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Hydrodynamic interactions that occur between a centrifugal pump impeller

and a volute are experimentally and theoretically investigated. The theoretical

analysis considers the inability of the blades to perfectly guide the flow

through the impeller, and also includes a quasi-one dimensional treatment of the

flow in the volute. The disturbance at the impeller discharge and the resulting
forces are determined by the theoretical model. The model is then extended to

obtain the hydrodynamic force perturbations that are caused by the impeller

whirling eccentrically in the volute. Under many operating conditions, these

force perturbations were found to be destablizing. Comparisons are made between

the theoretical model and the experimental measurements of pressure distribu-

tions and radial forces on the impeller. The theoretical model yields fairly
accurate predictions of the radial forces caused by the flow through the

impeller. However, it was found that the pressure acting on the front shroud of

the impeller has a substantial effect on the destablizing hydrodynamic forces.
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width of impeller discharge

total head (h* = 2h/pfl2R_)

impeller phase coefficient = cos(tan?in(R)) + j sin(tanyin(R))

polar coordinate system

length in tangential direction

time

relative velocity in impeller

width in volute

rectangular coordinate system
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moments of volute cross-sectional area (defined in Equations 14a-e)

(i = x,y, j = x,y). components_ 9f generalized hydrodynamic

matrix [A] (Aij = Aij/p_D_R2)

(i_x,y , J = x,_ components of damping force matrix

(Cij = Cij/p_b_R 2)

' 22
pressure coefficient at volute inlet = 2(Pv(R2,g') -hl)/p2 R2

force acting on impeller iF* = F/p_b_2R_)

integration constant in Bernoulli's equation

(i_ x,y, j = x,_) coefficients of the jerk force

(Jij = Jij / p_bR_/_)

(i_x,y , j = x,_)_ components of stiffness force

(Kij = Kij/p_bn-R _)

(i_ x,y, j = x,_) components of inertia force

(Mij = Mij/p_bR _)

* 22
pressure in impeller (Pi = 2Pi/P_ R2)

* p_2R_pressure in volute (Pv = 2Pv/ )

impeller radius ( with no subscript, R = R2/R I)

radius of pressure tap ring

velocity in volute ( with no subscript, V = Vg,/_R 2)

width of impeller at R2 (Wi = Wi/b)

perturbation function for impeller flow

angular location of the impeller center (= _t = constant)

angle of flow path through impeller

distance between impeller and volute centers (s* = z/R 2)

fluid density

flow coefficient = flowrate through pump/2_bGR_

22
total head rise coefficient = (ha- hl)/p _ R2

orbit speed of impeller center (whirl speed)

force

[c]

matrix [J]

matrix [K]

matrix [M]
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Subscripts:

c,s

d

exp

m

P

r,@

x,y

1,2

rotational speed of impeller (shaft speed)

cos _t and sin _t components (non-dimensionalized)

downstream of pump

experimental result

force component due to momentum exchange

force component due to pressure

radial or angular component

components in rectangular directions (real = x and imaginary = y)

impeller inlet and discharge

Superscripts:

measurement made in volute reference frame

,J

measurement made from frame fixed to rotating impeller

non-dimensionalized quantity

Special Notation:

v

V

underbar denotes vector quantity

overbar denotes centered impeller value (non-dimensionalized)

[A]

x

square brackets denote a matrix quantity

dot represents a time derivative

IN TR ODU CT ION

Several sources, both dynamic and hydrodynamic have been identified as

contributing to the forces on centrifugal pump impellers. Figure 1 shows a typ-

ical configuration for a centrifugal pump with a few of the key components

identified• The primary emphasis of this study was to investigate the forces

that result from the hydrodynamic interaction between the impeller and the

volute. The usual design criterion for a volute is that it should provide

minimum interference to the symmetric impeller discharge flow that would occur

if no volute was present. However, the discharge flow pattern will depend upon

the overall flowrate through the impeller. Once the flowrate changes, the

discharge conditions around the impeller become asymmetric for any given volute•

Even at the volute design flowrate, the discharge conditions could still become

asymmetric if the impeller is displaced from the "design" center of the volute

by shaft deflection, bearing wear, etc.. In either case, the end result of the
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asymmetric discharge conditions is that there will be a net radial force on the

impeller (see Figure 1).

It is customary in rotordynamic analyses to

acting on the rotor in terms of a steady

impeller, and a time dependent part due to the impeller whirling in

circular orbit. Referring to Figure i, these terms may be expressed as

linearize the radial forces

portion acting on the centered
a small

(1)

where F and F result from the interaction of the centered impeller with the

volute,Xand th_ matrix [A] relates the perturbed force to the eccentric position

of the impeller. The [A] matrix will be a function of the whirl speed, _, and is

often expressed as a quadratic in m so that the system resembles a simple stiff-

ness, damping, and mass model.

The steady or mean forces, F and F , have been examined in several studies

and an understanding of them has _een greatly enhanced through papers by Iversen

et al. [9], Csanady [7], and Agostinelli et al. [2] to name a few. All of these

authors have shown that there is a particular flowrate where forces on the

impeller will be minimized for a given volute. Previous experimental [5,10] and

theoretical [6] investigations have also shown that the components of [A] are

such that a whirling motion of the impeller would be encouraged rather than

dissipated by the hydrodynamic effects. This has created concern that the rotor

assembly may whirl at one of its critical speeds even though the shaft may be

rotating well above this speed. There also exists the problem of the alternating

flexural stress that would be developed if the impeller whirls at a

subsynchronous speed (see Ehrich and Childs [8]).

In the current study, a theoretical model of the volute and impeller flows

will be developed and compared to experimental results. Previously, a potential

flow model for the steady forces on a centered impeller was given by [?] and

this work was later extended by [6] to include the effects of the impeller whir-

ling within the volute. Although the potential flow model presents a more clas-

sical approach of solving for the forces, problems arise in relating the two

dimensional theoretical volute profile to the three dimensional geometry of a

real volute. For this reason, a bulk flow description of the flow through the

volute is chosen for the current work. A similiar treatment of the volute flow

was presented by [9], but the influence of this flow on the impeller discharge

conditions was largly ignored and only the non-whirling impeller was considered.

The impeller/volute interaction will be included along with the effects of

impeller whirl in the present analysis.

THEORETICAL ANALYSIS

In developing the theoretical model, the problem is broken into its two

natural parts; models are constructed for the flow through the impeller and in

the volute. The equations that are generated in these two parts are then

combined by matching the pressures and velocities at the impeller discharge to

those at the volute inlet. A full development of this model can be found in
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reference [i] and only brief summary will be presented here.

Governing Equations for the Impeller

To

simplified unsteady form of Bernoulli's Equation is written as

Figure 2 illustrates the geometries used in developing the impeller model.

relate the pressure between the inlet and discharge of the impeller, a

v2 _2r,,2
Pi+

P +; av ds"-m2e I ,,cos(_t-nt-O")dr"
at s

- _'_ ; sin(_t - Qt - O")r"d 0"= F(t)

S #w

2 2

(2)

Here the flow is assumed to be two dimensional and the impeller whirl speed

constant.

To simplify the model, certain assumptions must be made about the velocity

field within the impeller. Specifically, the flow in the impeller is assumed to

follow a spiral path with inclination angle, y, which is fixed relative to the

impeller for a given flowrate and head rise so that

IP

O2 = 0" + tan ¥ ln(r"/R2)_ (3)

#l

Here (r",O") and (R2,0.) are the coordinates of a general point on a stream-
line within the impeder and at the position of discharge respectively. The

flow path angle, ¥ , of the streamlines is permitted to deviate from the

impeller blade angle. It is determined in a manner described in Section 2(c) so

that the theoretical and experimental head/flowrate characteristics coincide.

To account for the asymmetry caused by the volute, a circumferential perturba-

tion is superimposed on this impeller flow. This flow perturbation is assumed

to be stationary in the volute reference frame. Together, these observations

require that

r 2 )_/, 2 ,,v= (v ,, +Vo, , =4_R 2 _(O",r ,_t,_t,e)sec 7/r" (4)

The perturbation function _, must from continuity considerations be constant

along a streamline. For whirl motions with small eccentric orbits, _ may be
linearized as

_(O",r",_t,mt,8) =_(02) +_ {_c(02)cosmt +_s(O2)sin_t} (5)

Equations (4) and (5) can now be substituted into Equation (2). The pressure at

the impeller discharge is then given as a function of _ and the inlet pressure.

The pressure is not known at the inlet of the impeller, but it can be written in

terms of the inlet total head which is assumed to be circumferentially constant.

If there is no pre-swirl at the inlet, this will give the inlet pressure as
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P_(RI,O 1) =h 1 - _R_(O 2){_ R_(O 2) +28 _sin(O 1-_t)}

- 28"_ 2 R2 _(02) {_o(02)cos _t + _s(O2)sin _t} (6)

for small eccentric displacements. By utilizing Equations (4) through (6) and
neglecting terms of order _ and higher, Bernoulli's Equation can now be

separated into harmonics with steady, 8 cos mt, and 8 sin _t dependence as

see 2 7[2 ln(R) _+ _ _'21 +_p
- 1 = 0 (7a)

2¢ see2 T[in(R) d_ + ¢ _c + _ in(R)_s] + Dpc

+ 2 _ [_ R _ sin(O 2 + tan 7 in(R)) - cos(O 2

2

+ tan 7 in(R))/R]/ta n2 7 = 0
- 2_ [cos 02 - cos(O 2

- sin 02
dO 2

+ tan 7 in(R) )/R]

(7b)

2¢sec 2Y[In(R)d_+ ¢_s- _ in(R)_c] +Dps

- 2 _ [4 R _ cos(O 2 + tan 7 in(R)) + sin(O 2

2

- 2 _ [sin 02 - sin(O 2

dD

+ cos 02 --_
dO 2

+ tan 7 In(R))/R]

+ tan 7 In(R))/R]/tan2 7 = 0 (7c)

where

Dp(e') =Dp(e w) + g [Dpc (O')cos _t + Dps(O')sin et] (8)

In Equations (7a-c) the impeller discharge pressure coefficient, D (0'), has

been transformed into the impeller reference frame by the approximation,

02 = O' + 8 sin(O' - mt). This will prove convenient in the future, because the
pressure at the impeller discharge is assumed to be equal to that at the volute
inlet.

Governing Equations for the Volute

The geometries used in developing the volute model are shown in Figure 3.

The volute flow will be described by a continuity equation, a moment of momentum

equation, and an equation of motion in the radial direction. Each of these three
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equations can be written respectively as

a(wVot) 8(wr'Vr,)
+ -0 (9)aO w 8r _

8(wr'Vo,Vo,) a(wr'r'Vo,Vr,) aVO, aP v
+ wr'r' -- =- wr' __ (i0)

aO' + ar' at p 80'

and

aP v PV 9 ,V 0

ar' r'
(11)

Here it has been estimated that V , and V , (and their gradients) are much less

than V@,, except at the inlet of The volute.

Within the volute, the flow is considered to be primarily in the 0' direc-

tion and to have a flat velocity profile. This will allow Equations (9), (10),

and (11) to be integrated over the volute cross-section. When these equations

are combined with Equations (4) and (5), the pressure and velocity distributions

in the volute will be given in terms of moments of the volute cross-sectional

area and the perturbation function, _. Both Equations (9) and (10) can then be

separated into three parts (steady, e cos _t, and 8 sin _t) as follows:

Continuity:

d(V A)

dO o
-d_ (12a)

d (VcA) , d(V cos O') d(_ sine')

dO' =Wi dO' +_sin0' +d[_c+ dO' ] (12b)

, d(V sin 8') d(_ cos 0')
__m O' -

dO' = Wi dO' Q COS + 4[_s dO' ] (12c)

Moment of momentum:

r-A d_ d(r-AV 2) __ d(V 2) _ _

2 dO' -- dO' rlnrA dO----7--+_(1- _tanT_)_ (13a)
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d__ d(rA V Vc)

2 dO ' dO '

S

+_(WisinO'V- rrAV s)

d(V-2cosO _) d(VV c)
+ (WT+ _) - 2rlnrA

I dO ' dO'

+ _2sin 0'_ 2 + _ cos 0'(_+ 2 - 2_ tan y _)_

wi
+ g(1 - 24 tan y _) (_c + sinO' d-_) + _- cos O' dO'

(ISb)

r-'A dDps = _ 2
2 dO'

d(rA V V s) _- (W_.cos O'V - rrA V )
dO ' Q i c

, _ d(V2sin 0') _ d(V V s)
+ (W.+ rA) - 2rlnrA

i dO ' dO '

- 42cos O'_ 2 + 4 sin O'(_ + 2 - 24 tan y _)_

wi
+ g(1 - 24 tan ¥_) (_s - cos O' d_V) + _- sin O' dO' (13e)

where

R3 R3

• in(r '/R 2) wdr '/bR 2A(O') =;R wdr'/bR2 lnrA(O') =_R 2
2

R3 R3

r-A(O') =;R2r'wdr'/bR22 • r---rA(O')=;R2r'r'wdr'/bR S
l

R3

rlnrA(O') = ;R2 r' ln(r'/R2)wdr'/bE 2
(14a-e)

and

* , V0 '
V (O') =V(O') +8 [V (O')cosmt +V (O')sin_t] _ (15)

c s QR 2

In Equations (12a-c) and (13a-c) the perturbation function• _• has been

transformed into the volute reference frame for convenience in obtaining a solu-

tion.

To complete the basic equations for the volute problem• Equation (11) may

be integrated to give the radial pressure variation in the volute as
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P*= D-+ 2_2[in(r'IR2 ) - .*cos(g' - rot)] + +*[Dpc + 4_V e ln(r'IR2) ]cos mtv p
l

+ e [Dps + 4VVsln(r'/R2)]sln mt
(16)

Closure Conditions

Equations (7), (12), (13), and (16) will describe the flow in the impeller

and the volute after certain boundary conditions are satisfied. Even though

is referred to as the perturbation function, it was never assumed to be small.

However, from the definition of the flow coefficient, _ is required to have an

average of one. The flow perturbation is further assumed to possess at least

zeroth order continuity around the periphery of the impeller. This restriction

on _ can be met by satisfying the condition,

P(R 2,0) = 13(R2,2n) (17)

To account for what happens to the volute flow at the tongue, it is assumed

that the average total head of the recircu_ated flow will be constant across the

tongue, that is,
, f

R3 (O) R3 (O)

I v v02 I v v02, (P +p ,/2) I wdr' = , (P + p ,/2) 1 wdr' (18)

R2(O) 0'= 2_ R2(O) 0'= 0

From the remaining flow that is discharged, the flow path angle, 7, will be

determined. Previously it was stated that this angle will vary with flowrate and

total head. Using this stipulation, 7 can be found by equating the predicted and

experimental total head rises across the pump. This requires that

t_ex p =_'= [Dp(2_) + CvV2(2.)]/2
(19)

where

C = 1 + 2[lrmA(2n) - lrmA(O)]/[A(2_) - A(O)]
V

Admittedly, using an experimental result does limit the preliminary design

applications of this model. However, the "H/Q" curve (in dimensionless form the

function _ (4)) is normally available for any pump and it is important that
this fundamental characteristic is properly represented in the model.

This completes the development of the equations necessary to obtain _, D ,

and V. The nine ordinary differential equations of (7), (12), and (13) were

solved using centered differencing. The initial conditions of _, D , and V were
chosen in an iterative manner to satisfy the closure conditions stated above.
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HydrodynamicForces on the Impeller

Basically, there are two sources that contribute to the radial hydrodynamic
forces on the impeller. One part is due to asymmetric pressure distribution
around the impeller. The other is caused by the asymmetric momentumfluxes at
the impeller inlet and discharge. The first contribution is evaluated by
integrating the pressure around the inlet and discharge of the impeller:

2_ 2_ "

Fp = (Fx+ jFy)p = bfo Pi(Rl,Ol)RleJOldol - wifo Pi(R2,02)R2eJO2d02 (20)

where j denotes the imaginary part that corresponds to the y direction (see Fig-

ure 2). The second contribution is found by applying the momentum equation to
obtain

F m (Fx+ jFy) m . 0 2n R2 ,,

p-b= pb =- eJflt_ 0 _Rl(Vr"+ JVo")eJO r"dr"dO"

R2
f2

40" ,,]- eJflt[jo_(V "+ Jvo")Vr"e_ r"dO I

r R1

_ e 3"fit 2flfo2_fR1R2( JVr ,, - Vo ,,) eJO ,,r ,, dr ,,dO, '

+ _2en(R2- R2)e j_t (21)

When the pressure distributions of Equations (6) and (7) and the velocity

profiles described by the no inlet pre-swirl condition and Equations (3)-(5) are

applied to Equations (20) and (21), the resulting force on the impeller is

F* F* * *= +F =F+ e (F cos _t +F sin_t) (22)
~ ~p _m ~ ~c ~s

where

2_ 2 e
_=d2[W_sec2T +kR-2 +2J tan7 ]_0 _ (02) JO2do/2a

* 2¥ f2n-__ JO2d02 /-jg[W.secl ln(R) + 1]jO B(O2)e ff

2n JO2do2/n~cF = _2[W_sec2T1 + _ R - 2 + 2j tan Y]_O _(02)_c(02)e

* 2 2_ JO2d02/_- jg[Wisec ¥ ln(R) + 1]_0 _c(02)e

* 2 2_ JO2d02/_+ _ _[Wisec ¥1n(R) +k/R- 1]_0 _s(O2)e

2_ JO2do2/n ]+ _ [_RW_ 0 _(02)sin(e2+tan¥1n(R))e

(23a)
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2
to

2_ JO2do2/aF s = 42[W_.sec27 + k R- 2 + 2j tan 1'];0 _(02)_s(_2 )e

* 2 2n JO2de2 /- j4[Wisec 7 In(R> +1];0 _s(O2)e

* 2 2Ir JO2do2/n_ mfl4[Wise c 7 In(R) + k/R- 1];0 _c(02)e

, 2_ jO 2
- _-fl[4RWi_ 0 _(02)cos(e2+tanTln(R))e d021_]

2
to

° ; *- [ j[2j4+W /(kR)] - j {Wi[1-1/(kR)]/tan27-1 +I/R 2}

(2Sb)

(23c)

and, k = cos(tan y In(R) ) + j sin(tan y in(R) ).

Equation (1), these components are

Expressed in the terms used in

-- __ * * * *

E = Fx + jFy , Fc = Axx + jAyx , and ~sF = Axy + jAyy (24a-c)

Presentation of the calculated results will be postponed so that the

experimental and theoretical results can be discussed together.

TEST FACILITY

The experimental results presented in this paper were obtained using the

Rotor Force Test Facility at the California Institute of Technology, Pasadena.

Details of the equipment have been given in previous papers [3,4,10], so only a

brief description will be presented here. Figure 4 shows the test section where

the centrifugal pump being examined is located. The impeller is mounted on the

internal balance and the entire assembly is turned by the main shaft. The main

shaft passes through an eccentrically drilled cylinder, which when rotated,

causes the impeller to whirl in a 0.0990 inch diameter circular orbit. Forces on

the impeller are sensed through strain gauges on four posts located in the

internal balance. The relationships between the strains and forces were found by
static calibration tests.

Descriptions of the impeller and one of the volutes that were tested are

given in Figures 5 and 6. The impeller (referred to as Impeller X) is a five

bladed cast bronze impeller with a specific speed of 0.57 and blade angle of

650 . The 860 spiral volute (Volute A) is constructed of fiberglass and designed

to be "well matched" with Impeller X at a flow coefficient of 0.092. The dimen-

sions of the volute cross-sections, shown in Figure 6, were used in evaluating

the integrals of Equations (14a-e).

Two modifications have been made on the test facility for the benefit of

this research. They were considered necessary in order isolate the interaction

between the impeller and the volute from external influences. The modifications
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are illustrated in Figure 7. To separate the flow in the volute from the annular

gap region, rings were installed 0.005 inch from the edge of the impeller. In

addition, the flange of the test section was removed so that the front shroud of

the impeller was exposed to the "reservoir-like" conditions of the test chamber

(see Figure 4).

The removal of the front flange of the test section was judged to be essen-

tial after pressure measurements were made in the annual gap region with the

flange in place and the rings removed. The measurements indicated that the fluid

trapped in this region was responsible for a hydrodynamic stiffness (see Equa-

tion (26)) given approximately by

:xxx1[01yx Kyyl 0.3 -1.6

J

When compared with Chamieh's [S] direct measurements of the total hydrodynamic

stiffness on the impeller (annular gap plus volute) given approximately by

ix [0011
it is seen that the contribution from the annular gap is significant. With the

flange removed, it was anticipated that the fluid forces on the front shroud of

the impeller would be largely eliminated.

COMPARISONS BETWEEN EXPERIMENTAL AND THEORETICAL RESULTS

A preliminary step in the theoretical calculations must be the estimation

of the impeller flow path angle, 7 (see Section 2(a)). In practice, information

on the actual total head rise as a function of flowrate is almost always avail-

able; an example for Impeller X and Volute A is presented in Fig.8. By setting

_=_^_ , the flow path angle, 7, shown in Fig.9 was obtained. Note that the

typic_= magnitude of 7 is about 80" while the blade angle of Impeller X is 65°.

Measurements of the static pressure of the discharge from the impeller were

made using holes drilled at the inlet to the volute (see Figures 6 and 7). The

circumferential pressure distributions are compared with the theoretical results

in Figures 10 and 11. The pressure taps were alternately placed in the front and

back of the volute, resulting in the slight oscillation of the data. The

results were obtained for a range of shaft speeds from £ = 800 to 1200 RPM, but

the non-dimensionalized pressures were found to be independent of the speed.

Figure 10 shows that the theory gives a good approximation of the the pressure

distributions over a moderate range of flow coefficients. For flow coefficients

larger than this range, the correlation begins to falter as shown in Figure 11.

It was concluded that the deviation was caused by the inadequacy of a one dimen-

sional treatment of the flow near the tongue of the volute. At the higher

flowrates, it has been suggested [11] that there is a reversal of the direction

of flow in the region just inside the tongue. The effect on the pressure

distribution of displacing the impeller is also demonstrated in Figure 11. The

model appears to follow the changes that occur, even when the absolute pressure

predictions are rather poor.
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A comparison between the experimental and theoretical steady forces on the

impeller is given in Figure 12. One set of experimental results was obtained by

placing the impeller in four equally spaced orbit positions and then averaging
the internal balance force measurements. The second set (for d = 0.06 and 0.10)

was obtained by integration of the discharge pressure measurements. The theoret-

ical model tends to overpredict the steady or average radial forces somewhat,

but it does give reasonable results considering the crudeness of the model.

Coldir_-Jorgensen's [6] steady force calculations for a 67.50 blade ar_le

impeller in an 86 ° spiral volute are also shown in Figure 12. The present model

appears to give a more accurate assessment of the steady forces when compared

with the experimental results. The agreement between the two sets of experimen-

tal data indicates that the primary cause of the radial force is the asymmetric

pressure distribution at the discharge of the impeller. Moreover, the theoreti-

cal model predicted that the discharge pressure was responsible for 99% of the

total force on the impeller while the net momentum flux contribution was essen-

tially negligible. It might also be of interest to note that over the entire

range of flowrates for which theoretical results are presented, the predicted

perturbation in the impeller discharge flow never exceeded 6% of the mean flow.

Figure 13 presents the components of the generalized hydrodynamic force

matrix, [A], that result when the impeller whirls in an eccentric orbit at the

pump design flowrate (d = 0.092). From the experimental data, it is seen that

the cross-coupled terms (i.e. A , A_x) imply that forces act in the direction
of the whirl orbit up to _I_ = 0._. _#h_Isdestabilizing influence is predicted

by the theoretical model to occur up to _IQ = 0.14. Due to the coupled nature

of Equations (7b) and (7c), it was not possible to calculate [A] beyond the

range of whirl ratios shown in Figure 13. This problem is believed to be the

result of the current limitations of the iterative technique used in obtaining
the solution.

As was mentioned in the introduction, it is a standard practice to express

the matrix elements of [A] in powers of _. By examining the Avx term in Figure
13, it is apparent that a quadratic in e will not adequately describe the

features of the matrix element. A cubic, however, can approximate all of the [A]

matrix element variations with m giving the coefficients of such an expansion
as

[ xx xyl[ KxxcxMxx3Jxy
yx yyj Ky x _Cyy + _2My x + 3jyy

- Kxy + _Cxx + _2Mxy - _3Jxx 1

Kyy + _Cy x + _2Myy - _3jyxJ

(25)

or alternatively as

[A(to/t_)] Y =- [KI

where

y - [C] - [M] _ - [J]
(26)

x=8 coset and y=e sin_t

The [K]0 [C], and [M] matrices correspond to the stiffness, damping, and iner-

tial components that are commonly employed in rotordynamics. Since the [J]

matrix is related to the third order time derivative of the impeller displace-
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ment (which is conventionally known as the jerk), it will be referred to as the

"jerk" matrix.

The resulting [K] matrix elements of the cubic expansion are given in Fig-

ure 14, and the [C], [M], and [J] matrix elements are presented in Figure 15.

Included in Figure 14 are the stiffnesses that were calculated using the force

measurements (from the internal balance and the pressure distributions) taken at

four impeller positions. Also shown in Figure 14 are the stiffnesses predicted

by Colding-Jorgensen [6] for an 86 o spiral volute. With the exception of the K
term, the current model does a fair job of describing the variation of stiffne_

with flowrate. The magnitudes, however, tend to be underpredicted by the theory.

Over most of the range of flow coefficients, the stiffness is such that it would

encourage the whirling motion of the impeller. The same is also true of the

damping when the flowrate drops below 4 = 0.07 as shown in Figure 15. The

magnitude of the damping components computed by [6] (not shown here) were less

than 10% of those predicted by the present model. In general, the inertial

force would discourage an orbital motion of the impeller, but it will tend to

drive the impeller in the direction of the displacement. The jerk force attains

significant values only at the lower flow coefficients.

CLOSING COMMENTS

A theoretical model has been developed to describe the flow in the impeller

and the volute, along with the interactions that occur between them. This

investigation was undertaken to provide a better understanding of the

destabilizing hydrodynamic forces that have been observed [5,10] on a whirling

centrifugal pump impeller. To implement the model requires only a knowledge of

the dimensions of the volute and impeller, and the total head rise across the

entire pump. Comparisons between the predicted and experimental results are

encouraging. Experimentation with different volute geometries and over a wider

range of operating conditions (flow coefficient and whirl ratio) would provide a

more crucial test of the theoretical model. It might also prove insightfull to

incorporate the effects of inducers and diffuser vanes into the theoretical

model. These devices are now commonly employed on many high performance

centrifugal pumps.

Previous experimental results [5,10] have tended to over-estimate the

contribution of the volute/impeller interaction to the total stiffness force

acting on the impeller. The over-estimation came about because of an asymmetric

pressure distribution in the fluid trapped on the front shroud of the impeller.

Since real pumps do have fluid in this region, it will be important in the

future to perform a detailed study of this area.
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Figure 14. Hydrodynamic stiffnesses as functions of the flowrate. Experimental

results are from internal balance and pressure measurements.

Colding-Jorgensen's [6] results are for an 86 ° spiral volute with a

67.S o blade angle impeller.
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