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1. INTRODUCTION AND SUMMARY 

This  r e p o r t  summarizes work performed on JPL Contrac t  956999, 

"Development of Single-Crystal  S i l i con  D e n d r i t i c  Ribbon and High- 

Ef f i c i ency  So la r  Cells." The cont rac t  w a s  i n i t i a t e d  September 12, 1984 

and was completed on December 31, 1984. Work r epor t ed  h e r e i n  was 

completed under a "Par t ia l  Order Transfer"  from t h e  Westinghouse 

Advanced Energy Systems Divis ion  to t h e  Westinghouse Research and 

Development Center.  The bulk of t h i s  work w a s  performed a t  the  R&D 

Center ,  and t h i s  r epor t  represents  work performed both a t  t h e  R&D Center 

and a t  AESD. 

Work performed under this c o n t r a c t  was, i n  f a c t ,  a d i r e c t  

ex tens ion  of work performed under JPL Contrac t  955843. This e f f o r t  has  

continued i n t o  1985 under ye t  another c o n t r a c t  (957207). The long-range 

o b j e c t i v e s  of a l l  t hese  c o n t r a c t s  are t h e  same: t o  conduct development 

e f f o r t s  t o  achieve i n i t i a l  de l ive rab le s  of a JPL program aimed a t  

demonstrat ing t h a t  t he  s i l i c o n  d e n d r i t i c  web technology is ready f o r  

commercial use by the  end of 1986. A commercial r ead iness  goa l  involves  

improvements t o  c r y s t a l  growth furnace throughput t o  demonstrate an area 

growth rate of g r e a t e r  than 15 cm /min while  s imultaneously growing 

10 meters o r  more of ribbon under condi t ions  of continuous melt 

replenishment.  "Continuous" means t h a t  t h e  s i l i c o n  m e l t  is being 

rep len ished  a t  t h e  same r a t e  t h a t  i t  i s  being consumed by ribbon growth 

so  t h a t  t he  melt l e v e l  remains constant.  

2 

S p e c i f i c  t a s k s  of t h i s  cont rac t  No. 956999 included computer 

thermal modeling requi red  t o  def ine high-speed, low-stress ,  continuous 

growth conf igu ra t ions ;  a s tudy of convect ive e f f e c t s  i n  t h e  molten 

s i l i c o n  and growth furnace cover gas; furnace  component modi f ica t ions ;  

web q u a l i t y  assessments;  and experimental  growth a c t i v i t i e s  t o  

1 



demonstrate progress.  A s p e c i f i c  mi les tone  i d e n t i f i e d  i n  t h i s  con t r ac t  
involved demonstration of an area growth rate g r e a t e r  than 10 c m  2 /min 

whi le  s imultaneously growing 10 meters or  more of ribbon under 

condi t ions  of continuous m e l t  replenishment by the  end of 1984. 

Overal l  p rogress  toward achiev ing  increased  c r y s t a l  l engths  i n  

t h i s  as w e l l  a s  previous r e l a t e d  c o n t r a c t s  d a t i n g  from 1980 is  presented 

i n  Figure 1. C r y s t a l  l engths  of up t o  10.9 meters were achieved p r i o r  

t o  t h e  end of 1984 during growth wi th  no replenishment .  Replenished 

growth conf igura t ions  have produced c r y s t a l s  up t o  7 meters -- t h e  1984 

goa l  being 10 meters. 

Figure 2 f u r t h e r  e l a b o r a t e s  on progress  made i n  t h e  web growth 

program i n  1984 ( t h i s  con t r ac t  covering t h e  l a s t  three-month po r t ion  of 

t h e  yea r )  toward  goa ls  i n  cont inuously rep len ished  c r y s t a l  growth. The 

maximum crystal l eng th  grown i n  a m e l t  replenishment mode p r i o r  t o  March 

1984 was 2 meters; the  c r y s t a l  requi red  t h r e e  hours of growth time. 

Through the course of t h i s  program, c r y s t a l  l eng ths  have more than 

t r i p l e d ;  growth times, before  i n t e r r u p t i o n  of growth due t o  t h e  onse t  of 

thermal i n s t a b i l i t y ,  have increased  by almost a f a c t o r  of four .  

The 1984 web growth goa ls  of c r y s t a l  l eng th  and time a r e  a l s o  

presented i n  F igure  2. 

improvements t o  increased  un in te r rup ted  growth times have exceeded t h e  

goa ls .  However, c r y s t a l  p u l l  speeds have not  increased  as was hoped, 

r e s u l t i n g  i n  s h o r t e r  crystals  than pro jec ted .  

by s t r e s s e s  i n  t h e  growing c r y s t a l  t h a t  can themselves i n t e r t v p t  

growth. As a r e s u l t  of work completed on t h i s  c o n t r a c t ,  t he  primary 

focus of the 1985 Web Growth Development Program i s  being d i r e c t e d  

toward the  s o l u t i o n  of t h e  stress problem. 

A comparison w i l l  show t h a t  s t a b i l i t y  

The p u l l  speed i s  . l imited 

The o v e r a l l  s t a t u s  of t h e  Web Growth Development Program a t  t h e  

end of 1984 i s  presented i n  Table 1. 

2 
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Table 1. Web Growth Development Status -- December 1984 

a Primary Thermal Variable Identified and Fix Verified 

o Significantly Improved Thermal Isolation of Growth and Melt Regions 
Achieved 

e 6.8 m Long Ribbon Grown at 

e Replenished Web Production 

o Computer Based Data System 
Correlations 

10 m Long Crystal Grown e 

7 cm2/min Rate with Replenishment 

Equivalent, to Pre-Pilot Line Furnaces 

Being Used to Assist in Parameter 

2 
0 Additional Stress Reduction Work Required to Achieve 10 cm /min Rate 

5 



2 .  TECHNICAL PROGRESS 

2.1 Thermal Stress and Buckling Modeling 

Modeling of thermal stresses and buckling of dendritic web 

crystals during growth operations is required to define growth 
configurations capable of continuous production of high-quality ribbon 
(having suitable thickness and low stress) at increased area growth 

rates. In particular, the ultimate goal of this contract was to 

demonstrate an area growth rate of greater than 10 cm /min while 
simultaneously growing 10 meters or more of ribbon under conditions of 

continuous melt replenishment. 

2 

Experimental temperature data from elements of a state-of-the- 
art growth configuration (labeled 5460)  were used as input for initial 

modeling work. 

this contract. Previous modeling of the 5460 growth configuration has 

been performed using calculated element temperatures. The principal 
differences were that the newer cases had a much colder second lid (L2) 
and a somewhat hotter shield stack than in previous models. Results of 

the initial calculations performed using experimental temperature data 

indicated that the growth velocity increased by about 16% (compared to 
previous calculations) but that interface stress had concurrently 
increased about 40%. The far stress peak, a principal source of 
buckling, decreased by about 40%. While these results indicated the 

sensitivity of growth parameters to lid temperature changes, it was felt 
to be too drastic a change in L2 temperature. Accordingly, plans were 
made to check the temperature data for the second lid using optical 

pyrometry . 

The experiments were performed prior to initiation of 

Based on the effect of the hotter stack temperature, a modifica- 

tion of the 5460 configuration was modeled to include a vertical thermal 

6 



i 

element on the top of the normal shield stack. The calculated tempera- 

ture profile for the modified configuration indicated that the far 

stress peak should be almost eliminated. Stress calculations were 

initiated; set-up of an experimental furnace to check the results was 

also initiated. 

Difficulties were encountered in performing a stress or buckling 

configuration for the modified configuration as a result of operating 

system changes in the computers at the Westinghouse Nuclear Center where 
the WECAN code is run. To allay this problem, the temperature calcula- 

tion code was transferred from the Univac 1180 (at the Westinghouse R&D 

Center) to the Cray-1 (at the Westinghouse Nuclear Center), allowing 

direct interface with the CDC7600 that runs the WECAN stress and 

buckling programs. 

In addition, stress modeling calculations were made to investi- 
gate the effect of an asymmetric variation of temperature across the 
width of the ribbon and thus complete the investigation of lateral 

temperature variations in web crystal growth. Two cases were considered. 

In the first case, a linear variation in temperature was imposed 
across the width of the crystal. In the second case, a cubic variation 
in temperature was imposed across the width. In both cases, the 
absolute temperature difference between the centerline and the dendrites 

was ten degrees as in the previous cases. The temperature profile was 

assumed to be: 

T(x,y) = T(x)g(y) (1) 

where T(x) i s  expressed mathematically by: 

( 2 )  2 T(x) = (A/B )exp(-Bx) + Cx + D. 

In these expressions, A, B, C, and D are constants, x is the position 
along the length of the crystal measured from the solid-liquid inter- 

face, and y is measured across the ribbon width from the centerline. 

7 



and 

The y-variation of temperature functions used were: 

g(y> = 1 + .00593 (y/w) 

g(y) = [ l  + .00593(y/2)31/(1.0015). 

In these expressions, w is the ribbon half-width. 

A significant difference between the calculations performed here 
and any previous ones, at least from the point of computation time, was 
the necessity of using a full-width mesh as shown in Figure 3. The 

extraction of the first and second eigenvalues (buckling modes) 

increased the computer time approximately €our-fold over the earlier 

cases. The stresses in the case of the isotherms with a linear 

y-variation were very similar to those calculated previously in models 

in which no y-variations in temperature were considered. This should 

not be surprising since the linear y-variation in temperature would not 

change the Laplacian of the temperature. There was some change in the 

stress pattern for the cubic case with the stress increasing on one side 

and decreasing on the other. Again, this effect can be understood in 

terms of the effect of the y-variation of the temperature. 

The buckling results are somewhat more surprising. The eigen- 

values for both symmetric and antisymmetric buckling (bending and 

twisting) are given in Table 2. 

Considering that the numerical algorithm currently used for 

extracting the eigenvalues is different from that used when the flat 

isotherm case was analyzed, the small variations in the numerical values 

are insignificant. The lack of any effect from the linear y-variation 
is reasonable since the stress profiles are not affected as noted. The 

insensitivity of buckling to the cubic y-variation is more surprising 

and might be attributed to the lack of any significant net change in the 

stress across the width of the ribbon. 

a 



Figure 3. Full width WECAN mesh for buckling analysis. 
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Table 2.  Buckling Eigenvalues 

Case Eigenvalue 

Symmetric Antisymmetric 

F la t  Is0 therms 1.467 

Linear s lope  i n  y 1.448 

Cubic i n  y 1.445 

1.597 

1.568 

1.565 

These r e s u l t s  have an important  imp l i ca t ion  f o r  t h e  a c t u a l  

growth of the web ribbons i n  t h a t  t h e  asymmetry of t h e  temperature  

p r o f i l e  across  t h e  width of t he  ribbon has n e g l i g i b l e  e f f e c t  compared t o  

t h e  temperature p r o f i l e  along t h e  l eng th  of t he  r ibbon,  and f o r  any 

p o s i t i v e  or nega t ive  ne t  curva ture  of t h e  isotherms t h a t  may e x i s t .  

Analy t ica l  work was completed on t h i s  c o n t r a c t  using a " f i r s t -  

order"  approach which involved use of separate models t o  desc r ibe  

var ious  aspects  of t he  d e n d r i t i c  web growth system. 

involve temperature d i s t r i b u t i o n  i n  the  web c r y s t a l  during growth, stress 

i n  the  web c r y s t a l  r e s u l t i n g  from these  temperature d i s t r i b u t i o n s ,  f l u i d  

flow i n  the c r u c i b l e  conta in ing  the  molten s i l i c o n ,  and t h e  temperature 

d i s t r i b u t i o n  i n  t h e  molybdenum susceptor  t h a t  h e a t s  the s i l i c o n .  

Aspec t s  considered 

Figure 4 i s  a l o g i c  diagram t h a t  shows how t h e  web temperature  

and stress a n a l y s i s  are coupled i n  the  " f i r s t - o r d e r  modeling" technique. 

Table 3 summarizes t h e  most s i g n i f i c a n t  r e s u l t s  achieved i n  1984 

through the use of t h e  f i r s t - o r d e r  modeling. Conclusions concerning t h e  

continued use of t he  f i r s t - o r d e r  approach are summarized i n  Table 4. 

Based on these  resu l t s  and conclusions,  a more comprehensive 

approach has been i d e n t i f i e d  f o r  use i n  f u t u r e  programs. 

would i n t e g r a t e  e x i s t i n g  models so t h a t  a s i n g l e  model could be used f o r  

ana lyz ing  the web growth s y s t e m  (with the except ion  of t he  

s t r e s s /buck l ing  c a l c u l a t i o n s ) .  

This  approach 

The advantage would be t h a t  t h e  s y s t e m  

10 



\ 2 DEFINE IDEALIZED 
CONFIGURATION 

h 

4L 

T r  
h 
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TEMPERATURE 
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BUCKLING 

I 
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BUILD AND TEST Q 

Lid and shield 
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temper8ture 

Does conf iguration 
meet Initial specs ? 

Figure 4 .  Logic Diagram of First  Order Modeling Approach. 
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Table 3 .  Resu l t s  of F i r s t  Order Hodeling 

1. 

2. 

3. 

4. 

5 .  

Hardware developed on b a s i s  of modeling: 

a. Grows web c r y s t a l s  5 t o  6 cm wide 

b.  Grows web c r y s t a l s  a t  2 t o  3 cm/min 

[But not s imultaneously on a long-term bas i s . ]  

Model pred ic t ions  va l ida t ed  when real  s y s t e m  temperatures  are used 
f o r  boundary condi t ions .  

Model has p red ic t ed  a design f o r  simultaneous growth at W > 5 cm and 
V > 2 cm/min. 

Highest speed growth conf igu ra t ions  can produce crystals  with l a r g e  
r e s idua l  stress. 

[Residual stress genera t ion  i s  not included i n  model, but  has not 
been a problem t o  date . ]  

Simultaneous s a t i s f a c t i o n  of t he  requi red  boundary condi t ions  f o r  
web temperature and m e l t  temperature  can be complex. 

Table 4 .  Calcu la t ions  Based on F i r s t  Order Modeling 

1. I n t e r a c t i o n s  of system elements i s  becoming more important  with more 
advanced sys tems.  

2. A more comprehensive a n a l y t i c a l  model is requi red  €o r  guidance i n  
t h e  in t eg ra t ed  design of growth systems. 

3.  The s ign i f i cance  of r e s i d u a l  stress i s  not ye t  determined. 

i n t e r a c t i o n s  could be r e a d i l y  eva lua ted  and t h e  des ign  and eva lua t ion  

process  speeded up. Add i t iona l ly ,  t he  more complete model would al low 

c a l c u l a t i o n  of t he  e f f e c t s  of s y s t e m  changes t h a t  are p r e s e n t l y  

a c c e s s i b l e  only by time-consuming experimental  i t e r a t i o n s .  A l o g i c  

diagram of the  advanced modeling concept i s  shown i n  Figure 5. 

The three-s tep procedure used i n  t h i s  program t o  analyze stress 

and buckling i n  growing d e n d r i t i c  web is o u t l i n e d  i n  Table 5. The 

12 



INTERPRET 
ELASTIC 
WDEL 

or 
INCLUDE 
PLASTICITY 
I N  STRESS 
XODEL 
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r 
DESIGN/HODEL 

Idealized 
Con f igur a t ion 
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BUILD AVD TEST L-;7 

1 

Similar 'to First 
Order modeling 

Wey uoe f i n i t e  
element web temp- . 
crature model 

MODEL/PREDICT TOTAL 
SYSTEM INTERACTIONS 

b 

3-D System Model 
for temperature 

Fluid flow i n  melt 

Measure system 
tempera tures 

Measure residual 
s t res s  i n  web; does 
i t  exceed acceptable 
values 

Figure 5. Logic diagram of advanced modeling approach. 

13 



Table 5. Three-Step Procedure for Analyzing Silicon Ribbon 

0 Step 1 -- Determining Temperature Profile 
0 Step 2 -- Performing Thermal Stress Analysis Using Temperature 

Profile Obtained From Step 1 

[KI{A) = {F) 

{ a }  = [EI[Dl{A) 

0 Step 3 -- Performing Buckling Analysis 
[Kl(A) = XIKsl{A) 

X < 1 buckled 
X > 1 not buckled 

stress analysis is completed using the Westinghouse "WECAN" computer 

model. Basic capabilities of the model are summarized in Table 6 .  

Figures 6 and 7 show the two- and three-dimensional element mesh 
capabilities, respectively, of the WECAN code. 

Effects of asymmetric temperature variations in the y-direction 
(across the width) of the growing web were analyzed using the WECAN 

model. The two temperature variations imposed for this analysis are 
listed in Table 7. Computer-printed stress contours associated with the 

linear temperature variation are shown in Figure 8 .  These results are 

essentially identical to stress contours calculated in a previous 

program using flat isotherms. 

Stress contours calculated using the asymmetric cubic 
temperature variation are shown in Figure 9. The asymmetry of the cubic 
contours is evident in the figure. Surprisingly, the critical buckling 
conditions were unaffected by the y-direction temperature profiles 
imposed across the width of the web. 

The calculated ribbon shapes for the symmetric and asymmetric 
temperature variations are shown in Figures 10 and 11, respectively. 
Again, critical buckling shapes are essentially identical to those f o r  

the flat isotherm case. 
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Table 6 .  WECAN Analysis Capabilities 

Static Analysis 

Elastic 
Inelastic (Plasticity and Creep) 

Large Deformation Prebuckling Analysis 

Thermal and Flow Analysis 
Steady State and Transient Heat Conduction Analysis 

Steady State Flow Analysis 
Other Field Problems (Electromagnetic, etc.) 

Dynamic Analysis 

Harmonic Response Analysis 

Nonlinear Transient Dynamic Analysis 

Linear Buckling Analysis 

Figure 6 .  WECAN variable spacing finite element mesh. 
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Y 

Figure 7. WECAN three-dimensional finite element mesh. 

2.2 Liquid Convection and Heat-Transfer Modeling 

The purpose of this task was to develop a quantitative 
understanding of convection and heat transfer in the liquid pool of 

silicon during dendritic web growth, with the ultimate objective of 

aiding both process optimization and the evolution of an optimal design. 
Work on this task was performed under subcontract to Cambridge Materials 

Modeling Group (CMMG) directed by Prof. Julian Szekely. Most of the 

work was performed by N. El-Kaddah of CMMG. 
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Table 7. Y-Direction Web Temperature Variation 

T(X,Y) = TM ( X )  # F(Y) 

WHERE 

TM(X) = (A/B##:2) # EXP (-BX) + CX + D 

F(Y) = 1 + C1 # (Y/W) + C3 # ( Y / W )  ##3 

CASE 1 - LINEAR VARIATION (C3=0) 

A = 3000, B = 5, C -86.5 AND D = 1565 

THIS IMPLIES THAT TM(0) = 1685 AND TM(10) = 700. 

C1 = 0.00593 WHICH IMPLIES THAT T(0 ,  1.975) - T(0, 0) = 10 

CASE 2 - CUBIC VARIATION (C1-0) 

A, B, C AND D ARE SAME AS CASE 1. 

C3 = 0.0593 WHICH IMPLIES THAT T(0, 1.975) - T(0, 0 )  = 10 

The domain of interest of this work is sketched in Figure 12. 

The walls of the crucible are heated while a thin film of silicon 
monocrystal (dendritic web) is being withdrawn, as also illustrated in 

the sketch. 

The objective of this analysis was to define convection within 

the liquid pool. This convection plays an important role in affecting 

the temperature field and its stability in the vicinity of the dendrites 

at the leading edge of the solid film, as the crystal is being withdrawn. 
This analysis was intended to lead to an understanding of techniques 
required to increase both the film withdrawal speed and the film width 
while minimizing convection in the molten silicon, 

In the initial phase of the convection modeling work it was 

suggested that the most critical temperature distribution was probably 
in the cross section of the melt normal to the plane of the web crystal, 

17 
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Note: Coordinate 
system i s  d i f f e r e n t  
than t h a t  used i n  
stress a n a l y s i s .  

F igu re  1 2 .  Sketch of t h e  growth r e g i o n  i n  a d e n d r i t i c  web furnace.  
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and a hypo the t i ca l ,  but reasonable ,  temperature  f i e l d  w a s  s e l e c t e d  f o r  

t h i s  region. Using t h i s  f i e l d  as the input  d a t a ,  Szekely and El-Kaddah 

ca l cu la t ed  the f l u i d  flow i n  t h e  s i l i c o n  melt. A t y p i c a l  example is 

shown i n  Figure 13, where the  temperature f i e l d  is shown a t  t he  top  of 

the  f i g u r e .  I n  the  p a r t i c u l a r  case i l l u s t r a t e d ,  a melt depth of 0.9 cm 

was assumed. A similar c a l c u l a t i o n  was made f o r  a m e l t  depth of 0.7 

cm. The c o n t r a s t  between the  two cases  was s t r i k i n g .  The 0.2 c m  

reduct ion  i n  m e l t  depth r e s u l t e d  i n  a decrease i n  t h e  maximum flow 

v e l o c i t y  by a f a c t o r  of two. This change is i n  q u a l i t a t i v e  agreement 

with the  experimental  observa t ion  tha t  reducing the  m e l t  he igh t  by a 

millimeter OK so g r e a t l y  improves the s t a b i l i t y  of web growth. 

Paramet r ic  v a r i a t i o n s  were then s tud ied  t o  provide a b a s i s  f o r  

poss ib l e  f u t u r e  c r u c i b l e  designs.  Parameters s e l e c t e d  f o r  eva lua t ion  

were c r u c i b l e  width,  l eng th ,  and temperature asymmetry. In  a d d i t i o n ,  a 

d i f f e r e n t  temperature p r o f i l e ,  ca lcu la ted  from a two-dimensional WECAN 

model of t he  growth system, was provided as input  f o r  eva lua t ion .  

Although t h i s  temperature f i e l d  was q u a l i t a t i v e l y  s i m i l a r  t o  the  one 

used f o r  t h e  i n i t i a l  f low c a l c u l a t i o n s ,  i t  w a s  q u a n t i t a t i v e l y  d i f f e r e n t  

such that r e s u l t i n g  flow p a t t e r n s  would g ive  some i n d i c a t i o n  of t h e  

s e n s i t i v i t y  of the  system t o  t h e  d e t a i l s  of t h e  temperature f i e l d .  

The two-dimensional mesh shown i n  Figure 14 was used t o  

c a l c u l a t e  t he  temperature f i e l d  i n  t h e  whole furnace  system (a l though 

t h e  m e l t  was, of course,  t he  region of p a r t i c u l a r  i n t e r e s t  i n  t h i s  

a n a l y s i s ) .  For s i m p l i c i t y ,  r a d i a t i o n  connect ions between elements a r e  

not  shown i n  the  f igu re .  Input  data  f o r  t h e  i n i t i a l  e x e r c i s e  of t h e  

model was the  measured temperature p r o f i l e  shown i n  Figure 15. The 

r e s u l t i n g  melt temperature d i s t r i b u t i o n  is shown i n  Figure 16. 

The second case run with the model was a parametric v a r i a t i o n  i n  

which the  emis s iv i ty  of t h e  s i l i c o n  m e l t  and t h e  molybdenum s u r f a c e  

elements  were increased  by 50%, i.e., from 0.2 t o  0.3. The same 

temperature  p r o f i l e  (Figure 15)  was used as t h e  input  d a t a  f o r  the 

second run. The r e s u l t i n g  m e l t  temperature d i s t r i b u t i o n  i s  shown i n  
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a 9 n Melt Deep Silicon Melt 

Figure 13. Calculated temperature and velocity fields in a silicon 
melt (from Szekely and EL-Kaddah). 
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Note: Radia t ion  l i n k s  are 
n o t  shown. 

Figure 14. Finite element mesh for analysis of web growth system. 
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Figure 15. Temperature profile used a s  input data for finite 
element analysis. 
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'* 1 

Figure 16. Isotherms i n  s i l i c o n  melt r e s u l t i n g  from temperature input  
of Figure 15 when E = 0.2. 
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Figure 17. Isotherms in silicon melt resulting from temperature input 
of Figure 15 when E = 0.3. 
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Figure 17. The temperature grad ien ts  increased  approximately i n  

propor t ion  t o  the  emis s iv i ty  change. Based on experimental  m e l t  

temperature  da t a ,  i t  appeared tha t  an in t e rmed ia t e  emis s iv i ty  would be 

more appropr i a t e  t o  the  phys ica l  s i t u a t i o n .  

An a d d i t i o n a l  case was run us ing  the  two-dimensional model, but 

changing the  power input  d i s t r i b u t i o n .  In  the  f i r s t  two cases, t h e  

power input  va r i ed  along the  wall of t h e  suscep to r  i n  such a way as t o  

c r e a t e  t h e  s p e c i f i e d  temperature d i s t r i b u t i o n .  In  the  t h i r d  case, a 

uniform power input  was assumed along t h e  suscep to r  w a l l  and ad jus t ed  i n  

magnitude t o  g ive  t h e  proper temperature a t  the  c e n t e r l i n e .  Some 

changes occurred i n  the  temperature d i s t r i b u t i o n  r e l a t i v e  t o  the  f i r s t  

case, but they were less dramatic than those  r e s u l t i n g  from the  change 

i n  emis s iv i ty .  

F i n a l l y ,  a parametric study on t h e  e f f e c t  of c r u c i b l e  l eng th  and 

temperature  on t h e  convect ive flow i n  the  s i l i c o n  m e l t  was performed by 

Profs .  Szekely and El-Kaddah. Crucible length  is measured i n  the  x- 

d i r e c t i o n  of the  ske tch  shown previously i n  Figure 12. The var ious  

cases examined i n  t h i s  s tudy are shown schemat ica i iy  i n  Figure i 8 .  The 

f i r s t  group of cases was formulated t o  show the  e f f e c t  of the  c r u c i b l e  

dimensions; t he  second group was formulated t o  i n v e s t i g a t e  temperature 

e f f e c t s ;  t h e  t h i r d  case  i l l u s t r a t e s  t h e  e f f e c t  of f ront /back temperature  

asymmetry i n  t h e  m e l t  ( across  the width of t he  c r u i b l e ) ;  and t h e  f o u r t h  

case is  a r ep resen ta t ion  of t he  side-to-side temperature  p r o f i l e  i n  the  

c ruc ib l e .  The c e n t e r l i n e s  shown i n  F igure  18 are the  pos i t i ons  where 

the  seed f i r s t  con tac t s  t he  molten s i l i c o n  ( t h e o r e t i c a l l y )  during t h e  

i n i t i a t i o n  of crystal  growth. 

The r e s u l t s  of t hese  c a l c u l a t i o n s  can be summarized as fol lows:  

1. For a given temperature d i f f e r e n c e  between t h e  c e n t e r  and 
f r o n t  ( o r  back) of t he  c r u c i b l e ,  t h e  maximum f l u i d  
v e l o c i t y  decreases  with inc reas ing  c r u c i b l e  length .  

2. For a given cruc ib le  l eng th ,  t h e  maximum f l u i d  v e l o c i t y  
inc reases  with increas ing  temperature  d i f f e r e n c e .  
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These two resul ts  can be combined t o  conclude t h a t  t h e  f l u i d  flow 

depends on the temperature grad ien t ,  Furthermore,  t he  r e s u l t s  i n d i c a t e  

t h a t  i t  is  the f ront-to-back temperature g rad ien t  r a t h e r  than the  

v e r t i c a l  temperature g rad ien t  t h a t  dominates convect ive f l u i d  flow i n  

t h e  molten s i l i c o n .  

The r e s u l t s  i n  case 111, the asymmetric g r a d i e n t ,  were of 

p a r t i c u l a r  i n t e r e s t .  The two-degree asymmetry r e s u l t e d  i n  a s h i f t  i n  

t h e  temperature c e n t e r l i n e  of about 0.7 mm whi le  s h i f t i n g  t h e  c e n t e r  of 

t he  flow p a t t e r n  by about 5 mm. As a r e s u l t ,  a web crystal  growing i n  

t h e  cen te r  of t h e  m e l t  would be only s l i g h t l y  away from the  proper 

thermal p o s i t i o n  but would be i n  a l o c a t i o n  of high f l u i d  flow, where 

d e l e t e r i o u s  thermal f l u c t u a t i o n s  could occur.  Thus i t  is  important t o  

o b t a i n  a good front-back thermal 'ba lance  i n  web growth systems. 

I n  case I V ,  t h e  approximation t o  the s ide- to-s ide temperature 

d i s t r i b u t i o n ,  t he  r e s u l t s  were not so dramatic  but  s t i l l  of cons iderable  

i n t e r e s t .  A s  would be expected,  when the  f l a t  temperature  p r o f i l e  is 

induced over t he  c e n t r a l  region of t h e  c r u c i b l e ,  t he re  is e s s e n t i a l l y  no 

la te ra l  flow i n  t h i s  region. This l ack  of lateral  flow g ives  more 

v e r a c i t y  to  the  flow p a t t e r n s  ca l cu la t ed  i n  Cases I through 111, s i n c e  

those  flow p a t t e r n s  would not  be d i s t o r t e d  by flow a t  r i g h t  angles  ( i n  

the  front-to-back d i r e c t i o n  i n  the c r u c i b l e ) .  Perhaps more i n t e r e s t i n g ,  

however, was the  observa t ion  t h a t  t he  l a te ra l  flow produced by the  

l a te ra l  temperature g rad ien t  extended f o r  a cons iderable  d i s t ance  i n t o  

t h e  f l a t  temperature region. This would suggest  t h a t  f l a t  temperature  

p r o f i l e s  i n  a melt should extend well beyond t h e  a c t u a l  reg ion  of web 

growth t o  avoid s i g n i f i c a n t  flow under t h e  growing t i p s  of t h e  bounding 

dendr i t e s .  

2 . 3  Web Qual i ty  Analysis  

The primary goal  of t h e  mater ia l  eva lua t ion  a c t i v i t y  i n  t h e  web 

growth program was t o  re la te  the  web q u a l i t y ,  p r imar i ly  r e s i d u a l  stress 

and d i s l o c a t i o n  dens i ty  d i s t r i b u t i o n ,  t o  the  growth conf igu ra t ion  and 
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growth conditions. Web structure evaluation techniques are compiled in 

Table 8. The technique for experimental evaluation of residual stress 

in a web crystal is depicted in Figure 19. 

Table 8. Web Structure Evaluation/Techniques 

PARAMETER MEASUREMENT TECHNIQUE 

1. Residual Stress Web Split Width Measurements 

2. Dislocation Density Etch Pit Counting 
3. Defect Type, Distribution X-Ray Topography 

and Structure 

A8 Grown 
Web 

Split 

Fit Split Width (Y) to Expression 

Y=aO+al  x + a #  

Residual Stress 

4 

Figure 19. Web residual stress measurement technique. 
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The i n i t i a l  a c t i v i t y  on t h i s  t a sk  under t h i s  c o n t r a c t  involved 

organizing e x i s t i n g  e t ch  p i t  dens i ty  (EPD) da t a  from c r y s t a l s  grown i n  

t he  two p r i n c i p a l  growth conf igura t ions  being used f o r  product ion and 

development: t h e  5435 and t h e  J460L. 

Residual  stress measurement d a t a  f o r  t hese  conf igu ra t ions  are 

presented i n  Figure 20. Figure 21 p re sen t s  s imilar  stress measurements 

a long wi th  a comparison of the  average e t c h  p i t  dens i ty  as a func t ion  of 

p o s i t i o n  along t h e  l eng th  of the  web f o r  two c r y s t a l s ,  each from t h e  

5435 and the  J460L conf igura t ions .  Here i t  can be seen t h a t  i n  gene ra l  

t he  EPD f o r  t h e  5435 conf igu ra t ion  i s  four  t o  t e n  times l a r g e r  than t h e  

EPD f o r  t he  J460L conf igura t ion .  

i nc reases  a long the  length  of t h e  c r y s t a l .  I n  one of t h e  J460L 

Fur the r ,  t h e  EPD f o r  t h e  5435 material 

cv 
E 
u 
4 z 
E 
Y) 

L 

vi 
tl: 
C 

I I 1 I I I 

70 - 

60- 

- 
- 
- 
- 

0 2028-12 (Fed) - 
m 

- 
- ----------------- 

I 
0 600 

Position. cm 

Figure  20. Measured r e s i d u a l  s t r e s s  as a func t ion  of length  along 
var ious c r y s t a l s  grown i n  J460L and 5435 conf igu ra t ions .  
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c r y s t a l s ,  t h e r e  i s  an i n i t i a l  peak i n  t h e  EPD; however, t h i s  is followed 

by a decrease t o  a r e l a t i v e l y  constant l e v e l .  

The r e l a t i o n s h i p  between the EPD and the  r e s i d u a l  stress can be 

The inc rease  wi th  l eng th  of t h e  seen from da ta  presented i n  F igure  21. 

EPD f o r  the  5435 material is r e f l e c t e d  i n  t h e  r e s i d u a l  stress d a t a  f o r  

t he  material, although t h e  experimental  scat ter  would make a s t r i c t l y  

f u n c t i o n a l  r e l a t i o n s h i p  r a t h e r  vague. I n  t h e  case of t he  J460L 

material, the  i n i t i a l  peak of the  EPD is echoed by an i n i t i a l  peak i n  

t h e  r e s i d u a l  stress value;  t h e  r e l a t i v e l y  small o v e r a l l  va lue  of t he  EPD 

is  cons i s t en t  wi th  the  small values of t he  r e s i d u a l  stress. 

Topographic s t u d i e s  of specimens from t h i s  material show t h a t  

EPD and stress values  are genera l ly  c o n s i s t e n t  with t h e  s l i p  sys t ems  

v i s i b l e  i n  t h e  specimens. Addi t iona l ly ,  t he re  are the  t y p i c a l  

d i s l o c a t i o n  l i n e s  running along the l eng th  of t h e  samples. The e f f e c t  

of t hese  d i s l o c a t i o n s  on stress and on t h e  e l e c t r i c a l  p r o p e r t i e s  of t h e  

m a t e r i a l  is s t i l l  not known. 

i n  l a te  September and October of 1984, crystal  sampling from the  

development furnaces  w a s  begun on a r o u t i n e  bas i s .  The i n i t i a l  sampling 

p l an  used is  l i s t e d  i n  Table 9. The EPD and stress d a t a  c o l l e c t e d  f o r  

t he  month of October a r e  given i n  Table 10. It is important  t o  no te  

t h a t  the J and R furnaces  had long susceptor  systems with s loped w a l l  

c r u c i b l e s ,  while the  N and 2 furnaces  had normal length  suscep to r s  w i th  

s loped  wall c r u c i b l e s  ( a l l  susceptors  and work c o i l s  were r ec t angu la r ) .  

Also, a l l  the runs were continuously rep len ished  during crystal  growth 

t o  maintain constant  melt l e v e l .  A l l  t h e  l i d s  and s h i e l d s  were 

v a r i a t i o n s  of the bas i c  5460 design which were designed t o  produce low- 

stress material. 

With some except ions ,  f o r  example Run R470, t h e  d a t a  i n  Table 10 

ind ica t ed  t h a t  t he  average EPD i n  the  most recent  runs w a s  l a r g e r  t han  

observed i n  crystals  grown from e a r l i e r  susceptor  designs.  I n  a d d i t i o n ,  

t he  r e s i d u a l  stresses were a l s o  l a r g e r  and tended t o  be nega t ive .  Based 

on these  l imi t ed  i n i t i a l  da t a ,  the r e s u l t s  tended t o  i n d i c a t e  t h a t  t h e r e  
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Table 9. C r y s t a l  Sampling Protocol  

Sample Se lec t ion :  From a l l  c r y s t a l s  grown g r e a t e r  than 3 m long: 

a. Button end of c r y s t a l  

b. 33 c m  s e c t i o n  from end of each succeeding meter 

c. Any o the r  samples as determined by engineer  

Data Requirements: For samples provided a s  above, provide: 

a. To ta l  C r y s t a l  Length 

b. Growth Veloc i ty  

c. Melt Undercooling 

d. Melt Height 

e. Work Coil  S e t t i n g s  

had been a change i n  the  temperature d i s t r i b u t i o n  i n  the  l i d s  and 

s h i e l d s  as the r e s u l t  of t he  use of r ec t angu la r  susceptors  and s loped 

w a l l  c ruc ib les .  Note, however, t h a t  t h e  stresses and EPDs were s t i l l  

much smaller  than similar da ta  f o r  t he  5435 c r y s t a l s .  

During t h e  months of October and November of 1984, a l l  the  

development furnaces  were converted t o  sloped-wall  systems of some 

na tu re ;  a t  t h e  end of t he  per iod ,  only t h e  N furnace had a s h o r t  

susceptor .  The focus of the  web q u a l i t y  a n a l y s i s  i n  November was t o  

assess whether t h e s e  system changes had any s i g n i f i c a n t  e f f e c t s  on t h e  

q u a l i t y  of t he  r ibbon c r y s t a l s .  I n i t i a l l y ,  the  e t ch  p i t  d e n s i t i e s  and 

stresses for  t h e  J460L conf igu ra t ion  i n  t h e  long susceptor  system were 

l a r g e r  than f o r  t h e  same conf igu ra t ion  us ing  t h e  s h o r t  susceptor .  

Adjustment of t he  system temperatures ,  f o r  example by c o i l  p o s i t i o n ,  

brought the r e s i d u a l  stress and e t c h  p i t  d e n s i t i e s  back t o  va lues  

comparable t o  t h e  s h o r t  susceptor  cases, e.g., f10 Mdyn/cm2 and less 

than  6000 p i t s / c m 2  as shown i n  Table 11. 

A sys temat ic  eva lua t ion  of e t ch  p i t  dens i ty  as a func t ion  of 

ribbon length was made f o r  a number of long c r y s t a l s  grown i n  e i t h e r  t h e  

R o r  Z furnaces.  P r i o r  t o  adjustment of t he  system temperature ,  f o r  
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Table 10. Stress and Etch Pit Density Data From Web Grown 
with 5460 Design Variations (October Data) 

-~ 

Run-Crystal-Sample 

5535-1 - 1 
5535-1-4 
5535-1-6 
5535-1 -7 
5539-1-3 
5539-2-3 
5539-8-B 
5539-8-4 
N113-2-A 
N113-2-5 
N117-1-B 
N117-1-4 
2045-5-5 
R4 6 8- 1 O-A 

R4 68- 10-3 
R469-2-2 
R469-2-5 
R470-1-3 
R4 70-4- 1 
R4 7 0-4-4 
R4 7 0-4 - 7 
R4 7 0-7 - 1 
R470-7-5 
R470-9-5 

Etch Pit Density 

1.2 lo3 cm-2 
5 e 8  

10.9 
114 .O 

18.4 
23.9 

0.55 
12.5 
0.7 
3.7 
6.6 
12.5 
1.1 
0.3 
5 .O 

5.6 
1.8 
0.7 
0.6 
0.9 
4.6 
1.5 
10.4 
3 .O 

Stress 

2.3 Mdyn/cm 

9.5 

2 

-36.9 

-0.2 

-13.0 

-46.9 
-5.7 

-4.7 

6.0 
-9.7 

2.5 
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Table 11. Etch P i t  Dens i t i e s  and Residual  S t r e s s  from Web Grown 
Afte r  System Adjustments (November Data) 

Run NO. 

R461 
R465 

R407 

R473 

R473 

R474 

R474 
R474 

R474 
R474 

R475 

2047 

Z048 

2049 

2049 
N117 
N118 
N119 

5539 
5539 

Crystal. 
Piece NO. 

1.3 
1 .B 
1.3 
1.7 
3.1 
3.9 
3.11 
1.3 
1.5 
6.2 
6.7 
6.11 
4.D 
4.3 
5.1 
6.1 
6.4 
8.9 
10.A 
10.1 
10.3 
10.7 
1.1 
1.6 
1.1 
1.6 
3.1 
3.8 
3.14 
4.1 
4.5 
4.8 
4.11 
4.14 
4.17 
7.16 
17.2 
1.1 
2.1 
2.5 
1.3 
2.1 

EPD x10' 

1.5 

4.33 
3.79 

.825 

.917 
18.6 
52.2 
2.76 
8.6 
3.2 
1 .ll 
1.5 
1.82 

2.2. 
4.0 
31.9 

.572 

.628 

.458 

.484 
,471 
.275 

12.9 

10.9 
4.03 

4.99 
1.44 
2.54 
1.415 
A12 
.903 

1.073 
1.336 
.864 

4.03 
7.7. 

5.62 

4.52 
18.4 

Residual Stress 
2, ( Hdy n / cm 

-23.41 

8.54 

12.0 
14.7 

7.12 

1.57 

+44.5 

3.09 

15.18 
7.79 

-8.48 
43.08 
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example in run R-467, etch pit densities exceeded 15,000 pits/cm2 and 

increased along the ribbon length. From later runs, for example runs 

K-470, R-473, R-474, 2-048, and 2-049, etch pit densities are small and 

essentially constant along the ribbon length (Figure 22). For several 
of the ribbons, etch pit densities range from only 500 to 1500 pits/cm 2 

along many meters of crystals. This suggested that with the proper 

thermal configuration of the web growth system, long lengths of high- 

quality web crystals could be grown. 

Average stress and etch pit density data measured on crystals 

grown in sequential runs on the R furnace are presented in Figure 2 3 .  

These runs were conducted immediately after introducing the long (10") 

susceptor into the furnace. The data show a temporary increase in defect 

density initially after the modification, but the defect densities were 

substantially reduced by incorporating various system adjustments. 

2 . 4  Experimental Web Growth 

The objectives of the experimental effort conducted with the 

developmental furnaces were to investigate high throughput growth using 

advanced furnace concepts and t o  demonstrate the ability to grow long 

crystals while operating in a steady-state replenishment mode. 

This task included the modification and development of existing 

web growth furnaces to attain higher area throughput rates. Also, 
improved melt replenishment techniques were devised to attain long-term 

continuous operation. Growth parameters were optimized by conducting 

tests and analyzing experimental growth characteristics. Figure 24 

shows the experimental variations that are addressed for a typical 

growth configuration. 

The initial phase of the experimental growth program was devoted 

to converting all four developmental furnaces to a rectangular sloped- 

wall crucible configuration. Work performed under a previous contract 
indicated that better temperature stability and improved isolation of 
the growth and replenishment region of the melt are achieved using the 

3 9  



0 - T  

40 



c 
c 
c 
C 

c 

I 
0 
'2' 

4 ad3 
+ ss3us 

M 
h a 

0 
h e 

00 
CD 
3 

L 

.. 

0 

41 

v) 
rl a 
U 
v) 
h 
Lc 
V 

aJ 
V 
(d 

3 
u4 

e 

Lc 
0 

W 

a 
9) 
&l 
3 
v) 
(d 
0) 

h 
U 
.d 
v) 

Q 

U 
d a 

a 

$ 

5 
U 
9) 

a e 
(d 

v) 
v) 
9) 
Lc 
U 
v) 

9) 
M 
(d 
I-r 
9) z . 
cc) 
h) 

aJ 
& 
3 
M 
-4 a 



THERMAL REF1 NEMENTS 

I BASE L I D  SUSCEPTOR 
CONFIGURATION NODI F I  CATIONS GEOMETRY 

BASE 

N l  

/ 
SUSCEPTOR SHIELDS PLACEMENT 

SUSCEPTOR SHIELDS DESIGN - - / 

4 COIL Ab!P END SHIELD POSITIONS - - 3460L 
/ 

SUSCEPTOR SHIELDS DESIGN 7 
/ - LONG - CRUCIBLE DESIGN ~' M5 M6 \ INSTRUMENTATION 

/ - TOP SHIELD SPACING 1 

w4 COIL AND END SHIELD POSITIONSC \ 

Figure 24 .  Experimental variations addressed in t y p i c a l  growth hardware 
modifications. 
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r ec t angu la r  sloped-wall conf igura t ion .  Work performed under t h i s  

con t r ac t  v e r i f i e d  the  improvement. 

I n  September 1984, 16 growth runs were made i n  the four  p r i m a r y  

web growth development furnaces ,  a l l  wi th  continuous m e l t  replenishment.  

A growth run c o n s i s t s  of furnace set-up comprising many c r y s t a l  s tar ts  

and l a s t i n g  up t o  a f u l l  week of operat ion.  

The main e f f o r t  during September was aimed a t  obta in ing  

acceptab le  p r o f i l e s  i n  t h e  m e l t  f o r  the  two s i z e s  of rec tangular  growth 

systems. A s  might be expected,  the suscep to r  s h i e l d i n g  requirements 

were found t o  be somewhat d i f f e r e n t  from those i n  t h e  oval  growth 

sys t ems  previous ly  used f o r  web growth. 

A l l  of t h e  growth conf igura t ions  used during September were 

v a r i a t i o n s  of t h e  J460L. P r i n c i p a l  v a r i a t i o n s  inc luded  changes i n  the  

l i d  growth s l o t  region and i n  t h e  top s h i e l d  spacing.  These v a r i a t i o n s  

were introduced pr imar i ly  t o  reduce t h e  y and x stresses i n  the  growing 

web, In  a d d i t i o n ,  a v e r t i c a l  thermal element was added i n  one run i n  

the  N furnace ,  y i e l d i n g  some improvement i n  buckl ing stress over t h e  

base l ine  conf igu ra t ion ,  a l though t h e  r e s u l t s  have not yet  been f u l l y  

eva lua ted .  

Systematic  run-to-run changes were also made i n  susceptor  

s h i e l d i n g  t o  improve t h e  l a t e ra l  temperature d i s t r i b u t i o n  i n  the  melt. 

Post-run examination showed t h a t  i n  all cases  the  sloped-wall c r u c i b l e  

was i n  t i g h t  contac t  with t h e  susceptor  c a v i t y ,  so t h a t  a s i g n i f i c a n t  

improvement i n  t h e  uniformity and r e p r o d u c i b i l i t y  of hea t  t r a n s f e r  t o  

the  m e l t  was achieved by conversion t o  t h e  r ec t angu la r  sloped-wall  

growth sys tems.  

The f i r s t  t h ree  runs i n  the R furnace  with t h e  new extended 

growth system produced very encouraging r e s u l t s .  A t o t a l  of 70 meters 

of c r y s t a l s  over 1 meter long were grown with continuous m e l t  r ep len ish-  

ment. Widths reached 4.8 cm. Growth problems a t t r i b u t a b l e  t o  m e l t  

replenishment were s i g n i f i c a n t l y  reduced from previous experience.  

purpose of these  runs w a s  t o  sys t ema t i ca l ly  move from a J460L 

The 
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conf igura t ion  t o  the  lower stress J483L conf igu ra t ion ,  while making 

appropr i a t e  adjustments i n  the  susceptor  sh i e ld ing  t o  preserve  an 

accep tab le  temperature d i s t r i b u t i o n  i n  t h e  melt. The l i d  growth s l o t  

was s u f f i c i e n t l y  wide t o  a l low the  crystal  t o  reach a width a t  which 

buckl ing would occur with the  J460L conf igura t ion .  Thus, t h e  chief  

cause of c r y s t a l  t e rmina t ion  was t h e  onset  of stress induced by c r y s t a l  

degradat ion.  Resul t s  showed an expected inc rease  i n  the  width a t  which 

deformation occurred. 

In  a l l  but one case ,  modi f ica t ions  i n  growth conf igu ra t ions  gave 

the des i red  r e s u l t s  o r  a t  least moved i n  the  des i r ed  d i r e c t i o n .  One 

except ion ,  however, w a s  the  J46OL-M4 modi f i ca t ion ,  which performed 

s l i g h t l y  poorer than t h e  base l ine  J460L i n  terms of t he  buckl ing 

stresses. A f u r t h e r  modi f ica t ion ,  des igna ted  t h e  J460L-M5, was def ined  

as a conf igura t ion  ly ing  roughly between the  base l ine  J460L and the  M4 
vers ion .  

I n  October, 17 runs were made i n  the  four  development furnaces .  

Two types  of l i d  conf igu ra t ions  were run i n  t h e  long r ec t angu la r  

conf igu ra t ions ,  t h e  J46O/J483LS designed f o r  5 cm crystals  and the  

J46OL-M3 designed f o r  a 4 cm width l i m i t .  

conf igura t ions  were t e s t e d  f o r  both l i d  conf igura t ions .  

s h o r t  rec tangular  systems were made wi th  t h e  J460L M3 and M5 

conf igura t ions  with some v a r i a t i o n s  i n  susceptor  s h i e l d i n g  t o  improve 

m e l t  p r o f i l e s .  

Var i a t ions  i n  top s h i e l d  

Runs wi th  t h e  

One run i n  the  R furnace  using t h e  long J46O/J483LS configura- 

t h e  t i o n  wi th  an expanded top s h i e l d  spacing produced record r e s u l t s :  

longes t  durat ion of continuous replenishment on a s i n g l e  crystal  -- 10.8 

hours;  the  longes t  replenished c r y s t a l  -- 6.8 meters; and, up t o  t h a t  

t i m e ,  t h e  l a r g e s t  s ingle-run rep len ished  output  - 36 meters. 

u t i l i z e d  a c r u c i b l e  with double b a r r i e r s  of a new design.  

This  run 

Another run was made i n  t h e  J fu rnace  us ing  t h e  same l i d s  but 

incorpora t ing  a 2.5 cm v e r t i c a l  element i n  place of expanded top s h i e l d  

spac ing  t o  achieve t h e  des i r ed  temperature g r a d i e n t s  i n  the  web. This  
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conf igu ra t ion  a l s o  seemed t o  grow well ,  y i e l d i n g  a 4.7 meter rep len ished  

crystal .  

s h i e l d  spacing and the  v e r t i c a l  element, a conf igu ra t ion  which should 

produce minimum stress i n  the  web, the oxide depos i t i on  changed 

s u b s t a n t i a l l y ,  p r o h i b i t i n g  growth. The convect ive gas  flow p a t t e r n s  

seem t o  be q u i t e  s e n s i t i v e  t o  the  design of t h e  v e r t i c a l  s h i e l d  s t a c k .  

Based on these  r e s u l t s ,  work was i n i t i a t e d  on designs t o  inco rpora t e  t h e  

des i r ed  web temperature e f f e c t s ,  without imposing an unacceptable  

convect ive gas flow pa t t e rn .  

However, when a t tempts  were made t o  combine both the  expanded 

Growth i n  the  s h o r t  c ruc ib le  systems was va r i ab le .  A problem 

with front-back asymmetry was i d e n t i f i e d ,  and t h i s  condi t ion  w a s  

improved by changing the  r e l a t i v e  front-back hea t  l o s s e s  with 

pe r fo ra t ions  i n  the  susceptor  s i d e  s h i e l d s .  Another s p o r a d i c a l l y  

encountered problem was welding of t he  a d j u s t a b l e  end s h i e l d s  t o  t h e  

suscep to r ,  so  t h a t  they were no longer ad jus t ab le .  Seve ra l  methods f o r  

prevent ing s h i e l d  contac t  with t h e  susceptor  were t e s t e d ,  and t h e  most 

r e l i a b l e  appeared to  be the use of ceramic s e p a r a t o r s  a t  t h e  c r i t i c a l  

poin ts .  

One of the b e t t e r  runs i n  the N furnace with a J460L M3 

conf igu ra t ion  y ie lded  36 meters of c r y s t a l s ,  with a maximum replen ished  

crystal  length  of 5.8 meters. 

During the  course of t h i s  work, some d i s t i n c t  advantages were 

found with t h e  long rec tangular  suscep to r / c ruc ib l e  geometry. 

acceptab le  m e l t  temperature p r o f i l e s  and good growth were found t o  be 

achievable  with the  h igher  s tack/ lower stress designs generated from t h e  

thermal  models. Secondly, a s i g n i f i c a n t  improvement i n  decoupling 

between growth and replenishment e f f e c t s  was achieved. Thus, i t  was 

found easier t o  concen t r a t e  on those parameters t h a t  d i r e c t l y  a f f e c t  t h e  

q u a l i t y  of c rys ta l  growth. For these reasons ,  i n s t a l l a t i o n  of a t h i r d  

e longated  growth system was i n i t i a t e d  i n  the  Z furnace.  

F i r s t ,  

I n  November, t h e  Z furnace w a s  converted t o  t h e  long r ec t angu la r  

sloped-wall  growth conf igura t ion .  A new l i d  design was f a b r i c a t e d  €o r  
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u s e  i n  t h i s  system. The des ign ,  designated the J46OLS-f.16, i s  the  same 

as the  5460 i n  the  v e r t i c a l  d i r e c t i o n  but i nco rpora t e s  a s l o t  geometry 

aimed a t  a c r y s t a l  width l imi t ed  t o  3 . 3  c m ,  w e l l  below t h e  buckling 

stress limits f o r  t he  5460 design.  The r a t i o n a l e  f o r  t h i s  design i s  t o  

grow long c r y s t a l s  a t  higher  growth v e l o c i t i e s .  

During the  f i rs t  run, c rys ta l  lengths  of 4.6 and 5.4 meters were 

achieved. In the next run, a new record rep len ished  c r y s t a l ,  7.06 

meters i n  length,  was grown. In a d d i t i o n ,  a 2 .9  meter long c r y s t a l  was 

grown a t  a growth v e l o c i t y  of 2.1  cm/min. 

The performance of t h i s  growth s y s t e m  was s u f f i c i e n t l y  encouraging 

t h a t  conversion of t he  N furnace  t o  a long r ec t angu la r  susceptor  with l i d s  

and s h i e l d s  t o  d u p l i c a t e  the  Z furnace  conf igu ra t ion  was i n i t i a t e d .  

The R furnace w a s  run i n  November with the  J46OLS-M3 configura- 

t i o n ,  a imed  a t  4 c m  crystal  widths.  The maximum crys ta l  length  was only 

5.4 meters. Some e f f o r t  was d i r e c t e d  toward improving growth v e l o c i t y  

by t e s t i n g  growth a t  var ious  accu ra t e ly  measured m e l t  l e v e l s  and c o i l  

e l eva t ions .  A number of crystals were grown a t  1.5 t o  1.6 cm/min, below 

the  predicted c a p a b i l i t i e s  of the  growth geometry but s t i l l  an 

improvement over p a s t  averages.  

A new cover p l a t e  was i n s t a l l e d  on the J furnace.  The new cover 

incorpora tes  a wider chimney, laser po r t s  pos i t ioned  t o  a l low m e l t  l e v e l  

sens ing  i n  the  long suscep to r ,  r epos i t i oned  end-shield pos i t i on ing  rods 

t o  permit unencumbered measurement of dendr i t e  edge th i ckness ,  p rovis ion  

f o r  improved susceptor  temperature measurements, and provis ion  f o r  

covering view por t s  t o  reduce oxide accumulation. 

f o r  t h e  melt l e v e l  c o n t r o l  s y s t e m  were a l s o  i n s t a l l e d .  

the  new laser mounting was rece ived ,  and i n s t a l l a t i o n  was i n i t i a t e d .  

Modified e l e c t r o n i c s  

The hardware f o r  

Resul ts  of thermal modeling, d i scussed  i n  Sec t ion  2.1 of t h i s  

r e p o r t ,  ind ica ted  t h a t  t h e  5460 growth conf igu ra t ion  is capable  of 

growing web with s u f f i c i e n t l y  low buckling stresses t o  s u s t a i n  growth a t  

widths i n  excess of 5 c m  and a t  speeds up t o  2 cm/min. This  combination 

y i e l d s  area throughput g r e a t e r  than 10 c m  /min. 2 These thermal  models 
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address  temperature d i s t r i b u t i o n s  i n  t h e  growing web, but m e l t  

temperature d i s t r i b u t i o n s  must  s a t i s f y  the  requirements  f o r  growth 

before  the  p o t e n t i a l  of any furnace conf igu ra t ion  can be m e t .  

F igure  25 i s  a p lo t  of long crystals  ( longer  than 4 meters) 

grown i n  the replenishment mode i n  a nine-month per iod during 1984. No 

c r y s t a l s  longer  than four  meters were grown i n  t h i s  mode p r i o r  t o  t h i s  

t i m e .  The p l o t  shows the  increas ing  frequency of long c r y s t a l s  s i n c e  

t h e  in t roduc t ion  of the  long (10") r ec t angu la r  sloped-wall  sys tem.  

Figure 26 is a pie-chart  tha t  i d e n t i f i e s  the  types  of termina- 

t i o n s  a s soc ia t ed  with the  long crystals. The average growth t i m e  f o r  

t hese  crystals ranging i n  length  from 4 t o  7 meters w a s  7.1 hours and 

t h e  maximum w a s  11 hours. From t h i s  da ta  it is  obvious t h a t  m e l t  

replenishment problems have been s i g n i f i c a n t l y  reduced through t h e  

i n t r o d u c t i o n  of t he  long rec tangular ,  sloped-wall  growth system. 

Figure 27 addresses  "ef fec t ive"  growth v e l o c i t i e s  i n  develop- 

mental furnaces  a long with r ep resen ta t ive  d a t a  from t h e  pre-p i lo t  l i n e  

furnaces  using t h e  s tandard  5435 conf igu ra t ion  with no replenishment.  

o t f e c t i v e  growth v e l o c i t y  i s  defined as t h e  r a t i o  of t h e  t o t a l  l eng th  of 

c r y s t a l s  grown i n  a given growth run t o  t h e  t o t a l  t i m e  t h a t  the  furnace  

was held a t  ope ra t ing  temperature. A t y p i c a l  growth run las t s  

approximately one week. 

_ -  

The da ta  show t h a t  desp i te  t he  experimental  na tu re  of t he  

developmental growth runs,  t he  e f f e c t i v e  growth v e l o c i t y  i s  nea r ly  twice 

t h a t  of t he  s tandard  pre-p i lo t  l i n e  furnaces .  The p r i m a r y  reasons f o r  

t h e  low e f f e c t i v e  v e l o c i t y  i n  the pre-p i lo t  l i n e  furnaces  is t h e  l o s t  

growth t i m e  involved with manually r ep len i sh ing  s i l i c o n  between c r y s t a l s  

and the  n e c e s s i t y  f o r  gradual ly  reducing t h e  growth v e l o c i t y  as t h e  

unreplenished melt l e v e l  f a l l s .  

Table 12 summarizes the equipment modi f ica t ions  made t o  experi-  

mental growth furnaces  during the course of t h i s  three-month program. 

Table  13 summarizes the  l i d  and sh ie ld  conf igu ra t ion  v a r i a t i o n s  i n v e s t i -  

gated on t h e  con t r ac t  t o  improve stress and growth c h a r a c t e r i s t i c s .  
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EQUIPMENT 6 

Figure 26. Causes f o r  terminat ion of long crystals.  

Figure 28 shows the  improvements made i n  terms of crystal  l eng th  

and replenished growth time s ince  the i n i t i a t i o n  of work descr ibed  i n  

t h i s  r epor t .  Maximum c r y s t a l  lengths  have more than t r i p l e d ,  and growth 

times have increased  by near ly  a f a c t o r  of four .  Despi te  t h i s  progress ,  

however, the  10 meter long c r y s t a l  goa l  has  not ye t  been reached. A 

primary f a c t o r  i n  t h e  lower than an t i c ipa t ed  c r y s t a l  l eng ths  was t h e  

f a c t  t h a t  growth speed improvements d id  not keep pace wi th  growth 

s t a b i l i t y  improvements. It has been observed t h a t  the  switch t o  the  

long c ruc ib l e  conf igu ra t ion  t h a t  produced the  improved growth s t a b i l i t y  

( b e t t e r  temperature d i s t r i b u t i o n  i n  t he  molten s i l i c o n )  had an adverse 

e f f e c t  on a x i a l  temperature d i s t r i b u t i o n  along the  length  of t h e  grown 

crys ta l ;  t h i s  produced h igher  s t r e s s e s  i n  the  growing ribbons.  To 

compensate f o r  t h e  increased  stresses, it w a s  found necessary t o  grow 

t h i c k e r  web, hence lower p u l l  speeds were used. 
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Table 12. Major Equipment Modifications 

Z furnace converted to long rectangular growth system in November 

N furnace converted to long rectangular growth system in December 

New top cover installed on J furnace with the following features: 

1. Wider chimney 
2. Laser ports matched to long susceptor 

3.  Allows for dendrite thickness monitoring 

4. Provisions for covering view ports 

5. Provisions for more temperature measurements 

Laser melt sensing hardware installed on J furnace 

Feeder with commercial pellet material installed on R furnace 

Larger susceptor concepts identified 
1. Material requirements identified and procurement initiated 

2. Equipment requirements identified and procurement initiated 

Table 13. J460L Type L i d  and Shield Configurations 

Designation 

J460L 
J 4 60L-M 1 

J460L-M2 

J460L-M3 

J 4 6 0 L-M4 
J460L-M5 

J46OLS 
J 4 6 OLS -M3 
J460/483 LS 
J46OLS M6 

Design Function 

Low Stress Web at Controlled Width of -4 cm 
Low Stress Web at Controlled Width of -3.8 cm 
Alter Temperature Distribution in Y-Direction 

Alter Temperature Distribution in Y-Direction 

Rectangular Version of J46OL-M2 

Modification of J46OL-M2 

Stretched Version of J460L, 5 cm Wide Web 

Long System, M3 Lids 
Long System, 5483 Top Shield Stack 
Long System, Controlled Width of 3.3 cm 

NOTES: 1. Mx designates lid slot modification 
2. S = Long Growth System = 10 Inch Crucible 
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1 REPUPUSHED LENGTH 

PBE HAR. '84 OCT. '84 NOV. '84 GOAL 

Figure 28. Progress  ( c r y s t a l  l e n g t h  and t i m e )  made toward 1984 
growth o b j e c t i v e s .  
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3 .  RECOMMENDATIONS 

Work performed on this contract has led to a significantly 
improved understanding of the parameters controlling the rate at which 

dendritic web silicon ribbon crystals can be grown. Realizing the 

improvements required to demonstrate commercial technical readiness of 

dendritic web growth requires additional effort in all areas covered by 
this contract. The substance of the recommended effort is described in 

this section of the report. 

3.1  Stress Modeling 

Computer modeling must be conducted to define growth 
configurations capable of production of high-quality ribbon (having 

suitable thickness and low stress) at increased area growth rate and 

under conditions of continuous melt replenishment. "Continuous melt 

replenishment" is defined as the condition in which the silicon melt is 

being replenished at the same rate that it i s  being consumed by ribbon 

growth, providing constant melt level (CML) conditions. 

The computer modeling should be directed at assessing web stress 
tendency of the web to buckle near the top of the shield stack (far 

stress) and plastic stresses generated very near to the growth interface 

(near stress). 

Modeling of stresses generated in growing web crystals near the 

crystal-liquid interface (near stress) should be performed to 
characterize and minimize plastic flow and plastic-elastic stress 
interactions. The coupling of in-plane plastic deformation, elastic and 

plastic buckling, and resulting web termination modes should also be 
investigated. This effort should include an assessment of available 

high-temperature mechanical property data, allowing expansion of the 
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e x i s t i n g  WECAN model t o  inc lude  e l a s t i c  an i so t ropy  of s i l i c o n  and y i e l d  

stress c r i t e r i a .  

3 . 2  Flu id  Flow Modeling 

A study of t h e  e f f e c t s  of convect ion i n  t h e  molten s i l i c o n  must 

be conducted t o  achieve t h e  improved growth s t a b i l i t y  requi red  f o r  high 

speed growth. Both two- and three-dimensional ana lyses  of t h e  thermal 

environment and convect ive f low i n  t h e  m e l t  are requi red .  Susceptor  

modi f ica t ions  t o  reduce temperature  g r a d i e n t s  producing convect ion 

should be assessed.  For example, t h e  e f f e c t i v e n e s s  of i nco rpora t ing  

b a f f l e s  i n  t h e  c r u c i b l e  t o  i n h i b i t  m e l t  convec t ive  c u r r e n t s  should be 

eva lua ted .  F i n a l l y ,  an a n a l y s i s  of t h e  p o t e n t i a l  f o r  magnetic 

s t a b i l i z a t i o n  of t he  molten s i l i c o n  a g a i n s t  convect ion should be made. 

3 . 3  Web Qual i ty  Analysis  

Planar  and cross -sec t ion  specimens of web us ing  Transmission 

E lec t ron  Microscopy (TEM) should be examined t o  assess p o s s i b l e  

c o r r e l a t i o n s  of (111) s u r f a c e  e t c h  f e a t u r e s  wi th  t h e  i n t e r n a l  de fec t  

s t r u c t u r e  induced by deformation under web growth condi t ions .  Growth- 

induced stresses must be r e l a t e d  t o  both f i n e  and large-scale de fec t  

s t r u c t u r e s  which can degrade t h e  web and minimize cond i t ions  t h a t  favor  

deformation. 

Features  such as s l i p  traces and l o c a t i o n  of contaminants (S i02 ,  

metals, e tc . )  t h a t  may r e s u l t  from gas phase i n t e r a c t i o n s  should be 

c o r r e l a t e d  wi th  growth conf igu ra t ions .  Techniques f o r  minimizing those  

d e f e c t s  t ha t  adverse ly  a f f e c t  ce l l  performance and i n f l u e n c e  p l a s t i c  

flow must be i d e n t i f i e d .  

3 . 4  Closed Loop Furnace Operat ion 

A closed loop c o n t r o l  system must be devised  and developed t o  

a l low long-term, s t a b l e ,  cons tan t  m e l t  l e v e l  growth of d e n d r i t i c  web 

crystals .  This  system must c o n t r o l  t he  (1) average m e l t  temperature ,  
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(2) left-right melt thermal symmetry, and ( 3 )  melt level to provide 

steady state growth (no terminations due to pull-outs or extra 
dendrites). The system must maintain constant melt level either with an 

active laser-sensor control and silicon pellet feeder or by fixing the 

feed rate of a calibrated pellet feeder to exactly match the silicon 
consumption during crystal growth. In conjunction with this effort, 

alternate methods for pellet feeding, sensing of pellet drops (uniform 

dispensing), and improved crucibles and lid configurations to maintain 

thermal symmetry while feeding should be pursued. Alternate pellet- 

feeding methods investigated should include vibratory techniques. 
Acoustic and photoelectric sensors should be investigated to detect and 
count pellet drops. 
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