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This paper describes a new type of electromagnetic bearing, called the

'Eddy-Current Bearing,' which works by repulsion between fixed AC-electromagnets

and a conducting rotor. The following advantages are expected: inherent

stability, higher load carrying capacity than DC-electromagnetic bearings,

simultaneous radial, angular and thrust support, motoring and generating

capability, and backup mode of operation in case of primary power failure. A
prototype is under construction.

INTRODUCT ION

Levitation of conducting material by AC-electromagnets, as shown in figure 1,
is a well-known phenomenon. The AC-current in the magnet sets up a constantly

changing magnetic field which induces eddy-currents in the conducting plate. The

direction of rotation of the eddy-currents is such that the resulting secondary

magnetic field will oppose the primary field. E.g., whenever a north pole is

being generated in the primary field, a north pole will also be generated in the

secondary field and steady repulsion will take place between the magnet and the

plate. This is the basic operating principle of the Eddy-Current bearing outlined
in this paper.

BACKGROUND

AC-electromagnetic levitation of conducting material has inspired many
inventions throughout this century. Some early outstanding examples are: the

Foucault Railroad of 1912 (ref. 1), Anschutz-Kaempfe's gyro of 1923 (ref. 2), and

Orkress' levitation of molten metal without a crucible in 1952 (ref. 3).

In the 1960's, the principle was applied in contactless suspension of

high-speed ground transportation vehicles (ref. 4). Development took place in

competition primarily with controlled DC-electromagnetic suspensions and cryogenic

type suspensions using superconducting magnets. An excellent survey of these and
other types of magnetic suspensions can be found in references 5 and 6.

The potential of the AC-electromagnetic type suspension was fully realized in
1974 when Eastham and Laithwaite presented their so-called 'Magnetic River'

suspension (ref. 7). It consists of a single linear induction motor which has

been adapted to provide not only stable levitation but also propulsion and

guidance of itself along a conducting rail without any feedback control (fig. 2).
There is even a technique available by which the 'Magnetic River' can be made to
stop safely on the rail in case of power failure (ref. 8).
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By their very nature, the competing suspensions have no capability for

propulsion or emergency stopping. However, they remain strong contenders due to

some problems with the Magnetic River which are still unresolved. The primary

problem is a low power factor which appears to necessitate forced cooling of the

magnets and use of heavy power-factor-correcting capacitors in order to achieve

large levitation gaps (ref. 9). Also, the inherent damping in the system is

apparently very light and some form of feedback control may be needed to improve
it (ref. 10). Finally, analytical predictions of the performance are exceedingly

difficult to make due to the complex three-dimensional interactions which take

place between the primary and secondary electromagnetic fields. Thus,

improvements have had to be made largely by trial-and-error experimentation based
on the intuition of a few specialized engineers (ref. 7). This work has been made

even more difficult by the fact that apparently minor changes in geometry have

been found to produce large unexpected changes in performance. Relief finally

appears to be in sight with recent developments of finite element methods intended
specifically for design studies of the Magnetic River (refs. 10, 11 and 12).

THE EDDY-CURRENT BEARING

The Eddy-Current bearing, as shown in figure 3, is made simply by bending the

Magnetic River of figure 2 into a circular shape. An extensive literature survey
has indicated that this has not previously been done although the possibility of

doing so has previously been mentioned in reference 13 during the discussion of

another e-l-e_tromagneticbearing.

The many advantages of the Magnetic River suspension, as mentioned

previously, are expected to translate into similar advantages of the Eddy-Current

Bearing as discussed in the following sections. Also, the problem with the low

power-factor in the Magnetic River is expected to diminish in the Eddy-Current

bearing because the airgap is much smaller. The inherent system damping will

probably remain low in the Eddy-Current bearing, but this could be compensated by
use of a passive eddy-current damper (ref. 14). Finally, the recent finite

element methods for the Magnetic River are expected to be applicable to design

studies of the Eddy-Current bearing also. A brief discussion of each of the

expected advantages of the Eddy-Current bearing is given in the following

sections.

Support and Motoring Capabilities

The Eddy-Current Bearing is expected to provide stable support in both the

radial, angular, and axial directions simultaneously without any feedback control.

This follows from the capability of the Magnetic River to fully support and guide

itself along a rail without feedback control. Also, since the Magnetic River is
essentially a linear induction motor, it has both motoring, braking and

electricity generating capabilities (refs. 7, 8). The Eddy-Current Bearing is

also basically an induction motor which can be expected to have those same

capabil ities.
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Load CapactCy

The load carrying capacity per untt weight of both DC-electromagnetlc and
AC-electromagnetlc suspensions depend on size. De-suspensions are more efficient
the smaller they are while AC-suspensions are more efficient the larger they are
(ref. 15). For vehicle size suspensions, levitation gaps of over 10 inches are
possible wtth the Magnetic River whereas controlled DC-magnet suspensions are
limited to less than 1 inch atrgap (ref. 16). The effect on bearing derivatives
of these suspensions is not known. However, the large difference in levitation
gaps indicates a potential for improved load capacity of the Eddy-Current bearing
which warrants further Investigation.

Emergency Shutdown

The operating principle of the Eddy-Current bearing is such that it may be
possible to continue operation after a power failure long enough to ensure safe

shutdown without the need for catcher bearings. In principle, this can be done

by switching to battery operated DC-power direct to the magnets. The operating

pr incipl e would then change to so-cal Ied electrodynami c Ievi ration wi th the

eddy-currents induced by the motion of the rotor surface past a row of

DC-electromagnets. This principle is used in eddy-current brakes (ref. 17) and in

high-speed vehicles with superconducting magnet suspensions (ref. 18). Inherent

stability is retained and the airgap is so small that a good possibility exists

for generating sufficient lift with acceptable coil currents for a short time

interval. The eddy-current drag will automatically decelerate the rotor and,

eventually, metal contact will occur at low speed.

It is emphasized that no Eddy-Current Bearing yet exists and the capabilities

suggested here remain speculation. A prototype of the bearing is currently under
construction and a preliminary test program is scheduled for the summer of 1986 to

determine whether further investigation is justified. A patent disclosure has

been submitted and a patent search is underway•

CONCLUDING REMARKS

A new type of magnetic bearing, called the Eddy-Current Bearing, has been
introduced• It derives from a magnetic vehicle-suspension called the Magnetic

River. An extensive literature survey on the Magnetic River has suggested that

the Eddy-Current bearing will have a number of important advantages over existing

magnetic bearings• A research program is underway to determine the extent of

these advantages.
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