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1. Introduction

One of the current problems of interest in aerodynamics is understanding
and controlling the development of the asymmetric flow which occurs
when a simple body of revolution is placed at large angle of attack in
subsonic flow. This phenomenon is of basic scientific interest, since it
represents a bifurcation from a stable symmetric flow to an unstable
symmetric (and stable asymmetric) flow as the angle of attack is
increased. It is also of practical importance in the design of aircraft and
missiles, since the side forces and yawing moments generated by the
asymmetrical flow are surprisingly large, and can, in some instances, be
larger than the normal force and pitching moment acting on the vehicle.
Designers must take account of these large, nonlinear forces in sizing
control surfaces and developing control systems. Thus, control of the

onset of vortex asymmetry can result in improved performance and flight
safety. '

The phenomenon of vortex asymmetry was first observed experimentally in
wind-tunnel tests conducted in the 1950's, and was then termed
"phantom-yaw". Early flow-visualization experiments (Ref. 1) showed that
at low angles of attack flow separates from the sides of a circular
cross-section body and forms a symmetric pair of vortices on the leeward
side of the body. When the angle of attack is increased beyond a critical
values, the symmetric vortex pattern changes into a steady asymmetric
pattern, and large side forces result. in the intervening thirty years a
great number of experimental and analytical investigations have been
carried out to document and understand vortex behavior (see, for example,
Refs. 2-5). It has been found that the onset of vortex asymmetry is
strongly influenced by several factors, including Reynolds number and the
state of the boundary layer at the crossflow separation line, model
smoothness, and tunnel turbulence level. Recent experimental results (Ref.
6,7), carried out in a low-turbulence wind tunnel, obtained detailed
surface-pressure distributions over a range of Reynolds numbers ranging
from fully laminar, through transitional, to "fully” turbulent. These results
are particularly useful, since they permit delineation of the onset of
vortex asymmetry from the boundary-layer transition phenomenon. in

addition, they provide a detailed data base for verification of analytical
methods.

Over the past three decades, many theoretical and computational methods
have been developed and applied in attempting to predict the
three-dimensional separated asymmetrical vortex flows. These have
included methods based on the impulsive flow analogy, in which the steady
three-dimensional flow over a body can be related to the evolution with
time of the flow over a cylinder in crossflow (Ref. 8-10, for example).
Also, vortex methods based on conical flow assumptions (Ref. 11) have
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been employed. More recently, three-dimensional inviscid vortex-lattice
methods (Ref. 12), and interactive inviscid/boundary layer method (Ref.
13)

have been utilized. However, the strong interaction between the viscous
crossflow separation and the leeward vortex structure has precluded
obtaining definitive computational results from these approximate
methods. As a result, computational methods based on the Navier-Stokes
equations appear to be required.

Recently [14], a numerical method based on the thin-layer form of the
parabolized Navier-Stokes equations [15] was used to compute supersonic
turbulent flow field surrounding ogive-cylinder and ogive-cylinder-
boattail bodies at low and moderate angles of attack ( &« < 10°). Extensive
comparisons indicated that the computed results were generally in good
agreement with experimental measurements [16-18]. However,
discrepancies between the computed and experimental results were seen
in the regions of experimentally observed crossflow separation. The
authors of [14] suggested as possible sources of these discrepancies
between the computed and experimental results the lack of
circumferential viscous terms within the thin-layer viscous model, and,
more likely, inadequacies of the algebraic eddy-viscosity model to
properly treat the regions of separated flow. (Another possible source of
the discrepancies may have been the marginal computational resolution of
the leeward-side vortex structures).

Degani and Schiff [19] improved the PNS code by adding the cross
derivative and circumferential viscous terms to the original PNS code and
modifies the algebraic eddy viscosity turbulence model to take into
account regions of so called cross-flow separations. The above-mentioned
sources of discrepancy were investigated. [t was found that, given a
computational grid which provides adequate spatial resolution of the
leeward-sside vortices, a rational modification of the eddy-viscosity
turbulence model that is consistent with the physics of the flows extends
the applicability of the method to flows having large regions of crossflow
separation. The turbulence model, once modified, was used without further
changes to compute the flows around an ogive-cylinder body and several
cones at various angles of attack. The computed results were in uniformly
good agreement with experimental measurements throughout the flow
field, for all cases considered. (& < 22.6°).

As the first part of our investigation we assumed that the flow field is
conical (but not necessarily symmetric). The validity of the assumption of
locally conical viscous flow has been demonstrated in Ref. [14].

&
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As a test case for the computations the experiments obtained by Bannik
and Nebbeling [20] were chosen. In these experiments a cone of 7.5° half
angle at Mach number 2.94 and Reynolds number 1.372%107 was tested up
to 34° angle of attack. At high angle of attack nonconical asymmetric
leeward side vortex patterns were observed. In the computation, using an
earlier obtained solution of the above cone for angle of attack of 22.6° and
at station x=0.5 as a starting solution, the angle of attack was gradually
increased up to 34°% During this procedure the grid was carefuily adjusted
to capture the bow shock and to keep y+ near the cone surface smaller
than 5. A stable, converged symmetric solution was obtained.

Since the numerical code converged to a symmetric solution which is not
the physical one, the stability was tested by a random perturbation at each
point. The possible effect of surface roughness or non perfect body shape
was investigated too. In all the cases that were investigated the changes
in the converged solutions were of the order of the surface perturbation.

At this point of the investigation it was concluded that although the
assumption of conical viscous flows can be very useful for certain cases,
it can not be used for the present case and the full marching technigue
should be used (although Peake et al. {21] concluded in their paper that
conical assymetric vortex pattern is possible). Thus at the second part of
the investigation an attempt to obtain a marching (in space) solution with

the PNS method using the conical solution as an initial data was made, for
the same cases.

Since the transition from symmetric to asymmetric pattern probably
occurs near the tip of the cone the marching should be started very much
near the tip and a new starting solution should be used instead of the one
at x = .5 (for conical solutions as described above the location of the
computed cross section does not matter), and therefore a new conical

solution near the tip of the cone at x=0.05 is generated for angle of attack
of 22.6°

The solution that was obtained using the PNS method were very much alike
the solution we got with the assumption of a conical flow field. Thus we
test the stability of the solution to a random perturbation and ther
possible effect of the surface roughness as we did with the previous
solution and again we got a simiiar behavior.

All these solutions were done using three different turbulent models. The
first one is the simple algebraic eddy viscosity model, the second is a




modified algebraic eddy viscosity model and the third model was the one
equation model (or kinetic energy equation model) which uses an additional
partial differential equation to calculate the eddy viscosity coefficients.
The model which is used in the present work was formulated by Rubesin
[22] for compressible flows, based on the Glushko (23] model for
imcompressible flat plate boundary-layer flows.

For « ¢ 20.6° it was found that the use of the improved eddy viscosity
model resulted with strong primery symmetric vortices, secondary
vortices and simple addy viscosity reattachment between them. For the
case of & = 34° the modified eddy viscosity model was used with the PNS
code but the solution became unstable. The only solution which shows
some improvement and was still stable obtained by relaxing the two
models together. The results were not impressive since the eddy viscosity
was probably an order of magnitude larger than it should be. The results
using the one equation model didn't show any improvement as weil.

At this point of the investigation it was concluded that although the PNS
method code could be very useful for certain cases, it can not be used for
the present case, of a iarge angle of attack. The natural step after the use
of PNS code would be the solution of the full Navier Stokes Equations.
Since the Navier Stokes Equations are parbolic in time the most common
method to obtain a steady solution is by marching in time untill
convergence reached. To overcome the stability probiem of the PNS
solution we had to choose a method that does not suffer from this
difficulty. The method of flux splitting and upwind spatial differencing for
the convection terms in the streamwise direction has the advantage of
having a natural numerical dissipation and better stability properties and
therefore this method (24) was adopted.

Using the flux split method we have generated solutions for two test
cases: The first was the case of the cone that was tested earlier with the
PNS (but for 1aminar flow). The second test case for the computation was
one of the experiments obtained by lemont [7] In the experiments an

ogive-cylinder body of 3.5D nose and 7D afterbody, Re = 200,000 based on
body diameter, and & = 40% was chosen. We assumed that the solution is
laminar. The solution was made in two steps. As a first step we used a
grid of 59x50x60 free steam as initial condition and as a second step we

used a grid of 59x50x 120, where by linear interpolation we used the first
step as an initial condition.

The second step was done in three paths. The first one was a time
marching solution without any disturbance, the second was a solution with
a perturbation at the nose (small jet perpendicular to the surface) at an
angle of 90° to the plane of symmetry in the cross section. The third one




was a solution where small geometrical disturbance (2% of the diameter)
was placed instead of the jet and at the same location.

During the investigation we had to give an answer for two questions. The
first is, does the solution that we have generated, is the physical one or
just a methastable solution that will not actually appear. The second
guestion is, when we generate a solution using a method of time marching,
do we reach the seady state solution 7

Thus a criterion to determine if the flow pattern will actually appear or
will it be a steady state solution, is needed. We try to develop this
criterion by using stability analysis. This is based on the assumption that
solutions which are unstable to small disturbances can not be a steady

state solution, and metastable solutions appear only for certain initial
conditions.

Since the stability analysis is quite complicated and consumes a lot of
computing time for the three dimension, compressible flow, we needed a
simple test case where we have several solutions for the same boundary
conditions. The case that was chosen was Jeffery Hammel flow in a
diverging channel with large divergence angle [25]. (The case of large
divergence angle, has not been examined for stability yet). Thus the goal of
this part of the investigation is to develop stability criteria for an
arbitrary o« (where « is the angle between the walls).

In the stability analysis we limit ourselves to the analysis of linear
stability of small disturbances such that the nonlinear terms in the
disturbance equation are neglected. We study the disturbances that fulfill
the same similarity condition as the base flow, meaning that the
tangential distributions of velocity of both the distubance and the base
flow, are independent of the streamwise direction. This assumption is
equivalent to the case of wave-like disturbance of infinite wave-length in
the streamwise direction. It was found that the only stable flow pattern is
the one that an increase of the mass flow rate causes the downstream
pressure to decrease.
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2. The General Governing Equations (in body coordinates)

The general unsteady three-dimensional Navier-Stokes equations, written
in strong conservation-law form, for Cartesian coordinates can be

expressed in nondimensional variables as:

T o O B 1 @ R 3
o ELELE L LBV (2.1)

&t I Yy a2 Re I Yy az

The inviscid flux vectors in Eq. (2.1) are:

ou T
- oo puZ +p - - guw
E=E@Q) = | puy G=G)= | pww
puyy pWZ + p
(& plu (e + Dw
v - |
Fefr e | s q= |pv
F= F(Q) = pv2 +P oW (2.2)
Py e '
| (e +plv -

The internal energy of the gas is defined in terms of the conservative
variables as

ey = (e/p) - 0.5(u2 + vZ + w2) (2.3)
while the equation of state for a perfect gas with ratio of specific heats
Yy is:

p/p = (y-1)e; = a2/y (2.4)

The viscous flux trerms in Eq. (2.1) are:



o

- - Ty - - - x| - - - Ton
Q=Q@ = | Tgy|. R= R@= | Tyy| ,S= S(@) = | Ty
Txz Tyz T2z
] Q& | ] Rs | | S5 )
(2.5)
where
(2.6)

In obtaining Eq. (1.6) the Stokes hypothesis was used: X\ = -2u/3. In Egs.
(2.1)-(2.6) the Cartesian velocity components u ,v ,w are made
nondimensional with respect to a_ (the freestream speed of sound), the

density p is normalized by p, and total energy e is referenced to
2
P 2%

o oo

We introduce a general transforamtion as follows:

£ = E(x,y,2,t)
n= nixy,zt) (2.7)
¢ =¢x,y,2,t)



Subject to the transformation, Eq. (2.1) can still be expressed in a strong
conservation-law form as:

A A A A A A A
aq ok aF a6 i oQ oR 9S
et e bt — = +( + + —) (2.8)

¢ 93 o 3 Re € o &

where
A -
q=q/J
A - - - -
F = (yf + g F + 18 + @/
A - - - -
| G = ((uE+ &y F + ¢,6+ o)/l
| CkE+ {yF+ {6+ ¢t 29)
and
A A== A —= Ay = - - - -
Q = 06(a,¢) + QN (0,05 ) + 0%(0,0¢) = (540 + §yR + £,5)/ (2.10)
A Ahe= = A== A, — - - - -
R = Rf(q,Qg) +RN(q,0) ¢+ RC(q,Qc) = (nyQ *+ nyR +nS)J (2.11)
A A== A -- Ay, == N - -
S = 58(q,q) *+ ST (q,0) + 58(0,0¢) = ¢xQ + ¢R + ¢80/ (2.12)

The Jacobian of the transformation, which appears in Egs. (2.8)-(2.12), is
defined as:

Jl= X (Un Z¢ = 20U + Uelzg Xe - #o2e) * 2600 Ug = Up¥e) (2.13)
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3. The P.N.S. Code

The P.N.S. code deals with the steady state solution. Thus the variables
are independent of time. The parabolized Navier-Stokes equations are
obtained from Eq. (2.1) by a generalized independent spatial variables that
map the physical x,y,z space surrounding a body into a rectangular & q, ¢
computational region: .-

£ = E(x) = streamwise (marching) coordinate,
n =nix,y,2) = spanwise or circumferential coordinate,
¢ = ¢(x,4,2) = normal coordinate.

which maps the body surface into the ¢ = O plane, and by neglecting all
streamwise derivative, /3£, within the viscous terms, and by modifying
the streamwise flux vector to permit stable time-like marching of the
equations downstream from initial data. Following [15], we introduce the

subsonic sublayer approximation, and the resulting parabolized
Navier-Stokes equations can be written as:

A A A

g dF G 3 A A 3 A A
—_— e g = — | - C 3.1
® tw t% " Re [an (RN +RS) + " (SN + 5%)] (3.1

The modified streamwise flux vector in Eq. (2.1) is

—pu

A - pu2 + pg

Eg = (£,/)Eg = (£,/d) | puv (3.2)
puw
(e+pglu

where pg = p for supersonic flow, and pg is defined from dp / 3( = O for

subsonic flow in the viscous layer adjacent to the body surface. By
evaluating p; in this manner, Eq. (3.1) can be stably marched in the §

direction for all flows where u > O; that is, for flows without streamwise
reversal (see [15] for associated stability analysis).
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The viscous flux vectors inEq. (2.1) R1 , RS, SMand SN are given in
the appendix.

3.1 Numerical Algorithm

The numerical algorithm used to march Eq. (3.1) downstream is an
implicit, non-iterative, approximately factored finite-difference scheme,
which is analogous to the one developed by Beam and Warming for the
solution of the unsteady Navier-Stokes equations. The marching algorithm
is derived in the same manner used by Schiff and Steger [15], but the

viscous cross-derivative term @R E'/&r] 5N /3 in Eq. (3.1) cannot be

treated implicitly, and, following Beam and Warming [26)], are evaluated
explicitly. The resulting algorithm can be written in so-called delta form
as

[Ag) + (1-0A%(8, BJ - Re18, NDIALY! :
* [Ag) + (1-0)A8(8,C) - Re™ '8, Filjaa)
=(A-Ad ) + alf-EJ) - (1-0at (s, In* EAD +
+ MU/ + n JPHGAIN] + 8l T EAD + ¢t I+
+ ¢ HE - ReT B, R+ 8, RO+ 8,(6MI +
» 84(88)] - aﬁe-‘[an(a'éC)i" + GC(A"S'“)“]} (ALY
- (&, /DI E 1) + Dl + ogag)!+3e (3.3)

In Eq. (3.3) o is set equat to O for first-order accuracy (Euler implicit
method) and o = 1/3 for second-order accuracy (3-point backward
differencing). Similarly, in the viscous terms = 0 for first-order
accuracy and 8 =1 for second-order accuracy. The Jacobian matrices of
the flux vectors AS, B and C are obtamed from local linearization [28] of

ES, F and G The Jacobian matrix M is obtained from local linearization



_]2_

(28] of 5¢ and, in an analogous manner, the Jacobian matrix N is obtained
from linearization of Rﬂ The symbol ~ indicates that the matrices are
evaluated using flow variables q located at JAE and metric quantities
at (j + 1)AE. The term D4)  is a fourth-order explicit dissipation term,
defined as:

~ A
08l = eghls 1 1/ (7 AR LN+ (a2 (D) (3.

which is added to the algorithm to suppress high-frequency osciliations.
Linear stability analysis indicates that €5 in Eq. (3.4) must be less than

1716 to ensure stability of the algorithm. Although adding implicit
smoothing terms within the operators on the left-hand side of Eq. (3.3)
overcomes the linear stability limit and permits the use of larger values
of €g , no such implicit smoothing was used. While the use of implicit

smoothing tends to stabilize the numerical method, the added smoothing
terms can be larger than the viscous terms of interest, and thus can
degrade the accuracy of the solution.

Equation (3.3) contains all viscous terms and viscous cross terms
applicable to the parabolized Navier-Stokes equations. The thin-layer
viscous model form of the equations, previously used by Schiff and Steger
[15] can be obtained by neglecting all viscous terms except those solely in
the normal ¢ direction. Thus, by dropping the terms f, &, SN, ARS, and

ASM from Eq. (3.3), the thin-layer algorithm can be obtained.
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4. The Conical Solution using the PNS Method

In general, the initial data for the marching method must be supplied
from an auxiliary computation. However, when treating the flow over
conical or pointed bodies this is not necessary. As outlined in [15], for
inviscid flows about conical bodies a conical grid is selected and the flow
variables are initially set to free-stream values. The solution is marched
one step downstream from an initial station, and the resulting flow
variables are then scaled to place the solution back at the original station.
The process is repeated until no change in the variables is observed with
further marching. The flow variables are then constant along rays of the
flow field, and a conical soiution has been generated. Upon assuming flow
variables within the viscous layer to also be constant along rays, the same
procedure can be used to generate viscous conical solutions. Although
viscous flow cannot be strictly conical, the assumption that the flow
variables are locally conical along rays is reasonable when treating

high-Reynolds-number flows. The validity of the assumption of locally
conical viscous flows has been demonstrated in [14] The
marching-stepback procedure was utilized to generate the conical
solutions in the present work.
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5. The Flux Split Scheme Applied to the Thin Layer Approximation.

The flux split method is a time marching method and thus the Eq. to be
solved is Eq. (2.8), The thin-layer approximation means to neglect the
viscous terms in the streamwise and the spanwise direction and keep only

the viscous terms in the normail direction. Thus the Equation to be solved
is:

A A A A
q E F B Re-! kil (5.1)
FRE IR |

A .
where S now is:

(¢, 2+ G2+ $g + IS (LU + Sy + (¥ My

WER * 2+ £ + WIS (Gyue + e EWelly
IR L T 2L A A AR I
(6,2 + ¢, + ¢ ANO5R(2 + 42 + W2)y + xpr"(y-l)“(az)d +

BTN EMNCQUE * Eyve + ek (5.2)

S.1 _Numerical Algorithm

The Split Flux method was developed to overcome the difficulty of
stability. This goal could be achieved by combining two methods: The first
is by using two steps factored scheme which was proved by Ying [28] to be
unconditionally stable (differently from the three factored schemes), and
the second is by splitting the Flux in § direction according to its
eigenvalues. It was proved by Ying [28] that the stability of the scheme
depend on the eigenvalues of the matrix E The splitting of E is equivalent
to adding a viscosity that stabilize the scheme.

The two steps implicit factored scheme with splitting of the E flux
for the thin layer approximation using the upwind approximation in the ¢&

direction and central differencing in the m and g direction can be written
as follows:




(1 + nﬁsb(fx*)" +hd cé" - hRe™ 18, 1M - D]
[I+h6€f(A M+ 16, B" - Dyl AQ" =
--At{GED[(E -+ ﬁsf[(s M-E1+ 8, (F“ Fo)+

+ (6" - B;) - Re”! 5¢(8"-6.)} - Dgld" - B (5.3)

where h = 8At. §, 8§b 85 are central,backward and forward three points

d1fference operatoc: A- B C M are obtained from the local hnearlzatlon

of E F G and 5. E* is the flux E which has been split into E* and E”
according to its eigenvalue in the following manner:

[ £4(n,00,35) ]
A E2(r1,24,25)
E= | €z(r,0,%5)
€4(7 1,0, 2s)
| €5(31,%4,25)

) (5.4)

and

20y- 1t + 2t +25°
207-1nrtu + agtU + as*U”
B2 =p/2y =  2(y-Uadtyv+aiV +asV”
20Y- 1w + agtW + 2gtW™
26 + 272 (U + VI + WP+ agtlUT + v +
(W] Oy (5.5)

(3-7)(n4 + 25)C2
2(y-1)

Cir =
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and D,, and Dy are the numerical dissipation terms which are given as

combination of second and fourth differences. The smothing terms have the
following form:

- - - A .
Defn = (A 1{e28,(B)p8 + &5 ‘Pf_f’p)as} W

- - - A -
Dif = (A" {eaB,(Bp8 + 2.5 £45 B b d

where
_ 18|
I(1+6%)p] (5.7)

P is the nondimensional pressure and p(g) is the spectral radius of 6

6. . Turbulence Models.
1 The Eddy-Viscosity Model

In this discussion we adopt the dimensional notation of Baldwin and
Lomax [29]. The resulting coefficients can be nondimensionalized for use
in Eq. (3.3) by normalizing them by their free-stream (laminar) values.

For laminar flow computaitons the coefficient of molecular viscosity
B = po is obtained from Sutherland's law and the coefficient of thermal

conductivity x is specified, assuming a constant Prandtl number, as
}<2/Cp = pul/Pr. For turbulent-flow computations the laminar flow
coefficients are replaced by

=ity

(6.1)
K/Cp = W/Pr + wy/Pry
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The turbulent viscosity coefficient p; is computed using the isotropic,

two-layer, Cebeci-type, algebraic eddy-viscosity model reported by
Baldwin and Lomax {29].

In the Baldwin-Lomax formulation p; is given by

(Minner R

Mt =
(Mdouter U>Ye

(6.2)

where y is the local distance measured normal to the body surface and y.

is the smallest value of y at which the values from the inner and outer
region formulas are equal. Within the inner region

(ke Yinner = Pl (6.3)

where

-(y+/
1= kg“ -e (g+ A+)] (6.4)

lwl is the magnitude of the local vorticity vector, and

U+ = Yoy Tyw/Mwly (6.3)

In the outer region, for attached boundary layers the turbulent viscosity
coefficient is given by

W outer = KCyp PFwake Frien(¥ (6.6)

in Eq. (6.6) K and Ccp are constants, Fy o 1S the Kiebanoff intermittency
factor, and
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Fwake = Ymax Fmax: (6.7)

where F ... is the maximum value that the function F(y), defined as

- +/A+
F{y) = |lo| y[1 - e Y )] ' (6.8)

takes in a local profile, and yp,y 1S the vaiue of y at which Fp,.. occurs.

The constants appearing in Egs. (6.1)-(6.8) were determined in [29] by
requiring the boundary-layer profiles computed wilth the model to be in

agreement with those determined using the Cebeci [30] formulation. The
values were determined to be '

Pr=0.72, k=04,

Pry =09, K=00168], (6.9)
A" =26, Cep = 16
6. Modified Addy Viscosity Model

The major difficulty encountered in applying the Baldwin-Lomax
turbulence model to bodies with crossfiow separation is that of properly
evaluating the scale length y.,,, and in turn, of determining (uy) ¢ fOr

boundary-layer profiles in the crossfiow separation region. This difficulty
becomes apparent upon considering the behavior of the function
F(y)[Eq.(6.8)] along two rays, one located on the windward side at ¢ = ¢,

[

DESIRED y,,, (¢,)

Ve

Flyy)
Fly,)

— Fmax (#y)

{a} 1 1
Ymax (@4}

(b) 1 1
Y252 Yeutott 7% ]
Y2

Yeutoft
L

Fig. 6.1 Behavior of F(y) at large incidence, (a) ¢ = ¢, (windward side),
(b) ¢ = ¢, (leeward side).
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and the other on the leeward side at ¢ = ¢ . The functions are shown

schematically in Figs. 6.1(a) and (b), respectively. On the windward side
the attached boundary layer gives rise to a profile of F(y) which has a
single, well-defined, peak, as shown in Fig. 6(a). Thus, the determination
Of Frnax{ ¢1). Ymax( ¢1): @nd Fyyake () Is straightforward. However, on the

leeward-side ray [Fig. 6.1(b)], in addition to a local peak in F(y) in the
attached boundary layer at y, = a, the overlying vortex structure causes a

larger peak in F(y) at yo = b. As originally implemented, the computer code

searches outward along each ray to determine the maximum in F(y), and
would, in this instance, select the peak in F(y,) occurring at yo = b. The

choice of the peak at y, = b results in a value of F,,....( #7) and, in turn, a
value of the outer layer eddy-viscosity coefficient (pi)g ter Which is

much too high. The resulting value is at least one order of magnitude
larger and can be as much as two orders of magnitude larger than the value

of (py)outer resulting from evaiuating F, o, (4 o) from the peak at y, = a.

Thus, in general, the computed eddy-viscosity coefficient in the crossflow
separation region behind the primary separation point will be too high.
This will cause the details of the computed flow to be distorted or washed
out. In particular, the primary vortices will be smaller than those
observed experimentally and the primary separation point will be located
closer to the leeward symmetry plane. In addition, the secondary
separation and secondary vortices will not appear in the computed flow.

To eliminate these difficulties we have modified out implementation
of the turbulence model. At each axial station the code searches radially
along successive rays, sweeping from the windward to the leeward plane
of symmetry. Along each ray the code sweeps outward to find the first
peak in F(y), and cuts off the search when the peak is reached. To prevent
the selection of extraneous peaks which might be caused by a nonsmooth
behavior in F(y), a peak is considered to have been found when the value of
F(y) drops to 90% of the local maximum value. Choice of Frnay in this

manner will exclude the second, spurious, maximum [see Fig. 6.1(b)}.

For most rays in the crossflow separation region the two peaks in F(y)
are spaced far enough apart that the logic described above will select the
first peak. However, this is not true for rays in the vicinity of the primary
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separation point (and to a lesser extent for rays in the immediate vicinity
of the secondary separation point). Along these rays the vortex feeding
sheets lie close to the outer edge of the attached boundary layers: the
peaks in F(y) merge. Under these conditions the code would choose a value
of Ymay Near the top edge of the feeding sheet. Consequently, a further

test is applied. On each ray (except the ray on the windward plane of
symmetry) a cutoff distance is specified in terms of y... from the

previous ray, i.e, Youtoff® = CYmay ( ¢ - A¢ ), where c is a constant
chosen equal to 1.5. If no peak in F(y) is found along a ray for y<y.,toff the
values of Fooy and Y45 are taken as those found on the previous ray. In

this manner a physically reasonable value of the eddy-viscosity
coefficient will be chosen for those rays close to the crossfiow
separation points.

It 1s readily apparent that conditions withing the boundary layers
which leave the body at the primary separation points are related to the
conditions within the boundary layers on the windward side of the body.
Further, it is physically reasonable to expect that the boundary-layer
quantities vary smoothly circumferentially around the body. Thus,
specitying the cutoff distance in terms of the values on the previous ray,
and taking the values of yn ., and Fmax from those of the adjacent ray,

allows the model to be applicable in a rational manner over a wide range

of local flow conditions, and in particular, for varying local Reynolds
numbers.

The various coefficients appearing in the Baldwin-Lomax turbulence
model were varied to assess their effect on the computed boundary-layer
profiles. The best match with experimental measurements was obtained
with the coefficients set at the values suggested in Eq. (6.9).



- 21 -

6.3 One Equation Model.

This model has one turbulence source function Hk:

Hy = 1452 - 2pkD/3 - Cjt, k/L2

(6.10)
where
S = (e’ + 2uges” + v/ - 2073
D=uy+ vg +v/r
Rt = p YR L/Y,
R for R<0.75 |
H(R) = q R-(R-0.75)2 for 0.75 <R ¢ 1.25 (6.11)

i for 1.25¢R

x =02, C=3.93, Ry =110,P, =25

Here k is the turbulence kinetic energy, k = pU]-"U‘-“/QE, and L is the
length scale as specified by Glushko [23]:

y/é for 0 ¢y/8<0.23
L/6 = (y/6+0.37/2.61 for 0.235y/6 <0.57

(1.48-y/6)/2.52 for 0.57 ¢y/6 < 1.48 (6.12)
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The total kinetic energy diffusivity p, is givenby:

uk = MI + }lt/pr
k

The total viscosity L and the thermal energy diffusivity are
po= p‘]_ + p’t

K/Cp = W, /Pr+ ut/Pry

(6.13)

(6.14)
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7. The Test Case for the Stability Criterion.

The test case that was chosen is the Jeffery Hammel flow in a divergent
channel since for that case we have an analytic solution which provides
two different patterns of flow for the same boundary conditions.

7.1 The flow field

/// //('Vr

/ﬁa —
4— — = 7

T 7777777277777,

Fig. 7.1 - Configuration of the problem.

Statement of the problem.

We study a divergent channel, infinite in the z direction (Fig. 7.1) in
cylindrical coordildnates, r, 8, z. r=0 is the (virtual) intersection of the
two walls. A Newtonian, viscous incompressible fluid flows in the channel
as a result of inertia forces or an external pressure gradient which is a

function of r and 8. We assume that the flow is isothermal and has only a
radial component Vi Thus

V,=Vg=0 everywhere in the flow (7.1)
where V, and Vg are the velocity components in the 8 and z directions

respectively.

The boundary conditions are the no-slip conditions:
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V=0 at the walls (7.2)

where Vr is the velocity component in the r direction.

We consider the mass flow rate or the pressure gradient at the walls
as given (compatibility conditon).
By defining nondimensional velocity and time as:

U= Ve/Umax (7.3)
Umnay
T=t .
r (7.4)

we obtain a Re number:

Re = Up qul/V (7.5)

From the incompressible Navier-Stokes equation we get the time
dependent equation for the flow field:

Re (aU/at) = (32U/38%) + 4U + Rel? + K (7.6)

where

U

K= KO = -c/Re = - —r| (7.7)
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The pressure equation is

P = Pg(8,1) + 2p ReU + KRe (pv2/2r2)

(7.8)
and the pressure gradient along the walls (ap/ar)w, is:
(3p/ar)y, = (-KRe) pv/r (7.9)
The mass flow rate M, for a unit depth of the channel is:
M= Rey [Ud8 (7.10)

&

where p is the dynamic viscosity.

7.2 Solution for the Steady State Flow Field.

The solution for this case was presented by Shapira, Degani and Weiss
[25] as follows:

U =+v (2Re/3) (1-U) (B2 - U) (Bz - U) (7.11)

where

fz=a+d

by =a-d (7.12)
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and

a=-(3/Re+ 1/2)

d = 1/{2Re) ¥ 3[12 - Re(4k + Re + 4)] (7.13)

7.2.1 The steady state solution for -(Re+6)/3 <k <-Re/4+ 3/Re -1 is:

The solution in the above range is given by:

U= 1-(1-p2) Sn2 (8/xy, K1) (7.14)

where

1-B 6
)nz-.-._.__
1-fz Re(1-p3)

k12 =

and Sn(B/A,, k,) is the Jacobian elliptic function of the first kind, and

dt -

= ay F(E,ky) (7.15)
(1-k42 sin2 £)1/2

B =y

O

For the channel angle &« and the corresponding mass flow rate we can
get a number of solutions which fulfill one of the following rules:
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o =2nexy+(n-1) x2) M=2(nM +(n-1)M2)
or

o = 2(n oy + (n &2 ; M=2(nM; +nM)

or
o =2(noy+(n+1) x2) M= 2(nMy+(n+1) M) (7.16)
where n=1,2,.., and o <7.
and
£1 dt
o1 = | = a1 F(E,ky) : (7.17)

0 (1-kq2 sin2 £)1/2
where F(Eq, K1) is the incomplete elliptic function of the first kind. The

mass flow rate passing through this element is:

Rep
My = 'I'z_[(k‘z = 1+ B2)exy + aq(1-P2) E(Ey, k1)) (7.18)
1

where E{4, ky) is the incomplete elliptic function of the second kind.

The angle of the element 0> U > B is:

/2 de -
0o = 41 (1-k 2 sin2 5)1/2 =y F(ky)-oty (7.19)

where F(k]) is the complete elliptic function of the first kind. The mass
flow rate passing through this element is:

Re
Mz =My - 725 [(k2y = 1 + Ba) Flky) + (1-B2) E(kq)] (7.20)
1
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where E(k]) is the complete elliptic function of the second kind, and

€1 = arcsin (v T7TT-F2) ) (7.21)

7.2.2_The steady state solution for k > - Re/4 + 3/Re + 1

The solution in the above range is given by :

U= 1-L{1-Cn(8/x2, k2))/ (1 +Cn (8742, k2)) (7.22)

where

L2 = 3(K +Re + 4) / Re (7.23)

and

22=3/(2Rel)

k22 = (L +3/Re+3/2)/ (2 L) (7.24)

and Cn(B/).z,kz) in the Jacobian elliptic function of the second kind

dg
(1-k2 sin2 £)'/2

£
8= | = a2 F(E,k2) (7.25)
0
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The half of the channel angle is:

€2 de

«/2 = » = a2 F(E2,k2) .
2!) EEp 2 F(E2,k2 (7.26)

The mass flow rate is:

M= Rep [(1-L)x + 4Lz (E(E2,ky) - L2)] (7.27)
where
L2 =V LL-4L ky + 2L + 1) / [L(L+1)] (7.28)
and
£z = arcos ((L-1) / (L+1)) (7.29)

7.3 The stability equation.

Next we examine the linear stablility of the flow patterns subject to
perturbations that vary as 1/r and are functions of 8 and t.

Let us define 2 nondimensionai solution:
U(B,t) = Uo(B) + W(B,1) (7.30)

which was obtained by multiplying the solutions of the previous section by
r, where Uo is the base flow that is analyzed for stability, and W is the
perturbation.

Substituting Eq. (7.30) in Eq. (7.6), subtracting eq. (7.6) (written for
Uo) and neglecting the nonlinear terms yields the following linear equation
for small disturbances:

aW/at = (W" + 4W) / Re + 2UoW (7.31)
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Let us define a disturbance of the type:

Ww(8,t) = W(8)exp(ft) (7.32)
From Eq. (6.3) we obtain:

(4/Re + 2U0)W + W'/Re- W=0 (7.33)
with the following boundary conditions:

wW=0  atthewalls | (7.34)

Eq. (7.33) and the boundary conditions (7.34) are a system of

eigenvalues B and eigenfunctions W(8).

The base flow pattern is stable if:

B<O. (7.35)

for all the eigenvalues of Eq. (6.33) with the boundary conditions (7.34)

Let us define the following approximation:

Wn-1 + Wney - 2Wp

wn = n=0,1,._N (7.36)
h2

where h is the difference between two discrete points and Wn is the value
of Wat 8 =n¥*h.
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Applying Eq. (7.36) to Eq. (7.33) yields:

! 1
hore n-t* On (Uo) W + T2 Re et TP Wp =0

where

Qp, (Uo) = (4/Re + 2Ug - 2/h2Re)

and

Utilizing Eq. (7.37) enable us to turn the eigenvaiue problem into:

det(A-B) =0

where I is the unit matrix.

and
’ Q4 1/h2 Re
0
1/hZ Re Qe
A= | L
Q 1/h2 Re
n-1
0
1/h2Re  Qy

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)
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8. Results and Discussion

8.1 The Stability Analysis

8.1.1 Decreasing pressure in the downstream direction.

In the case where the pressure decrease is in the flow direction two
counteracting mechanisms exist: The first is the pressure gradient that
tries to accelerate the flow. The second is the deceleration and
accompanying pressure rise due to the radial spreading of the flow.

In Fig. 1 contours of constant « are plotted in the plane of M (the
mass flow rate) vs. (3p/ar),, (the pressure gradient on the walls). As a

result of the two opposing mechanisms mentioned above there is a critical
value of the mass flow rate M. for each « that behaves in the following

manner: For M « MC an increase in the mass flow rate, will cause the
downstream pressure to decrease. When M » MC an increase in the mass
flow rate, will cause the downstream to increase.

Another result that can be deduced from Fig. 1 is: For any pressure
gradient on the walls (ap/ar)w, we can find two values of mass flow

rate M. One is greater than M. and one is smaller.

Curves of M. are depicted in Fig. 1 and Fig. 4 The accompanying K and
(dp/ar),, are given in Fig. 6 and Fig. 3.

The stability method, described in Paragraph 7, leads us to the
following conclusion: When M> MC the flow is unstable, and when M < MC

the flow is stable, but when M > M., the mechanism that limitss and
stabilizes the flow, is missing.

We also see from Fig. 1 that for any « the pressure gradient and the
mass flow rate M are bounded. In Fig. 3, we see the line that separates the
zone of two solutions and the zone where no solution of the type Vg =0

exists. Fig. 2 depicts graphs of pressure gradients vs. e for constant Re.
~ We see that each curve ascends to the contour depicted in Fig. 3 becomes
tangent to it, and then returns back into the two solutions range. From the
stability analysis we found that the solution is unstable in the range of
ascent and stable afterwards.



- 33 -

In Fig. 4, zones of existence of the solutions and their stability are
depicted. For any o« there is a stable zone of low mass flow rate, an

unstable zone of higher mass flow rate, and a zone where no solution of
the type V = O exists.

In Fig. S contours of constant & are ploted for o between 5° and 60°.
From Fig. 5 we see that the contours of constant « are slightly convex.
Thus for any given o it is possible to find two constants which
approximate the relation between K and M. In order to approximate the
velocity profile, using these three constants, the Re number is needed. In
Fig. 6 contours of constant Re in the et vs. K plane are given. From Fig. 6 and

Eq. (7.14) or Eq. (7.22) the pressure gradient and the velocity profile can be
calculated.

in Fig. 6 the stability line in the K vs. o plane is depicted, so that
below this line the solution is unstable, and stable above it.

8.1.2 Pressure gradient in the upstream direction.

in the case where the pressure decreases in the upstream direction
three patterns of flow can be defined (as expresses in Eq. (7.16)): The first
is a2 syummetric pattern of flow without inverse flow near the walls
(positive shear stress on both walls). The second is an asymmetric pattern
of flow with an inverse flow near one wall (positive shear stress on one
wall and negative shear stress on the other). The third is a symmetric

flow pattern with an inverse flow near both walls (negative shear stress
on the two walls).

It is obvious that for any pattern we can find several zones of
negative and positive velocity that obey the rules appearing in Eq. (7.16).
As mentioned in Paragraph 7 when K = Kp, the range of inverse flow is

reduced and the three patterns of flow become the same.

In Fig. 7 curves of constant « are plotted in the plane of M (mass
flow rate) vs. (ap/ar),, (the pressure gradient on the walls), for the case

where only one range of positive velocity exists. In this case, for anyo we
have three branches with a common point at K = Kp. The left branch is for

the case without inverse flow, the centre branch for inverse flow near one
wall and the right branch describes the case with inverse flow near both
walls. thme left branches are the continuation of the curves obtained when
the pressure decreases in the downstream direction.
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From Fig. 7 we conclude that the contours are qualitatively similar
for the full range of e Fig. 8 shows curves of & = 20° in the plane of
(ap/ar),, vs. M, for single double and triple positive veleocity zones.

From Fig. 7 and Fig. 8 we also conclude that in the case of the
velocity profile without an inverse flow (left branches in Fig. 7) the
solution is unique. In patterns of flows where zones of negative velocity
appear, for every pressure gradient we have at least two solutions for the
mass flow rate. Fig. 9 describes the zones where one solution and multiple
solutions exist, in the plane of o vs. (ap/ar)w.

in Fig. 7, we see that for pressure decreasing in the upstream
direction we can have higher mass flow rate than we had in the case of
pressure decreasing in the downstream direction. From Fig. 7 and Fig. 8 we
understand that it is possible to define the ranges of mass flow rate and
the range of pressure gradient for each flow pattern. Beyond these range
this pattern cannot exist (similar to Fig. 9).

From the stability analysis we found that all the patterns of flow
where the pressure gradient is in the upstream direction are unstable. We
found that there are cases where the pressure gradient is in the upstream
direction and increasing the pressure gradient causes an increse in the
mass flow rate. Analysis based on physical reasoning could lead us to the
conclusion that these patterns are stable. The stability method, described
in Paragraph 7, shows however that the flow is unstable. This instability
can be explained by the combinations of unstable elements. The instability
expresses itself in the fact that, in such elements a decrease in the mass
flow rate causes an increase in the pressure gradient.



8.2 Conical Solution

The Schiff-Steger PNS code [aa] has been modified to allow computation of
conical flowfields around cones at high incidence. The improved algorithm
of Degani and Schiff [aa] has been incorporated with the PNS code.  This
algorithm adds the cross derivative and circumferential viscous terms to
the original PNS code and modifies the algebraic eddy viscosity turbulence
model to take into account regions of so call cross-flow separation.

Assuming the flowfield is conical (but not necssarily symmetric) a march-
ing stepback procedure is used: the solution is marched one step down-
stream using improved PNS code and the flow variables are then scaled to
place the solution back to the original station. The process is repeated
until no change in the flow variables is observed with further marching.

The flow variables are then constant along rays of the flowfield. The
experiments obtained by Bannik and Nebbeling [20] were chosen as a test
case. In this experiments a cone of 7.5% half angle at Mach number 2.94 and
Reynolds number 1.372*107 was tested up 34° angle of attack. At High
angle of attack nonconical asymmetric leeward side vortex patterns were
observed. In the first set of computations, using an earlier obtained
solution of the above cone for angle of attack of 22.6° and at station x=0.5
as a starting solution, the angle of attack was gradually increases up to
34°% During this procedure the grid was carfully adjusted to capture the
bow shock and to keep y+ near the cone surface smaller then 5. A Stable,
converged symmetric solution was obtained. |t was the first time
that a numerical solutien was obtained for an angle-of-attack-to-
half-cone-angle ratio as high as this case.

Since the numerical code is perfectly symmetric, in the second set of
computations a random perturbation of about 1% of the local flowfield
variables was introduced at each point of the flowfield and the marching
stepback procedure was continued till a new converged solution was
obtained. It was found that in all cases tested the solution converged back
to the original symmetric solution. By increasing the initial perturbation
above 2% - 5% of the local flowfield variables the numerical solution
became unstable and did not converge.

in the third set of numerical experiments the possible effect of surface
roughness or non perfect body shape was investigated. The cross section
of the cone has been changed randomly up to 1% of the original diameter
and kept so until a new converged solution was obtained using the
marching stepback procedure. It was found that in all cases investigated
the changes in the converged soltuions were of the order of the surface
perturbation.
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8.3 Marching Solution

8.3.1 Algebraic Turbulence Model

As mentioned earlier, Bannik and Nebbeling [20] found in their experiments
that at high angle of attack a nonconical asymmetric vortex pattern is
obtained. Therefore, for these cases the full marching technique should be
used.  Moreover, since the transition from symmetric to asymmetric
pattern probably occurs near the tip of the cone, a new statring solution
should be generated instead of the one at x=5 (which was used for the
conical solutions). A new conical solution near tip of the cone at x=0.05
was generated for angle of attack of 22.6% Figs. 10-11 show results
with the old algebraic turbulence model and Figs. 12-13 show results
using the modified algebraic model. From the velocity vector plots one
can see that the use of the modified model resulted with strong primery
symetric vortices and secondary ones. The results of the old model show
just one weak pair of primery vortices. Using these results another
conical solution for angle of attack of 34° at x=0.05 was generated. Figs.
14-15 show the results for this case using the old turbulence model. At
this point the modified algebraic model was introduced but the solution
became unstable. The only solution which showed some improvement in
comparison to the solution obtained with the old turbulence model and
was still stable obtained by relaxing the two models together. A solution
which obtained using a ratio of 90% of the value of eddy viscosity from
the improved model and 10% of from the old model is shown in Figs. 16-17.
The results are not impressive and one has to remember that although
the ratio is 9:1 the eddy viscosity is probably still too high.

8.3.2 One Equation Turbulence Model

For flowfield where the mean flow changes so rapidly that the turbulence
cannot remain in equilibrium with mean motion, an algebraic model might
not be sufficient. In cases where the region of separation is relatively
small compare to the upstream boundary layer thickness a one equation
turbulence model can be used (see paragraph 6.3). Although the use of this
model improved the simulation of separated flows in some cases (see for
example Ref. [31]), it did not improve the unstable behaviour of our 34°
angle of attack case.

8.8.3 Asymmetric solution for =34

Using the combined o1d and modified turbulence models , as mentioned



- 37 -

above, an asymmetric solution was obtained by perturbing the initial
flowfield. Starting with a conical (symmetric) solution near the tip of
the body, the PNS code was used to march down the body at 34° angle of
attack. During the first ten steps a small perturbation of about 1% of the
local value of the symmetric solution was added in random. Figure 18
shows the density contours at different stations down the body and Figure
19 shows the velocity vectors for the same stations.

The results shows large asymmetry of the solution (And it is much larger
than the initial perturbation) and the primery vortices are not straight or
parallel to the leeward plane of symmetry. These results are qualitatively
similar to Bannik and Nebbeling experiments [20].

The solution for k=144 points (circumferentially) was unstable for all
turbulence models.

8.4 Navier-Stokes Simulation

Computation were carried out using the NAS CRAY-2 computer, for an
ogive-cylinder body of revolution, having a 3.5 caliber nose and a 7 caliber
cylindrical afterbody, at a freestream Mach number of 0.2, a Reynolds
number of 200,000 based on the body diameter, and an angle of attack of
40°% This body geometry and test conditions correspond to those of an
experimental study carried out by Lamont [6,7] in the NASA Ames 12-foot
Pressure Wind Tunnel, in which surface pressure measurements were
obtained. Recent analysis of the data, carried out by Hall [32], showed
that for this laminar flow condition a wide variety of side force values
could be obtained, depending on the orientation which the (nominally
axisymmetric) body had in the wind tunnel.

The computational grid (which is shown in Figure 20), consisted of 39
points in the axial direction, 120 points circumscribing the body in the
circumferential direction, and 50 radial points. In the computations the
flow was assumed to be laminar; that is, no turbulence model was
employed, and the viscosity coefficients were obtained using Sutherland's
viscosity law and the Stokes hypothesis.

Three cases have been computed, all at o= 40° In the first, the flow was
set to free-stream conditions throughout the computational mesh, and the
solution advanced in time. After an initial transient, the computed flow
was found to evolve to a time-periodic, symmetric state. The second case
was identical to the first,execpt that a very small jet was intruduced into
the computation on one side of the body to break the symmetry of the
solution. The jet was located axially about half length of the ogive nose,
and was located circumferentially 90° from the angle of attack plane. In
the third case a small geometrical disturbance (about 2% of the body
diameter) was added to the body at the same location as the jet. Inthe
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second case the solution again evolved to a time periodic state, but the
solution was asymmetric.

Figs. 21-23 are sample results for the symmetric computation of the
second case. Figure 21 presents density contours in crossflow planes
normal to axis of the body. The position of the vortex cores are indicated
by the regions of low density, shown by the closed contours. Although the
computational region extends circumferentially completely around the
body, in this case the flow was found to be symmetric about the angle of
attack plane, and thus contours for only one half of the flowfield are
shown.  One main vortex (pair) is visible about the leeward side. In
addition, a smaller vortices are seen in the figure, originating near the
flanks of the body on the leeward side. These small vortices are seen to
move upwards from the body surface with increasing time, and to merge
with the main vortex pair. As this occurs, Additional small vortices are
observed to form at the flanks (below the upward moving vortices). This
cycle continues, and has a definite periodic frequency.

Time histories of normal force and pitching-moment coefficients
(moments taken about the nose) are shown in Figs. 22 and 23, respectively.
These show part of the initial transient, and the eventual evolution of the
solution to a periodic stat. The period of the force and moment history
corresponds to the time between the generation of successive small
vortices at the flanks of the body. The occurence of the time periodic
solution is extrimely intriguing. At present we believe that this
phenomenon is akin to the shear-layer instability observed by Payne et al.
[33] and Blackwelder and Gad-el-Hak [34] in experimental investigations
of the flow about delta wings at law Reynolds numbers. As such, it may
indicate that Navier-Stokes computations, using reasonable grid
resolution, may permit direct computations of flow instabilities and
initial transition to turbulence for flow about complete configutrations.
Additional numerical investigation of this phenomena is underway.

The corresponding results for the asymmetric cases are shown in Figs.
24-30. Figure 24 shows color contours of density in crossflow planes
normal to the axis of the body. The position of the vortex cores are
indicated by the regions of low density (denoted by reds and yellows).
Dark blue contours denote densities approaching free-stream density. At

least four major vortices are visible, which shed from the body and extend
into the leeward-side flow. The first leaves the near side of the body at
the ogive -cylinder junction, as indicated by the change in the vortex core
density from red to green to blue in this region. A second vortex leaves
the far side of the body mid-way down the cylinder, while a third leaves
the near side of the body at the rear of the cylinder. A fourth major vortex
exists on the far side of the cylinder, but it cannot be seen in this figure,
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since it lies behind the near-side vortex. In addition to the four main

vortices, small-scale vortices, similar to those observed in the symmetric
case, are visible.

Figure 25 shows particle traces for the same flowfield, and confirms the
presence of multiple vortices. The particles emanating from the near side
of the body are colored blue, while those from the far side are red. The

vortices are seen to extend downstream over the entire body from their
point of origin.

Time histories of the normal force, pitching moment, and yawing moment
coefficients (moments taken about the nose) are shown in Figs. 26-28
respectively. As was presented for the symmetric case, these figures
show part of the initial transient, and the evolution to a periodic state.
The mean values of the normal force and pitching moment coefficients are
close to those obtained for the symmetric case. However, yawing moment
coefficient is seen to undergo a periodic variation about a non zero value,
at the same frequency of the variation in the pitching moment coefficient.
in contrast, in the symmetric case the yawing moment coefficient was
zero at all times, since the solution, although unsteady, was always
symmetric. Comparison of side forces acting on the body for the
asymmetric case, with the net side forces caused by the jet alone, showed
that the latter are only 6% of total side forces. This indicates that the jet
merely breaks the symmetry of the solution.

Figs. 29-30 show density contours in crossflow planes normal to the axis
of the body for the third case, where a small geometrical disturbance had
added to the body. Although the solution has not been converged yet to a
periodic state as in the above case, and these results are part of the
initial transient, it is clear that the solution has been becoming
asymmetric. We believe that this asymmetric flowfield will be converged
to a non-symmetric periodic state similar to the one obtained when the
symmetry of the solution was broken by a jet.
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APPENDIX
ORICINAL PACE I3
OF POOR QUALITY

The viscous flux vectors in Eq. (14) are

_ 0 -
Lun oty + 0,0, 4+ mow,) + u(nd + 0} +nd) u,

Lun (e, + 0,0, +n.w) +u(n2+n2+nl) v, (A1)
R =J7") dpn.(n ey + 0,00+ 0w, + uni+mi+n2) wy :
L2+ m2 + ) [p(uu, + ooy +wwy) +kPr (= 1) 7 (@?),)
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Fig. 29 - Density contours. Left side of the body. Asymmetric case with
geometrical disturbance.
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