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Project Summary

A major problem in space applications of robotics and docking of spacecraft
is the development of technology for automated precise positioning of mating com-
ponents with smooth motion and soft contact. To achieve the above objective, a
design method has been developed for optimally placing the closed-loop poles of a
discretized robotic control system at exact prescribed loctions inside the unit circle
of the complex z-plane. The design method combines the merits of the pole place-
ment and the linear quadratic design approaches. The proposed design procedure
is based on the assignment of one real eigenvalue or two complex conjugate (or real)
eigenvalues at each design step. The method involves solutions of simple algebraic
equations and thus is considered to be efficient for on-line or off-line computations.
Also, in this project, two methods for the linearization of nonlinear model of a
robotic manipulator have been presented.

Since automatic control of multi-degree freedom robotic manipulators involves
high nonlinear equations of systems, we propose a pilot project involving the control
of an one-dimensional system. This simple system can be readily implemented for
testing the concepts and algorithms. The ideas developed in this project will provide
proven principles for the development of the use of froce/torque sensors for robotic
manipulators with more than one joint.

Based on the research results in the period of January 1987 to June 1987, five
papers have been accepted for publication in the referred journals [16,17,18 |, and

presentation at the 1987 Automatic Control Conference [4p].




Current Work by the Investigators

1. Introduction

The dynamic characteristics of a linear system are influenced by the locations
of its poles. Therefore, for a system to exhibit good response, both in the transient
and steady states, it is necessary to place the closed-loop poles in desired positions.
The design of discrete optimal control systems with prescribed eigenvalues has been
studied by Solheim [1]. Solheim [1] stated that it is not, in general, possible to
determine the resultant state weighting matrix Q for the discrete-time systems. To
overcome the drawbacks, Amin [2] modified the recursive approach of Solheim |1} to
guarantee the existence of the resultant Q. Both of the procedures involves solution
of the discrete-time algebraic Riccati equation at each design step.

In this project, an optimal pole placement method is presented for the design
of computer control systems for robotic manipulators that are modeled by highly
coupled, nonlinear systems of equations. Two methods of linearization have been
considered:

(1) One is based upon feedforward cancellation of the gravity terms and piecewise
constant parameterization.

(2) The other is based upon the use of perturbation equations associated with a
nominal trajectory.

This project is organized as follows:

Section 2 contains a brief review of the equations of motion for a robotic manip-
ulator. Linearization techniques for a robotic manipulator are presented in Section

3. Finally, Section 4 presents discrete linear regulators with prescribed eigenvalues.

2 Equations of Motion
By applying either the Newton-Euler or the Lagrange’s equations, the equations

of motion for a robotic manipulator with n joints can be obtained and written in
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vector-matrix notation as

D(q)§ + h(g,4) + 9(q) = 7(t) (1)
where
T is an n X 1 vector of forces or torques applied to links,
q,4,q are n X 1 vectors representing joint positions,
velocities and accelerations,
D(q) is an n X n generalized mass matrix,
h(q,4q) is an n X 1 vector of Coriolis and centrifugal acceleration
terms, and
g(q) is an n X 1 vector representing the effects of gravity.

The effects of viscous friction acting on the links can be taken into account by

adding a term V¢ to Eq. (1) to get
D(q)§ + Vi + h(g,4) + 9(q) = 7(t) (2)

where V is an n x n diagonal matrix containing the coefficients of friction for each
joint.

We will now consider the effect of including the dynamics of the actuators.
Assume that all joints are revolute and that each joint is driven by a DC servo motor
through a gear chain. With the assumption that the armature-winding inductance
is negligible and that the DC motors are operated in their linear range, i.e., the
torque delivered by the motor is proportional to the armature-winding current by

a constant K;, the dynamic equations of the actuators can be written as
v = Kb, + RK; 7, (3a)

and

ta — 7' = J,0, + Babs (3b)
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where

v is an n X 1 vector of applied armature voltages,
Ta is an n x 1 vector of torques delivered by the DC motors,
7! is an n x 1 vector of torques applied by the links to the actuators,

0,,,5,,,5., are n x 1 vectors representing the angular positions, velocities
and accelerations of the actuators shafts,
Ja, Ba are n X n diagonal matrices representing the moment of
inertia and the viscous friction coefficients of the actuators, and
R, K, K, are n X n diagonal matrices representing the
armature-winding resistances, the back EMF constants
and the torque constants of the DC motors.

Assuming that the gear backlash is negligible, we can write

'=N;lr (4a)
0. = Nyq (4d)
6, = Nyg (4¢)
8, = N,§ (4d)

where N, is defined as an n x n constant diagonal matrix with each diagonal element
specifying the corresponding joint gear ratio.
Using Egs. (1)-(4), the dynamic equations for a robotic system including the

dynamics of the actuators can be written as

D'(g)§+V'g+h'(g,4) +9'(g) = v(t) (5a)

where
D'(q) = RK{'[NgJ, + Ng—ID(‘I)] (50)
V' = NyK + RK;{'[NyB, + N; V| (5¢)
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h'(g,4) = RK;'N; h(q,q) (5d)

and

g'(q) = RK;'N;'g(q) (Se)

3. Methods of Linearization

Two methods of linearization of a highly coupled nonlinear robotic control
system are considered. The first method is based upon the feedforward cancellation
of the gravity terms and the piecewise parameterization, while the second method is

based upon the perturbation equations associated with a given nominal trajectory.

3.1 Cancellation of Gravity Terms

For simplicity, the dynamics of the actuators are neglected; however, the method
is applicable even if the dynamic equation of the overall system including the actu-
ator is used because of the structure of that equation. Note that the Coriolis and
centrifugal term h(g,§) is a quadratic vector form of ¢ (see Raibert and Horn {3]).

Hence this term can be expressed as
h(g,4) = E(q,49)q (6)

where E(g, ¢) is defined as an n x n matrix. The dynamical equation of the robotic

system in Eq. (2) can be rewritten as
D(g)i+ [V + E(9.9)l§ = — 9(q) (7a)

or

§=-D"'(q)[V +E(g,9)l§ + D" ()7 — 9(q)] (70)

Eq. (7) can be written in the state-space representation as

£(t) = A(t)z(t) + b(t)u(t) (8a)
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where

— 0" In
Alt) = [On -D~(g)[V + E(g, d)]] (80)

B(t) = [ DP {‘( q)] (8¢)
and

zT(t) = [g7 (), 4" (t)], u(t) = r(t) - gla(t)] (8d)

The linearized dynamic equations of a robotic system can be computed at each
sampling period where the nominal trajectory is known, i.e, the joint position g¢(t)
and the velocity ¢(t) are given. Thus, the control problem can be considered as a

time-varying control problem.

Remark 1 For the implementation of a controller using this approach, a discrete-
time model should be used instead of the continuous-time model. Also, assuming
that D(q) and E(q, ) are piecewise constant, the system in Eq. (8) is a system of
type 1 with the input u(t) = 7(¢t)—g(t). Thus if the computed system parameters are
exactly the same as the true ones, the elimination of the steady state position error
will be assured by the use of state-feedback control law, but not for the position
error when the set point is a ramp input (i.e., the manipulator is programmed to
move at constant velocity). In order to eliminate such errors, integral control may

be applied.

3.2 Perturbation Equations

For simplicity, the dynamics of the actuators are omitted in the derivation of
the perturbation equations; however, the results can be easily extended to include
the actuators dynamics of the DC motors.

Suppose that the desired trajectory in the task-space (world space) of the hand

(the gripper) of a manipulator is preplanned. The corresponding trajectory includ-
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ing ¢*(t),¢*(t) and §*(t) can be precomputed as well as the nominal applied torque
7*(t) (or voltage v*(t)) required for motion along the specified trajectory.

The dynamical equations in Eq. (2) can be expressed as a sum of the nominal
equation,

D(¢*)§" + V4" +h(q*,¢") +9(¢") =7"(¢) (9)

plus a perturbation equation,
6(D§) +Vég+ 6h + bg = 67 (10)

The variations §(D§),6h, and 6g can be expressed in terms of the following linear

approximations,
§(D(g)d) = A(t)6q + B(t)d (11a)
6h(q,4) = C(t)6q + E(t)6§ (118)
bg(q) = F(t)bg (11¢)
where
aw =220, (120)
80)= 220 (125)
&) = 3ol (12¢)
E@) = %3-"9'»4' (12d)
and
F) = e (12¢)

Note that the (i,7) element of the matrix A is found as

a oYY . Dixdx
Aij = ————E"g; L LTI (13a)
)




or

Ajj

2 0D;k
= Gk )lq= - 13b
L%y, lles (13¢)

Therefore, the perturbation equations for the manipulator can be approximated as

D(t)6G + P(t)6¢ + Q(t)6g = 67 (14)
where
P(t) =V + E(t) (15a)
and
Q(t) = A(t) + C(t) + F(2) (15b)

Thus, the equivalent state-space representation of the manipulator dynamics be-

6z(t) = A(t)6=z(t) + B(t)é7(t) (16)
where
z = (61,692, +,6qn, 641,842, 6n]” (17a)
Alt) = [—Dg?é(t) _D.Ii‘}—,(t)] (170)
and
3= | o3y (17¢)

Consider the linear state-feedback control law for the system in Eq. (16) as
67(t) = —K(t)6z(t) (18a)
The total input torque becomes
T(t) =7(t) + 67(t) (180)

Note that there are several design methods available in the literature for choos-

ing the appropriate feedback gain K [4,5].
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Remark 2 An important advantage of linear state-feedback control based on the
linearized perturbation equations is that when the desired trajectory is preplanned,
the feedback gain matrix K can be computed off-line and stored in a table. On the
other hand, the parameterization approach does not require any prior knowledge of
the path, but the system parameters must be either computed on-line or stored in

a look-up table based upon segmentation of the workspace.

4 Discrete Linear Regulators with Prescribed Eigenvalues

This section deals with the design of linear discrete regulators with prescribed
eigenvalues. The discrete optimal pole placement methods have been discussed by
Solheim [6], Amin [2] and others [7]. However, these methods are based on the
solution of the algebraic discrete Riccati equation. In this section, a design method
for the synthesis of discrete optimal control systems with prescribed eigenvalues
is presented. The proposed method is based on the solution of simple algebraic
equations and thus is considered to be computationally efficient.

Consider the linear time-invariant controllable system described by
z(k + 1) = Gz(k) + Hu(k); z(0) (19a)
y(k) = Ca(k) (196)
where z(k) and u(k) are the n x 1 state and m x 1 input vectors, respectively, and
G, H and C are constant matrices of appropriate dimensions. Assume that the

system matrix G is nonsingular.

The main objective is to find a feedback control law,
u(k) = —Fz(k) (20)

which gives the closed-loop system a set of desired eigenvalues and at the same time

minimizes the quadratic performance index,

J = Y IzT()Qz() + v (i) Ru(i)] (21)

1=0




where Q and R are nonnegative and positive-definite symmetric matrices, respec-
tively.
Applying the controller in Eq. (20) to the system in Eq. (19), the closed-loop

system becomes

z(k + 1) = (G — HF)z(k) £ G.z(k) (22)

The optimal control law in Eq. (20) that minimizes the performance index in Eq.

(21) is given by

u(k) = —(R + HTPH) " 'HT PGz(k) & —Fz(k) (23a)
with
F=(R+HTPH) 'HTPG (23b)
or
F=R'HT(P~'+ HR'HT)"'G (23¢)

where the P is positive definite matrix and is obtained by solving the discrete

algebraic Riccati equation,
P=GTPG-GTPH(R+ HTPH)'HTPG +Q (23d)

The approach here is how to choose Q and R such that the closed-loop system
in Eq. (22) has a set of prescribed eigenvalues. Similar to Solheim’s method (6],
a recursive procedure is developed. Also, the technique of modifying the input
control weighting matrix R as in Amin’s method 2] is considered in order to assure
optimallity of the closed-loop system. Before presenting the new method, some

preliminary results are needed.
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Lemma 1 [2] Given a controllable system as in Eq. (19) and the performance index
in Eq. (21) with the control weighting R. Assume that j feedbacks are obtained

for j recursive optimal problems with
Gi+1=G;—HF;,, G, =G (24)
If the control weighting matrix R; satisfies the condition,
Ris1 =R+ HTPH, R, =R (25)
then the feedback control matrix,
J

F=)"F (26)

=1

is the solution of the optimal control problem with weighting matrices,

@=) Qi R=R (27)

P= i P; (28)

Lemma 2 Consider the controllable system
z(k + 1) = Gz(k) + Hu(k) (29a)

where H is a 2 X m matrix and G is a 2 X 2 matrix defined by

G= [g‘ 92] (29b)

g3 94

Then, the closed-loop system obtained by solving the optimal control problem for

a set of @ and R can be expressed as

Ge=G-HF=G-HR'HT(P"'+HR'HT)"'G 2 DG (30)
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where D is defined as the lower triangular matrix,

_[dir o
D= [ d Js] (31)
Also, if det(G.) is chosen such that
0 < det(Gc)/det(G) < 1 (32)

then, the elements of the matrix D are calculated from

det(G.) = det(D)det(G) (33a)
tr(G.) = tr(DG) (33b)

dyds = det(G.)/det(G) (33¢)
g91d1 + g2dz + g4ds = tr(G.) (33d)

with d; and d3(d; # d3) to be chosen as positive numbers less than one.

Lemma 3 Consider the system as in Lemma 2. Let a lower triangular matrix D be
defined as

_afd 0
D=Iz-Dé[d: ds] (34)

where D is obtained from Lemma 2. Then, there exists a lower triangular trans-

formation T, such that

D = T,AT;? (35a)
where
A = diag|d,, d3] (35b)
and
1 O
T, = [a ﬂ] (35¢)
with 8 # 0 and
dy
= 35d
=TT (35d)
12




Lemma 4 Consider the system as in Lemmas 2 and 3. For a given positive definite

R, there exists a P matrix such as
P=T;TA,T !

where
A= (A7 - 4))!

with A, chosen to be a diagonal matrix such that

- A A 0
HR'HT =T\ TT 27T, [ 51 M] TT

and

AzAr = A

Proof: From Egs. (30) and (34), we can write

HR'HT(P~'+ HR™'HT)' = D = T,AT; ' &£ T,A, TTT;TA, T

Therefore, we can write

HR'HT = T, A, TT

and

(P"'+HRT'HT) ' =T, TA T,
The right hand side of Eq. (37b) can be rewritten as

Ar1 Ar1 ]

T _
T‘APT‘ - l:'\rla '\rla2 + A1'2ﬂ2

Let

HR-'HT 2 [f‘ F’]
F2 f3

Solving for a,8,A,; and A,; from Egs. (37d) and (37e), we get

72 det(HR-'HT)

A1 =F1, a=—, Af=
rl 1y Fl, r2ﬂ 1

13
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Furthermore, using Eqgs. (37a), (37b) and (37c), we get
P=T TAT! (37¢)
with A, given by Eq. (36b) and T, given by Eq. (35c).

Lemma 5 Consider the system as in Lemmas 2 and 3. Also, consider the similarity

transformation matrix Ty given by

[ta —t2
T- 4 ] (380)
Let
HR'HT = | "2| poigp-igTr;T 2 |fi (38b)
ro rg{’ d d f2 f3
Also, let
é¢=T;ler, 2 [& ‘:’2] 38¢
d ¢ [93 94 (38¢)
where
1
Al te — ¢ t 38d
g1 det(Ta) [911t4 + gatats — ta(g2ts + gat2)] (384)
. 1 2 2
= ————(—~—gyt1t — g3t t tt 38
g2 det(Td)( gititz — gaty + gat] + gqtata) (38e)
f1 = 1 (r;tf + 2rat ts + rstg) (38f)
det(Ty)?
and
1
fo = —— |t t t tt tat 38
f2 det(Td)zls(rl 1+ r2ts) +ratity+r3 at4) ( g)

Then, for Eq. (33d) to hold and T, in Eq. (37) to exist, we choose t3 = 0, r; = 0

and t; in Eq. (38a) to satisfy the following equation,

t3 + bty + by = 0. (38h)
where
t1(rigs + raga) .
b = 381
1 ra (g‘ _ v) ( )
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and

t3lri(g: — v)]
by = 1=~ 385
2 r3(gs — v) (381)
with
_ (1 =d3)tr(G) — tr(G.)
v= 4 —d, (38k)
satisfying the following equation,
min{g1,94} < v < maz{g1,94} (38!)
Proof: Equation (33d) can be rewritten as
1 —-d3)tr(G) — tr(G
91=—ay2+( 3) r( ) ( C)é—agz-l-v (38m)
d) —ds
Using the transformation Ty, Eq. (38m) becomes
gi1=—-oajz+v (38n)
Substituting for §;,§2,a and v in Eq. (38n), Eq. (38n) can be rewritten as
tg + byt + b2 =0. (380)

with b; and b, as given by Eqgs. (38:) and (385), respectively. Note that ¢z in Eq.
(380) exists for any values of ¢; and t4 provided that v in Eq. (38k) satisfies Eq.
(381).

Theorem 1 Consider the system as in Lemmas 2, 3, 4 and 5. Let the input matrix
H has rank equal to 2. Then, there exists a lower triangular matrix D(= I, — D),
given by Lemma 2, that places the closed-loop eigenvalues at prescribed values and

causes the state weighting matrix,

Q=1;7TQT;! (39a)
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with
Q=P-GTPG+G"DTPG =P -GT(I - DT)PG (39b)

to be positive semi-definite provided that Eq. (32) holds, and the optimal control

law becomes
u(k) = —Fz(k) = ~R'HT(P~ + HR~'HT)"'Gz(k) (39¢)

with
P=1;TPT? (39a)

Proof: Using the transformation Ty, the right hand side of Eq. (37b) can be rewrit-

ten as
T _ Arl A
T,A,-T, - ['\rla ’\rlaz+’\r2ﬂ2] (40)
Let
“Aygp-1pgTpe-TA 5 A |Ff1 F2
T;,"HR™"H'T, —R—[’=2 ;3] (41)

Solving for a,8,A,1 and A,z from Egs. (40) and (41), we get

F det(R
Ai=Ff1, a= 1, A2f’= “#)‘ (42)
T T
Therefore, by using Eq. (42) and Lemma 4, P can be expressed as
det!ﬁ!u 2 _
po_" [ Heota a] (43)
Araf3? -a 1

Substituting for P from Eq. (43) and D from Eq. (35a) into Eq. (395), we get

det(R)u 2 da - det(R)d, 2 _ -
v + a —a 3 AT ) + a
- o _BgT | THa G} (a4
© /\rzﬂz{[ ‘—a 1 ] v [ "o 1 } b (449)
where

_d dg
T1-d’ "T 14,

u , G=T;'GT, (44b)
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It is seen that T4 in Eq. (44) can be chosen to satisfy Eq. (38k) and to make Q a
positive semi-definite matrix.
From Egs. (23) and (43), the optimal control law associated with R and Q in

Eq. (392a) can be written as

u(k) = —Fz(k) = —R'HT(P~' + HR'HT)"'Gz(k) (44c)

Corollary 1 Given a controllable system as in Lemma 2 with the input matrix H
having a rank of one. If d; in D is chosen as zero and d3 is chosen to satisfy Eq.
(33c), an optimal closed-loop system with prescribed eigenvalues can be obtained

provided that the closed-loop eigenavlues satisfy Eq. (32).

Proof: Since H has a rank of one, it can be transformed to the following structure,

hlxm

H= [O"‘"‘] (45a)
To assure that P is a positive definite matrix, A2 in Eq. (36b) can be written as

A; = diag|w, ;—3], for w>0 (455)

r2

Then, the corollary can be proved in a similar manner to Theorem 1.

Corollary 2 Consider the controllable system in Eq. (19) where G and H are given
as A = A\1x; and H = hyxm. Let D = d(> 0) and R > 0) and the desired closed-
loop eigenvalue be A. The closed-loop system G, has X and is optimal with respect

to R and
Q=q¢g=p-Ap>0 (46a)

provided that the closed-loop eigenvalue X is chosen such that

0<AA<1 (46b)
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Design Procedures

Consider the following controllable open-loop system described as
z(k + 1) = Gz(k) + Hu(k) (47)

Step 1:
Find a transformation marix M; such that the given system matrix G can be

converted to a block-diagonal form (8] as shown below:
M['GM, = block - diag|Gk,Gx_1,---,G1] 2 G (48a)
where each G; is either a 2 x 2 or 1 x 1 block. Also, compute
M;'H=[H],H] .- ,H]|]T& A (485)

Step 2 :
Set ¢ = 1, and initialize the feedback gain K and the matrices R;, P and Q as

shown below.

K =Omxn, Ri=R, P=0,, § =0, (49)

Step 3:
Assign the closed-loop poles to satisfy the requirements in Theorem 1 with
Riyy=R;+HTP,H (R1 = R) and compute the feedback control F; from Eq. (44c)

and the state weighting matrix Q; from Eq. (44a) using the pair (G, H;).

Step 4:
Compute
P = M T[block — diag|0p—n,, P]|M; " (50a)
Q = Q + My T|block — diag[0n—n,, Q|| M} (500)
P=P+ P (50c)
K=K+ (R+HTPH) 'HTPG (50d)

18




(50¢)

G = G — HOmx(non Fil 2 [Gf Wi ]

0 Gct’

Step 5:

Block-diagonalize the partially designed system matrix in Eq. (50b) and move
the last block of G, i.e., G¢; to the first block and accumulate the transformations

in M; = M;M; to compute the new system matrix and input matrix as

= —1A Gs O
G = M2 1G’Alz = [ (;:‘ é.] (51(1)
and
H=M"H=[HT,(H; - L;H;)T|T (51b)

The transformation M; is of the form,

L; 1 - o I
M2=[I 0], M,‘={I -L.-] (51c)

The matrix L; can be obtained by solving the following Lyapunov equation,
éiLt’"‘ LG +W; = O(n—n.')xn; (51d)

Step 6 :

Set 1t =1+ 1. If { > k, stop, else go to step 3

Project Description

Since automatic control of multi-degree freedom robotic manipulators involves
high order nonlinear equation of systems, we propose a pilot project involving the
control one-dimensional system. This simple system can be readily implemented
for testing the concepts and the algorithm.

The method to design a computer control system for the one-dimensional sim-
plified mechanical model shown in Fig. 1 is presented in this section. The control

law will be designed to position mass m; precisely adjacent to the barrier so that
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the reaction force from the wall is minimum. The mass m; represents the inertia of
the manipulator while m; represents the mass of the end effector plus that of the
object being positioned. The spring represents the compliance of the system. The
system is driven by a linear motor that is equipped with a linear optical encoder for
measurement of position. The force transmitted from the spring to mass m; will
be measured using a force/torque sensor.

The equations of motion for the mechanical system shown in Fig. 2 can be

written as

myZy + ¢z + k(zy — Iz) = u(t) (52(1)
Mmoo + cEg — k(:cl - .‘Bz) =0 fOT T2 <d (52b)
2maza =1 for zo=d (52¢)

where c is the coefficient of friction and k is the spring constant.

Considering the motor dynamics, we get

where k; is defined as the back EMF motor constant and v, is the motor input
voltage. Also,

u(t) = ket (53b)

where k; is the motor torque constant.
The idea developed in this project will provide proven principles for the devel-

opment of the use of force/torque sensors for robotic manipulators with more than

one joint.
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Figure 1 Mechanical System Representation
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Figure 2 Block Diagram Representation of the Mechanical System




Discussion

The proposed problem represents the simplification to the one-dimensional case
of precision positioning of an object. This is a pilot project to provide an investi-
gation of the use of force sensor information in closed-loop controller design. The
project will provide for the development of concepts that can be extended to general
docking and assembly operations in space. In follow-on work the problem can be
extended to the design of a control system for a multi-degree freedom manipulator
using feedback from a force/torque sensor. This feedback will be determined by
optimally placing the closed-loop poles of a discretized robotic control system at
prescribed locations.

The advantage of incorporating force/torque sensor information in the closed-
loop control design is that precise but soft positioning can be achieved in a smooth
motion without generation of large forces resulting from mating of parts of docking

operation.
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