromechanical stability prob-
lem are: the fundamental flap and lag modes for each blade and the pitch and roll
degrees of freedom of the body. 1In this class of problems, it has been established
that the collective flap and lag modes do not couple with the body motion and
thus, these modes are not considered. Therefore, the number of degrees of freedom
for the aeromechanical problem are six. These consist of: cyclic flap (Blc’ Bls)’
cyclic lead-lag (Clc’ Cls)’ body pitch (6) and body roll (¢). The relevant equili-
brium and stability equations, for this problem are given in the following sections.
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3.2,1 Static Equilibrium Equations

Flap:
=3 =2
-2 -2 -2 . 2 2 2 -
BO {G)F+((L)L—O)F) Slnec + —3—+—2~ e}
+T {(52-52) in6 6 + ﬁs}
0 L p) sin®  cosé + v A .
=4
L
+BOCO{\)T}
=3 =2 =4 3 2
2 A 2 2 - e -y _
+BP{3 +—2—e}—\){T 90+ —3—(—)\+2e_60)—7e>\}—0
(3.35)
Lead-Lag
-2 =2 .
BO { - (wL - mF) 51n6c cosec3
=2 =4 =3
-2 -2 -2 .2 - z .
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When there is

no structural flap-lag coupling, the terms containing sineC
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and cos c must be deleted from the above equations as w

stability equations given below.

where 60 is the effective angle of attack

Bc is the collective pitch setting of the blade
BZL is the zero 1lift angle of attack
3.2.2 Stability Equations

n-cosine Flap

Bnc Fnc(l) + an Fnc(z) + Cnc Fnc(B) + Cns Fnc(a)
+ Bnc Fnc(s) + an Fnc(6) + cnc Fnc(7) +
+ 8 Fnc(9) + 6 Fnc(lO)_ + ¢ Fnc(ll) =0
where
" -3 -2
=2 =2 =20 2 I L
Fnc(l) = wp + (wL - wF) sin ec +VT G+ + 3
=3
21 - %
- n 3 Vb —3— Coseo
4 =3
'3 2 - -
F (2 =n(vy + vy e+ gsp)
2 -2 4
Fnc(3) = (mL - wF) s1n6c cosGC + V7 (Bp + BO)
Fnc(ﬁ) =n( 2 5 (BO + Bp) -2V 80 + V5 A)
4 3
Fnc(5)=\)T +\)—3— e+gSF
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n-Sine Flap
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FnS(Z) - n{ —\P%? - \W%; E - gSF}

-2 -2 74
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Cosine lead-lag
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(3.39)
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n-Sine lead-lag
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n
(3.40)
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For a three bladed rotor, the value of n, in the above equations is 1.

The inflow ratio, A, used in the calculation of the aerodynamic loads is

taken from [Ref. 3]

2418 |
YRR S [ \/ 1+ —2 } sgn 8 (3.43)

16 ca
In the last equation 60 is the effective angle of attack of the blade.
As indicated in Ref. 6, a cambered airfoil was used in the model rotor

tested, thus

80 =0, - BZL (3.44)

where O is the collective pitch setting of the blade and §,, 1is the zero lift
angle of attack. The static equilibrium equations, Eqs. (3.35) and (3.36), are

used to evaluate the blade equilibriumpositions and Egs. (3.37)-(3.42) are solved t
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determine the aeromechanical stability of a single rotor helicopter, in ground
resonance.

The procedure followed in this analysis is slightly different from the
procedure used to analyze the stability of a vehicle in hover, presented in
Chapter 2. During hovering flight, the vehicle equilibrium conditions have to be
satisfied. Whereas for ground resonance problems, the equilibrium condition of
the vehicle do not have to be satisfied. Hence, the collective pitch angle of
the blade, Gc, is not an independent variable to be evaluated from the
equilibrium conditions of the vehicle, and it becomes a prescribed quantity.
The procedure for the analysis of ground resonance problem is as follows. For
a given value of the collective pitch setting of the rotor, under the prescribed
conditions of operation, the equilibrium deflections of the blade have to be
evaluated from the equilibrium equations of the blade, Eqs. (3.35)-(3.36).
Then, these quantities are substituted in the linearized stability equations,
Eqs. (3.37) - (3.42), to analyze the stability of the vehicle,

The results of this analysis together with the results obtained for the

stability of the complete HHLA model are presented in the next chapter.
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4. RESULTS

Based on the equations presented in the previous chapter, two types of
problems were solved. First, the aeromechanical stability of a single rotor
helicopter, in ground resonance, is analyzed and the analytical results are
compared with the experimental results available in the literature [Ref. 6].
Next a detailed stability analysis of a multirotor vehicle, representing an
HHLA (Fig. 2), in hover, was carried out. The results are presented in two

separate sections.

4.1 Results for the Ground Resonance Problem and Comparison with Experimental

Data

In this analysis, aimed at predicting the aeromechanical stability of
a single rotor helicopter, the behavior of the model was studied at various
values of the rotor speed . The results of this aeromechanical problem are
presented in Figs. 4-8 together with the experimental results. Also presented
in these figures are the results obtained by Johnson [Ref. 7]. The aerodynamic
model used by Johnson was based on a dynamic inflow model, whereas a quasisteady
aerodynamic model is used in this report. The data used for this analysis is
presented in Appendix C.

The variation modal frequencies with 2 are presented in Fig. 4, together
with the experimental data obtained in Ref. 6. The progressing flap (Bp) and
the progressing lead-lag (gp) frequencies increase very rapidly with . The
lead-lag regressing mode (CR) frequency evaluated from our analytical model is
in excellent agreement with the experimental results. The body pitch (6) and

roll (¢) frequencies have slightly higher values than the experimental results.

The damping in‘pitch as a function of  is shown in Fig. 5. The analytical
results are in good agreement with the experimental data. The variation of
damping in roll as a function of § is shown in Fig. 6. It is evident that for
this case the analytical results yield values which are somewhat higher than

the experimental data. The differences observed between our analytical results
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and the experimental points, for the frequency and damping in body modes, could
be explained as follows. In our calculations, the numerical values used for
the stiffness and structural damping in body pitch and roll modes are evaluated
based on pitch frequency equal to 2 Hz and roll frequency equal to 4 Hz.

Fig. 7 presents the variation of damping in lead-lag regressing mode with
2. The results of the present analysis show slightly better agreement than the
results obtained in Ref. 7 with inflow dynamics. It is also important to note
that in the region, beyond 800 R.P.M., our results are in excellent agreement
with the experimental results, while the theory with inflow dynamics predicts
higher values.

Changes in damping of the lead-lag regressing mode as a function of the
collective pitch setting of the blade are presented in Fig. 8. At Q@ = 650 R.P.M.,
the results shown in Fig. 8a indicate that the theoretical analysis used by
Bousman [Ref. 6] predicts a much lower value for the damping than the experimental
results. The present analysis shows considerably better agreement. At Q = 900
R.P.M., the experimental results indicate a lead-lag regressing mode which is

always stable, but the theoretical results shown by Bousman [Ref. 6] imply an

instability which becomesstronger beyond a collective pitch setting of 2 degrees.
As evident from Fig. 7b, the results of our analysis predict the correct trend
and the predicted damping levels are much closer to the experimental results. An
item to be noted in these figures (8a, 8b) is that the curve representing our
analytical results starts from an angle GC = -~ 1,5 degrees. Although Fig. 8
contains an experimental data point corresponding to ec = - 3 degrees, we have

not computed the results for this pitch setting,

C - 87



The above comparison shows good agreement between our analytical results
and the experimental results for the aeromechanical stability of a helicopter in
ground resonance. Therefore, it can be concluded that our analytical model for
the dynamics of the coupled rotor/vehicle system and the method of solution for
the stability analysis are valid.

Finally it should be noted that more comprehensive results comparing the
experimental data [Ref. 6] with the results from the mathematical model
developed in this report, using a quasisteady aerodynamic model, can be found
in Ref. 8. Additional results showing the sensitivity of the results to un-

steady aerodynamic effects was presented in Ref. 9.

4.2 Results for Multirotor Model of an HHLA

Based on the equations presented in Chapter 3, two computer programs were
developed to analyze the trim and stability of the twin rotor vehicle with a
buoyant envelope shown in Fig. 2. The results are presented in three main sections.
The first section gives the data and certain preliminary calculations for various
frequencies. The second section presents the results of a parametric study in
which certain relevant physical parameters of the system are varied so as to
determine their effect on the stability of the vehicle. This parameter variation
was also utilized for identifying the physical meaning of the various eigenvalues
obtained in the analysis. The last section presents the physical interpretations
of the results. These calculations were done on a vehicle without a sling load.

4,2.1 Data for the Multirotor Model

The data used'for the calculation of equilibrium or trim state and stability

of the vehicle are given on the next two pages.
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Blade data
The HHLA model (Fig. 2) has identical rotors.

Type of rotor: Articulated rotor

Number of blades N 4

Blade chord c =2b 41.65 cm (1.3666 ft.)

Hinge offset e 30.48 em (1 ft.)

Rotor radius R 8.6868 m (28.5 ft.)

Blade precone Bp 0

Distance between elastic center and aerodynamic center XA 0

Distance between elastic center and mass center XI 0

Mass/unit length of the blade m 7.9529 kg/m (0.1661 slug/ft)

Principal mass moment of inertia of the blade/unit length

B3 1.1503 x 107 kg.m  (2.586 x 1072 slug ft)
Iy, 6-6723 1073 kg.m (1.5 x 1072 slug ft)
Aerodynamic data
Blade airfoil NACA 0012
Lift curve slope a 2
Density of air 0 1.2256 kg/m> (0.2378 x 1072 slug/ft>)
Blade profile drag coefficient 40 0.01
Rotor R.P.M. 9 217.79 R.P.M.
Solidity ratio o] 0.0622
Lock number Y 10.9

Nonrotating blade frequency parameters (Articulated blade)
K

Bp %
Tlap frequency parameter wp = (—3) 0
F mR3
X
Lead-lag frequency parameter w = (—%x) 0
) mR
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Torsional frequency parameter
(articulated)

Torsional frequency parameter
(hingeless)

Damping in flap
Damping in lead-lag
Damping in torsion

Vehicle data

Weight of fuselage F1

Weight of fuselage F2

Weight of underslung load
Weight of envelope
Weight of supporting structure

Weight of passenger compartment

'
wS

(Treated as a lumped structural load

3.5919
3.5919
6.6723
8.5539
9.4302

6.6723

attached at the point OS on the structure (Fig. 2)

Buoyancy on the envelope

Geometric data

Distance between origin OS and F1
Distance between origin OS and F2
Distance between origin OS and
underslung load (Assumed)
Distance between centerline and
rotor hub

Distance between centerline and

center of volume of envelope

Fl

F2

1.3748

)/2 (Assumed) 1.895 rad/sec

10*N(8075 1b)
10*N(8075 1b)
10*N(1.5%10%1b)
10%8(1.923x101b)
10°N(2120 1b)

10°N(1500 1b)

10°N(30907 1b)

~21.946m (-72 ft)

21,946m (72 ft)

-15.24m (-50 ft)

2.591m (8.5 ft)

14 .64m (48.03 ft)
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Distance between center line and

C.G. of the envelope h4 8.544m (28.03 ft)

Structural Dynamic Properties of the Supporting Structure

The supporting structure is modelled as an elastic structure with three normal
modes of vibration: two normal modes for bending in vertical and in horizontal
plane and one mode for torsion. The two bending modes are symmetric modes and
the torsion is an anti-symmetric mode. It was assumed that the envelope and
the underslung load are attached to the supporting structure at the origin Os'

The data given above shows that the vehicle is symmetric about Y-Z plane. Further-
more due to the presence of a heavy mass attached at the center (OS) of the support-
ing structure, the mode shapes in bending and torsion for each half of the model

are assumed to be the modes of a cantilever with a tip mass.

Modal Displacement at F;, Fp and Og

The symmetric mode shape in bending for each half of the supporting structure

can be written as [Ref. ll, Page 140]

X, _, X2 , X3, X.4 N
N ( i‘) =6 ( T ) 4 ( T )7+ ( T ) (Bending in X-Y plane) (4.la)
and
Xy 2 X2 X3 X 4 : .
n, ( 1 ) =6 ( - Y4 -4 ( I )T+ ( I ) (Bending in X-Z plane) (4.1b)

where X is the coordinate of any section of the supporting structure from origin

OS and L is the length of the supporting structure, L = 21.946m (72 ft).

Bending in X-Y plane

The modal displacement at any location on the supporting structure during the
symmetric bending in X-Y plane can be obtained from Eq. (4.la). The modal dis-
placement

at location F, nl(zFl)

at location F2 nl(QFz) 3.0
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at origin OS nl(Os) 0
The slope due to the modal displacement, at any section, can be obtained by

differentiating Eq. (4.1) with respect to (%-). The slopes due to the modal dis-

placement
1 9y
at location F1 : nl,x(QFl) =7 Tx_ |2 -0.1823
d( =) Fl
L
1 9y
at location F2 : nl,x(QFZ) =1 Tx_ | 0.1823
a( =) F2
L
1 9
at location 0s : nl,x(os) ='E — 0
d( i‘) Os

Bending in X-Z plane

The modal displacement and slopes due to the modal displacement at any

location on the supporting structure, during symmetric bending in X-Z plane can

be obtained from Eq. (4.1b).

The modal displacement

at location F1 : nz(QFl) 3.0
at location F2 : nz(QFZ) 3.0
at location 0S : nz(OS) 0

The slopes due to modal displacement

1 90y
. . = L & -0. 2
at location F1 : nz,x(RFl) I X 2 0.1823
d( =) F1
L
1 9y
; . = e 1823
at location F2 : nz,x(QFZ) I, X 2 0.
a( =) F2
L
;9
at location 0S : n2,x(os) =1 X 0
d( E-) OS
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Torsion
The mode shape for torsion, for each half of the supporting structure is
[Ref.10, Page 99]

X T P ¢
(f)-sm (L) (4.2)

The modal displacement due to torsion

at location F1 : nB(QFl) -1.0
at location F2 : n3(2F2) 1.0
at location OS : n3(Os) 0

Generalized mass and stiffness data

Generalized mass ( M ) and generalized stiffness ( K ) for the ith mode of

vibration of the supporting structure is defined as

2
M = szmnz. dx
3 i

Fl

and K = m% M

i
where wi is the ith modal frequency

ni is the ith mode shape
and m is the mass/unit length (for bending modes), or m is the mass moment
of inertia/unit length (for torsion modes)

Bending in X-Y plane (horizontal)

4

generalized mass M 6.801 x 10" kg (4.66 x 103 slug)

SBXY

generalized stiffness KSBXY 7.96 x 107 kg/secz(5.454x106slug/sec2)

Bending in X-Z plane (vertical)

generalized mass Mgpyz 6.801 x 104 kg (4.66 x 103 slug)

generalized stiffness 7.96x107kg/sec2(5.454x10651ug/sec2)

KSBXZ
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Torsion

generalized mass Mor 1.936 x 104 kg.m2(1.428x10431ug ft2)
generalized stiffness KST 7.202x106kg.mz/sec2(5.312x106slug
ftz/secz)

Rotary inertia data for the vehicle

The rotary inertia tensor of the various masses of the system are added
together to obtain the rotary inertia of the complete vehicle about X-Y-Z axes.
The inertia tensor is an assumed quantity

6.44 x 10° kg.m® (4.75 x 10° slug.ft?)

Ly =
I, = 2.59 x 10% kg.m? (1.91 x 10% slug.ft?)
x = Ixgy = O

To facilitate distinction between data which was available and data which
had to be assumed, the list of assumed data is provided below:
(1) Torsional frequency of the blade
(2) Principal moments of inertia of the blade
(3) The mode shapes of the supporting structure and hence the generalized masses
and stiffnesses
(4) Inertia tensor of the vehicle

4.2.2 Preliminary Calculations

In the preliminary calculations, the frequencies of various modes are cal-
culated using elementary structural dynamics. These calculated frequencies are
useful in identifying the various eigenvalues obtained in the stability analysis.

Supporting structure frequencies

Bending: If the supporting structure is considered to be a free-free beam (Fig. 9a)
with uniform properties, the first elastic mode frequency in bending is [Ref. 10,

page 80].
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where L is the length of the beam
EI is the stiffness of the beam
m is the mass/unit length of the beam

In the present analysis

m = 21.908 kg/m (0.4576 slug/ft)
ET = 1.471 x 10°0 N.m® (3.56 x 1010 1b £t2)
L = 43.891 m (144 ft)
thus
olstnogovamaot® s L
w=1{%3.891 21.908 = -/ rad/sec

For the case of the vehicle being considered, a heavy mass is attached at
the center of the beam. This heavy mass is due to the envelope and underslung
weight. Therefore, the model for the supporting structure becomes a beam with a
'heavy mass in the center (Fig. 9b). It is shown in Ref.10 that if the ratio between
the mass fixed at the center of the beam to the mass of the beam is greater than
3, then frequency of the beam in the symmetricmodes becomes close to the natural
frequency of a cantilever beamwith length equal to half the length of the free-free

beam. In the present case, even with the envelope mass alone, the ratio is
o scag.: b

S.3D 10 .
————325——3' = 9.07. Hence the first symmetric mode for one half of the structure
9.4302x10

can be assumed to be the fundamental mode of a cantilever. The natural frequency

of a cantilever in fundamental mode is [Ref.10, page 77]

_ 0.597m .2 , EI %
W, = (=207 (3
where L = 21.946m (72 ft)
Therefore, the natural frequency is mc = 189,27 rad/sec (4.3)

In addition to the heavy mass attached to the center, there are also two masses,

representing the helicopter, attached at the two ends of the beam. Thus an
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equivalent approximate model would consist of two cantilevers with tip mass

(Fig. 9c). The natural frequency for this approximate model is calculated using
Rayleigh's quotient. Since the model is symmetric about the center, only one half
should be considered for the frequency evaluation in fundamental mode.

The fundamental mode shape for a cantilever is [Ref. 9, page 140]

X\ _ X2 X
n(Ey=6(3) -4 ()

3 X |4
+ (-f ) (4.4)

The generalized mass for the fundamental mode is

L W
M .l. mdxn2 + 2 n2 ( L-)
0

g L

W
2.311 mL + 9 ?Fl

where m is the mass/unit length of the beam
L is the length of the cantilever
WF1 is the weight of the tip mass

The corresponding generalized stiffness in fundamental mode is

2
K = 2.311 wc mL

where w, is the fundamental frequency of the cantilever without tip mass, which
in the present case 189.27 rad/sec (Eq. 4.3). Thus the fundamental frequency

of a cantilever with tip mass is

2 1
2,311 mL UE :
wg ~ W
2.311 mL + 9 _Fl
g
where
m= 21,908 kg/m
L=21.96m
w, = 189,27 rad/sec

4
WF1= 3.5919 x 10 N
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Therefore wB=O.180 ®, = 34,18 rad/sec (4.6)

This is the bending frequency of the supporting structure in both X-Y and X-2Z
planes in fundamental symmetric mode. The mode shape is given in Eq. 4.4 for

one half of the structure.

Torsion:

If the supporting structure is considered as a uniform beam (Fig. 10a)
then the fundamental torsional frequency of the beam is given by [Ref. 11, page
193]

( & )%

w=g (T

I
L
where L is the length of the beam

GJ is the torsional rigidity of the beam

I is the moment of inertia/unit length about center of twist

In the present case

L = 43.891 m (144 ft)
GJ = 6.4054 x 107 N m® (1.55 x 10° 1b £t2)
I = 140.972 kg m (31.706 slug ft)
T . 6.405 x 107 %

So W= 73891 " 1so.972 ) = 48.25 radisec -7
Because of a large mass attached at the center of the beam (due to envelope and
underslung load), the model in Fig. 10a can be modified as shown in Fig. 10b.

In this model, the beam is assumed to be clamped at the center. The natural

frequency for the fundamental mode in torsion is [Ref. 10, page 99]

In this case L = 21.946 m (length of the cantilever beam)
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6.4054 x 10’

m )2
140.972

Thus W = 551946 ¢

= 48.25 rad/sec (4.8)

Actually, this value is the same as that obtained in Eq. (4.7) because the tor-
sional frequency of a beam with length % with one end fixed and the other end
free is the same as that of a beam with length 22 with both ends free, this is
due to the fact that when vibrating in its fundamental mode the center of the
free-free beam is a nodal point.

In the vehicle model shown in Fig. 2, there are two helicopters attached
to the end of the supporting structure. They can be idealized to two tip masses
having rotary inertia which are attached to the beam (Fig. 10c). Due to sym-
metry only one half of the model has to be considered when evaluating the

natural frequency. Assuming the mode shape to be [Ref.10, page 99]

Xy _ I (X
n( L ) = sin 3 (1 ) (4.9)
the generalized mass is
L
a 2 2 L
M = .}; In~ ( L ) dx + IHn ( I )
= IL/2 + Iy

where IFlisthe inertia of the helicopter attached at the end of the beam. The
generalized stiffness is

I
ko= 5 U

where W is the natural frequency in fundamental mode without tip mass. 1In
the present case, W = 48,25 rad/sec, and thus the fundamental frequency of the
beam in torsion including the effect of tip mass is

w2
W o |2 hT
T IL

72 T I;

1
3
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where I = 140.972 Kg m
3 2 2
IFl = 8.135 x 10 Kg m~ (6000 slug ft“)
L=21.946m
and o wNT
T 3

2 x 8.135 x 10

%
140.972 x 21.946

(1 +

.3997 Wy = 19.29 rad/sec

(4.10)

The fundamental mode shape and the corresponding natural frequency in torsion

are given by Eq. (4.9) and (4.10).

Assumption regarding the torsional frequency of the blade

The following calculation shows why the nonrotating torsional frequency

parameter of the blade is assumed to be ., = 1.895 rad/sec.

T2

Torsional frequency of a blade with root spring K¢ is
2 K
W2 oo b
¢ I a.R
MR3

where IMB3 is the mass moment of inertia/unit length of the blade.

w¢ = 600 where  is the angular speed in R.P.M.

_ 2
K¢ = 36 Q IMB3R

Using the values

= 1.1503 x 10’1 Kg m

—
|

and R 8.6868 m

]

sz becomes
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K 1
3
Wpg = ¢ ”'%% )
mR
2
36 IMB3R 1
= ( 3 )
mR

where m = 7,9529 Kg/m

Q

22,807 rad/sec

Thus
36 x 22.807 x .11503 x 8.6868 %

3 )
7.9529 x 8.6868

T2

1.895 rad/sec

This value of Wy provides a torsional frequency 60 for the blade.

Roll Frequency of the Vehicle

The roll frequency of the vehicle is evaluated based on the simple model
(Fig. 11) where the force due to buoyancy is assumed to act above the C.G.. From

Fig. 11, the equation of roll motion can be written as

. S
I, ex + (PZ hy = Wpy h4) =0 (4.11)
PS h, - W h
Thus . _ (23 EN 4%
roll 1
XX
Using the values
Py = 1.3748 x 10° N
4
WEN = 8,5539 x 10 N
h3 = 14,640 m
h4 = 8,544 m
I = 6.44 x 105 Kg m2
XX
5 4 1
_ 1.3748 x 10° x 14,640 - 8,5539 x 10" x 8,544 %
®ro11 = ( 5 ) (4.12)
6.4401 x 10

1.4108 rad/sec
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Pitch Frequency of the Vehicle

The pitch frequency of the vehicle, is evaluated using the same assumption

used in determining the roll frequency, thus

S,
ch3 - W._.h 1,

_ EN 4 (72
mpitch = I )
yy
6 2
where I = 2,59 x 10" Kg m
yy
and wpitch = (0,7036 rad/sec (4.13)

4,2,3 Summary of the Various Frequencies

For the sake of convenience, the various frequencies, needed during the analysis

of the vehicle, are summarized below. These frequencies are nondimensionalized
with respect to rotor speed 2, which is equal to = 22.807 rad/sec.

Rotor Blade: (In uncoupled modes)

Rotating flap frequency for an articulated blade is

=2 _ 3 e
wB =1 4+ > Rea
where e = 0,3048 m
R = 8,6868 m
Thus
5; = 1.0545
and
‘:’B =1,027 (4.14)

Nondimensional rotating lead-lag frequency is

=2 _3 _e
(DC - 2 R-e
= 0.0545
Thus
ac =0.233 (4.15)
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Nondimensional rotating torsional frequency is

32— 41
L -
MB3
= 37
Thus a
w,= 6,08
¢
Vehicle:
Rigid body tramslation =~  _
w,, =0
RX
mRY =0
Rigid body rotation Pitch wpitch =
Roll wroll =
Supporting structure flexible modes
. ) - _ 34.18
Bending in X-Y plane wSBXY = 55.807
. . - _ 34.18
Bending in X-Z plane wSBXZ = 57.807
. - _ 0 19.29
Torsion wST = 22.807 -

0.7036

22.807

1.4108

22.807

1.499

1.499

0.846

.3085 x 10~

= .6185 x 1071

4.2.4 Equilibrium (Trim) Results without Sling Loads

An equilibrium analysis for the vehicle in hover is performed using

1

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

the data given in the previous sections and assuming that the magnitude of

the underslung load is zero.

Total weight of the vehicle

W

= Yy

+ W
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8.5539 x 104 + 9.4302 x 103 + 2 x 3.5919 x 104 + 6.6723 x 10

1.7348 x 10° N (39000 1b)

Buoyancy of the envelope
= 1.3748 x 10° N (30907 1b)
Weight to be supported by the two rotors
- 0.36 x 10° N (8093 1b)
Thus each rotor has to develop a thrust = 0.18 x 105 N (4046.5 1b)

The various equilibrium values for these conditions are:

Equilibrium flap angle of the blade BkO = 2.302 degrees
lead-1lag angle EkO = ~-3.963 degrees
torsion angle ¢k0 = -0.115 degrees
Collective pitch angle 90 = 4,206 degrees
Inflow ratio A = 0.03272
Thrust developed by each rotor = 0.1797 x 105 N (4040 1b)
Thrust coefficient CT = 0.00158
1.3748 x 10°
Buoyancy ratio BR = 5 = 0.792

1.7348 x 10
As indicated previously the equilibrium values are evaluated using an
iterative procedure. Therefore, the difference in thrust equal to 30 N is a
very small quantity which is assumed to represent a converged value. This
quantity will change the equilibrium angles only in 4th or 5th decimal point.

4.2.5 Stability Results

Using the equilibrium values from Section 4.2.4, a stability analysis

was performed. From the stability analysis, the eigenvalues of the linearized
system of equations are obtained. Since the present model consists of 31

degrees of freedom, one obtains 62 eigenvalues. Before proceeding to obtain
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the stability boundaries, the eigenvalues have to be identified. To
identify these eigenvalues, a parametric study was performed, in

which the stiffness of the supporting structure and the rotary inertia of the
vehicle were varied. The various other input quantities were kept fixed. Nine
cases, listed below, were studied. It should be noted that for all these cases,
the trim quantities are the same because the trim quantities are independent of
the parameters modified in the parametric study.

Case 1: Data as presented in the previous section,

Case 2: The generalized stiffness in torsiom, KS” is increased from
2

7.202 x lO6 Kg Z 5 to 1.21 x 107 Kg z 5 . This increases the
sec sec
torsional frequency of the supporting structure, Wer from 19.29 rad/sec
to 25 rad/sec. In nondimensional form, the increased torsional fre-
quency is aST = -%; = 1.096.
Case 3: Torsional frequency of the supporting structure is @, = 1,096. Rotary

T
inertia of the vehicle is increased in pitch and roll Lox is increased

from 6.44 x 105 Kg m2 to 2.0 x lO6 Kg m2. Iyy is increased from

2.59 x 10° Kg m? to 4.7454 x 10° kg m’.

Case 4: Bending stiffness of the supporting structure is increased in both dir-

ections. The generalized stiffnesses KSBXYEuuiKSBXZ are increased trom

7.96 x 107 Kg/sec2 to 1.7 x 108 Kg/secz. This increases the bending

frequency of the supporting structure in both directions from 34.18

50

rad/sec to 50 rad/sec., In nondimensional form, mSBXY = Wgpyy = 35.807 -

2,192,
Case 5: Torsional frequency of the supporting structure is increased to 40
rad/sec, The generalized stiffness KST corresponding to this frequency

is 3.098 x 107 Kg mz/secz. In nondimensional form
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- 40 - -
Yt = 33.807 - 1.754. The bending frequencies are Wspxy = ®spxz =

2,192,
Case 6: Rotary inertia in roll is increased from 6.44 x 105 Kg m2 to 2.0 x 106
2 ™ - ~ —_ -
Kg m", wST = 1,754, mSBXY = mSBXZ = 2,192,

Case 7: Rotary inertia in pitch and roll are increased

I. =2,0x 106 Kg m2, I = 4,7454 x 106 Kg m2
XX yy

O =1.754, ®

ST = 2.192

sBxY ~ “sBxz

Case 8: A spring is introduced in the X-direction of the translational motion

such that the nondimensional X-tramslational frequency is aRx = 0.01.
_ 6 2 _ 6 2 -

Also IXX 2,0 x 10" Kg m', Iyy =4,7454 x 107 Kg m", Wgp = 1.754,
Ospxy? = “spxz = 2192

Case 9: A spring 1s introduced in the Y-direction of the translational motion
such that the nondimensional Y-translational frequency is &Ry = 0,01.

~ 6 2 _ 6 2 -

Ixx = 2,0 x 107 Kg m", Iyy = 4,7454 x 10” Kg m", Werp = 1.754,
Wgpey = Ogpyy = 2,192,

The results of the stability analysis for these nine cases are presented
in Tables I, II and III, each column representing one case, For convenience
a row number is alsoused on the left hand side of the Tables I, II and III. Thus

(I,J) refers to the eigenvalue in Ith column and Jth TOW,

It has been previously noted that the alternating mode of the blade is
independent of the other degrees of freedom, Thus there are two sets of identilcal
eigenvalues (presented from rows 28 -~ 33) one for each rotor. These are

0.5200 + i 0.5845 x 10!

0.6562 = i 0.7265

0.6522 x 1072 + i 0.2346

Since it was assumed that the torsional frequency of the rotating blade was
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5¢ = 6,08 (Eq. 4.16), the eigenvalue - 0.5200 * i 0.5845 x lO1 should correspond
to alternative torsion mode. The second eigenvalue - 0,6562 * i 0.7265
corresponds to alternating flap mode. This mode has a high damping and the
damped flap frequency is 0.7265. The other eigenvalue -0.6522 x 10 * i 0.2346
corresponds to the alternating lead-lag mode. This mode has a low damping.
These three modes are all damped modes. These alternating modes have the same
values for all the nine cases, Since the alternating modes are stable and re-
main unchanged for all cases, no further discussion of these modes is presented.

It can be seen from the results in column 1, there are 5 eigenvalues
with frequencies close to 0.7 (1, 15 - 1, 19) of which one eigenvalue has a
positive real part (1, 17). The eigenvalue is 0.1024 £ i 0,7428, This eigen-
value can correspond either to the torsional frequency of the structure or low
frequency progressive lead-lag mode or collective flap mode. Because the tor-
sional frequency of the structure (shown in preliminary calculations) is aST =
0.846 (Eq. 4.21) and the collective lead-lag frequency is 0.233 (Eq. 4.15),
the progressive low frequency lead-lag mode could be close to the torsional
frequency of the supporting structure, Hence there can be coupling between
these modes, In order to identify the various eigenvalues, the parametric study
was performed with an aim to decouple various blade and vehicle modes.

Consider the results for case 7 (column 7 in Table II), First all the
eigenvalues will be identified as shown on pp. 107-108 and subsequently discussions
of each mode are given in Section 4.2.6. Since the HHLA model (Fig. 2) consists
of two rotor systems, the stability analysis will provide a pair of eigenvalues

for each rotor degree of freedom.

It is easy to identify the blade torsional, flap and lead-lag frequencies.

From the preliminary calculations, the torsional frequency is »,=6.08 (Eq. 4.18),

¢
the flap frequency is 58=1.027 (Eq. 4.14) and the lead lag frequency is 5§=0.233
(Eq. 4.15).
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Torsional Frequency of the Blade

Collective

High Frequency or
Progressing

Low Frequency or
Regressing

Flap Frequency of the Blade

Collective

High Frequency or
Progressing

Low Frequency or
Progressing

-0.5198

-0.5199

-0.5207

-0.5202

-0.5207

-0,5202

-0.6341

-0.6534

-0.6555

-0.6558

-0.6565

-0.6562

Lead-lag Frequency of the Blade

Collective

High Frequency or
Progressing

Low Frequency or
Progressing

-0.6210

-0.6524

-0.1676

-0.6923

-0.8424

I+

+

I+

i+

1+

I+

I+

I+

1+

I+

I+

I+

107

10~

10~

10~

10

10~

10~

0.5845

0.5845

0.6846

0.6845

0.4845

0.4845

0.7361

0.7210

0.1726

0.1727

0.2737

0.2737

+
=

_2+

I+
=

I+
[N

x 10

x 10

x 10

x 10

x 10

x 10

x 10

x 10

0.2337

i 0.2346

0.1136 x 10l

0.1252 x 10°

i 0.7536

0.7772

(7,5)

(7,6)

(7,3)

(7,4)

(7,7)

(7,8)

(7,15)

(7,16)

(7,9

(7,10)

(7,20)

(7,21)

(7,22)

(7,23)

(7,13)

(7,14)

(7,18)

(7,19)



Rigid Body Modes

Rigid body translation in X and Y directions

0.0 0.0 (7,1)
0.0 0.0 (7,2)
0.9833 x 1072 + i 0.2333 x 107% (7,27)
Rigid body rotation
pitch ~0.3621 x 107} 0.0 (7,24)
0.1446 x 107! 0.0 (7,26)
roll ~0.5947 x 10™% + 1 0.3510 x 10°F  (7,25)
Elastic Modes of the Supporting Structure
Bending in X-Y plane (Horizontal)
—0.1029 x 1072 + i 0.2175 x 10° (7,11)
Bending in X-Z plane (Vertical)
~0.6136 x 1072 + 1 0.2188 x 10° (7,12)
Torsion ~0.6372 x 1072 + 1 0.1782 x 10! (7,17)

4,2.6 Interpretation of the Physical Meaning of the Eigenvalues

Blade Torsion Modes

It is assumed that the uncoupled torsional rotating natural frequency of the
blade is 5¢ = 6.08 (Eq. 4.16). Thus the eigenvalues corresponding to this fre-
quency must represent the collective torsional mode frequency. Frequencies
corresponding to 5¢ + 1 represent the cyclic mode frequencies. The cyclic
modes are ¢1c and ¢1s' The progressing mode has a higher frequency and the
regressing mode is the lower frequency. All these modes have negative real

part indicating a positive damping and hence these modes are stable.
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| Blade Flap Modes

The uncoupled rotating natural frequency in flap is shown to be Eé= 1.027
Eq. (4.14). In the presence of aerodynamics, the flap mode is heavily damped.
Thus the damped natural frequency in flap should be less than 1.027. In the
present case, the damped flap frequencies BBare 0.7361 and 0.7210. These fre-
quencies correspond to the collective flap modes. Frequencies corresponding
to 661 1 are the cyclic flap modes. These modes are also heavily damped. 1In

| this case, both cyclic modes are progressing modes, one with higher frequency

‘ and the other with a lower frequency. (When the collective mode frequency is
less than 1, then both cyclic mode frequencies are progressing modes, Ref. 3.)

Blade Lead-Lag Modes

The uncoupled rotating natural frequency in lag is Gg = 0.233, Eq. (4.15).
This particular frequency will appear in the eigenvalues as a collective
lead-lag frequency. Another typical property of lead-lag mode is that these
modes are very lightly damped. Since the collective lead-lag frequency is less

than 1, both the cyclic mode frequencies are progressing. All these three

modes are lightly damped.

Inspection of the eigenvalues reveals that all the blade modes are
associated with two sets of eigenvalues. This is caused by the presence of

the two rotors each with its own set of blade modes.

Rigid Body Translation Modes

There are four eigenvalues corresponding to the rigid body translation
in X and Y directions. Two of them having zero real and zero imaginary parts. The

other eigenvalue set has a very small positive real part and a very small imaginary
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part. (0.9833 x 10-5 * i 0.2333 x 10—4). The reason for choosing this eigen-

value as one corresponding to the rigid body translation is given below.
Comparing the results given in columns 7 and 8, it can be seen that all
the eigenvalues except a few remain the same. The results of column 8 are
obtained by introducing a translational spring in the X-direction. The spring
constant is prescribed to yield a natural frequency of oscillation 6RX = 0.01.

From the results of column 8, it can be seen that the second eigenvalue corres-—

5 1

ponds to this frequency having a value of 0.5621 x 1007 + i .1172 x 10 .

*
The eigenvalues corresponding to Ry motion must be 0.0 + i 0.0, (8,1) , and

0.9762 x 10

+ i 0.0, which is assumed to be equivalent to zero. Then R
motion results in a pure translatory motion. A similar observation can be made
when a translational spring is introduced in the Y-direction (results of

column 9) leaving the translational motion in X-direction free. It is seen
from the results that there is an eigenvalue corresponding to a frequency

gy = 0-0L which is 0.3349 x 107> + 1 0.1171 x 107} (9,2). The eigenvalues
corresponding to translational motion in the X-direction becomes 0.0 +

i 0.0 (9,1) and 0.9784 x 107>

+ i 0.0 (9,27). Then Rx motion becomes a pure
translational motion.

The previous statements also imply that when the Rx motion is oscil-
latory, Ry motion becomes pure translational motion and vice versa. How-
ever, when both Rx and Ry are free (results of column 7) the combined Rx’ R
motions have eigenvalues which are complex conjugates. This oscillatory mode

is a divergent mode, but the frequency and damping are very small. This

indicates that RX and Ry motions cannot be separated.

*
Recall, as indicated on P. 105 (I,J) stands for the 1th column and Jth row.
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Rigid Body Rotation Modes

There are four eigenvalues corresponding to pitch and roll motions. These

are
-0.5947 x 10~% + 1 0.3510 x 107! (7,25)
-0.3621 x 1071 + 1 0.0 (7,24)
—0.1446 x 101 + 1 0.0 (7,26)

The oscillatory mode corresponds to the roll mode and the other two pure
damped modes correspond to pitch mode. These statements are further clarified

by discussion presented below. Using Eq. (4.11), the roll frequency of the vehicle

is
P> h, -W__h
- i il B RN
roll I Q
XX
Substituting the various quantities
5 . (L3748 x 10° x 14.64 - 8.5539 x 10" x 8.544 , 1
roll 2 0 % 10° 22.807
Thus
- _0.8006 _ -1
“ro11 = 22.807 - 0-3510x 10
4 1

This calculation shows that the eigenvalue -0.5945 x 10°  * i 0.3510 x 10~
(7,25) corresponds to the roll mode.

Using the same elementary Eq.(4.11), the pitch frequency is

5 4

5 = ¢ 1.3748 x 10 x 14.64 - 8.5539 x 10 x 8.544 )% 1
pitch 4.7456 x 106 22.807
0.5197 -1
22.807 = 0.2279 x 10

But this frequency is not evident in the eigenvalues. Note that for a tandem

rotor system, the pitch mode is a heavily damped mode. When the damping
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is in excess of the critical damping, the pitch motion becomes a pure damped
motion. However when the inertia in pitch is increased, this mode will also
become a oscillatory mode [Ref. 3]. The reason for the presence of a relatively

high damping in pitchcan be explained using Fig. 2. For positive pitching motion of

the vehicle, rotor systemR, movesup and rotor R2 moves down. If 6y is the pitch rate,

1

then the rotor R1 has an upward velocity of SLFley, is experienced by rotor R1 . This in-
creases thenet inflow velocity sensed by rotor R1 . If the net inflow is increased, the
effectiveangle of attack experienced by a typical blade section decreases. This in effect
decreases the thrust developgd by the rotor Rl' Similarly for rotor system RZ’
the net inflow velocity decreases which in effect increases the angle of attack
and hence the thrust. The combined effect of the increase in thrust for rotor

system R2 and decrease in thrust for R1 due to a positive pitch rate Gy, tends

to restore the vehicle to its equilibrium position. This restoring force depends

on Gy and produces damping in pitch. When this damping is high, the pitch motion be-
comes a pure damped motion. In the present case, the damping in pitch is suf-
ficiently high so that the eigenvalues have only negative real part.

it is well known that for second order system with damping above the critical
damping, an increase in inertia will bring the two eigenvalues closer provided that
this increase in inertia is such that even with the increased inertia the system
is still overdamped. A further increase inertia will make the eigenvalues to
become complex conjugates. This effect is evident from the results by comparing
the columns 6 and 7.

From column 6, the eigenvalues corresponding to pitch are

~0.8143 x 10°! + 1 0.0 (6,24)

1

+

-0.1183 x 10~

I+

i 0.0 (6,26)
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The rotary 1inertia in pitch for this case (case 6) is Iyy = 2.59 x 106 Kg mz.

When the rotary inertia is increased to 4.7454 x 106 Kg mz, keeping the other
parameters the same, the eigenvalues corresponding to pitch motion become
(column 7)

~0.3621 x 1071 + 1 0.0  (7,24)

-0.1446 x 107F + 1 0.0  (7,26)
This shows that the eigenvalues have approached each other. This validates the

statement that the pitch mode, in this case, is a overdamped mode.

Elastic Modes of the Supporting Structure

In the present analysis, the supporting structure is modelled by three
normal modes: two for bending and one for torsion. The two bending modes corres-
pond to bending in X-Z plane (Vertical) and bending in X~Y plane (Horizontal).
The bending mode in X-Z plane has higher damping than that corresponding to the hori-
zontal bending mode. The explanation is the same as that given for pitch motion,
in previous section.

The eigenvalues for

bending in X-Z direction is -0.6136 x 10_2 + i 0.2188 x 101 (7,12)

+

bending in X-Y direction is -0.1029 x 1072 % 1 0.2175 x 10 (7,11)

torsion is -0.6372 x 1072 = i 0.1782 x 10l (7,17)

+

The identification of these modes 1s based on the frequencies assumed in obtaining

the results presented in column 7

Wspxy = Yspxz = 2-192

and

Wgp = 1.754
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4.2.7 Coupling of Various Modes

The coupling between various blade modes and body modes are shown in
Figs. 12-16. Since the HHLA model vehicle (Fig. 2) consists of two rotor
systems coupled by the supporting structure, it was shown in Section 4.2.5
that the stability analysis provides a pair of eigenvalues for each rotor degree
of freedom. Hence for the purpose of identification, in the presentation of the
results shown in Figs. 12-16, the rotor modes will be referred to as mode 1
and mode 2, such as collective flap mode 1, collective flap mode 2 and high
frequency flap mode 1 and high frequency flap mode 2, etc.

Figure 12 illustrates the variation of the eigenvalues of blade lead-lag
modes and the supporting structure bending modes as a result of an increase in

the bending stiffness (K ) of the supporting structure in X-Y (horizontal)

SBXY

7

plane. The bending stiffness K was increased in increments from 5.09 x 10

SBXY

N/m to 1.74 x 108 N/m, such that the corresponding uncoupled nondimensional

bending frequency in X-Y plane (w ) assumed the values = 1.2, 1.499,

SBXY SBXY

1.754, 2.192, where the frequencies are nondimensionalized with respect to the
rotor speed of rotation {, where = 217.79 R.P.M. The arrows in the figure
indicate the direction along which the eigenvalues of the modes change due to an
increase in KSBXY' The eigenvalues of the other modes, which are not shown in the
figure, remain unaffected by the variation in KSBXY' It can be seen from Fig. 12
that the bending mode, in X-Y plane, of the supporting structure is strongly couple
with the high frequency lag mode 2. The high frequency lag mode 2 which was
initially unstable becomes more stable as KSBXY is increased. The damping in the

bending mode in X-Y plane decreases asympototically with an increase in frequency

and this mode is always stable. The low frequency lead-lag mode 2 shows a slight
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decrease in damping as KSBXY is increased. The eigenvalues corresponding to the
bending mode in X-Z plane and the high frequency lag mode 1 are not affected by

the changes in K However, since these two modes have nearly equal fre-

SBXY"®
quencies it can be seen that the high frequency lag mode 1 is unstable.

Figure 13 presents the variation of eigenvalues of the blade lead-lag modes
and the supporting structure bending modes as a result of an increase in the
bending stiffness (KSBXZ) of the supporting structure in X-Z (vertical) plane.

The bending stiffness KSBXZ was increased in increments from 7.96 x 106 N/m
to 1.74 x 108 N/m and the corresponding nondimensional uncoupled bending frequency
) assumed the values @

in X-Z plane (w = 1.499, 1.754, 2.192. It can be

SBXZ SBXZ

seen from Fig. 13 that the bending mode in X-Z plane is strongly coupled with
high frequency lag mode 1. The high frequency lag mode 1 which was initially
unstable becomes a stable mode as KSBXZ is increased from 7.96 x 107 N/m

(

= 1.499) to 1.09 x 108 N/m (w = 1.754). But a further increase in

Yspxz SBXZ

KSBXZ to 1.74 x 108 N/m does not affect the eigenvalue corresponding to the

high frequency lag mode 1, indicating that these two modes are decoupled. Damping
in the bending mode in X-Z plane decreases drastically at tne beginning and once
the bending mode and the high frequency lag mode 1 are decoupled, the decrease

in damping of the bending mode in X-Z plane is very small. Damping in the torsion
mode of the supporting structure and low frequency lag mode 1 are slightly affected
as KSBXZ is increased. Since the torsion mode and the low frequency lag mode 1
have frequencies which are close to each other, the figure clearly indicates that

the lag mode 1 is unstable. The eigenvalues corresponding to the rest of the
t

modes are unaffected.
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Figure 14 shows the eigenvalue variation in the rotor lead-lag modes
and the torsion mode of the supporting structure as a result of an increase
in the torsional stiffness (KST) of the supporting structure. The torsional
stiffness, KST’ was increased in increments from KST = 1.59 x 106 N.m to
3.99 x 107 N.m and the corresponding uncoupled nondimensional torsional fre-
quency (5ST) of the supporting structure are aST = 0.4, 0.55, 0.846, 1.096, 1.2,
1.3, 1.4, 1.5, 1.754, 2.0. It is evident from the figure that the low frequency
lag mode 2 and high frequency lag mode 2 remain unaffected during the variations
in KST and these modes qre stable. In Fig. 14, the different curves are divided
into three segments represented by points A, B, C and D. The curves between
points A to B refer to the range of KST = 3.01 x 106 N.m to 7.20 x 106 N.m

(

Wop = 0.55 to 0.846); the curves between points B to C refer to the range

KST =7.20 x 106 N.m to 1.685 x 107 N.m (aST = 0.846 to 1.3); and th: - rves
between points C to D refer to the range KST = 1.685 x 107 N.m to 3.1 x 107 N.m
(wST =1.3 to 1.754).

It is evident from Fig. 14 that in the reree A to B, as the torsions’
stiffness KST is increased, the torsion mode of the supporting structure becomes
increasingly stable and its frequency is increasing; the low freque’ :y lag mode 1
becomes increasingly unstable with its frequency slightly increased. This clearl
indicates that the torsion mode is strongly coupled with the low frequency lag
mode 1. The high frequency lag mode 1 experiences a slight increase in frequenc;
but its damping remains almost the same. In this range, A to B, the eigenvalues
of these three modes have been distinctly identified based on their uncoupled
nondimensional frequencies. In the range B to C, as the torsional stiffness KST

is increased, the damping in the low frequency lag mode 1 decreases and its fre-

quency tends to increase towards 1.0. At the same time, the damping in torsiona:
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mode of the supporting structure decreases drastically and a slight change in

the frequency is observed (i.e. the frequency initially increases and then

decreases). The high frequency lag mode 1 shows an increase in frequency with

no appreciable change in damping. In this range B to C, the eigenvalues of

these three modes do not exhibit a direct one to one correspondence to the

uncoupled nondimensional frequencies, implying that all these modes are coupled.

Hence in this range, B to C, the reference to the various modes, as torsion mode,

low frequency lag mode 1 and high frequency lag mode 1, is only for the convenience

of explaining the variation of the eigenvalues. When the torsional stiffness

KST was increased still further, i.e. the range C to D, the eigenvalues start

exhibiting a correspondence to the nondimensional uncoupled frequencies indicating

that these three modes are slowly getting decoupled. 1In this range, C to D, the

torsional mode of the supporting structure has low damping and it tends to decrease

asymptotically while the frequency increases from 1.5 to 1.75. The high frequency

lag mode 1 shows an increase in the frequency and the mode becomes stable at

the poiat D. The damping in the low frequency lag mode 1 decreases while the

frequency undergoes a slight reduction. Beyond the point D i.e. for

KST 23.1x 107 N.m the eigenvalues of low frequency lag mode 1 and high frequency

lag mode 1 show negligible change and the damping in torsion mode remains the same

but its frequency increases. Beyond point D all the three modes are stable.
Another interesting observation which can be made from Fig. 14 is associated

When K is in-

ST® ST

creased from 1.685 x 107 N.m to 3.99 x 107 N.m (curve in the range C to D and

with the effect due to the increase in torsional stiffness K

beyond), the eigenvalues corresponding to the high frequency lag mode 1 tend to

approach the eigenvalue corresponding to the high frequency lag mode 2 (which
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remains unaffected during the variation in KST) and similarly the low fre-

quency lag mode 1 approach to the low frequency lag mode 2. This behavior

seems to indicate that as the torsional stiffness of the supporting structure

is increased the coupling between the rwo rotors due to the torsional deformation

of the supporting structure is eliminated. As a result of this lack of coupling,
the eigenvalues corresponding to the high frequency lag modes 1 and 2 and low
frequency lag modes 1 and 2 approach each other. It should be noted that elimin-
ation of the coupling of the rwo rotors, due to the torsional deformation of the
supporting structure, does not imply that the two rotors are totally decoupled.

The rotors are still coupled through the bending deformation of the supporting
structure and rigid body pitch motion of the vehicle. The presence of this coupling
causes the eigenvalues of the low frequency and high frequency lag modes to approach
each other rather than coalescing.

The last observation which can be made using Fig. 14 is that the high frequency
lag mode 1, low frequency lag mode 1 and torsion mode of the supporting structure
undergo a reversal in their characteristics as KST is increased from 1.59 x 106
N.m. Thus, the mode which was initially a distinct torsion mode becomes a low
frequency lag mode l1; the low frequency lag mode 1 becomes a high frequency lag
mode 1 and the high frequency lag mode 1 becomes a torsion mode. TFor low and

high values of the torsional stiffness (i.e., K <1.59 x 106 N,m (GST < 0.4)

ST
and KST 2 3.10 x 107 N.m (aST > 1.754)) the torsional mode of the supporting

structure, the low frequency by mode 1 and high frequency by mode 1 are all

stable. For intermediate values of the torsional stiffness of the supporting

one of the lag modes is unstable.
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The variation of the eigenvalues of the collective flap modes and body
pitch mode due to increase in body inertia in pitch is presented in Fig. 15. It
is evident from the figure that the pitch mode is a pure damped mode. An
increase in pitch inertia causes the eigenvalues, corresponding to the pitch
mode, to approach each other. The eigenvalues of the collective flap mode 2
tend to approach the eigenvalue of the collective flap mode 1. The pure damped
nature of the pitch mode is associated with the presence of two rotors. During
pitch motion the net inflow in the two rotor system changes. If in one rotor
system the net inflow increases, then in the other one the inflow decreases and
vice versa. These changes in inflow results in changes in the thrust in the two
rotor systems. The rotor system which moves up, during pitch motion, experiences
a reduction in thrust due to the increased inflow and the rotor system which
moves down produces more thrust due to the decreased inflow. These changes in
the thrust tend to restore the vehicle to its equilibrium position. Since this
restoring force is proportional to the pitch rate, this mechanism produces a
damping in pitch. In the present case, the pitch motion is overdamped. Hence
an increase in inertia causes the eigenvalues, corresponding to the pitch mode
to approach each other, as shown in Fig. 15.

Figure 16 illustrates the variation of eigenvalues corresponding to the low
frequency lag mode 2 and body roll mode as a result of an increase in inertia
in roll. An increase in roll inertia tends to decrease the damping in roll,
furthermore its frequency is also reduced. The low frequency lag mode 2 tends
to become more stable. The roll mode, for the model vehicle, is a damped
oscillatory mode. This is different from the pure damped mode normally observed
in a conventional tandem rotor helicopter. The reason for this oscillatory nature

of the roll mode is due to the presence of the buoyancy of the envelope.
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For all the cases analyzed, it was found that the flap and torsional modes
of the rotor are always stable. The eigenvalues corresponding to the cyclic
flap modes and all the torsion modes are not affected by the variation in the
quantities used in this parametric study. The alternating modes of the rotor
were also found to be stable. The degree of coupling, as well as the relative
strength of the coupling, between the various blade modes and the body modes
is presented in a qualitative manner in Table IV. It is evident from this
table that the supporting structure elastic modes are strongly coupled with

the low frequency and high frequency lead-lag modes.

4.2.8 Effects of Buoyancy on the Stability of the Vehicle

The effects of varying the buoyancy ratio on the stability of the vehicle
were also studied, by performing the stability analysis at different buoyancy
ratios. During this analysis, only the buoyancy ratio was varied while the
rest of the blade and vehicle parameters were kept fixed. The vehicle para-
meters are the same as those used in Case 7, presented in Section 4.2.5.

The results of these analyses for different buoyancy ratios are presented in
Tables V and VI.

Table V presents the results of the equilibrium (trim) analysis for various
buoyancy ratios. It can be seen that as the buoyancy ratio is decreased, the
thrust coefficient of the rotors (CT) increases. The equilibrium angles of the
blade in flap, lead-lag and torsion, the inflow ratio and the collective pitch
angle, also increase with decrease in buoyancy ratios. Table V also presents
the nondimensional roll frequency of the vehicle (&roll) at different buoyancy
ratios. These roll frequencies are calculated using Eq. (4.11). These fre-

quencies will be helpful in identifying the roll mode in the stability analysis.
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Table VI presents the results of the stability analysis at different buoyancy
ratios. The results of the stability analysis, presented in Table VI, are also
shown in a graphical manner in Figs. 17 and 18. Figure 17 depicts the variation
of eigenvalues of the supporting structure elastic modes with decrease in
buoyancy ratio. The direction of arrows in the figure indicates the variation
of the eigenvalues as a result of the decrease in buoyancy ratio. The frequencies
corresponding to the supporting structure elastic modes are not affected by the
variation in buoyancy ratio. However, the damping in bending in X-Y plane
increases, the damping in X-Z plane decreases, while the damping in torsion
mode increases.

Figure 18 presents the variation of eigenvalues of pitch and roll modes with
buoyancy ratio. As the buoyancy ratio is decreased, one of the eigenvalues
corresponding to the pitch mode decreases while the other eigenvalues increases.
The pitch mode remains a pure damped mode. The roll mode which was initially
a stable mode becomes unstable for buoyancy ratios BR £ 0.6. The results shown
in Table VI also indicate that when the buoyancy ratio is decreased, the damping
in the lead-lag modes of the rotors increases while the damping in flap and torsion
modes of the rotoes decreases. However changes in the buoyancy ratio have only
a minor effect on the frequencies of the rotor modes. From the results shown in
Table VI, it can be seen that for a 40% reduction in buoyancy ratio, the damping
in torsion modes decreases by 12%; the damping in flap modes decreases by 127%
and the damping in lag modes increases by 200%.

The rigid body translation mode is stabilized as the buoyancy ratio is
decreased.

The most important observation from these results is that for buoyancy ratio
BR = 0.7, all the eigenvalues have negative real parts indicating that the
vehicle is stable at this buoyancy ratio.
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5. CONCLUDING REMARKS

This report presents the equilibrium (trim) equations and linearized stability
equations for the dynamics of the coupled rotor/vehicle system in hovering flight.
The stability equations are written in multiblade (or rotor plane) coordinate
system. Two types of problems are solved. First, the aeromechanical stability
of a helicopter in ground resonance is analyzed, and the analytical results are
compared with the experimental results available in literature. It was found

that the results of the present analysis compare very well with the experimental
results. This indicates that the theoretical model for the coupled rotor/body
dynamics appears to be accurate.

Next, the aeromechanical stability of an HHLA type vehicle in hover was
analyzed. The vehicle consisted of two rotors, a buoyant envelope and an under-
slung load attached to a flexible supporting structure. For this vehicle, the total
number of degrees of freedom is 31 and there are 31 coupled equations representing
the dynamics of the system. Two computer programs were developed to analyze
the trim and stability of the vehicle. The restuls of a sample problem are also
presented in this report.

Before describing the conclusions obtained from the stability analysis of
the HHLA type vehicle conducted in this study, it is important to emphasize
that the vehicle model used in this study has only two rotors and not four rotors,
which are present in the HHLA type vehicle under construction. Furthermore, no
lead lag dampers were included in the treatment of the blade lead-lag dynamics
Incorporation of such dampers would have probably stabilized any instability

observed in the lead-lag degrees of freedom of the vehicle.
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The stability analysis yields 62 eigenvalues, corresponding to the 31 degrees
of freedom. The primary aim was to identify the 62 eigenvalues and relate them
to the various modes of the rotor/vehicle assembly. This identification was
accomplished by performing a parametric study in which the primary parameters
allowed to vary were the bending and torsional stiffness of the supporting
structure combined with the rotary inertia of the vehicle in pitch and roll.
This parametric variation was done in order to decouple the blade modes from the
vehicle and the supporting structure modes. In total, nine cases were analyzed.
In these cases, the underslung load was not included. Based on the results
obtained for these cases, the various eigenvalues and the coupling among different
modes were identified and physical insight on the dynamics of the vehicle was
developed. The most important results of this study are summarized below.

Cyclic lead-lag modes of the rotors couple strongly with the pitch, roll
and bending in two orthogonal plane and torsion of the flexible supporting
structure. This shows that the frequencies of vibrations of the supporting
structure must be separated from the frequencies of the rotor lead-lag modes.
This also implies the importance of modeling the supporting structure with an

adequate number of elastic modes.

-3
B

he stability analysis of the coupled rotor/vehicle dynamics illustrates
the aeroelastic stability of the rotor, coupled rotor/vehicle aeromechanical
stability such as air resonance and the vehicle stability in the longitudinal
and lateral planes. Complete information of these ingredients are all captured
by the analytical model representing the coupled rotor/vehicle dynamics.

In the discussion of the results it has been noted that the pitch mode
of the vehicle is a pure damped mode while the roll mode is a stable oscillatory

mode. The oscillatory nature of the roll mode can be attributed to the presence

of the buoyant envelope.
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The present analysis yields a divergent mode which corresponds to a pure
translational mode. It is also found that when the vehicle is free in
longitudinal and lateral translational motions, the results indicate a os-
cillatory mode for the rigid body translation. However, when the translational
motion in one direction is restrained, the tramnslational motion in the other
direction becomes a pure divergent motion. This indicates that the longi-
tudinal and lateral dynamics cannot be separated in the analysis of coupled
rotors/vehicle dynamics for vehicles of the type considered in this study.

The stability of the vehicle was also studied at various buoyancy ratios
and it was found that at a particular buoyancy ratio, the eigenvalues corresponding
to all the modes have negative real part indicating that the vehicle is stable
at this buoyancy ratio.

Based on the numerical studies conducted in this report it appears that the
consistent analytical model, for the dynamics of coupled rotor/vehicle system,
developed in this study is avalid mathematical model. The stability analysis
of coupled rotor/vehicle dynamics yields useful information on both the aero-

elastic stability, aeromechanical stability and also the vehicle dynamic stability.
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Case 1 Case 2 Case 3 Case 4
&SBXY=GSBXZ=1.499,aST=0.846 &snxy=&snxz=l‘“99’asrd"096 QSBXY=-SBXZA.49%GST=1.096 aSBXY=&SBXZ=2.192,55T=1.096

I = 6.46 x 102 Kg mz I = 6.44 x 102 Kg mz I =2.0x 10° Kg n? N 6.44 x 102 Kg mj
I,, = 2.5 x 10° kg m Iy = 2.59 x10° kg m I, = 4.7454 x 10° Kg m 1, = 2.59 x 10° kg m
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-.5206 + i .6846 x 10' -.5206 + 1 .6846 x 10 -.5206 + i .6846 x 10 -.5206 + 1 .6846 x 10\
-.5203 * i 6845 x 10° -.5203 + 1 .6845 x 10' -.5202 + 1 .6845 x 101 -.5203 + i .6845 x 10
=.5198 * 1 .5845 x 10° -.5198 + 1 .5845 x 10° -.5198 + { 5845 x 10! -,5198 + i 5845 x 10.
-,5198 + i 5844 x 10) -.5198 & i ,5844 x 10% -.5199 + 1 5845 x 10 -.5198 + i .5844 x 10!
-.5207 * i 4845 x 10} -.5207 + 1 .4845 x 10° -.5207 + i .4845 x 10° -.5207 + i .4845 x 10}
-.5203 * i 4845 x 10! -.5203 + 1 4845 x 10 -.5202 * i 4845 x 10! -.5203 + i .4845 x 10
-.6556 * i 1727 x 10> =.6556 + 1 .1727 x 10} -.6556 + 1 .1727 x 10! -.6555 + 1 .1727 x 10!
-.6556 + i .1727 x 10 -.6556 + 1 .1727 x 10! -.6556 * 1 .1727 x 10} -.6558 + & .1727 x 10}
-.4722x10"241,1555x10" -.4722x107241,1555x101 ~.4693x10"224,1555x10" -.1030x10"224,2175x10"
-.8915x1072+1,1474x10" .2525x107 1, 1467x10! .2525%107 241, 146710 -.6269x1072+4,2189x10}
-.1395x10"1+1,1408x10! ~.4803x10" 1, 1462x10} -.4803x10" 141, 1462x10! - 1143x10" 124, 1424x10!
-.3021x10"2+4,1195x10" -.3021x10"2%1,1195x10" -.2948x10"2+1,1193x10} -.7002x10" %1, 1254x10"
-.6157 % 1 .7452 -.6157 + { .7452 -.6341 + 1 .7361 —.6157 + 1 .7452
-.6483 * i .7167 -.6483 + 1 .7167 -.6483 + 1 .7167 -.6534 + 1 ,7210

L1024 + 4 7428 .7266 x 10”1+ 4 8399 .7266 x 101+ 4 .8399 .7352 x 10" + 1 8396
-.5095 x 1072+ 1 .7555 -.5095 x 1072+ 1 ,7555 -.5375 x 1072+ 1 .7566 -.4631 x 1072+ 4 ,7525
-.1057 + i .7306 -.7611 x 1071+ 1 .8151 -.7611 x 1071+ 1 .8151 -.7701 x 1071+ 1 .8150
-.6565 + 1 .2739 -.6565 + 1 .2739 -.6565 % 1 ,2737 -.6565 + 1 .2739
-.6562 + 1 .2739 -.6562 + 4 ,2738 _.6562 + 1 .2738 -.6562 + 1 .2738
-.5697 x 1072+ 4 2331 -.5697 x 1072+ 4 .2331 -.6210 x 1072+ 1 ,2337 -.5697 x 1072+ 4 2331
-.6527 x 1072+ 1 ,2346 -.6527 x 1072+ 4 ,2346 -.6527 x 1072+ 4 2346 -,6524 x 1072+ 4 2346
-.8143 x 1071 0.0 -.8143.x 107~ 0.0 -.3621 x 107 0.0 -.8143 x 1071 0.0
-.2106x107+1,6174x10"} -.2106x10741, 6147101 —.5949x10™%+1,3510x10™} ~.2105x10 7344 ,6174x10™ )
-.1183 x 107} 0.0 -.1183 x 107} 0.0 -.1446 x 101 0.0 -.1183 x 1071 0.0

.9833x107+1,2333x10™% .9833x107°41.2333x10~% .9833x107+4 ,2333x10™% .9833x1077+4,2333x10™"
-.5200 * { .5845 x 10° -.5200 + 1 .5845 x 10! -.5200 * 1 .5845 x 10 ~.5200 * {1 .5845 x 10!
-.6562 + 1 .7265 -.6562 + 1 7265 -.6562 * 1 .7265 -.6562 + 1 .7265
-.6522 x 1072+ 1 2346 -.6522 x 1072+ 4 2346 -.6522 x 1072+ 4 ,2346 -.6522 x 1072+ 1 2346
-.5200 £ 1 , 5845 x 10! -.5200 * {1 5845 x 10! -.5200 * i ,5845 x 10' -.5200 * { .5845 x 10°
-.6562 + 1 .7265 -.6562 * 4 ,7265 -.6562 * 1 ,7265 —.6562 + 1 .7265
-.6522 x 1072+ 1 .2346 -.6522 x 1072+ 1 ,2346 -.6522 x 1072+ 1 2346 ~.6522 x 1072+ 1 .2346

Table I Results of Stability Analysis for Various Configuration

Parameters
)

BR = 0.792, C. = 0.00158

T
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N L B W N

il
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Case 5 Case 6 Case 7 Case 8
GSBXY-BSBXZ=2-192,GST=1.754 GSBXYaaSBXZ=2.192,&ST=1.754 Wgpry™Wpyz™2+ 192, =1.754 aSBXY=GSBXZ=2.192,&ST=1.75&,
&Rx=o.01

o ™ 644 x 102 Kg mi 1, = 2.0x 1066Kg mzz 1, =2.0x 108 e n? , I = 2.0x 10° ke m? X
vy = 2,59 x 10" Kg m Iyy = 2,59 x 10 Kg m' Iyy = 4,7454 x 107 Kg m Iyy = 4.7454 x 107 Kg m
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 .5621x10 D41.1172x107 "
-.5207 + i .6846 x 10° -.5207 + i .6846 x 10" -.5207 + i .6846 x 10! -.5207 + i .6846 x 10}
-.5203 + i .6845 x 10 -.5202 ¢ i .6845 x 10 -.5202 + 1 .6845 x 10 -.5202 + i .6845 x 10)
-.5198 + i .5845 x 10 -.5198 + i .5845 x 10! _.5198 + i .5845 x 10} -.5198 * i .5845 x 10)
-.5198 + i .5844 x 10! -.5198 * i .5844 x 10 -.5199 + i .5845 x 10! -.5199 + 1 .5845 x 10!
-.5207 + i .4845 x 10} -.5207 + i .4845 x 10} -.5207 + i .4845 x 10} -.5207 + i .4845 x 10
_.5203 * i .4845 x 10} -.5202 * i .4845 x 10} -.5202 + i .4845 x 10- _.5202 + i .4845 x 10!
-.6555 + i .1726 x 101 -.6555 + i .1726 x 10" -.6555 £ i .1726 x 10- -.6555 * i .1726 x 10}
-.6558 + i .1727 x 10} ~.6558 * i .1727 x 10 -.6558 + i .1727 x 10" -.6558 + i .1727 x 10}
-.1030x10"2+1.2175x10" -.1032x10"%+1.2175x10" -.1029x107%24.2175x10" -.1029%10 %+3.2175x10"
-.6136x102+1.2188x10" -.6136x10 2+1.2188x10" -.6136x10"2+.2188x10" -.6136x1072£1.2188x10]
-.1676x107324.1136x10> ~.1676x107341.1136x10’ -.1676x10 3+4.1136x10" -.1676x10 3+i.1136x10"
-.7002x1072+1.1254x 10" -6951x10™%¢4.1252x10! -.6923x10 22 1.1252x10! -.6923x10 %¢1.1252x10"
—.6157 + 1 .7452 -.6157 £ i .7452 -.6341 £ 1 .7361 -.6341 £ 1 .7361
~.6534 + 1 .7210 -.6534 + i .7210 -.6534 £ 1 .7210 -.6536_* i .7210
-.6372x10"2+1.1782x10" -.6372x10"2+1.1782x10" -.6372x10 %+ 1.1782x10" -.6372x10 %+ 1.1782x10}
—.4631 x 1072 x 1.7525 -.4830 x 1072 + 1.7534 -.4893 x 1072 + 1.7536 -.4893 x 1072 + 1.7536
-.8624 x 1072 & 1.7772 -.8424 x 1072 & 1.7772 -.8424 x 1072 £ 1.7772 -.8426 x 1072 & 1.7772
-.6565 + i .2739 -.6565 £ 1 .2737 -.6565 + 1 .2737 -.6565 + 1 .2737
-.6562 + 4 .2737 -.6562 & i .2737 -.6562 + 1 .2737 -.6562 + i .2737
-.5697 x 1072 + 1.2331 -.5697 x 1072 + 1.2331 -.6210 x 1072 + 1.2337 -.6210 x 1072 + 1.2337
-.6524 x 1072 + 1.2346 -.6524 x 1072 + 1.2346 -.6524 x 1072 + 1.2346 -.6526 x 1072 + §.2346
-.8143 x 107} 0.0 -.8143 x 107 0.0 -.3621 x 107} 0.0 -.3621 x 107} 0.0
~.2105%x10 3%4.6174x10" ) -.5947%10"*+1.3510x107} -.5947x10 " +1.3510x10" 1 -.5947x10 5 1.3510x107}
-.1183 x 107} 0.0 -.1183 x 107} 0.0 -.1446 x 107} 0.0 -.1446 x 107" 0.0

.9833x10 °%1.2333x10™% .9833%10 2+ 1,2333x10™ .9833x10 >+ 1.2333x10™" .9762 x 107 0.0
-.5200 * i .5845 x 10° -5200 + { .5845 x 10 -.5200 + { .5845 x 10! -.5200 + { .5845 x 10!
-.6562 + 1 .7265 -.6562 ¢ 1 .7265 -.6562 £ i .7265 -.6562 £ i .7265
-.6522 x 1072 + i.2346 -.6522 x 1072 & 1,2346 -.6522 x 1072 + 1.2346 -.6522 x 1072 + 1.2346
-.5200 + { .5845 x 10! -.5200 *+ 1 .5845 x 10 -.5200 + 1 .5845 x 10! -.5200 + i .5845 x 10}
-.6562 + 1 .7265 -.6562 + i .7265 -.6562 + i .7265 -.6562 ¢ i .7265
-.6522 x 1072 + i .2346 -.6522 x 1072 & i .2346 -.6522 x 1072 + 1 .2346 -.6522 x 1072 + 1 2346

Table II Results of Stability Analysis for Various Configurations
Parameters
BR = 0.792, C; = 0.00158
ORIGINAL PAGI IS
OF POOR QUALITY
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Case 9
&SBXY=aSBXZ=2.192,aST=1.754,
; GRy=o.o1

I, =2.0x10° kg m?

I, = 4.7454 x 10% kg m?
1 0.0 0.0
2 .3349x10%1.1171x10” >
3 -.5207 + i .6846 x 10!
4 -.5202 + 1 .6845 x 10
5 -.5198 + i .5845 x 101
6 -.5198 + i .5845 x 10!
7 -.5207 + i .4845 x 10
8 -.5202 + i .4845 x 10!
9 -.6555 ¢ i .1726 x 10}
10| -.6558 + 1 .1727 x 10!
11 | -.1029x107%+1.2175x10!
12 | -.6136x10"2+1.2188x10}
13 | -.1676x1073+1.1136x10!
14 -.6923x10 2+i.1252x10"
15 | -.6341 * 1 .7361
16 | -.6534 * 1 .7210
17 | -.6372x107+4.1782x10]
18 | ~.4893x1072+1.7536
19 | -.8424 x 1072 + 1.7772
20 | -.6565 + 1 .2737
21 [ -.6562 * 1 .2737
22 | -.6210 x 1072 + i .2337
23 | -.6524 x 107% + 1.2346
2 | -.3621 x 107} 0.0
25 | -.5947x10+1.3510x107}
26 | -.1446 x 107} 0.0
27 .9784 x 107> 0.0
28 | -.5200 * i .5845 x 10
29 | -.6562 + i .7265
30 | -.6522 x 1072 + i .2346
31 | -.5200 + i 5845 x 107}
32 [ -.6522 + 1 .7265
33 | -.6522 x 107 + 1 .2346

Table III Results of Stability Analysis for Various
Configuration Parameters

BR = 0,792, CT = 0.00158
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Lead-lag Modes Flap Modes

collect collec~
MODES High tive Low High tive Low
freq. | freq. freq. | freq. freq. freq.
11 2 1 211 2 112 1 2 1] 2

Supporting structure
symmetric bending in XXX XX
x-y (horizontal) plane

Supporting structure
symmetric bending in XXX X XX X
x-z (vertical) plane

Supporting structure

torsion(antisymmetric)|XXX XXX
Body pitch X X X X
Body roll X XX

Legend: XXX = Strongly coupled, XX = Moderately coupled, X = Weakly coupled

Table IV Coupling Between Various Body Modes and Blade Modes
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Buoyancy

Ratio -
BR % Pro “x0 %0 A Cr ©ro11
—=1 1

0.792 4,206° 2.302° -3.963° -0.115° 0.03272 .00158 .3510x10

0.7 5.243° 3.209° -5.074° -0.161° 0.03820 .00228 .3173x10_l
0.6 6.259° 4,179° -6.453° -0.236° 0.04313 .00304 .276lx10"1
0.5 7.207° 5.142° =7.994° -0.352° 0.04743 .00380 .2276x10_l

Table V Equilibrium Values at Different Buoyancy Ratios

Bgp=1.754, &

I =2.0x106kg.m
XX

2
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CRIGINAL PAGZ 13
OF POOR QUALITY

aST = 1,754, aSBXY = &SBXZ = 2.192
Ly, = 4.745 x 10% kg m?, 1, = 2.0 x 10° kg w’
BR = 0.792 0.7 0.6 0.5
-.5207 ¢ 1 .6846 x 10" | -.4954 = i .6861 x 10" | ~.4727 = 1 .6892 x 10} | -.4589 + i .6945 x 10}
=.5202 * 5 6845 x 10" | -.4946 + i 6859 x 10" [-.4715 + i .6889 x 10! | -.4572 + 1 .6940 x 10°
Blade | -:5198 * 1 5845 x 10" |-.4940 + 1 ,5858 x 10" | -.4707 + i .5888 x 10 ] -.4560  § .5939 x 10
Torsfon| -.5199 + 1 5845 x 10" |-.4940 + 5 .5859 x 10! | _.4706 £ 5 .5888 x 10' ] -.4550 ¢ 4 .5939 x 10
-.5202 + i 4845 x 10" | -.4945 + 1 4859 x 10" [-.4731 + 1 4887 x 10! | -.4570 * 1 .4939 x 10!
-.5207 + i 4845 x 10" |- 4956 + 1 .4858 x 10" |-.4713 s 1 4889 x 10| - 4598 = 1 496 & 10}
2.6558 ¢ 4 1727 x 100 V6411 ¢ 1 1721 x 100 |- 6118 ¢ 1 1724 x 10' | -.5670 + 5 .1740 x 10}
-.6555 ¢ i .1726 x 100 |-.6402 + i .1721 x 10" [-.6143 + 1 .1725 x 10} | -.5725 + 1 .1742 x 10
Blade |=:6341 % i .7361 -.6192 ¢ 1 .7313 -.5925 + { .7362 ~.5514 + i .7547
Flap | -.6534 + i .7210 -.6393 + i .7158 -.6136 + i .7196 -.5736 + i .7364
-.6565 ¢ i .2737 -.6426 ¢ i .2788 -.6162 * i .2750 -.5773 ¢ i .2577
-.6562 & i .2737 -.6420 + i 2789 -.6172 + i 2748 -.5758 + i .2580
=:6923x107%+3.1252x10" | -.1006x10 " 11252100 | = 1428x107 5 1.1252%10" | -. 1957500 12 1. 1253m10)
-.1676x107%+1.1136x100 f -.1496x1072+1.1136x10" | -.3490%10 22 4.1136x10" | <. 619081022 1. 1136x10)
i 6210 x 1072 + $.2337 | -.9320 x 107 & $.2337 [ -.1363 x 10"\ ¢ 1.2335 | -.1905 x 10~} = 1 2308
‘ Ei:gfLag -.6524 x 1072 + 1.2346 |-.9650 x 107 + 5.2352 | -.1389 x 107} £ 1.2359 | ~.1920 % 10~} « 1.2363
| =862 x 107 ¢ 3.7772 | -.1211 % 1070 ¢ 1.7769 | -.1703 x 107 £ 5.7768 | -.2313 x 10"} = 4.7772
-.4893 x 1072+ 1.7536 | -.7608 x 102 s 1.7529 | -.1136 x 107 + 1.7521 | -.1617 x 10-L + 1.7514
| 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0
! ﬁ:iiﬂlzzjzn 0.0 i 0.0 100 ] 0.0 1 0.0 i o.o3 0.0 i 0.0
.9833x10 %3 .2334x10" | -, 5716x10>+1.5015%x10° | -.6929x10 ™% +1.1058x107>] ~.2814x10"321.2372%10
l piren |=:3621 x 107 0.0 }-.4181 x 107! 0.0 |-.4640 x 107} 0.0 1-.5012 x 107} 0.0
l -.1446 x 1071 0.0 §-.1025 x 307! 0.0 ]-.6918 x 1072 0.0 |-.4048 x 1072 0.0
; Roll | -.5947x10+1.3510x16" | -.3602107%¢5.3176xa0 | 1155x107%1.2765x10 ] 8069%10 252285515 "
\ Bending in X-Y [ -.1029x107%s1.2175x10" |- 1394x10721.2175%10" | =.1952%10 2¢1.2176x10" | -.2762x10 2% 4. 2177x10]
S;Efﬁ;ij:i Bending in X-2 | -.6136x107%1.2188x10" |-.5773x10721.2188x10" |- 5152x107%+1.2188x10" | -.4165¢10 221 .2189x 10"
Torsion | -.6372x107%+1.1782x10" |- 9268x1072i.1783x10" | =, 1388x00 e 4.1 783510) |- 2100810" 21 178510
! Torsion | -.5200 * i .5845 x 100 [-.4941 * i .5859 x 10° [-.4706 + i .5889 x 10} |-.4557 ¢ 1 .5940 x 10!
! Flap | -.6562 * 1 .7265 —.6421 + 1 .7213 -.6162 * i .725 _.5759 = i .7426
| Lead-Lag | -.6522 x 1072 + 1.2346 §-.9658 x 1072+ 3.2352 | -.1389 x 107" & 5.2358 1-.1921 x 10"} « < 2303
Tlter“;zizg Torsion | -.5200 + i .5845 x 10° |-.4941 * i .5859 x 101 |-.4706 * i .5889 x 10} |-.4557 * 1 . 5940 x 10-
Flap | -.6562 + 1 .7265 -.6421 + 1 .7213 -.6162 * { .7254 Z.5759 *+ 1 .7426
Lead-Lag | -.6522 x 1072+ 1.2346 |-.9658 x 107> * 1.2352 |-.1389 x 1070 + 1.2358 [-.1921 x 10°> * i .2363
Table VI Results of Stability Analysis at Different Buoyancy Ratios
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w, Hz

OUR ANALYTICAL RESULTS
A O OO EXPERIMENT (Ref. 6)

R
]
OO0 o 00T
R o
00 O o\ O 0O E} 0 pooobnoo Ut
ilnly! OO
Br
L Wu I
200 400 600 800 1000
Q, R.P.M.
Figure 4 Model Frequencies as a Function of Q, 6 = 0

(Configuration 1) ¢
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OUR ANALYTICAL RESULTS

-~ — = THEORY WITH INFLOW DYNAMICS (Ref. 7)
O EXPERIMENT (Ref. 6)

200 400 600 800 1000

1, R.P.M.

Figure 5 Body Pitch Mode Damping as a Function of
2y GC = 0 (Configuration 1)

136




. sec"1

~UR ANALYTICAL RESULTS

— — — THEORY WITH INFLOW DYNAMICS (Ref. 7)
O EXPERIMENT (Ref. 6)

0 200 400 600 800 1000

0, RP.M.

Figure 6 Body Roll Mode Damping as a Function of 2, GC =0
(Configuration 1)
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OUR ANALYTICAL RESULTS

— = = THEORY (Ref. 6)
O  EXPERIMENT (Ref. 6)

6, deg
(a) Q= 650 R.P.M.

(b) = 900 R.P.M.

Figure 8 Lead-Lag Regressing Mode Damping as a
Function of SC at (a) 650 R.P.M. and
(b) 900 R.P.M. (Configuration 1)
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%‘ 43.892 m VII

(a)

{ Y /224 )

'-— 21.946 m
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Figure 9 Idealization of Supporting Structure for Bending
Type Deformations
(a) Free-Free Beam, (b) Free-Free Beam with
Heavy Mass at the Center and (c) Free-Free Beam
with Masses at the Center and at the Tips
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Figure 10
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Idealization of Supporting Structure for Torsion
Type Deformations

(a) TFree-Free Beam, (b) Cantilevered Beam and
(¢) Cantilevered Beam with Inertia at the Tip
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v

(a) ROLL

(b) PITCH

Figure 11 Elementary Model of the Vehicle for Frequency
Evaluation in (a) Roll and (b) Pitch
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Kggxz = 7.96 x 107 N/m ~ 1.74 x 108 N/m
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Figure 13
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00 SUPPORTING STRUCTURE TORSION

O SUPPORTING STRUCTURE BENDING
IN X-Z PLANE (VERTICAL)

A SUPPORTING STRUCTURE BENDING
IN X-Y PLANE (HORIZONTAL)

B HIGH FREQUENCY LEAD-LAG 1
® HIGH FREQUENCY LEAD-LAG 2
A LOW FREQUENCY LEAD-LAG 1
® LOW FREQUENCY LEAD—-LAG 2

Variation of Nondimensional Eigenvalues of Blade
Lead-Lag Modes and Supporting Structure Bending

Modes with Increase in Supporting Structure Bending
Stiffness in X-Z Plane (Vertical)
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B COLLECTIVE LEAD-LAG 1, 2

e SUPPORTING STRUCTURE TORSION
O LOW FREQUENCY LEAD-LAG 1

® LOW FREQUENCY LEAD-LAG 2

A HIGH FREQUENCY LEAD-LAG 1

% HIGH FREQUENCY LEAD-LAG 2
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A—B Kgr=3.01x 106~ 720 x 10° N.m
B—C Kgr =7.20 x 108 ~ 1.685 x 107 N.m
C—D Kgr = 1.685 x 107 ~ 3.10 x 107 N.m

Figure 14 Variation of Nondimensional Eigenvalues of Blade
Lead-Lag Modes and Supporting Structure Torsion

Mode with Increase in Supporting Structure Stiff-
ness in Torsion
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Figure 15 Variation of Nondimensional Eigenvalues of
Collective Flap Modes and Body Pitch Mode with
Increase in Body Imertia in Pitch
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Figure 16 Variation of Nondimensional Eigenvalues of Low
Frequency Lead-Lag Mode and Body Roll Mode with
Increase in Body Inertia in Roll
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e BENDING IN X-Y PLANE (HORIZONTAL)
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Figure 17 Variation of Nondimensional Eigenvalues of the
Supporting Structure Elastic Modes with Decrease

in Buoyancy Ratio
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Figure 18 Variation of Nondimensional Eigenvalues in (a) Pitch
and (b) Roll Modes with Decrease in Buoyancy Ratio
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APPENDIX A

Transformation to Multiblade Coordinates

For an N-bladed rotor with blades evenly spaced around, the azimuth angle

for the kth blade, at any instant, can be written as
b= Y+ o2m X K=1,....N (A.1)
k N ?

where ¢ = Qt, the nondimensional time variable.
Let akbe ageneralized coordinate associated with any degree of freedom of the kth blade,
flap or lead-lag or torsion. Since this o is associated with the blade which is
rotating, it is called a rotating coordinate. If there are N blades, the behavior
of all the blade in that particular degree of freedom can be represented by N
rotating coordinates Oy wee O By suitably choosing a transformation, these N
rotating coordinates can be transformed to another set of N coordinates, each of
which is associated with a specific variation of all the ak's (rotating coordinates)
when combined, as viewed from a nonrotating frame. This type of transformation is
called the multiblade coordinate transformation. Basically, this transformation
transforms the rotating coordinates into a nonrotating frame. Usually, the physi-
cal explanation about this transformation is given only with reference to flap
motion of the blade [Ref. 3].

The transformation from the rotating to the nonrotating coordinate is ob-

tained from the following operations

N
% T ¥ k=1 %k
1 N k
o=y o1 CD % (for even N only)
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1
%e = w k1 cos(aby) o
1 N
o= ¥ k§1 sin(nwk) O (A.2)
N-1
where n = 1,....L and L = > for odd N
L= Egz for even N

The inverse transformation is

L
O = aM + ngl (anc cos nwk + ans sin nwk) + (—1)k O _y (A.3)

Last term will appear only even N. The proof for this transformation can be found
in Ref. 3.
This transformation, given in Eq. (A.l), looks like a truncated Fourier

series, except for the last term. The major difference between this transformation

and the usual Fourier transformation is that here the coefficients aM, un .

s O
Cc ns

a_M are all functions of time, whereas in the Fourier series the coefficients are

constants. That is why sometimes these multiblade coordinates are also referred to

a8 Fourier coordinates.

Differentiating Eq. {A.2) with respect to time ¢ = {Ot (Q is a constant)
. - l bZI .
M7 N kA1 %
N
. 1 k
= § 1D %
(A,4)
. 2 N .
+ = =
ne T " %ns N kgl cos(nwk) e
. 2 N .
ns ~ O 0an: = N kgl 31n(nwk) OLk

Differentiating again with respect to {
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N k
= 1 (1)

“ - N El ak

. 2 2 N .
a . + 2n o - R o=y 51 cos(nwk) O

N

- . 2 _ 2 . (A.5)
“as n “ne noOs TN kzl 51n(nwk) e

It can be seen that the transformation of acceleration terms from the rotating
frame introduces coriolis and centrifugal terms in the nonrotating frame. So,
the transformation from the rotating frame to the nonrotating frame is accomplished
by applying the following N operators to the complete set of linear equations,

for the rotating blade, in the rotating frame. They are

1 5 (..0) collective operator

N =1

;N k

X §1 - (...) alternating operator

1 N

N kgl cos nwk (...) n-cosine operator

1 N

X kgl sin nwk (...) n-sine operator (A.6)

These four operators are applied to each equation representing the blade degree
of freedom and the blade degrees of freedom are replaced by the multiblade
coordinates using Equations (A.2), (A.4) and (A.5). The resulting equations
will have the multiblade coordinates as the generalized coordinates. These
equations represent the dynamics of the rotor as a whole as viewed from a non-

rotating frame.
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APPENDIX B

Application of Multiblade Coordinate Transformation

To Multi-Rotor System

In Ref. 1, the blade loads are derived, in a general form for a typical
rotor with a moving hub and the rotor is assumed to operate at a specified
constant value of §). When using these expressions for the calculation of blade
loads, for two different rotor systems operating at different values of §, a
number of special provisions described below have to be introduced.

First note that in the general expressions for the blade loads, various time
derivative terms are nondimensjonalized with respect to a nondimensional time
Y = Qt, where  is the angular speed of the rotor. In a multirotor system, if
the rotors operate at different values of {, the nondimensional time { is dif-
ferent for different rotors, which leads to inconsistency. This problem can be
resolved using the angular speed of one rotor, say 91 of the rotor Rl’ as the
reference §2. Then all the time derivative terms, that appear in the blade load
expressions for different rotors, can be suitably modified such that the non-
dimensional time is the same for the complete set of equations. The nondimensional
time will be wl = Qlt.

The second important item is encountered while applying the multiblade

coordinate transformation to a multirotor system. In the n-cosine and n-sine

[

transformation, the following operators are applied to the blade equations:

2 g cos nwk (...) n-cosine

N k=1 ’

2 3 (8.1)
= i -si B.1
5 kgl sin ny, (..0) n-sine

_ K
where wk =y + 2 N
and y = Qt
In a multirotor system, these operators are different for the blade equations in

.th .
different rotors. In general, for the i rotor, these can be written as
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%— k§1 cos nwi (...) n-cosine
2 g sin nwi (o02) n-sine (B.2)
N k=1 Kk T )
where ¢§ = wi + 2m %
¢i = Qit

. A h
Note that W; contains the angular speed Qi of the 1t rotor. These operators

. .th
have to be applied to the blade equations in the 1t rotor system to transform

the blade equations to the nonrotating frame. When applying Eqs. (B.2) to the time

derivative terms for the blade degrees of freedom, the transformation given in
Eq. (A.4) and (A.5) should not be used directly because the time derivative is
taken with respect to a reference nondimensional time, say ¢1'

The derivation given below shows the modifications which have to be incor-
porated, in the blade equations, both for nondimensionalization and for the
application multiblade coordinate transformation when dealing with a multirotor
system in which each rotor is operating at a different value of Q.

Let Ql be the reference angular speed which represent rotor system R1 and
let Bi be the flap degree of freedom of the kth blade in the rotor system Rl'
Furthermore let Qi be the angular speed of the ith rotor system and denote by
Bi the flap degree of freedom of the kth blade in rotor system Ri' The time
derivatives of these degrees of freedom can be written in the nondimensional

form as,

apl apl dgl o. a8l
dltc =8 d(; 5 = % __}f = 9 (Q_l) __11< (8.3)
1 dy 1 dy

154




i i i i
%=Qi§%=g'ﬂ=g‘(%)ﬁ% (B.4)
1 i dwl i i v

1f the general load expressions, derived for typical rotor blade, are used for

all the rotor systems in a vehicle, then the first time derivative terms in the

load expressions for the rotor R1 will be with respect to wl and that for the

rotor Ri will be with respect to wi. If the angular speeds in the rotor systems

are different, then the nondimensional time will be different for the rotors.

For consistency, the underlined expression should be used for all the first derivative
terms appearing in the ith rotor load expressions. Hence, the general blade load

expressions can be used for different rotors after multiplying the first time

94 9]
derivative terms by ( Q—l ) and the second time derivative terms by ( —Q-l— )2. The
i i
nondimensional time, in this case, is wl = Qlt. (Note: All the Q's are constants).

The following derivation shows how this nondimensionalization affects the multi-
blade coordinate transformation. Let a;c and ais be the transformed n-cosine and
n-sine degrees of freedom in the nonrotating frame and let the corresponding rotat-

ing blade degree of freedom be a;, for rotor system Ri' Thus

i 2 N i i
= 2 3 :
anc N k21 °os nwk ak (B.5)
i 2 N i 1
= = I {
o N oy sin nwk 0 (B.6)
i i 2Tk
wherell)k =9y +T
i . .th
and Y = Qit . Qi is the i rotor angular speed
Differentiating Eq. (B.5) with respect to t
-1 2 1 i i-i
= £ . - . 5
a . N ko1 sin nwk nQi oy + cos nwk o (B.7)
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where (') = é%'( )

Equations (B.7) can be written as

N
.i i _ 2 3 ioed
o .+ nQi 0= N Koy ©os nwk o (B.8)
Nondimensionalizing the time derivative with respect to wl = Qlt’ where 91
is the reference angular speed, Eq. (B.8) becomes
%1 i 2 N i, ki
=—Z -
Ql a . + nQi o N 121 s nwk Ql o (B.9)
Where (*) = —EI
dy
Q,
Multiplying both sides of Eq. (B.8) by ( ﬁi )
i
Q N Q
1 *j i 2 i 1 *i
1 = £ ¥ _L
Qi [ ( Qi ) a . +na ] N K& °°s nwk Qi ( Qi ) a (B.10)
The underlined term is the same as that in equation (B.4)
Cancelling Qi on both sides, Eq. (B.10) yields
Q N Q
1 *i i 2 i 1 *i
— = £ I ——
( Qi ) o . + no_ N k1 °os nwk ( Qi ) o (B.11)

Equation (B.10) shows how the first time derivative term in the rotor system
Ri transforms into the multiblade coordinate system. It turns out that in the

transformed multiblade coordinate system, the first time derivative term is

Q
to be multiplied by ('ﬁl ). It can also be shown that the second time derivative
i Q
term is to be multiplied by (-ﬁl )2. These multiplication factors take care
i

of both consistency in nondimensionalization and proper multiblade coordinate

transformations
€ %
A closer look at the equation (B.11l) shows that ( Er‘) o transforms into
P! )+ nal and G 4ot & 18 ) tern i
a . C Qi no and not (o nuns) («ﬁz ) eventhough ( ﬁ;' erm is
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independent of the summation. This term does not act as a common multiplier
for both sides. This term is multiplied only to the first derivative term
on the left hana side. For the case when Ql = Qi, equation (B.1ll) reverts
to the original equation given in equation (A.4).

Thus, in blade load expressions derived in nondimensional form for a

typical rotor, the time derivative terms have to be multiplied by a factor

Q
(-ﬁl )p (power of this factor depends on the order of differentiation) and

i

the same factor has to be introduced also in the time derivative terms which

appear in the transformed multiblade coordinat. .

157



APPENDIX C

Rotor, Blade and Body Properties

The data provided below describes the rotor tested in Ref. [6].

Rotor Geometry

Number of blades

Radius, cm

Chord, cm

Hinge offset, cm

Blade airfoil

Profile drag coefficient

Lock number

Solidity ratio

Lift curve slope

Height of rotor hub above gimbal, cm

Blade Mass Properties

Blade mass (to flap flexure), gram

Blade mass centroid
(Ref. flexure centerline), cm

Blade flap inertia
(Ref. flexure centerline), gram

Elade Frequency and Damping

Nonrotating flap frequency Hz
Nonrotating lead-lag frequency Hz
Damping in lead-lag (% critical)

Body Mass Properties

Rotary inertia in pitch, gram m2

Rotary inertia in roll gram m2

158

3

81.1

4.19

8.51

NACA 23012

0.0079

7.73

0.0494

2m

24,1

209

18.6

17.3

Configuration 1

3.13

6.70

0.52%

633

183




Body Frequency and Damping

Pitch frequency, Hz 2
Roll frequency, Hz 4
Damping in roll (% critical) 0.929%
Damping in pitch (% critical) 3.20%
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