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1 .  Introduction 

One of the current problems of interest in aerodynamics i s  understanding 
and controlling the development o f  the asymmetric flow which occurs 
when a simple body o f  revolution i s  placed a t  large angle of attack in  
subsonic flow. This phenomenon i s  of basic scientific interest, since i t  
represents a bifurcation from a stable symmetric flow t o  an unstable 
symmetric (and stable asymmetric) flow as the angle of attack i s  
increased. It is  also o f  practical importance in the design of aircraft and 
missiles, since the side forces and yawing moments generated by the 
asymmetrical f low are surprisingly large, and can, in some instances, be 
larger than the normal force and pitching moment acting on the vehicle. 
Designers must take account of these large, nonlinear forces in  sizing 
control surfaces and developing control systems. Thus, control of  the 
onset of  vortex asymmetry can result in improved performance and f l ight 
safety. 
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The phenomenon o f  vortex asymmetry was f i r s t  observed experimentally in 
wind-tunnel tests conducted in  the 1 9 5 0 ' ~ ~  and was then termed 
"phantom-yaw". Early f low-visualization experiments (Ref. 1 ) showed that 
at  low angles of  attack flow separates from the sides of  a circular 
cross-section body and forms a symmetric pair of  vortices on the leeward 
side of the body. When the angle of attack i s  increased beyond a cr i t ical  
values, the symmetric vortex pattern changes into a steady asymmetric 

great number of experimental and analytical investigations have been 
carried out t o  document and understand vortex behavior (see, fo r  example, 
Refs. 2-5). I t  has been found that the onset of  vortex asymmetry i s  
strongly influenced by several factors, including Reynolds number and the 
state o f  the boundary layer a t  the crossflow separation line, model 
smoothness, and tunnel turbulence level. Recent experimental results (Ref. 
6,7), carried out in a low-turbulence wind tunnel, obtained detailed 
surface-pressure distributions over a range of Reynolds numbers ranging 
from ful ly laminar, through transitional, t o  "fully" turbulent. These results 
are particularly useful, since they permit delineation of the onset of 
vortex asymmetry from the boundary-layer transition phenomenon. In 
addition, they provide a detailed data base for verification of analytical 
methods. 

t 

_. pattern, and large side forces result. In the intervening thir ty years a 

- 
Over the past three decades, many theoretical and computational methods 

c have been developed and applied in attempting t o  predict the 
three-dimensional separated asymmetrical vortex flows. These have 

4- included methods based on the impulsive flow analogy, in which the steady 
three-dimensional flow over a body can be related t o  the evolution w i th  
time of the flow over a cylinder in crossflow (Ref. 8-10, for example). 
Also, vortex methods based on conical f low assumptions (Ref. 1 1 have ,i 
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been employed. More recently, three-dimensional inviscid vortex- l a t  t i ce 
methods (Ref. 121, and interactive inviscid/boundary layer method (Ref. 
13) 
have been utilized. However, the strong interaction between the viscous 
crossf low separation and the leeward vortex structure has precluded 
obtaining definitive computational results from these approximate 
methods. As a result, computational methods based on the Navier-Stokes 
equations appear t o  be required. 

Recently [141, a numerical method based on the thin-layer form of the 
parabolized Navier-Stokes equations [ 151 was used t o  compute supersonic 
turbulent f low f ield surrounding ogive-cy1 inder and ogive-cy1 inder- 
boattail bodies a t  low and moderate angles of attack ( a < 10'). Extensive 
comparisons indicated that the computed results were generally in good 
agreement with experimental measurements [ 16- 1-81. However, 
discrepancies between the computed and experimental results were seen 
in the regions of  experimentally observed crossf low separation. The 
authors of I141 suggested as possible sources o f  these discrepancies 
between the computed and experimental results the lack of 
circumferential viscous terms within the thin-layer viscous model , and, 
more likely, inadequacies of the algebraic eddy-viscosity model t o  
properly treat the regions of separated f low. (Another possible source of  
the discrepancies may have been the marginal computational resolution of 
the 1 eew ard-side vortex structures). 

Degani and Schiff [19] improved the PNS code by adding the cross 
derivative and circumferential viscous terms t o  the original PNS code and 
modifies the algebraic eddy viscosity turbulence model to  take into 
account regions of so called cross-f low separations. The above-mentioned 
sources of discrepancy were investigated. It was found that, given a 
computational grid which provides adequate spatial resolution o f  the 
leeward-sside vortices, a rational modification of  the eddy-viscosity 
turbulence model that is  consistent with the physics of  the f lows extends 
the applicability o f  the method t o  flows having large regions o f  crossflow 
separation. The turbulence model, once modified, was used without further 
changes t o  compute the flows around an ogive-cylinder body and several 
cones a t  various angles of attack. The computed results were in uniformly 
good agreement w i th  experimental measurements throughout the flow 
field, for  a l l  cases considered. (a i 22.6'). 

As the f i r s t  part of our investigation we assumed that the f low f ie ld  i s  
conical (but not necessarily symmetric). The validity of the assumption of 
locally conical viscous flow has been demonstrated in Ref. [ 141. 



As a test case for the computations the experiments obtained by Bannik 

angle a t  Mach number 2.94 and Reynolds number 1.372*107 was tested up 

leeward side vortex patterns were observed. In the computation, using an 
ea r l i e r  obtained solution of the above cone fo r  angle of attack o f  22.6' and 
a t  station x=0.5 as a starting solution, the angle of attack was gradually 
increased up to  34'. During this procedure the grid was carefully adjusted 
t o  capture the bow shock and t o  keep y+ near the cone surface smaller 
than 5. A stable, converged symmetric solution was obtained. 

+ and Nebbeling [20] were chosen. In these experiments a cone of 7.5' half 

t o  3 4  angle of attack. At high angle o f  attack nonconical asymmetric .. 

Since the numerical code converged t o  a symmetric solution which i s  not 
the physical one, the stabil ity was tested by a random perturbation a t  each 
point. The possible ef fect  o f  surface roughness or non perfect body shape 
was investigated too. In a l l  the cases that were investigated the changes 
in the converged solutions were of  the order of  the surface perturbation. 

At this point of the investigation it was concluded that although the 
assumption of conical viscous flows can be very useful for certain cases, 
it can not be used for the present case and the ful l  marching technique 
should be used (although Peake e t  al. I211 concluded in their paper that 
conical assymetric vortex pattern is possible). Thus a t  the second part of 
the investigation an attempt t o  obtain a marching (in space) solution wi th  
the PNS method using the conical solution as an initial data was made, for 
the same cases. I 

Since the transition from symmetric t o  asymmetric pattern probably 
occurs near the t ip  of  the cone the marching should be started very much 
near the t ip  and a new starting solution should be used instead of the one 
a t  x = .5 (for conical solutions as described above the location of  the 
computed cross section does not matter), and therefore a new conical 
solution near the t ip  of  the cone a t  x=0.05 is  generated for angle of attack 
of 22.6'. 

The solution that was obtained using the PNS method were very much alike 
the solution we got wi th  the assumption of  a conical f low field. Thus we 
test the stabil ity of the solution t o  a random perturbation and ther 
possible effect o f  the surf-ace roughness as we did with the previous 
solution and again we got a similar behavior. 

b All these solutions were done using three different turbulent models. The 
f i rs t  one i s  the simple algebraic eddy viscosity model, the second is  a 

r \  
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modified algebraic eddy viscosity model and the third model was the one 
equation model (or  kinetic energy equation model) which uses an additional 
partial differential equation t o  calculate the eddy viscosity coefficients. 
The model which i s  used in  the present work was formulated by Rubesin 
[22] for  compressible flows, based on the Glushko [231 model fo r  
imcompressible f l a t  plate boundary-layer flows. 

- 

For a i 20.6' it was found that the use of the improved eddy viscosity 
model resulted w i th  strong primery symmetric vortices, secondary 
vortices and simple addy viscosity reattachment between them. For the 
case of a = 34' the modified eddy viscosity model was used with the PNS 
code but the solution became unstable. The only solution which shows 
some improvement and was s t i l l  stable obtained by relaxing the t w o  
models together. The results were not impressive since the eddy viscosity 
was probably an order of magnitude larger than it should be. The results 
using the one equation model didn't show any improvement as well. 

At this point of the investigation it was concluded that although the PNS 
method code could be very useful for certain cases, it can not be used for 
the present case, of  a large angle of  attack. The natural step af ter  the use 
of PNS code would be the solution of the full Navier Stokes Equations. 
Since the Navier Stokes Equations are parbolic in time the most common 

convergence reached. To overcome the stabil ity problem of the PNS 
' solution we had to  choose a method that does not suffer from this 

diff iculty. The method o f  flux splitting and upwind spatial differencing for 
the convection terms in the streamwise direction has the advantage of  
having a natural numerical dissipation and better stabil ity properties and 
therefore this method (24) was adopted. 

- method t o  obtain a steady solution i s  by marching in time until1 

Using the flux spl i t  method we have generated solutions for two test 
cases: The f i rst  was the case of the cone that was tested earl ier with the 
PNS (but for laminar f low). The second test case for the computation was 
one o f  the experiments obtained by lemont [7]. In the experiments an 
ogive-cylinder body of  3.5D nose and 70 afterbody, Re = 200,000 based on 
body diameter, and oc = 40' was chosen. We assumed that the solution is  
laminar. The solution was made in t w o  steps. As a f irst step we used a 
grid of 59x50~60 free steam as initial condition and as a second step we 
used a grid of 5 9 x 5 0 ~  120,-where by linear interpolation we used the f irst 
step as an initial condition. 

The second step was done in  three paths. The f i rs t  one was a t ime 
marching solution without any disturbance, the second was a solution w i th  
a perturbation a t  the nose (small j e t  perpendicular t o  the surface) at an 
angle of 90° t o  the plane of symmetry in the cross section. The third one 
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was a solution where small geometrical disturbance (2% of the diameter) 
was placed instead of the j e t  and a t  the same location. 

During the investigation we had to  give an answer for two questions. The 
f i rs t  is, does the solution that we have generated, i s  the physical one o r  
just a methastable solution that w i l l  not actually appear. The second 
question is, when we generate a solution using a method of time marching, 
do we reach the seady state solution ? 

Thus a criterion t o  determine i f  the f low pattern w i l l  actually appear or  
w i l l  i t  be a steady state solution, i s  needed. We try t o  develop this 
criterion by using stabil ity analysis. This i s  based on the assumption that 
solutions which are unstable t o  small disturbances can not be a steady 
state solution, and metastable solutions appear only for certain init ial  
conditions. 

Since the stabil ity analysis is quite complicated and consumes a l o t  o f  
computing time for the three dimension, compressible f low, we needed a 
simple test case where we have several solutions for the same boundary 
conditions. The case that was chosen was Jeffery Hammel f low in  a 
diverging channel w i th  large divergence angle [251. (The case o f  large 
divergence angle, has not been examined for stabi l i ty yet). Thus the goal of 
this part o f  the investigation i s  t o  develop stabi l i ty criteria fo r  an 
arbitrary a (where a i s  the angle between the walls). 

In the stabil ity analysis we l imi t  ourselves t o  the analysis of linear 
stabil ity o f  small disturbances such that the nonlinear terms in the 
disturbance equation are neglected. We study the disturbances that fu l f i l l  
the same similarity condition as the base flow, meaning that the 
tangential distributions o f  velocity of  both the distubance and the base 
flow, are independent of the streamwise direction. This assumption i s  
equivalent t o  the case of  wave-like disturbance of infinite wave-length in 
the streamwise direction. It was found that the only stable f low pattern i s  
the one that an increase of the mass f low ra te  causes the downstream 
pressure t o  decrease. 
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2. The General Governina Equations ( in  body coordinates) 

The general unsteady three-dimensional Navier-Stokes equations, writ ten 
in strong conservation-law form, f o r  Cartesian coordinates can be 
expressed in nondimensional variables as: 

The inviscid flux vectors in Eq. (2.1 ) are: 

The internal 
variables as 

nergy o f  the gas i s  defined in terms of the cons 

. et = (e/p) - 0.5(u2 + vz + w2) 

rvat  ive 

(2.3) 

while the equation of state fo r  a perfect gas w i th  r a t i o  of  specific heats 
y is: 

It- 

The viscous flux trerms in Eq. (2.1 ) are: 
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(2.5) 

where 

(2.6) 

In obtaining Eq. (1.6) the Stokes hypothesis was used: x = - 2 ~ 1 3 .  In Eqs. 
(2.1)-(2.6) the Cartesian velocity components u ,v ,w are made 
nondimensional wi th  respect t o  am (the freestream speed o f  sound), the 

density p is normalized by pw, and to ta l  energy e i s  referenced t o  
2 pm am * 

We introduce a general transforamtion as follows: - 
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Subject t o  the transformation, Eq. (2.1) can s t i l l  be expressed in a strong 
conservation-law form as: 

where 

! 
! 

A -  
q = q/J 

L and 

(2.9) 

The Jacobian of the transformation, which appears in Eqs. (2.8)-(2.12), i s  
defined as: - 

(2.13) 
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3. The P.N.S. Code 

The P.N.S. code deals wi th  the steady state solution. Thus the variables 
are independent of time. The parabol ized Navier-Stokes equations are 
obtained from Eq. (2.1) by a generalized independent spatial variables that 
map the physical x,y,z space surrounding a body into a rectangular t, ,q, 5 
computational region: - 

[ = e(%) = streamwise (marching) coordinate, 

q = q(x,y,z) = spanwise o r  circumferential coordinate, 

= <(x,y,z) = n o m a 1  coordinate. 

which maps the body surface into the t = 0 plane, and by neglecting a l l  
streamwise derivative, within the viscous terms, and by modifying 
the streamwise flux vector t o  permit stable time-like marching of  the 
equations downstream from init ial data. Following [ 151, we introduce the 
subsonic sublayer approximation, and the resulting parabolized 
Navier-Stokes equations can be written as: 

A A A 

The modified streamwise flux vector In Eq. (2.1 is  

(3.1) 

where ps = p for supersonic flow, and ps i s  defined from dp / d t  = 0 for 
subsonic flow in the viscous layer adjacent t o  the body surface. By 
evaluating ps in this manner, Eq. (3.1) can be stably marched in the 

direction for a l l  flows where u ) 0; that is, for flows without streamwise 
reversal (see [15] f o r  associated stability analysis). 
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The viscous f l u x  vectors in Eq. (2. I Rq , 6 , 5q and 5'1 are given in 
the appendix. 

3.1 Numerical Alqor i  thm 

The numerical algorithm used to march Eq. (3.1) downstream is an 
implicit, non-iterative, approximately factored finite-difference scheme, 
which is  analogous t o  the one developed by Beam and Warming for the 
solution of the unsteady Navier-Stokes equations. The marching algorithm 
is  derived in the same manner used by Schiff and Steger [ 151, but the 
viscous cross-derivative term dR̂  bq ,?& 1% in Eq. (3.1) cannot be 
treated implicitly, and, following Beam and Warming [26] ,  are evaluated 
explicitly. The resulting algorithm can be wri t ten in so-called delta form 
as 

0 

In Eq. (3.3) a i s  set equal- t o  0 for first-order accuracy (Euler implici t  
method) and 01 = 113 for second-order accuracy (3-point backward 
differencing). Similarly, in the viscous terms 9 = 0 for first-order 
accuracy and 8 = 1 fo r  second-order accuracy. The Jacobian matrices of  
the flux vectors, A,, B, and ? are obtained from local linearization [281 of 

E,, F and G. The Jacobian matrix M i s  obtained from local  linearization 

- &  

A h H 
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[281 o f  Sc and, in an analogous n manner, the Jacobian matrix N i s  obtained 
from linearization o f  RT . The symbol indicates that the matrices are 
evaluated using f low variables q located at  jAt and metric quantities 
a t  ( j  + 1)At. The term D:j i s  a fourth-order explicit dissipation term, 
defined as: 

(3.4) 

which i s  added t o  the algorithm to  suppress high-frequency oscillations. 
Linear stability analysis indicates that &e in Eq. (3.4) must be less than 
1 / 16 t o  ensure stabil ity of the algorithm. Although adding impl ic i t  
smoothing terms within the operators on the left-hand side of Eq. (3.3) 
overcomes the linear stabil ity l im i t  and permits the use of  ' larger values 
of  &e , no such implici t  smoothing was used. While the use of impl ic i t  
smoothing tends t o  stabilize the numerical method, the added smoothing 
terms can be larger than the viscous terms of interest, and thus can 
degrade the accuracy o f  the solution. 

Equation (3.3) contains a l l  viscous terms and viscous cross terms 
appl icable t o  the parabol i zed Navier-S t okes equations. The thin- 1 ayer 
viscous model form of the equations, previously used by Schiff and Steger 
[151 can be obtained by neglecting all viscous terms except those solely in 
the normal 5 direction. Thus, by dropping the terms R, R, ST, AEs, and 
A?T from Eq. (3.31, the thin-layer algorithm can be obtained. 

d -  
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4. The Conical Solution usinq the PNS Method 

In general, the ini t ia l  da ta  for  the marching method must  be supplied 
from an auxiliary computation. However, when t rea t ing  the f low over 
conical o r  pointed bodies this is not necessary.  As outlined in [15], f o r  
inviscid f l o w s  about conical bodies a conical grid is se lec ted  and the f low 
var iab les  are ini t ia l ly  set t o  free-stream values. The solution is marched 
one step downstream from an initial s ta t ion ,  and the resul t ing f low 
var iab les  are then scaled to  place the solut ion back at  the original s ta t ion .  
The process  is repeated until no change in the var iab les  is observed w i t h  
f u r t h e r  marching. The f low variables are then cons tan t  along r a y s  of the 
f low f ie ld ,  and a conical solution has been generated.  Upon assuming f low 
var iab les  within the viscous layer to also be cons tan t  along rays,  the same  
procedure can be used t o  generate  viscous conical solutions.  Although 
v iscous  f low cannot be s t r i c t l y  conical, the assumption that the f low 
var iab les  a re  locally conical along r ays  is reasonable when t rea t ing  
high-Reynolds-number f lows.  The validity of the assumption of locally 
conical viscous f l o w s  has been demonstrated in [141. The 
marching-stepback procedure w a s  ut i l ized t o  generate  the conical 
so lu t ions  in the present  work. 
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5. The Flux %li t  Scheme Amlied to the Thin Layer Awroximation. 

The flux spl i t  method i s  a time marching method and thus the Eq. t o  be 
solved is  Eq. (2.8), The thin-layer approximation means t o  neglect the 
viscous terms in the streamwise and the spanwise direction and keep only 
the viscous terms in  the normal direction. Thus the Equation to be solved 
i s: 

A 
where 5 now is: 

The Split Flux method was developed t o  overcome the dif f iculty of 
stability. This goal could be achieved by combining two methods: The f i r s t  
i s  by using two steps factored scheme which was proved by Ying [281 t o  be 
unconditionally stable (differently from the three factored schemes), and 
the second i s  by splitt ing the Flux in f direction according t o  i t s  
eigenvalues. I t  was proved by Ying I281 that the stabil ity of the scheme 
depend on the eigenvalues of the matrix E': The splitt ing of E" i s  equivalent 
t o  adding a viscosity that stabilize the scheme. 

The two  steps implici t  factored scheme wi th  splitt ing o f  the E  ̂ flux 

and 5 direction can be wri t ten 
fo r  the thin layer approximation using the upwind approximation in the 
direction and central differencing in the 

- as follows: 
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where h = 0At. &, &tbJ &tf are centra1,backward and forwardlhree points 
difference operatoo; 2, 6, eJ M  ̂ are obtained from the local linearization 
of E F, G, and S. E 
according to its eigenvalue in the following manner: 

^+ 6 -  A 

is the f lux E which has been split into it and 

rs 

E =  

and 

2(y- 1 )A(' + x4'- + x5' 

2(y- 1 )A,% + XqfU + x2u- 

2(y-l)A,%f-+ xq'w + s'w- 
2f$ + $/2 [(U'f + (V'? + (W'f] + q'[(u-12 + cv-,' + 

E' = p/2y = 2(y-l)~l'~ + u'V + A&- 

' (w-l21 + C I I I  (5.5) 
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and Dv and De are the numerical dissipation terms which are given as 

combination of  second and fourth differences. The smothing terms have the 
following form: 

where 

(5.6) 

(5.7) 

A 

P i s  the nondimensional pressure and p ( 6  i s  the spectral radius of B. 

6. . Turbulence Models. 

5.1 The Eddv-Viscosity Model 

In this discussion we adopt the dimensional notation of Baldwin and 
Lomax [29]. The resulting coefficients can be nondimensionalized for use 
in Eq. (3.3) by normalizing them by their free-stream (laminar) values. 

For laminar flow computaitons the coefficient o f  molecular viscosity 
p = p2 i s  obtained from Sutherland's law and the coefficient of  thermal 

conductivity K i s  specified, assuming a constant Prandtl number, as 
K2/Cp = pL/Pr. For turbulent-f low computations the laminar flow 

coefficients are replaced by 

(6.1) 
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The turbulent viscosity coefficient pt i s  computed using the isotropic, 

two-layer, Cebeci-type, algebraic eddy-viscosity model reported by 
Baldwin and Lomax [29]. 

In the Baldwin-Lomax formulation pt is  given by 

( W i n n e r  8 Y 3Yc 

W o u t e r  8 Y > Yc 
I.Lt = ( 

(6.2) 

where y i s  the local distance measured normal t o  the body surface and yc 

is  the smallest value o f  y a t  which the values from the inner and outer 
region formulas are equal. Within the inner region 

where 

I 
-(y+/A+) 

1 = ky[l - e  (6.4) 

I d  i s  the magnitude o f  the local vorticity vector, and 

Y+ = W l $ y ) y  (6.3) 

In the outer region, for attached boundary layers the turbulent viscosity 
coefficient i s  given by 

In Eq. (6.6) K and Ccp are constants, Fkleb i s  the Klebanoff intermittency 
factor, and 
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h a k e  = Ymax FmaxJ (6.7) 

where Fmax is  the maximum value that the function F(y), defined as 

(6.8) 

takes in a local profile, and Ymax i s  the value o f  y a t  which Fmax occurs. 

The constants appearing in Eqs. (6.M6.8) were determined in  [291 by 
requiring the boundary-layer profiles computed wi l th the model t o  be in 
agreement w i th  those determined using the Cebeci [301 formulation. The 
values were determined t o  be 

Pr = 0.72, k = 0.4, 

Prt = 0.9, K = 0.01681, 

A+ = 26, Ccp = 1.6. 

(6.9) 

6.2 , Modified Addy Viscosity Model 

The major dif f iculty encountered in applying the Baldwin-Lomax 
turbulence model t o  bodies with crossflow separation is  that of properly 
evaluating the scale length ymax and in turn, of determining (pt) outer for 

boundary-layer profiles in the crossflow separation region. This di f f icul ty 
becomes apparent upon considering the behavior of the function 
F(y)[Eq.(6.8)] along two  rays, one located on the windward side a t  (0 = (0 

Fig. 6.1 Behavior of F(y) a t  large incidence, (a) 4 = 4 ,  (windward side), 

(b) 0 = +2 (leeward side). 
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and the other on the leeward side a t  4 = e2 . The functions are shown 

schematically in Figs. 6. l(a) and (b), respectively. On the windward side 
the attached boundary layer gives rise t o  a profile of F(y) which has a 
single, well-defined, peak, as shown in Fig. 6(a). Thus, the determination 

Of Fmax( 4 1 Ymax( 4 1 ) J  and Fwake ( 1 ) i s  straightforward. However, on the 

leeward-side ray [Fig. 6.1(b)l, in addition to  a local peak in F(y) in the 
attached boundary layer a t  y2 = a, the overlying vortex structure causes a 
larger peak in  F(y) a t  y2 = b. As originally implemented, the computer code 

searches outward along each ray t o  determine the maximum in F(y), and 
would, in this instance, select the peak in F(y2) occurring a t  y2 = b. The 

choice of  the peak a t  y2 = b results i n  a value of  Fwake( 42) and, in turn, a 

value of the outer layer eddy-viscosity coefficient (pt)o"ter which i s  
much too high. The resulting value is a t  least one order of  magnitude 
larger and can be as much as two orders of magnitude larger than the value 
O f  (Jlt)outer resulting from evaluating Fwake( 4 2) from the peak a t  y2 = a. 
Thus, in  general, the computed eddy-viscosity coefficient i n  the crossf low 
separation region behind the primary separation point w i l l  be too high. 
This w i l l  cause the details of the computed flow t o  be distorted or washed 
out. In particular, the primary vortices w i l l  be smaller than those 
observed experimentally and the primary separation point w i l l  be located 
closer t o  the leeward symmetry plane. In addition, the secondary 
separation and secondary vortices w i l l  not appear in the computed flow. 

To eliminate these diff iculties we have modified out implementation 
o f  the turbulence model. At each axial station the code searches radially 
along successive rays, sweeping from the windward t o  the leeward plane 
o f  symmetry. Along each ray the code sweeps outward t o  find the f i rs t  
peak in F(y), and cuts o f f  the search when the peak i s  reached. To prevent 
the selection of  extraneous peaks which might be caused by a nonsmooth 
behavior in F(y), a peak is  considered t o  have been found when the value of 
F(y) drops t o  90% o f  the local  maximum value. Choice of Fma, in this 

manner w i l l  exclude the second, spurious, maximum [see Fig. 6.1 (b)]. 

For most rays in the crossflow separation region the two peaks in F(y) 
are spaced far enough apart that the logic described above w i l l  select the 
f i r s t  peak. However, this i s  not true for rays in  the vicinity of  the primary 
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separation point (and t o  a lesser extent for rays in the immediate vicinity 
of the secondary separation point). Along these rays the vortex feeding 
sheets l i e  close t o  the outer edge of the attached boundary layers: the 
peaks in F(y) merge. Under these conditions the code would choose a value 
of Ymax near the top edge of the feeding sheet. Consequently, a further 

test i s  applied. On each ray (except the ray on the windward plane of  
symmetry) a cutoff distance i s  specified in  terms o f  Ymax from the 

previous ray, i.e., ycutoff(@) = CYmax ( 4 - & ), where c i s  a constant 

chosen equal t o  1.5. If no peak in F(y) is found along a ray for yiycutoff the 

values of Fmax and Ymax are taken as those found on the previous ray. In 

this manner a physically reasonable value of the eddy-viscosity 
coeff icient w i l l  be chosen for those rays close t o  the crossflow 
separation points. 

It i s  readily apparent that conditions withing the boundary layers 
which leave the body a t  the primary separation points are related t o  the 
conditions within the boundary layers on the windward side of  the body. 
Further, it is physically reasonable t o  expect that the boundary-layer 
quantities vary smoothly circumferentially around the body. Thus, 
specltying the cutoff distance in terms of the values on the previous ray, 
and taking the values of  Ymax and F,,, from those of the adjacent ray, 
allows the model to  be applicable in a rat ional manner over a wide range 
of local f low conditions, and in  particular, fo r  varying local Reynolds 
nurn bers. 

The various coefficients appearing in the Baldwin-Lomax turbulence 
model were varied t o  assess their effect on the computed boundary-layer 
profiles. The best match with experimental measurements was obtained 
with the coefficients set at the values suggested in Eq. (6.9). 
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6.3 One Eauation Model. 

This model has one turbulence source function Hk: 

where 

s2 =I (uy'vxf + 2[ux * +Yy * + (v/r f ]  - 2D2/3 

D = ux + v + v/r Y 
h'% R t H (R t /Ro) 

R for R < 0.75 

R - (R-0.75)2 for 0.75 i R 1 1.25 

1 for 1.25< R 

H(R) = 

a * 0 . 2 ,  C = 3.93, f?o 110, Prk - 2.5 

(6.10) 

(6.1 1 )  

Here k i s  the turbulence kinetic energy, k = p v / 2 @ ,  and L i s  the 

length scale as specified by Glushko [231: 

Y/6 
L/6 = (y/6+0.37/2.61 for 0.23 I y /b  I 0.57 

(1.48-y/6)/2.52 for 0.57 I y/6 I 1.48 

for 0 I y/b  < 0.23 

(6.12) 
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The total kinetic energy diffusivity pk is  given by: 

The to ta l  viscosity p and the thermal energy diffusivity are 

(6.13) 

(6.14) 
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7. The Test Case for  the Stabilitv Criterion. 

The test case that was chosen i s  the Jeffery Hammel f low in a divergent 
channel since for that case we have an analytic solution which provides 
two different patterns o f  f low for the same boundary conditions. 

7.1 The flow f ield 

/ 
/ 

1 

L- / //,/// ,// ,/ /,/ / /  / 

Fig. 7.1 - Configuration of  the problem. 

Statement of the DrObkm. 

We study a divergent channel, infinite in the z direction (Fig. 7.1) in 
cylindrical coordildnates, r, 8, z. r=O is the (virtual) intersection of the 
two  walls. A Newtonian, viscous incompressible f luid flows in the channel 
as a result of  inertia forces or an external pressure gradient which i s  a 
function of  r and 8. We assume that the f low i s  isothermal and has only a 
radial component Vr. Thus 

v, = v, = 0 everywhere in the flow (7.1) 

where V, and Vg are the velocity components in the 8 and z directions 

respectively. 

The boundary conditions are the no-slip conditions: 
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vr = 0 a t  the walls (7.2) 

where V r  i s  the velocity component i n  the r direction. 

We consider the mass flow ra te  o r  the pressure gradient a t  the walls 

By defining nondimensional velocity and time as: 
as given (compatibility conditon). 

we obtain a Re number: 

Re = U,,,r/u 

(7.3) 

(7.4) 

(7.5) 

From the incompressible Navier-Stokes equation we get the t ime 
dependent equation for the flow f ie ld :  

Re (au/at) = $u/as2) + 4~ + ~ e l i ’  + K (7.6) 

where 

(7.7) 
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The pressure equation i s  

p = Po(8,t) + 2p ReU + KRe (py2/2r2) 

and the pressure gradient along the walls (ap/dr),, is: 

(ap/ar), = (-K Re) pu/r 

The mass flow ra te  M, for a unit depth of the channel is: 

J 

(7.8) 

(7.9) 

(7.10) 

where p i s  the dynamic viscosity. 

7.2 Solution for the Steady State Flow Field. 

The solution for th is case was presented by Shapira, Degani and Weiss 
[251 as follows: 

(7.12) 
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and 

a - -(3/Re + 1/21 

d = 1/(2Re) d3[12 - Re(4k + Re + 41) (7.13) 

7.2.1 The steady state solution for -(Re+6)/3 ( k ( - Re14 + 3/Re - 1 is: 

The solution in the above range i s  given by: 

(7.14) 

where 

and Sn(B/A,, k,) i s  the Jacobian elliptic function of the f i rst  kind, and 

For the channel angle a and the corresponding mass flow r a t e  we can 
get a number of  solutions which fu l f i l l  one of the following rules: 



where n = lJ2,  ..., and a < n . 

and 

(7.16) 

(7.17) 

where F(e1, k l )  i s  the incomplete elliptic function of  the first kind. The 
mass f low ra te  passing through this element is: 

(7.18) 

where E(f1, k l )  is  the incomplete ell iptic function of the second kind. 

The angle of the element 0 > U > pz is: 

(7.19) 

where F(k,) i s  the complete el l ipt ic function of the f i r s t  kind. The mass 
f low ra te  passing through this element is: 

(7.20) 
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where  E(k$ i s  the complete  elliptic function of the second kind, and 

7.2.2 The steady state solut ion for k > - Re/4 + 3/Re + 1 

The  solut ion in the above range is given by : 

where  

and 

~ 2 2  = 3 /(2 Re L) 

k22 = (L + 3/Re + 3/21 / (2 L) (7.24) 

and Cn(8/A2,k2) in the Jacobian elliptic function of  the second kind 



- 29 - 

The half of the channel angle is: 

The mass f low rate is: 

L2 = dL(L-4L k2 + 2L + 1) / [L(L+l)] 

and 

(7.26) 

(7.27) 

(7.28) 

(7.29) 

7.3 The stabil ity eauation. 

Next we examine the linear stabl i l i ty  of the f low patterns subject t o  
perturbations that vary as l/r and are functions of 9 and t. 

Let us define a nondimensional solution: 

which was obtained by multiplying the solutions of the previous section by 
r, where Uo is the base flow that is analyzed for stability, and W i s  the 
perturbat ion. 

Substituting Eq. (7.30) in Eq. (7.61, subtracting eq. (7.6) (writ ten for 
Uo) and neglecting the nonlinear terms yields the following linear equation 
for small disturbances: 

aW/at = (W" + 4W) /Re + 2 k W  (7.3 1 )  
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Le t  us define a disturbance of the type: 

From Eq. (6.3) we obtain: 

(4/Re + 2Uo)W + W"/Re - W = 0 

With the following boundary conditions: 

W = 0 a t  the walls 

(7.32) 

(7.33) 

(7.34) 

Eq. (7.33) and the boundary condltlons (7.34) are a system of 
eigenvalues and eigenfunctions W(8). 

The base flow pattern is stable if: 

p <  0. (7.35) 

fo r  a l l  the eigenvalues of Eq. (6.33) with the boundary conditions (7.34) 

S o w o n  of the stability equaiion bv a f ini te di f fere heme, nce sc . .  . .  

Let us define the following approximation: 

(7.36) 

where h i s  the difference between t w o  discrete points and Wn i s  the value 
of W a t  8 = n*h. 
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Applying E q .  (7.36) t o  E q .  (7.33) yields:  

where 

and 

W o = W N = O  

Ut i l i z ing  Eq. (7.37) enable us t o  turn the eigenvalue problem into: 

det (A-  pi) = 0 

where I i s  the unit matrix. 

and 

A =  

Qi I / @  Re 

l h 2  Re 42 

. . . . . . . . . .  

0 

n- 9 l/t? R e  

Vt? Re QN 

(7.37) 

(7.38) 

(7.39) 

(7.40) 

(7.41 1 
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8. Results and Discussion 

6.1 The Stability Analysis 

8.1.1 Decreasing pressure in the downstream direction. 

In the case where the pressure decrease i s  in  the flow direction two 
counteracting mechanisms exist: The f i rs t  i s  the pressure gradient that 
tr ies t o  accelerate the f low. The second is  the deceleration and 
accompanying pressure rise due t o  the radial spreading of the flow. 

In Fig. 1 contours of constantu are plotted in  the plane of M (the 
mass f low rate) vs. (ap/drIw (the pressure gradient on the walls). As a 
result of  the two opposing mechanisms mentioned above there i s  a cr i t ical  
value of  the mass f low ra te  Mc for eachcx that behaves in the following 
manner: For M < Mc an increase in the mass flow rate, w i l l  cause the 

downstream pressure t o  decrease. When M > Mc an increase in  the mass 
f low rate, w i l l  cause the downstream t o  increase. 

Another result that can be deduced from Fig. 1 is: For any pressure 
gradient on the walls (ap/dr),, we can find two values o f  mass f low 

rate M. One i s  greater than Mc and one i s  smaller. 

Curves of Mc are depicted in Fig. 1 and Fig. 4. The accompanying K and 

(dpldrf, are given in Fig. 6 and Fig. 3. 

The stabil ity method, described in Paragraph 7, leads us t o  the 
following conclusion: When M > Mc the flow i s  unstable, and when M < Mc 

the f low is  stable, but when M > M,, the mechanism that l imitss and 

stabilizes the flow, i s  missing. 

We also see from Fig. 1 that for any a the pressure gradient and the 
mass f l ow  r a t e  M are bounded. In Fig. 3, we see the line that separates the 
zone of t w o  solutions and the zone where no solution of the type Vu = 0 

exists. Fig. 2 depicts graphs o f  pressure gradients vs. a for constant Re. 
We see that each curve ascends t o  the contour depicted in Fig. 3 becomes 
tangent t o  it, and then returns back into the two solutions range. From the 
stabil ity analysis we found that the solution is unstable in the range o f  
ascent and stable afterwards. 
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In Fig. 4, zones of existence of the solutions and their stabi l i ty are 
depicted. For any a there i s  a stable zone of  low mass flow rate, an 
unstable zone of  higher mass f low rate, and a zone where no solution of  
the type V = 0 exists. 

In Fig. 5 contours o f  constant a are ploted for a between 5' and 60". 
From Fig. 5 we see that the contours of constant a are slightly convex. 
Thus for any given a it i s  possible to  find two constants which 
approximate the relation between K and M. In order to approximate the 
velocity profile, using these three constants, the Re number is  needed. In 
Fig. 6 contours of constant Re in the avs. K plane are given. From Fig. 6 and 
Eq. (7.14) or Eq. (7.22) the pressure gradient and the velocity profi le can be 
calculated. 

In Fig. 6 the stabil ity line in  the K vs. a plane is  depicted, so that 
below this line the solution i s  unstable, and stable above it. 

8.1.2 Pressure gradient in the upstream direction. 

In the case where the pressure decreases in  the upstream direction 
three patterns of  f low can be defined (as expresses in Eq. (7.16)): The first 
i s  a syummetric pattern of  f low without inverse flow near the walls 
(positive shear stress on both walls). The second i s  an asymmetric pattern 
of  flow with an inverse flow near one wall  (positive shear stress on one 
wal l  and negative shear stress on the other). The third i s  a symmetric 
f low pattern wi th an inverse flow near both walls (negative shear stress 
on the two walls). 

I t  i s  obvious that for any pattern we can find several zones of  
negative and positive velocity that obey the rules appearing in Eq. (7.16). 
As mentioned in Paragraph 7 when K = KpJ the range of inverse f low i s  
reduced and the three patterns of flow become the same. 

In Fig. 7 curves of constant a are plotted in the plane of M (mass 
f low rate) vs. (dp/dr), (the pressure gradlent on the walls), for the case 
where only one range of  positive velocity exists. In this case, fo r  anya we 
have three branches wi th  a common point at  K = Kp. The l e f t  branch i s  for 
the case without inverse flow, the centre branch for inverse flow near one 
wall  and the right branch describes the case wi th  inverse flow near both 
walls. thme le f t  branches are the continuation of the curves obtained when 
the pressure decreases in the downstream direction. 
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From Fig. 7 we conclude that the contours are qualitatively similar 
fo r  the fu l l  range of  a. Fig. 8 shows curves of a = 200 in the plane o f  
(dp/dr), vs. M, for single double and tr iple positive veleocity zones. 

From Fig. 7 and Fig. 8 we also conclude that in the case of  the 
velocity profile without an inverse flow ( le f t  branches in Fig. 7) the 
solution i s  unique. In patterns of f lows where zones o f  negative velocity 
appear, for every pressure gradient we have a t  least two solutions for the 
mass flow rate. Fig. 9 describes the zones where one solution and multiple 
solutions exist, in the plane of a vs. (dp/dr),. 

In Fig. 7, we see that for pressure decreasing in  the upstream 
direction we can have higher mass flow ra te  than we had in  the case of 
pressure decreasing in the downstream direction. From Fig. 7 and Fig. 8 we 
understand that it i s  possible t o  define the ranges of mass f low ra te  and 
the range of pressure gradient for  each f low pattern. Beyond these range 
this pattern cannot exist  (similar t o  Fig. 9). 

From the stabil ity analysis we found that a l l  the patterns of  f low 
where the pressure gradient i s  in the upstream direction are unstable. We 
found that there are cases where the pressure gradient i s  in the upstream 
direction and increasing the pressure gradient causes an increse in the 
mass f low rate. Analysis based on physical reasoning could lead us to  the 
conclusion that these patterns are stable. The stabi l i ty method, described 
in Paragraph 7, shows however that the f low i s  unstable. This instabil ity 
can be explained by the combinations of  unstable elements. The instabil ity 
expresses i t se l f  in  the fact that, in such elements a decrease in  the mass 
flow rate causes an increase in the pressure gradient. 



8.2 Conical Solution 

The Schiff-Steger PNS code [aa] has been modified t o  allow computation of 
conical f lowf ields around cones a t  high incidence. The improved algorithm 
of Degani and Schiff [aa] has been incorporated w i th  the PNS code. This 
algorithm adds the cross derivative and circumferential viscous terms t o  
the original PNS code and modifies the algebraic eddy viscosity turbulence 
model t o  take into account regions of so cal l  cross-flow separation. 
Assuming the f lowfield i s  conical (but not necssarily symmetric) a march- 
ing stepback procedure i s  used: the solution i s  marched one step down- 
stream using improved PNS code and the flow variables are then scaled t o  
place the solution back t o  the original station. The process i s  repeated 
unti l  no change in  the flow variables i s  observed w i th  further marching. 
The f low variables are then constant along rays o f  the flowfield. The 
experiments obtained by Bannik and Nebbeling [20] were chosen as a test 
case. In this experiments a cone o f  7.5* half angle a t  Mach number 2.94 and 
Reynolds number 1.372*107 was tested up 34' angle of  attack. At High 
angle o f  attack nonconical asymmetric leeward side vortex patterns were 
observed. In the f i r s t  set of computations, using an ear l ier  obtained 
solution of the above cone for angle o f  attack of  22.6' and a t  station x=0.5 
as a starting solution, the angle of attack was gradually increases up to 
34'. During this procedure the grid was carfully adjusted t o  capture the 
bow shock and t o  keep y+ near the cone surface smaller then 5. A Stable, 
converged symmetric solution was obtained. It was the f i r s t  time 
that a numerical solution was obtained for an angle-of-attack-to- 
half-cone-angle rat io as high as this case. 

Since the numerical code i s  perfectly symmetric, in the second set of  
computations a random perturbation o f  about 1 %  of the local f lowfield 
variables was introduced a t  each point of the f lowfield and the marching 
stepback procedure was continued till a new converged solution was 
obtained. It was found that in a l l  cases tested the solution converged back 
t o  the original symmetric solution. By increasing the in i t ia l  perturbation 
above 2% - 5% of the local f lowfield variables the numerical solution 
became unstable and did not converge. 

In the third set of numerical experiments the possible effect of  surface 
roughness or non perfect body shape was investigated. The cross section 
o f  the cone has been changed randomly up t o  1 %  of the original diameter 
and kept so unti l  a new converged solution was obtained using the 
marching stepback procedure. I t  was found that in a l l  cases investigated 
the changes in the converged soltuions were of the order o f  the surface 
perturbat ion. 
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8.3 Marchina Solution 

8.3.1 Algebraic Turbulence Model 

As mentioned earlier, Bannik and Nebbeling I201 found in  their experiments 
that a t  high angle of attack a nonconical asymmetric vortex pattern is  
obtained. Therefore, for these cases the ful l  marching technique should be 
used. Moreover, since the transition from symmetric t o  asymmetric 
pattern probably occurs near the t ip of the cone, a new statring solution 
should be generated instead of the one a t  x=.5 (which was used for the 
conical solutions). A new conical solution near t ip  o f  the cone a t  x=0.05 
was generated for angle of attack of 22.6'. Figs. 10-1 1 show results 
wi th  the old algebraic turbulence model and Figs. 12-13 show results 
using the modified algebraic model. From the velocity vector plots one 
can see that the use of the modified model resulted w i th  strong primery 
symetric vortices and secondary ones. The results of  the old model show 
just one weak pair  of primery vortices. Using these results another 
conical solution for angle of attack of 3 4  at  ~30 .05  was generated. Figs. 
14-15 show the results for  this case using the old turbulence model. A t  
this point the modified algebraic model was introduced but the solution 
became unstable. The only solution which showed some improvement in  
comparison t o  the solution obtained w i th  the old turbulence model and 
was s t i l l  stable obtained by relaxing the two models together. A solution 
which obtained using a ra t io  of 90% of the value of  eddy viscosity from 
the improved model and 10% of from the old model is  shown in  Figs. 16- 17. 
The results are not impressive and one has t o  remember that although 

the ra t i o  i s  9:l the eddy viscosity is  probably s t i l l  too high. 

8.3.2 One Equation Turbulence Model 

For f lowf ie ld where the mean flow changes so rapidly that the turbulence 
cannot remain in equilibrium with mean motion, an algebraic model might 
not be sufficient. In cases where the region of separation i s  relatively 
small compare t o  the upstream boundary layer thickness a one equation 
turbulence model can be used (see paragraph 6.3). Although the use o f  this 
model improved the simulation of separated flows in  some cases (see for 
example Ref. [31]), it did not improve the unstable behaviour of  our 34' 
angle o f  attack case. 

8.8.3 Asymmetric solution for a =34' 

Using the combined old and modified turbulence models, as mentioned 



- 37 - 

above, an asymmetric solution was obtained by perturbing the in i t ia l  
flowfield. Starting wi th  a conical (symmetric) solution near the t ip of 
the body, the PNS code was used t o  march down the body a t  34' angle of 
attack. During the f i r s t  ten steps a small perturbation of about 1 %  of the 
local value o f  the symmetric solution was added in random. Figure 18 
shows the density contours at different stations down the body and Figure 
19 shows the velocity vectors for the same stations. 
The results shows large asymmetry of  the solution (And i t  i s  much larger 
than the initial perturbation) and the primery vortices are not straight or 
parallel t o  the leeward plane o f  symmetry. These results are qualitatively 
similar to  Bannik and Nebbeling experiments [20]. 
The solution for k= 144 points (circumferentially) was unstable for a l l  
turbu 1 ence mode 1 s. 

8.4 Navier-Stokes Simulation 

Computation were carried out using the NAS CRAY-2 computer, f o r  an 
ogive-cylinder body o f  revolution, having a 3.5 caliber nose and a 7 caliber 
cylindrical afterbody, a t  a freestream Mach number of  0.2, a Reynolds 
number of  200,000 based on the body diameter, and an angle of attack of  
40'. This body geometry and test conditions correspond t o  those o f  an 
experimental study carried out by Lamont [6,7] in the NASA Ames 12-foot 
Pressure Wind Tunnel, in which surface pressure measurements were 
obtained. Recent analysis of the data, carried out by Hal l  1321, showed 
that for this laminar f low condition a wide variety of  side force values 
could be obtained, depending on the orientation which the (nominally 
axisymmetric) body had in the wind tunnel. 

The computational grid (which i s  shown in Figure 20), consisted of  59 
points in the axial direction, 120 points circumscribing the body in the 
circumferential direction, and 50 radial points. In the computations the 
f l ow  was assumed t o  be laminar; that is, no turbulence model was 
employed, and the viscosity coefficients were obtained using Sutherland's 
viscosity law and the Stokes hypothesis. 

Three cases have been computed, a l l  a t  a= 400. In the f i rst ,  the flow was 
set t o  free-stream conditions throughout the computational mesh, and the 
solution advanced in time. After an init ial transient, the computed f low 
was found t o  evolve t o  a time-periodic, symmetric state. The second case 
was identical t o  the first,execpt that a very small j e t  was intruduced into 
the computation on one side o f  the body t o  break the symmetry of  the 
solution. The j e t  was located axially about half length of  the ogive nose, 
and was located circumferentially 90' from the angle of attack plane. In 
the third case a small geometrical disturbance (about 2% of  the body 
diameter) was added t o  the body a t  the same location as the j e t .  In the 
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second case the solution again evolved t o  a time periodic state, but the 
solution was asymmetric. 
Figs. 21-23 are sample results for the symmetric computation of the 
second case. Figure 2 1 presents density contours in crossf low planes 
normal t o  axis of the body. The position of the vortex cores are indicated 
by the regions of low density, shown by the closed contours. Although the 
computational region extends circumferentially completely around the 
body, in this case the flow was found t o  be symmetric about the angle of 
attack plane, and thus contours for only one half o f  the f lowfield are 
shown. One main vortex (pair) is  visible about the leeward side. In 
addition, a smaller vortices are seen in  the figure, originating near the 
flanks of  the body on the leeward side. These small vortices are seen t o  
move upwards from the body surface w i th  increasing time, and t o  merge 
wi th  the main vortex pair. As this occurs, Additional small vortices are 
observed to  form a t  the flanks (below the upward moving vortices). This 
cycle continues, and has a definite periodic frequency.. 

Time histories of normal force and pitching-moment coefficients 
(moments taken about the nose) are shown in Figs. 22 and 23, respectively. 
These show part of the init ial  transient, and the eventual evolution of the 
solution t o  a periodic stat. The period of the force and moment history 
corresponds t o  the time between the generation of  successive small 
vortices a t  the flanks of the body. The occurence o f  the time periodic 
solution i s  extrimely intriguing. At present we believe that this 
phenomenon i s  akin t o  the shear-layer instabil ity observed by Payne e t  al. 
[331 and Blackwelder and Gad-el-Hak [341 in experimental investigations 
of the flow about delta wings a t  law Reynolds numbers. As such, it may 
indicate that Navier-Stokes com putat i ons, using reasonable grid 
resolution, may permit direct computations of f low instabil it ies and 
init ial  transition t o  turbulence fo r  f low about complete configutrations. 
Additional numerical investigation of this phenomena i s  underway. 

The corresponding results for the asymmetric cases are shown in Figs. 
24-30. Figure 24 shows color contours of  density in crossflow planes 
normal t o  the axis of  the body. The position of the vortex cores are 
indicated by the regions of low density (denoted by reds and yellows). 
Dark blue contours denote densities approaching free-stream density. A t  
least four major vortices are visible, which shed from the body and extend 
into the leeward-side flow. The f i rs t  leaves the near side of  the body a t  
the ogive -cylinder junction, as indicated by the change in the vortex core 
density from red t o  green to blue in this region. A second vortex leaves 
the far side of  the body mid-way down the cylinder, while a third leaves 
the near side o f  the body a t  the rear of the cylinder. A fourth major vortex 
exists on the f a r  side of the cylinder, but it cannot be seen in  this figure, 



- 3 9  - 

since it l ies behind the near-side vortex. In addition t o  the four main 
vortices, small-scale vortices, similar t o  those observed in the symmetric 
case, are visible. 

Figure 25 shows particle traces fo r  the same flowfield, and confirms the 
presence of  multiple vortices. The particles emanating from the near side 
of  the body are colored blue, while those from the far side are red. The 
vortices are seen t o  extend downstream over the entire body from their 
point o f  origin. 

Time histories of  the normal force, pitching moment, and yawing moment 
coefficients (moments taken about the nose) are shown in Figs. 26-28 
respectively. As was presented for the symmetric case, these figures 
show part of  the initial transient, and the evolution t o  a periodic state. 
The mean values of the normal force and pitching moment coefficients are 
close t o  those obtained for the symmetric case. However, yawing moment 
coefficient i s  seen t o  undergo a periodic variation about a non zero value, 
a t  the same frequency of  the variation in the pitching moment coefficient. 
In contrast, in the symmetric case the yawing moment coefficient was 
zero a t  a l l  times, since the solution, although unsteady, was always 
symmetric. Comparison of side forces acting on the body for the 
asymmetric case, wi th  the net side forces caused by the je t  alone, showed 
that the la t te r  are only 6% of to ta l  side forces. This indicates that the j e t  
merely breaks the symmetry of  the solution. 

Figs. 29-30 show density contours in crossflow planes normal to the axis 
of  the body f o r  the third case, where a small geometrical disturbance had 
added t o  the body. Although the solution has not been converged yet t o  a 
periodic state as in the above case, and these results are part of  the 
init ial  transient, it is  clear that the solution has been becoming 
asymmetric. We believe that this asymmetric f lowfield w i l l  be converged 
t o  a non-symmetric periodic state similar t o  the one obtained when the 
symmetry of the solution was broken by a j e t .  
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Fig. 1 - Contours o f  constant a, in the plane o f  M (the mass f low ra te )  
vs. (dp/dr)w (the pressure gradient on the walls), where the 

pressure decreases, in the downstream direction. Mc Curve - 
stabil ity line, and zones o f  stabil ity and instability. 
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Fig. 2 - Contours of constant Re, in the plane of  (dp/dr), (the pressure 

gradient on the walls) vs. a where the pressure decreases, in  the 
downstream direction. 
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Fig. 4 -  Zones o f  existence o f  solutions and their stability, where the 
pressure decreases, in  the downstream direction and the curve 
of M,. 
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(dp/dr),,,,, the pressure gradient on the walls 

Contours of constant a, in  the plane of M (mass flow rate) vs. 
(bpldr), (the pressure gradient on the walls), for the case 

where only one range of positive velocity exists, and the 
pressure increases, i n  the downstream direction. 
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Fig. 9 - The zones where on solution and multiple solutions exist, in 
the plane of @p/ar)w (the pressure gradient on the walls) vs. a, 

where the pressure increases, in the downstream direction. 
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