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In this paper the dynamic characteristics of spiral-grooved seals are
theoretically obtained by using the Navier-Stokes equation. First, with the
inertia term of the fluid considered, the flow and pressure in the steady state
are obtained for the directions parallel to and perpendicular to the groove.
Next, the dynamic character is obtained by analyzing the steady state by ana-
lyzing the labyrinth seal.

As a result, the following conclusions were drawn:

(1) As the land width becomes shorter or the helix angle decreases, the
cross-coupling stiffness, direct and cross-coupling damping, and add mass
coefficients decrease.

(2) As the axial Reynolds number increases, the stiffness and damping
coefficients increase. But the add mass coefficient is not influenced by the
axial Reynolds number.

(3) The rotational Reynolds number influences greatly the direct and
cross-coupling stiffness and direct damping coefficients.

(4) As the journal rotating frequency increases, the leakage flow
decreases. Therefore zero net leakage flow is possible at a particular
rotating frequency.

INTRODUCTION

High-performance pumps, (i.e., those operating at high rotating speed and
high pressure) are used in chemical plants, rocket engines, etc.. These pumps
sometimes yield nonsynchronous vibration that is induced by the journal bear-
ings or noncontacting seals. The instability of rotors supported by a journal
bearing has been studied very well. However the noncontacting seal, which
sometimes induces a nonsynchronous vibration or instability to the pumps, has
not been investigated.
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The dynamic characteristics of some noncontacting pump seals (the annular
plain seal, the tapered seal, and the stepped seal) have been theoretically
investigated by Black (refs. 1 and 2), Childs (refs. 3 and 4), and Yang et al.
(ref. 5), but there have been no investigations using the theory of fluid
dynamics on the parallel-grooved and spiral-grooved seals. Childs studied the
parallel-grooved seal by using only a rough approximation. On the other hand,
the parallel-grooved labyrinth seal has been investigated by Kostyuk (ref. 6)
and Iwatsubo, et al. (ref. 7). For the investigation of the spiral-grooved
seal, we studied steady-state characteristics from the viewpoint of leakage.
This study was based on investigations of the spiral journal bearing; that is,
Whipple (ref. 8) presents a basic idea to analyze the characteristics of the
thrust spiral-grooved bearing, Vohr (refs. 9 and 10) and Passera (ref. 11)
present an approximate method using creeping flow analysis (which assumes that
the groove number is infinitely large), and Zuk (ref. 12) analyzes the static
characteristics of the spiral-grooved seal by solving the Navier-Stokes equa-
tion with a finite difference method. But all these analyses are for the
static characteristics and there are no investigations of the dynamic
characteristics.

This paper presents an analytical method to obtain the dynamic character-
istics by solving a Navier-Stokes equation with the perturbation method. First
the steady-state flow and pressure distribution in the axial direction are
obtained by considering the pumping effect due to the spiral groove. Then the
dynamic characteristics are obtained at the steady-state condition, and the
dynamic force is represented by the matrix form.

SYMBOLS
Czo mean clearance
D seal diameter
F flow induced force
H thickness of fluid film
IS thread number
L seal length
Lg groove width
LZ land width
ng LZ/Lg
LS number of lands for one thread
NN number of land and groove sections
P pressure
AP pressure difference
0 leakage flow rate
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R journal radius

Ra axial Reynolds number

Re Reynolds number

Rr circumferential Reynolds number
T depth of ditch

t time

u circumferential fluid velocity
w axial fluid velocity

X,¥,Z coordinates (see fig. 2)

a spiral angle

€ perturbation coefficient
o divergent flow angle

A friction coefficient

H viscous coefficient

E loss factor

t,n,{ coordinates (see fig. 2)

P density

T shear stress

Subscripts:

a axial direction

c radial direction

d ditch (mainly used for vortex in ditch)
ex exit

f between clearance flow and cavity flow
g groove

in inlet

J journal

l land

151



m mean velocity

r circumferential direction
S casing
(%) time mean

GOVERNING EQUATION AND MODELING OF SPIRAL-GROOVED SEAL
Governing Equation
Figure 1 11lustrates the geometry of the spiral-grooved seal. Under the
usual assumptions for problems of through flow across annuli with fine clear-
ances, the continuity and momentum equations are represented as follows
(ref. 13):

Continuity equation,

3H . 3(Hup) 3 (Hwp)_g

+ (1M
at ox 93
where uy and wy are mean fluid velocity components in the tangential
and axial directions. )
Momentum equation in the x-direction,
H
3 P
pH{ J¥m 4 um.a_uln_ + wméﬁm_ }= —H?_. + Ty 0 (2)
9t 9z 9z ox
Momentum equation in the z-direction,
3w w 3w Ya " |
pE{ M 4+ M 4 M Y= —HID + Tgg (3)
ot oz 93 90z 0

Modeling

There are three kinds of spiral-grooved seals, (1) those with the groove
on the journal (fig. 1), (2) those with the groove on the casing, and (3) those
with grooves on both journal and casing. In this paper the seal with the
groove on the journal is analyzed. Figure 2 is an expanded figure of the
spiral-grooved seal. Configuration parameters are indicated on this figure;
these are spiral angle «, land width LZ’ groove width L4, seal diameter

D, and thread number 1Is. These parameters are related as follows:
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L = wDtana X% Ls Lg =—7 X (1 - ng )
rDes y (4)
_ sina
by = i X ng

where Lg 1is number of lands for one thread in the axial direction and

L;g = L;/Lg. For the analysis two coordinates are used: one is the
n-y-¢ coordinate, which is used for the static analysis and the other is the
x-y-zZ coordinate, which is used for the analysis of dynamic characteristics.

For the analysis the following are assumed:
(1) The fluid is Tiquid and noncompressible.

(2) Flow in the land in the n-direction is assumed to be a flow between
two parallel plates, and flow in the groove is assumed to be a flow in a rec-
tangular cross section and is approximated to the flow in a circular tube.

(3) Flow in the ¢-direction diverges with the angle © and goes to
the next land.

(4) The vortex is formed in the ¥-direction of the groove. But the
heat energy is negligibly small.

(5) When the journal deviates a 1ittle from the center, the streamline in
the groove deviates in the same manner.

DERIVATION OF SHEAR STRESS IN MOMENTUM EQUATION

The shear stress term of equation (3) is derived for the spiral-grooved
seal. The friction coefficient of the annular seal is represented by a
Reynolds number (ref. 14). But it is very difficult to represent the friction
coefficient of the spiral-grooved seal in the same way because the groove is
spiral. So the friction coefficient equation derived by Hirs (ref. 15) is used
in this analysis. The equation of the friction coefficient between two plates
is represented as

-0.25%
A\ = 0.066 Re (5)

where the velocity used in the Reynolds number is the equivalent mean velocity
that includes the pumping action of the spiral-grooved seal. This equivalent
mean velocity is used to obtain the shear stress.

Land
The shear stresses of the casing and journal parts in the axial direction
(z-direction) T1sa»Tzja are represented by the formula for the flow

between two parallel plates,
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0.25

g -
1 - 1
=-E-pk w2 xla = 0.066(——%_1) (6)

T == la Iim

lsa lia

Therefore the shear stress term of equation (3) becomes as
i 1

T =T - T = 2.0

2
ta lja lsa 2 Zawlm (7)

Groove

In the groove, flow is divided into two regions: the jet flow region and
the vortex region. The shear stress of the casing part of the jet region in
the axial direction <453 1s represented by the formula of the flow
between two parallel plates,

_ 1 2 )\ _ wgmH ~0.2 8§ 8
Tgsa = E-plgawgm ga = 0.066 "TTiZ (8)

It is assumed that the energy loss in the groove vortex region is represented
by the friction loss between the clearance flow and vortex flow. Assuming that
the friction between the vortex and the jet flow Af is 0.1 and that the
axial velocity component of the vortex wgy 1s set to one-half of the jet

flow wgy (ref. 16), the shear stress of the flow Tgfa becomes

- _1 _ 2 _ 1 2
Tgfa = 3 plf ( wgm W ) = - p0.25)\fh)gm (9)

Therefore the shear stress term in the groove is obtained from equations (8)
and (9) as

H

_ N 2 _ 1
T =T - T = 2 p0.25lfmgm 3 pA

ta 0 gfa gsa gawgm

1 2
-—E-p(lga +0.25kf )wgm (10)

DERIVATION OF STEADY FLOW AND STATIC CHARACTERISTICS
Axial and Circumferential Velocity of Steady Flow

As described before, the n-y-¢ coordinate system is used for the ana-
lysis of static characteristics. References 10 and 11 describe investigations
of the static characteristics of the spiral-grooved seal. In these investiga-
tions, the residual seal pressure is obtained when seal leakage becomes zero
because of the pressure induced by spiral pumping action. This residual pres-
sure is a function of the seal configuration, and the seal coefficient can be
represented by the nondimensional form. Boon et al. (ref. 17) obtained the
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seal coefficient of laminar flow, and Mori, et al. obtained the same by exper-
iment. The seal coefficient S.C.y3pypar for the laminar flow is

EURw\ /AP .
5.C. ) - laminar
laminagr c? L

lo

k¥(1+tan?a)+L, (1-L, )(x3-1)2tan?a
lg lg

= (1)
L, (1-L, )(x%-1)(k-1)tana
lg lg
where « = Hg/He. THe pressure induced by the spiral pumping action
APlaminar for the laminar flow is
- 3— -

AP _ 6uRwL' ng(l ng)(K 1) (k-1)tana .

laminar 2 3 2 - 3_q)2 2

€1, ¥ (1+tan a)+ng(1 ng)(K 1)*tan‘a

Vohr (ref. 10) compared the seal coefficient for turbulent flow with that for
laminar flow by experiment. He obtained the pressure ratio Cy of the seal
coefficient of the turbulent and laminar flow as

_ APturbuZent

= 0.778
= . = 0.0159 Rr (13)
Plaminar

Then the pressure APtyrpylent 1nduced by the spiral pumping action in tur-
bulent flow is

0.0951uRwLR™77®
AP r

turbulent 2
¢
o

ng(l-LZ

k¥(1+tanla)+L

J(k3-1)(k-1)tana
% g

(14)

_ 3_12
zg(l ng)(K 1) %tana

Since the pressure difference equation (14) acts to resist the pressure differ-
ence in the seal AP, the pressure difference in the seal becomes smaller than
the pressure difference between both seal ends. This pressure difference is
called the apparent pressure difference AP'; that is,

AP" = AP - APturbuZent (15)
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This apparent pressure difference acts on the seal and on the fluid flow in the
seal. This flow s separated into n- and ¢-directions and the fluid veloc-
ities in each direction and in each part are derived in order to calculate the
dynamic-flow-induced force in each stage. Then total force is obtained by sum-
ming up the lateral force of each stage.

Fluid velocity paraliel to groove direction for land. - The relation
between the pressure and velocity within the two parallel plates is also con-
sidered in the land region;

2L

AP = p(1+§ )

oot

2 _l_ b 2 . .
inin wZno * 2 P anlno Cc, sitna

lo

c 2
1 _ lo 2
* 3 p(l CZO+T°=)"’Zno (16)

The first term on the right-hand side of equation (16) represents the inlet
pressure loss. The inlet pressure loss of the land i1s larger than that of the
groove because the inlet clearance of the land is smallier than that of the
groove and because the fluid flows into the groove. The second term on the
right-hand side of equation (16) represents the pressure loss due to wall
friction. The third term represents the outlet pressure loss. The value A
is obtained using equation (5), and ¥;nin 1is the inlet pressure loss

coefficient, which is 0.5 for the first stage and is represented as follows
after the second stage:

n

Elnin = 1+0.8248, - ( 1+0.8248; ) (Hy/H, )2

8, = 1.95( uyghy / v )~0+43 (17)
6 = 1.95( wpghy / v )70r43

Therefore if equation (14) is iteratively calculated so that wy,g 1in
function A coincides with W1n0 in equation (16), the flow velocity of the
land wzn 1s obtained.

Fluid velocity parallel to the groove direction for groove. - Since the
groove is deep enough, the groove is considered to be a rectangular pipe and
can be approximated as a circular pipe. The equivalent radius of the rectan-
gular pipe MG (ref. 18) fis

L (CZo+T)

MG = 9
+
2(Lg ¢, 1)

(18)

The friction coefficient of the turbulent circular pipe ag (ref. 18) is
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R 4MG)-°'2 S

w
= no

Therefore the apparent pressure difference AP' 4s written as follows:

L 1

- 1 2 1 2
AP” =—=-p(1+ . + = —g . —
2 ol Egntn)wgno 2 p)‘dwgno sina MG

1 €, *T 2 ,
+7p 1-0—10+Tm wgna (20)

In this equation the first term on the right-hand side represents the inlet
pressure loss of the groove. This inlet pressure loss is smaller than that of
the land, because the groove has a larger cross section than the land and
because the 1iquid flows mainly into the groove. The second term represents
the pressure loss due to wall friction, and the third term represents the out-
let pressure loss of the seal. After Egnin is obtained by using equa-

tion (17), the velocity in the groove in the n-direction wgn0 1is similarly
obtained by iteratively calculating equation (20).

Fluid velocity perpendicular to groove direction. - The flow in the
{-direction is derived by a method similar to that used to obtain the steady
flow of the parallel-grooved seal. Conventional evaluation of the loss of the
groove region was not clear. Yamada (ref. 19) obtained the friction coeffi-
cient of both the land and the groove by experimental methods. According to
his results, as the groove region increases in relation to the land region, the
friction coefficient increases as shown in figure 3. This friction coefficient
is represented by using the results of reference 19

-0.24 1-L
A = 0.26-Re -3.31 9 (21)

From the pressure drop relation the following is obtained:

)‘(LZ+Lg) = xZLZ + Ang (22)

where A7 is a friction coefficient of flow between two parallel plates. Then
the friction coefficient of the groove xg is obtained from equations (21)
and (22),

1-L L 1-L
Ay = 026 Re~0-24 {3.31 lg +TZ( 3.31 9 _q )} (23)
g

Therefore the apparent pressure difference in the ¢-direction is obtained
by summing each stage of the land and groove, respectively,
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AP”® =.1.p(1+5 L Jwl +NN~1- AL w? _Efl.
2 gin’ " 1%o 2 PM1e%1¢c0 PR

L c 2
1 2 g 1 lo 2
4-(NN-1)~E-pkgwlcO zclo ‘+—§ D<1—EZ;;T;> wZCO (24)

In this equation the first term on the right-hand side represents the inlet
pressure loss of the seal, the second and the third terms represent the pres-
sure loss due to wall friction, and the fourth term represents the outlet
pressure loss of the seal. The term N in this equation js defined in
equation (5), tzin 1is defined in equation (17) and NN 1is the number

of the land and groove sections in the ¢-direction. Then the velocity in
the ¢-direction w;,0 is obtained by a similar iterative calculation.

Fluid velocity in circumferential and axial directions. - The steady-flow
velocity in the x- and z-directions is obtained from the previously calcu-
lated steady-flow velocities Winos Wgnoo and Wiro by translating the coordi-
nate system as

U7, cosa -gino wlno ugo cose =-s8ina wgno
= . = . (25)
o w
vy, sino cos wZCo go sina cosa wg:o
where u';o and o are the velocities relative to the journal. There-
fore the abso]ute ve?oc1t1es in the circumferential direction become
Ui, = vV - U, ugo =V - ugo (26)

Leakage Flow Rate

Because the leakage flow rates of the land and groove are different, they
are considered separately. The leakage flow rate for the land is represented
by the relation of the cross-sectional area and velocity,

1g [RT#C1,
QZ = Is x-f;- rep w102wrdr = HCZO{Z(R+T)+CZO}LZngO (27)

The leakage flow rate for the groove is derived by separating the clear-
ance flow from the cavity flow. The leakage flow rate of the clearance fiow
in the axial direction is represented as
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L /sina
g w_ e x
ge s/ 4 go go

c, L
1 . lo g
Is[z Lg(ZCZO+LgtanG)wgnoszna+zzzg_ wlCOJ (28)

The leakage flow rate in the cavity is represented by the axial component of
cavity flow as

- __1g
di Is X — w 02nrdr
s R
= M(T+Cy I (2RHT+Cy ) (1-Ly Ju (29)

Therefore the total leakage flow rate for the groove is

9 = %o * % (30)

and the total leakage flow rate Q becomes

Q = QZ + Qg = ncZo{z(R+T)+CZO}L w

lg lo

C, L
1 . lo
+Is[3-Lg(ZCZO+Lgtan9)wgnoszna+gzg§£ wlCo]

+w(T+C o)(2R+T+C

z Zo)(l-LZg)w (31)

go

Figure 4 shows the leakage flow rate for three types of seal and for
L/D = 1.0, a rotating speed of 4000 rpm, and a radial clearance of 0.5 mm. The
leakage flow rate for each seal type increased as the pressure difference
increased. The leakage flow rate for the paraliel-grooved seal was less than
that of the land seal. For the spiral-grooved seal, if the spiral angle was
small, the leakage flow rate was less than that of the parallel-grooved seal,
but if the spiral angle was large, the leakage flow rate was greater than it
was for the paraliel-grooved seal. For the spiral-grooved seal, if the spiral
angle was small and the land width was large, or if the spiral angle was large
and the land width was large, the leakage flow rate decreased. For this reason
the groove is important for the screw pumping action.
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Figure 5 compares the calculated Teakage flow rate with experimental
results (ref. 20). The groove was on both the journal and casing in this
experiment. In the low-speed range the calculated and experimental values were
very close, and in the high-speed range the leakage flow rate tended to zero
because of gas ingestion phenomenon.

DERIVATION OF PRESSURE DISTRIBUTION

To linearize the equations, a first-order approximation is performed. It
is assumed in the linearization that the center of the journal coincides with
the center of the casing and that the journal perturbs close to the center.
Then the values of fluid film thickness H, pressure P, mean velocity in the
z-direction wy, and mean velocity in the x-direction uy are written as
follows:

H=C + €y P=P0+EP1
° (32)

where Cqy, Pg, W, and ug are the steady-state values and y, Py, wy, and
up are the perturbations. The perturbation term in the circumferential
direction is neglected because the spiral angle o« s usually small and uy
is sufficiently smaller than wy.

Pressure Distribution in Steady-State

The steady-state pressure distribution is obtained by substituting equa-
tions (7), (10), and (32) into equation (3) and taking the zeroth-order approx-
imation. The pressure gradient of the land in the axial direction is given by

eP 0.132
lo _ _

] c

c W —0.25
1, ( lo w)
I\ (33)

1o 2 v

The pressure gradient of the groove in the axial direction is given by

BPgo 1 ) ngo ow o

where Cqo and wgo are functions of z and are represented as

c, w

_ _ lo lo
Cgo = CZo + ztanbBeosa wgo = cZo+ztanec03a (35)

Therefore equation (31) is written as
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3z 2(C, +ztanbcosa)? (CZ +ztanfcosa)
lo o

3P plc. w 2 pC, u w, tanbBeosa
go 7 (Zo Za) Asa lo go lo (36)

where Agz 1is the apparent friction coefficient because its dimension is the
same as friction; that is,

Asa = Aga + 0.25Af ~2tanbecosa (37)

Dynamic Pressure Distribution

The dynamic pressure distribution is obtained by substituting equa-
tions (7), (10), and (32) into the equation of momentum (3) and taking the
first-order approximation. For the continuity equation (1) the first-order
approximation is also obtained in the same manner. The momentum equation in
the axial direction for the land is

-0.25
1 = - ¥ g + - 0.033 f}gfl%) ~wl ¢
92 c 92 2cZ P v lo
lo lo
C. w. Y25,
1 lo lo 11 .2
+ 2Cz p0.033<——3———> oY1,
0 lo
w ow ow
11 11 go
-p{ 3t Y10 3z Ygo 9z } (38)
The continuity equation is
ow
11 __ 1 (3 oY
9z CZO<Bt +ulo o (39)

Pressure distribution is obtained by solving equations (38) and (39) simulta-
neously. Equation (39) is the first-order ordinary equation in W17, and it

is solved by setting the boundary condition w71 = wyi1(0) at z = 0.

— 1 . .
w”—w”(o) -T fz(x,t) 2 (40)
o
where
_ ov A
Folz,t) = 57 *uy 52
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Substituting equation (40) into equation (38) and setting the boundary condi-
tion Pzy = Pp(0) at z =0 yield a solution of equation (38). In this

boundary condition P71(0) 1is the perturbed pressure at the land inlet which
is obtained by a first-order approximation of the equation

AP = - (1/2)pEqwg2 (41)

that is,

Prito)y = 7 PE1Y10%11¢0) (42)

The term wzy(0) 1is obtained by neglecting the perturbed pressure at the

outlet of the land, (i.e., z = Lz/cos «, P71(0) = 0). Then the dynamic
pressure of the land P71 1s obtained as

C w ~-025§ c » 025
| ZO_ZO . i (Zo 1o
PZl = 20% DwZOO.JBS( v ) ] SPLJ-ZCZ prOO.OS3 v >
o lo
1 - 1 |
x2w 'fZ(I,t) SPL2 + z pwzo fz(;,t) SPL1
lo lo
s o352 +u, —2)f (=, 4) spLa (43)
3010 ot lo 3x/'1 7’

where SPL1 and SPL2 are as written in appendix A.

The momentum equation in the axial direction for the groove is

2P ] Yy 9P o
e = T s (A 0250 e v
ow 1 ow 1 ow ] ow o
“P\ ot go oz xTanX +u 5y gl 2z
!/ Oaw o Yu 9w
+ 20592 + 9099 xJand (44)
go go °%
The continuity equation is
oY Y dw o aC o ow 1 .
_ —_— q gi _ 5
=7 +ugo 5o v —2 +wgl g +Cgo Y 0 (45)
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Substituting equation (36) into equation (45) and setting the boundary condi-
tion Wg1 = wg1(0) at z = 0 yield the solution of equation (45):

¢
. lo
¥e1 T wgl(U) €, ,t2tanbdeosa

z Yw ztanBecosa

- : Lo 46
cza+ztanecasa fg(z,t) +(czo+ztanecosa)2 (46)

where

= 3 Y
fg(x,t) =% U ———

Substituting equations (36) and (46) into equation (44) and setting the bound-
ary condition Pg1 = Pg1(0) at z = 0 yield the solution of equation (44),

where Pg](O) s the pressure loss at the inlet of the groove: that is, the
outlet loss of the land. The outlet loss of the land is represented by

=1 2 47
where &> 1s the outlet loss coefficient

2
____10___) (48)

The first approximation of equation (47) is represented as
qu(Zn) = -Dﬁgwlowg1(zn) (49)

The term wg1(0) is obtained by neglecting the perturbed pressure at the
groove outlet; that is, z = Lg/cos «, Pg1 = 0. Then the dynamic pressure
of the groove is obtained as

DCZ ldz DC W
= lo lo sa . 10 10 ‘
sz 6tanecosa lp SPGs = tanecosufg(x-i t) SPGJ
2
A
pClol"lo sa 9010wzolsa

- Zangcosa Y SPG6 * tin6eosal? fg(x,t)'SPG7
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wlo

" (tanSoosa] 1q(%st)" 5PCE
o 2 )f (z,t) SPGY
+(tan6cosa)2(§; tu go oz x, (50)

where SPG1 to SPGY9 are represented in appendix B.

DYNAMIC FORCE

The small displacements in the X- and Y-directions at the center, AX
and AY respectively, are as follows:

EY = - AX cosd - AY sind (51)
The flow-induced forces in the X- and Y-directions at the beginning of a land

ép, at the beginning of a groove ¢p47/2, and at the beginning of the
next land section ¢pn4+7] are represented by equations (52) and (53).

I
s d .1 L./cosa
n+ v A
- Z f f €Py1in dz

= " LZ/cosa—R(¢-¢n)tana

Lg/cosa Lz/cosa
+ LT ) ePgl dz +(L I -1) , eP,, da

t/iz/cosa—R(¢-¢n)tana

Q

€Py 0 di} X Rcos¢dd

¢ L /cosa
Poiin 93
n+V L /cosa R(¢- ¢ )tana givn

Ll/cosa L /cosa
+ LT . &P, . dz 4+(r-I -1)| 9 eP . dz
s 78/, [ s " s 0 gl

t/Zg/cosa—R(¢—¢n+¥3)tana

, epglez dZ} X R005¢d¢ (52)
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I
s ¢n+>€ Lz/cosa

€P11in 92
n=1 ¢n Lz/cosa-R(¢-¢n)tana

L /cosa Lz/cosa
+ 0 -IT| 9 €P , dz ([ I -1) ep,, dz
8 "8/, gl s s 0 11

Lz/cosa-R(¢—¢n)tana
* EPZlez dz; x Rsinddd

0

/cosa

¢
n+1 eP 1in dz
n+/’ L /cosa R(d-¢ +}é)tana g

/003“ p Lg/cosa
z LI -
EEEN Piy #Hig I-1) ep_, dz

L /cosa-R($-d ) tana
’f-" nt s €P lex 93[ x Rsinéd¢ (53)
0

This force may be represented in the following matrix form:

_ X _ KXX XY CXX XY MXX MXY
= X + . + R (54)
Y Yx YY Yx Yy ¥Yx Yy

The following coefficients are obtained from equations (52) to (54). The
dynamic coefficients are different for the land and the groove.
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= PTR
2C

Lo 0.165
lo

1
4cC

.

K

C -0.2§
<10 zo) . ISPL1 +( 10)
R

XX1 1o

=

%1610
Clo

Vv

¥x1 = 0.033(
lo

p'ITRlJ 1

¢

lo

lo

pTR
2c

2 .2
clowloxsa
6

pTR

2 3
tanBeosa 0 sa

-ISPG3 +Cppu)

KXXg

1

lo

2

ISPL2

C. . \025
0.033< ZS Zé) - ISPL2 - ISPLl]

|

C. w. V025§
lo Zo) ' ISPLY + ISPLI]

- ISPL2

- ISPGE

2

k

+tan6cos

A
sa

c
T Zowlougo —_—
tanBecosa

p
T Ttanbeosa

c

txg [ISPGJ -

A
sa

“tanbeosa

1
C.

anCZ wlo

tanbcosa

ISPG7 +

c

XXg [ISPGI

_ 2pwugo

YXxg

¢ (tanbBecosa

PR
(tanBecosa
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where ISPL2 to ISPGY9 are represented in appendix C.

The coefficient matrix represents the summation of the coefficients of the
land and the groove.

NUMERICAL EXAMPLE

Data for the seal model are shown in table I. Ffigure 6 shows the relation
between the axial Reynolds number (pressure difference between the inlet and
outlet of the seal) and the spiral angle «, where L/D = 1.0, rotating speed
is 3000 rpm, and pressure difference between inlet and outlet is 0.49 to
4.9 MPa. As Reynolds number in the axial direction increases, Kyy, Kyy, Cyx,
and Cyx increase, but Myy 1is almost constant. For the 3-thread 2.6°

spiral-angle spiral-grooved seal and the 20-thread 17.66° spiral-angle spiral-
grooved seal, the dynamic coefficient decreases as the spiral angle decreases.

Figure 7 shows the effects of the Reynolds number in the axial direction
and the ratio of the land width to the groove width. It is known that as the
land width increases, the coefficients Ky, ny, Cyx» Cyx» and My, increase
and that, if the land is narrow, the spring coefficient Kxx becomes
negative.

Figure 8 shows the effect of the circumferential Reynolds number for two
kinds of spiral-grooved and parallel-grooved seals, where L/D = 1.0, the pres-
sure difference between the inlet and outlet is 0.49 to 4.9 MPa, and rotating
speed is 2000 to 8000 rpm. Coefficient K,, of the spiral-grooved seal shows

a negative value for a low circumferential Reynolds number, but that of the
parallel-grooved seal does not show a negative value until a high circumferen-
tial Reynolds number is obtained. The reason is that the pressure difference
between the inlet and outlet of the spiral groove seal affects the circumferen-
tial velocity; that i1s, the pressure difference and the high rotating speed
induce the pumping action, and the apparent pressure difference becomes small.
The characteristics of the coefficients K and Cy, can be 1llustrated in

X
the same way. The values of the coefficien%s Kyx, Cxx, Cyx, and Myx for the
spiral-grooved seal are larger than those for the parallel-grooved seal.

CONCLUSIONS

From this study of the dynamic characteristics of noncontacting spiral-
grooved seals, the following conclusions are drawn:

1. Except for Kyy, coefficients become small as the spiral angle and
the Tand width decrease.

2. As the axial Reynolds number increases, coefficients Kyy, Kyy, Cyy,
and Cyx become large but Myyx remains constant.

3. As the circumferential Reynolds number increases, Kyy decreases, Kyy

and Cxx 1increase once and then decrease, Cyx 1increases, and Mxx 1is
almost constant.
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4. The coefficient Kyy becomes negative when the circumferential
Reynolds number is large and the axial Reynolds number is small.

5. Leakage flow decreases as the rotating speed becomes large. If the
spiral angle is small, leakage flow decreases as the groove width becomes
large, and if the spiral angle is large, the leakage flow decreases as the
groove width becomes small.

6. Comparing the coefficients of the spiral-grooved seal with those of the
parallel-grooved seal, yields the following conclusions:

a. Ky of the spiral-grooved seal is smaller than that of the
parallel-grooved seal.

b. ny and Cy,, of the spiral-grooved seal are smaller (larger)

than they are for the parallel-grooved seal for low (high) circumferential
Reynolds numbers, respectively.

c. Cyx and My, of the spiral-grooved seal are larger than they
are for the parallel-grooved seal.

d. Leakage flow of the spiral-grooved seal is larger (smaller) than
that of the parallel-grooved seal for low (high) rotating speeds, respectively.

APPENDIX A
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APPENDIX B
c = C +L tanb
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SPG8 = C, - SPG1 + 5PG4

SPGY = -C, SPG4 + SPG5
K1 = 1/cg1 - 1/¢,, K2 = 1/021 - 1/c§o
K3 = 1/031 - 1/020 X4 = Z"(ng/czo)
K5 = ng -4, K6 = 021 - c;a
K7 = qgl/qg K8 = q /9,
APPENDIX C
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TABLE I. - DATA FOR NUMERICAL CALCULATION

Working fluid . . . . e e e e e e e e e e e e e e e e e e e e e e e . . water
Fluid temperature K 4 K I )
Density, p, Kg/m3 . . . . . . . . . . . . . . . ... ... ....9.982x102
Viscosity, y, mPa s . . . e e e e e e e e e e e e e e e e e e 1009
Kinematic viscosity, v, m2/s e e e e e e e e e e . e e . . . . 1.006x10-6

Journal radius, R, mm . . . . . . . . . . . . . .« . o v . v . <.+« . .. .100.0

Seal radial c]earance, CZO, 1 ¢ Y

Seal length, L, nm . . . . . . . . . . . . . . . . . . .. ... ... .200.0

Groove depth, T, mm . . . . . . . . . . . . . . . .. ..o ... . . . 1.18

Helix angle, o, deg . . . . . . . . . . « « o o . v o e 1 30 to 17.66

Journal rotating frequency, N, rpm . . . . . . . . . . . . . . . 2000 to 8000

Pressure difference, AP, MP2a . . . . . . . . . . . . . .. . .. .0.49 to 4.9

- V/////// /A .,

V/////////////i

Figure 1. - Spiral-grooved seal.

178




Figure 2. - Illustration of spiral-grooved seal.
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