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TECHNICAL MEMORANDUM

CELESTIAL TARGET OBSERVABILITY FOR
ASTRO SPACELAB MISSIONS

I. INTRODUCTION

When planning an observing schedule for conducting an astronomical mission
from orbit, one of the first pieces of data required is the observing time available
for targets at various locations on the celestial sphere. Instead of just putting a
target "in the hopper" and letting it "flow through the mission planning cycle," it
would be useful to know in advance what to expect in the way of observation time
for that target based on its position relative to the orbit plane. This would be
especially pertinent if one were trying to substitute a new target during real time
replanning. Information of this nature would allow the Principal Investigator (PI) or
the mission planner to determine the region of the celestial sphere from which it
would be most desirable to select targets and those regions to avoid selecting targets
from in order to obtain a more optimum observing schedule for a given orbit (or
mission). It is precisely this question which will be addressed in this report.

II. OVERVIEW

Observational data can be generated by uniformly distributing targets on a
meridian plane in declination from -90° to +90° and varying the position of the orbit
plane with respect to those targets. In this report, this variation of position will be
measured by the difference between the right ascension of the target, o, and the
right ascension of the ascending node of the orbit plane, Q; i.e., by the quantity
(a-2). The acquisition and loss times of these targets can be calculated and pre-
sented in the form of graphs. These, for a generic orbit and a generic set of
targets, are presented in Figures 1A through 1D and 2A through 2D. The orbit
chosen has an inclination of 28.°5, right ascension of the ascending node of 0° and an
orbital period of about 1 hr 31 min (ALT = 350 km). (These orbital parameters are
representative of the ASTRO-1 mission.) The targets in Figure 1A are lying in a
plane of a = 0° such that o-Q = 0° for that figure. The targets in Figures 1B, 1C,
and 1D are at o = 90°, 180°, and 270°, respectively. The declinations of the targets
range from -90° to +90° on each figure. There are two sets of curves on each figure:
one set corresponding to the start of the mission observations at MET = 24 hr, and
the second set to the end of the mission at 192 hr MET. This allows one to observe
the relative movement of the On/Off times with the passage of time (Mission Elapsed
Time). The reference time of these plots is at an ascending node. From these
charts one can then see the on and off time relative to an ascending node or relative
to a rev start time. The shifting of the target's acq/loss positions (relative to the
ascending node) with mission elapsed time reflects the effects of the movement of the
orbit plane relative to inertial space (regression of the nodes). It can be seen that
the effect is not uniform over all declinations.

Starting with Figure 1A where the targets have the same right ascension as
that of the ascending node of the orbit plane (o-Q = 0°), one sees that the acquisi-
tion of the target occurs prior to the ascending node of the orbit and those at
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negative declinations are acquired earlier than those at positive declinations. As one
shifts to Figure 1B, 1C and 1D where a-Q increases to 90°, 180°, and 270°, respec-
tively, one sees that the targets are acquired progressively later in the orbit. At
o-Q = 180° the situation regarding the relative acquisitions of targets is reversed from
that of o-Q = 0°. Here the targets at positive declination are acquired earlier than
those at negative declinations.

One can observe from Figure 1A that, with the exception of targets directly
above the Earth's poles, all target acquisition times at the end of the mission are
shifted forward in time relative to that target's acquisition time at the start of the
mission.

The time shifts for targets at high (absolute) declinations are smaller than those
for targets near the equator. The absolute lengths of the observing times do not
appear to depend much on the target declination.

Going on to Figure 1B, where a-Q = 90°, one observes that targets near the
equator and at high positive declination exhibit the same general sort of behavior as
that observed in Figure 1A. However, as one gets to high negative declinations, one
observes some unusual or different behavior. (The same thing can be seen in Figure
1D where o-0 = 270° for targets of high positive declination.) In Figure 1B, the
target at a -60° declination has a much shorter observing time than the other targets
and the targets below -63° declination are shifted backward in the orbit plane with
the passage of time rather than forward as has been the case for all other targets so
far discussed. This same behavior can be observed in Figure 1D for targets above
+63° declination. This phenomenon will be explained in detail later. It will be seen
to be due to the fact that the targets are near the orbit poles.

Figures 2A through 2D are presented by the same scheme as that used for the
first set of figures, but here the purpose is to show the effect of a launch delay.
In Figure 2A one can see that the acq/loss times for a launch delay are shifted
backward (earlier) in time relative to the nominal launch. Each hour of launch delay
causes the right ascension of the ascending node of the orbit plane to increase by
15° (due to the eastward rotation of the Earth). This is why the acq/loss times
occur earlier for launch delays; i.e., the orbit plane, in effect, is rotating
into the target (rotating in the same direction as the orbital motion enabling the
spacecraft to get to the target at a fixed point sooner).

Note again in Figure 2B the atypical behavior at large negative declinations for
a-Q = 90° (near the orbit pole) and in Figure 2D at large positive declinations for
o~ = 270° (near the other orbit pole). It is also noteworthy that as one approaches
the orbit poles, the shift in the acq/loss times of the targets becomes quite large.
In this case (2 hr delay), as an example, the target at -50° declination with o-Q = 90°,
the shift is approaching 50 percent of the length of the total observation time which
is quite significant for replanning efforts in the event of a launch delay.

Without dwelling at length on all of the little nuances that might be observed
from these charts, we summarize some of the major points and then pass on to the
analysis:

e All target acq/loss times are shifted forward in the orbit plane (relative to

the node), i.e., occur later with the passage of time except those near the
orbit poles.
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e All target acq/loss times occur earlier with launch delays except those near
the orbit poles.

e The magnitude of the shifts due to either the passage of mission time or to
launch delays is dependent on the target's position with respect to the orbit
plane.

e Although not shown by these figures, it will be shown in the analysis to
follow that the length of the observation time is highly dependent on the
target's "g-angle" and on the elevation angle above which one is constrained
to view the target.

In the following sections, an analytical discussion of these effects will be given
which will provide some insight into their behavior.

III. CALCULATING BASIC OBSERVABILITY OF A
CELESTIAL TARGET

The amount of time that an astronomical object (e.g., a star) can be observed
from a spacecraft in orbit about the Earth depends on the location of that object
relative to the orbit plane of the spacecraft and on the constraints placed on the
observation; e.g., how far from the Earth's limb it must be at the time of observa-
tion. The location of the astronomical object relative to the orbit plane is measured
by two angles. The first angle is a measure of how far out of the orbit plane the
object is located. This is called its beta (8) angle. The second angle is the
angular distance from the ascending node of the orbit plane to the projection of the
object's position vector onto the orbit plane. The location of the projection of the
object's position vector onto the orbit plane is the culmination point of the object
which is the place in the orbit plane where the object attains its minimum zenith angle
or maximum elevation angle. The angle measured in the orbit plane from its ascending
node to this culmination point is called the argument-of-latitude of culmination of that
object, denoted by Us.

These angles, B and u., can be calculated from a knowledge of the orbit plane's

C’
orientation with respect to the standard inertial coordinate system (X-axis to the
vernal equinox and Z-axis to the North Pole as shown in Fig. 3) and the star's posi-
tion with respect to this system. The orientation of the orbit plane is measured by
its inclination, i, with respect to the equatorial plane and the right ascension of the
ascending node, @, measured relative to the vernal equinox. The star's coordinates
are right ascension, a, and declination, §. All of these angles are illustrated in
Figure 3.

By knowing the unit orbital angular momentum yvector (3 ) of the orbit (the
orbit pole) and the unit position vector to the star, R, one can calculate the g-angle
as

R - J=cos (90-8) = sin 8 . (1)

A N
Substituting the appropriate expressions into R and J gives
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sin B =cosisin § ~ cos § sinisin (o - Q) . (2)

This is the first of the two angles which measures the location of the object relative
to the orbit plane.

By defining unit vectors to the ground terminator of the star, ﬁGT’ the cul-
mination position of the star, RC, and the ascending node, 1/5, as illustrated by

Figure 3, one can calculate the second of the two angles, U, as,
o] - ] = - . T = T . >
cos (uC + 90°) = -sin Un RGT P also, cos L% Rc P, (3)

which, on substituting in the appropriate expressions for the vectors, gives

_Isin i sin § + cos i cos § sin (o - Q)]

tan Uc cos § cos (a - Q)

(4)

These equations are derived in detail in Appendix A.

The constraint on observing an object is usually measured by its zenith angle,
the angle that the object's position vector makes with respect to the local vertical or
else the complement of this angle, the orbital elevation angle (OEA), the angle which
the object's position vector makes with respect to the local horizontal plane. If RV

is the unit position vector of the orbiting vehicle, then the orbital elevation angle,
OEA, of a star with position vector R is

izv - R = cos (90 - OEA) = sin OEA (5)

from which, with a little manipulation, one can calculate
sin OEA = cos B cos (uC -u) |, (6)

where u is the current or instantaneous argument of latitude of the vehicle. Equa-
tion (6) yields a continuously varying OEA as u is varied by the vehicle traveling
around the orbit plane. Conversely, OEA can be viewed as a constraint angle above
which one wishes to observe the target star.

One can, with that view, invert equation (6) to calculate the arguments-of-
latitude of acquisition and loss (uA and uL) of the target star above the given OEA as

u =

AL T Yc

— -1 |sin OEA
+ COS [m—] . (7)
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The acquisition and loss positions are symmetrically placed on either side of the cul-
mination of the target star.

The length of observation of a target star is given by Up - u, divided by the

vehicle's rate of travel in the orbit plane (its mean motion, n) and is given by

(8)

OT =2 cos_1 [M] n
cos B

where n = vy /a3 (u is the Earth's gravitational constant and a is the mean semi-
major axis of the orbit).

From these basic equations one can deduce practically all information about the
possible observation times of objects at various locations relative to the orbit plane.
These equations will be analyzed on the following pages.

Before proceeding, it will be beneficial to point out an important behavioral
characteristic of the angles 8 and Ug- Looking at the equations defining them, equa-

tions (2) and (4), it is seen that they are dependent on the target star's coordinates
a, 6, and the orbit plane's orientation angles i and Q. The angles o, §, and i are
all constant and @ changes only slowly with time (on the order of 5°/day) so that g
and Uc, while not constant, change only very slowly with time. Due to this very

slow variation, they can, with little loss of accuracy, be considered constant over one
orbit while using equation (7) to compute the acquisition and loss of a target.

A plot of the Bg-angle of stellar targets with varying declination and parameter-
ized orbit plane placement (a-Q) for an orbit with fixed inclination, i, is shown in
Figure 4. For the orbit plane orientations a-Q = 270° and 90°, the corresponding
g-angles, as given by equation (2), are §+ and §-i, respectively; thus, in the first
instance, where § = 90°-i the p-angle becomes 90° and in the second instance
where § =i - 90° the g-angle becomes -90°. The upper and lower curves in Figure
4 coresponding to o«-Q = 270° and 90°, respectively, provide an envelope within which
all g-angle curves must fall.

The B-angle of a target determines the length of time that the target can be
observed as can be seen from equation (8). It also can be observed from equation
(8) that the cosine of the observation time for a given target is inversely propor-
tional to the cosine of the g-angle for that target; consequently, when the g-angle
of a target gets large its observation time gets small for positive OEAs. In fact,
if 8 > (90° - OEA) there is no observation time for that target.

The line of sight to a celestial target for an observer on the surface of the
Earth is occulted by the Earth for negative elevation angles. From orbit, however,
objects can be observed with negative elevation angles. For negative OEAs, the
observation time of a target gets large for large g-angles. In fact, one gets con-
tinuous observation of a target if g > 90° - |OEA| for negative OEAs.

The observation time for a celestial target as a fraction of the orbital period is

shown in Figure 5 as a function of g-angle with OEA parameterized. In summary, if
|8| > 90° - |OEA| there is no observation time for positive OEA constraint values and
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continuous observation time for negative OEA constraint values. For a constraint
OEA of 0° one can observe the target for exactly 1/2 of the orbit for all g-angles

except 190° which are singularities, cos~1 (0/0). These are cases where the target
sits always on the horizon of the plane defined by OEA = 0°, never rising and never
setting.

The amount of observation time per orbit can also be presented as a function
of the OEA constraint above which it is desired to view the target with the g-angle
of the target parameterized. The plot of the data in this form is shown in Figure 6.
Although constraint OEAs are shown to -90° in this plot for completeness, it is not
physically possible to observe targets with OEAs below -15° or -20° depending on the
altitude of the orbit because of occultation of the target by the Earth.

The location in the orbit plane where a target is visible depends on where the cul-
mination of that target occurs in the orbit plane. The argument-of-latitude of culmination
of a target with coordinates (a,$ ) in an orbit plane with inclination i and right ascension
of the ascending node @ is given by equation (4). Plots of this angle for targets of vary-
ing declination § are shown in Figure 7 for a fixed orbital inclination i and with the orbit
plane orientation with respect to the target (a-Q) parameterized. The acquisition and
loss of a target is symmetrically placed on either side of culmination and these values
depend on the constraint OEA above which it is desired to view the target; for example,
for OEA = 0° the acquisition is 90° prior to us and the loss is 90° following UG-

If one knows the orbit plane orientation with respect to a target (o-Q) and the
target declination, §, then one can tell quickly from this chart where in the orbit
plane that target will be visible; for example, if o-2 = 60°, a target at 30° declination
would have a Us at about 64°. For a constraint OEA of 0° it would become visible at
U, = 64°-90° = -26° = 334° and would be lost at up = 64°+90° = 154°. Thus, its
acq/loss would straddle the ascending node of the orbit, or the acquisition would
occur on one orbit and the loss on the following orbit.

This same information is presented in a different form in Figure 8. There the
argument-of-latitude of culmination, Ucs is presented as a function (o-2) with declina-

tion of the target, §, parameterized. Both of these figures are for an orbit with an
inclination of 28.5° which results from a due east launch from Cape Kennedy.

Either one of these figures (7 or 8) shows how one can get some very large
changes in the acquisition and loss time of a target with only a very small change in
a target's position with respect to the orbit plane [(o-Q) and §]. As an example of
this, consider a target at 60° declination with (a-Q) = 260°. Figure 8 shows the Ue

to be about 210°. If (a-Q) is increased to 280°, the us dramatically increases to

about 340°, This is an increase of 130° in the orbit plane which would correspond to
a acq/loss shift in time of about 33 minutes or about 1/3 of an orbit. On the other
hand, for a target at a slightly higher declination, say about 65°, for (o-Q) = 260°
its Us would be about 140° and if (a-2) was increased to about 280° its us would

dramatically decrease to about 40°, or a decrease of 100° in the orbit plane. Thus,
two targets separated by only 5° in declination would experience extreme and opposite
shifts in acq/loss times with only a relatively small change in the orbit plane orienta-
tion. The basic reason for this is that one of the targets is higher in declination
than the orbit pole and the other is lower. The g-angle for either target, by Figure
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4, would be quite large, approaching 90°, and the observation time for either target
by Figure 5 would be large for negative constraint OEA or small for positive con-
straint OEA.

For orbital parameters representative of the ASTRO-1 mission (i.e., i = 28,°5,
ALT = 350 km) and a constraint orbital elevation angle of 1.°23, Figure 9 presents
the times of acquisition and loss as measured from the ascending node of an orbit
(any orbit) for targets of varying declination and parametric values of (o-%). Figure
9A shows (a-Q) parameterized from 0° to 180° in increments of 30° and Figure 9B
shows (o-Q) parameterized from 180° to 360° in increments of 30°. This data was
presented on two figures to keep one from becoming too cluttered to read conveniently.
The constraint OEA of 1°,23 resulted from the PI request to keep the line-of-sight to
a target star at least 20° from the limb of the Earth combined with the limb of the
Earth being about 18.°77 below the local horizontal from a 350 km orbit.

The acquisition and loss time, relative to an ascending node, for any target
anywhere on the celestial sphere can be read fairly accurately from these plots, cer-
tainly well enough to do preliminary mission planning. Consider, as an example,
targets lying on the meridian plane defined by o-Q = 90°. Targets in this plane at
all positive declinations and for negative declinations down to nearly -60° are acquired
near the ascending node (0:00 time). For targets just below -60° declination (the
orbit south pole) there is no acq/loss time because of the positive OEA constraint
value of 1.°23. Targets within 1.°23 of the pole (-61.°5 * 1.°23) cannot be observed.
Those at declinations more negative than about -63° are then acquired at the descend-
ing node of the orbit and lost at the following ascending node. The length of time
that one of these targets can be observed is nearly 1/2 an orbital period except for
those very near the orbital south pole. This is precisely what one would expect from
the data presented in Figure 5. One can likewise tell very accurately from these
charts the acquisition and loss time of any target on the celestial sphere for any
orbit relative to its ascending node.

IV. SHIFT IN OBSERVABILITY WITH LAUNCH DELAY

A shift in the launch time of a mission, either earlier or later, will result in a
shift (earlier or later) in the mission elapsed time (MET) at which a fixed object
(star) can be observed from orbit. This is because a shift in launch time causes the
orbit plane to be placed differently with respect to the "sky" (or the inertial coor-
dinate system).

The shift in the acquisition and loss MET of a target due to a change in launch
time is reflected by the change in the position of the culmination point of the target.
The position of the culmination point was discussed in Section III and shown graphic-
ally in Figures 7 and 8. A launch delay caused the right ascension of the ascending
node, 9, to increase at a rate of 15°/hr; thus, the quantity of (a-Q) decreases at
15°/hr. This is shown by the bottom part of Figure 10. Figure 11 shows the change
in (a-2) as a function of launch delay for several starting values of (o-Q). For
example, if originally o-Q = 60° and one had a 2 hr launch delay, the new a-Q would
be 30°. As can be seen from Figure 8, a target at 30° declination with these (a-2) condi-
tions would originally have a Uc of about 64°. With the 2 hr launch delay, us would

decrease to about 40°. This would be a decrease of 24°. For an orbit mean motion
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of 4°/min this would cause the acq/loss times of that target to occur 24/4 = 6 min
earlier than for the nominal case. One can also see that shifts like this in many
instances can cause the U to cross the value of 0° or be shifted into a previous

orbit., The STAR computer program, which is used extensively by MSFC in mission
planning work for astronomy missions, computes the acq/loss times in a given orbit
based on which orbit the us falls in. Thus, one can sometimes see an acq/loss

On/Off bar show a dramatic shift of one orbital period with a slight delay in launch
time due to this phenomenon. This is not a basic or fundamental discontinuity; it is
simply an artifact of the "bookkeeping" methods used within the computer program.
This "jumping" is only apparent when one orbit of acq/loss data is computed in
isolation. If many orbits are computed and shown consecutively, it is not seen.

The shift in the position of culmination as a function of change in launch time
demonstrated by previous discussion and illustrated by Figure 7 and Figure 8 can be
calculated from the equation

u
ug = C it | (9)

A LT

where U is defined by equation (4). The orbital inclination i and the target coor-

dinates a and § remain constant with respect to change in LT and only @, the right
ascension of the ascending node of the orbit plane is affected. Its rate of change is

———ggT = wg log = the rotational rate of the earth] .

By direct differentiation it can be shown that

au
5—% = -wg (cos <S/cos2 B) * [cos 1 cos 6§ + sini sin § sin (a-Q)] , (10)

and it can be further shown that the quantity in brackets is [cos B (38/38)] where
B8 is defined by equation (2). Thus, one can write

su
Cc _ _ cos § o B
sLT Ye [(cos B) (_56_)] : (1)

The direction of the shift in the observation time of a target with a delay in launch
time then depends on the sign of the partial derivative, auC/BLT.

Furthermore, if one considers targets with a constant right ascension but with
changing declinations, the shift in launch time of the targets with changing declina-
tion depends on the sign of the partial derivative 38/96. The shift in launch time
can be positive for some values of § and negative for others. This has already been
illustrated earlier during a discussion of the results shown in Figure 8. The cross-
over point where the shift goes from positive to negative is where 3g8/96 = 0.
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The zero point for this partial will occur at a declination given by differentiating the
expression for g and setting it to zero.

cos B (%%) =cosicos 8§ +sinisin 6§ sin (a-Q) =0 (12)
or where
5 = tan—l -cos i (13)
B sin i sin (a-Q) :

The plot of the values of § which satisfy this as a function of (o-0) is shown
in Figure 12,

Because auC/BLT has the opposite sign of 538/36, then auC/aLT will be nega-

tive in the clear area of Figure 12. In that region an increase in launch time leads
to a decrease in the acquisition time of a target, or it is acquired at an earlier MET.
In the cross hatched regions of Figure 12, an increase in launch time leads to an
increase in acquisition time of a target or it is acquired at a later MET than the
nominal acquisition time. Figure 12 defines regions on the celestial sphere which are
depicted on the diagram shown on Figure 13.

The shifts in the acquisition and loss METs of targets with a delay in launch
time can be illustrated by the pair of diagrams in Figure 14. In the first diagram
we consider two targets, each with right ascension 270° greater than that of the

ascending node of the orbit plane. One of the targets, ’i‘l, has a declination less

than that of the orbital angular momentum vector J; i.e., less than 90°-i, while the
second target, ’1‘2, has a declination greater than that of 3, i.e., it lies in the cross

hatched area of the celestial sphere shown in Figure 13. The culmination point of the T
lies at an argument-of-latitude of 270° while that of T lies at an argument-of-latitude
of 90°.

If one calculates the acquisition and loss times of these particular targets for an
orbital elevation angle of 0°, then ’i‘l is acquired at the descending node of the orbit
plane and lost at the ascending node of the orbit plane. In other words, it will be
2 will be

exactly opposite. Its acquisition will occur at the ascending node and its loss will
occur at the descending node. It will be visible during the entire northern hemis-
phere pass of the orbit.

visible during the entire southern hemisphere pass of the orbit. Target T

The second figure in the pair shows the orbit plane relative to these same two
targets after a launch delay of about an hour where the right ascension of the
ascending node of the orbit plane has increased about 15° over that which it had in

the first figure. In this case, the culmination of '/I\‘1 [which occurs in the orbit

plane where the target's position vector is projected onto the orbit plane by a great
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circle containing T, and J] occurs at an argument of latitude of less than 270°. The

acquisition and loss points which lie at 90° to either side of culmination occur at
points prior to the descending and ascending nodes, respectively. A vehicle moving
in this orbit plane would get to these points quicker (at an earlier MET) than it would

have in the case shown by the first figure. Thus, the acq/loss times for T1 are
shifted earlier than the nominal times by a delay in launch time.

A

The culmination of T2 now occurs at an argument-of-latitude greater than 90°.
The acquisition and loss points of T2 now occur at points after the ascending and

descending nodes, respectively. A vehicle moving in this orbit plane would get to
these points later (at a later MET) than it would have in the case shown in the first

figure. Thus, a delay in launch time causes the acq/loss times of 'i‘z to be shifted
later than those of the nominal launch time.

This geometrical picture confirms and gives insight into the earlier mathematical
results.

V. SHIFT IN OBSERVABILITY WITH MISSION ELAPSED TIME

The relative position in the orbit plane where a celestial target is acquired and
lost (u A’ uL) gradually changes as the mission progresses. This is because the orbit

plane slowly changes its position with respect to the celestial sphere; i.e., its line of
nodes regresses due to the oblateness of the Earth. This regression rate is given by

. _ 2 ] .

0 =-3/2 I, (re/ao) n_ cos i (14)
where n = Yu /ao3 the mean motion, u = 3.986012 x 1014 m3/s3 and J2 = 1.0827 x
10_3;‘ a, is the mean semi-major axis of the orbit and r, is the equatorial radius of

the Earth (re = 6378160 m). Note that @ is a function of cos i and therefore goes to

zero for polar orbits. This regression rate varies from about 7.5° per day for a 28°.5
inclined orbit to about 4.°5/day for a 57° inclined orbit for low altitude orbits (~ 300
km alt.). This phenomenon produces an effect qualitatively the same as that of a
launch delay but of smaller magnitude and in the opposite direction. A launch delay
of 1 hr for example increases the right ascension of the ascending node by 15° over
what it would have been for a launch on time, while an elapsed time of one day in
orbit causes the right ascension of the node to decrease between 4.°5 and 7.°5
depending on the inclination and, to a lesser degree, the altitude.

The change in (o-Q) due to nodal regression for a 28.°5 inclined orbit is shown
in the top half of Figure 10. Figure 15 shows some actual values of (o-Q) as a
function of rev number or mission elapsed time for several starting or initial values
of (a-R). One could use this chart with a little interpolation to determine the wvalue
of a-02 at any point in a mission with any given starting value of (o-Q). One can
then turn to the charts in Figures 9A or 9B to determine the acq/loss time of any
target (relative to an ascending node) at any time point in the mission.
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The acquisition and loss times of a target at a fixed place on the sky changes
at a uniform rate with mission elapsed time due to the constant nodal regression rate
(for a fixed orbit). As the position of the target is varied, however, the change in
acquisition and loss times do not vary at a uniform rate with target position variation.
Figures 7 and 8 showed the position of U (and consequently acquisition and loss

times) as a function of (o-Q) and target declination. We will now calculate how
rapidly this will change with variation of target position. The shift in the position
of culmination (and consequently, acquisition and loss positions) with the passage of
time can be calculated from the expression

Aa,, = —/— * At . (15)

Using equation (4) for Us, one can get by direct differentiation and some simplifica-
tion that

auC _ " cos §

at cos B

B
55 . (16)

This has exactly the same form as auC/BLT except that 3Q/3LT = Wy encountered

in the former case, is here replaced by Q given by equation (14). Substituting equa-
tion (14) for @ and explicitly writing out 38/948 gives

auC Te : cos §
—=3/2J,l—) n_cosi—=— [cosicos 8§ +sinisin § sin (o-0)] (17)
at 2\a o 2
o cos” B
or

e : 8
rY i Q —C—O—ST— [cosicos 6 +sini sin § sin (o-Q)]

cos” B

Because 2, by equation (14), is always negative, the coefficient of 38/96 in
equation (16) will be positive for all § and all g; therefore, auC/at will have the

same sign as 38/38. The plot in Figure 12 shows where this partial is negative and
where it is positive. Figure 13 then shows where targets lie on the celestial sphere
for positive and negative shifts in acq/loss times with the passage of time.

Figure 16 shows a plot for equation (17) with § as the independent variable,
a-Q parameterized, and i fixed at 28.°5.
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One can see from Figure 16 that for targets lying on the meridian plane defined
by o-9 = 90° there is a singularity at § = -61.°5, the orbit south pole. For targets
on this meridian plane lying at declination less negative than that of the orbit south
pole L'lC is positive, indicating that these target acq/loss times shift forward in time

or are acquired relatively later each revolution as time passes while targets with
declinations more negative than that of the orbit south pole will shift backward or be
acquired relatively earlier each revolution as time passes.

Four degrees of shift in the position of orbital noon translates into about 1 min
of time shift in the acquisition and loss of a target; thus one can also use Figure 16
to estimate the time shift in the acq/loss of a target with elapsed time in the mission
and also how rapidly it will change (and in what direction) with target position
variation.

VI. SUN AND MOON INTERFERENCE

Celestial targets cannot be observed at will because of interference from
extraneous objects in the line-of-sight (or near it) between the observing telescope
and the observed objects. The Earth itself, is, of course, the major interfering body
which has been discussed in the entirety of this report thus far. There are other
sources of interference however. The major ones are the Sun and the Moon which
will be discussed briefly. (Trapped radiation about the Earth represents a different
type of interference for some instruments, and will not be discussed in this report.)

The Sun and/or the Moon represent an obstacle to viewing a celestial target
only if they come too close in position to that object on the celestial sphere. The
Sun moves in the ecliptic plane. This interference would be on an annual basis
because of the apparent yearly motion of the Sun through the sky; i.e., for any
given target there will be only a certain time of year (and the same time every year)
when the Sun would interfere with observing it. This can be easily calculated from
a given interference half-cone angle for any given target.

The angle between the Sun and target star is given by

_ -1 5 .= _ -1 _ s .
© = cos (Re R.) = cos [cos(oa(D oc*) cos 60 cos 6* sin 60 sin § ] (18)

From spherical trigonometry and Figure 17 we can write

tan §
. o
sin a0 = ———
© tan ¢
os L = cos o co
cs(9 o SGO

sin § = sin ¢ sin L
1o} (o}
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Figure 17. Illustration of Sun in ecliptic plane an angle ¢
of star to be observed out of ecliptic plane.




Where L o is the mean longitude of the Sun in the ecliptic plane, which to a rough
approximation is,

Le = L (t-to)
with to = March 21 and L = 0.9856°/day. Expanding the equation for 0 as

cos © = cos a, cos 8, [cos o, €os 60] + sin ay cos §, [sin a  COS 60]

+ sin §, [sin 60] ,

and substituting the above spherical trigonometry expressions for the guantities in
the first and second brackets,

sin 6

cos © = cos a, cos §, [cos LQ] + sin o, cos 6, [_t_éh—é] + sin §, [sin 60]

Factoring sin o from the last two terms and substituting sin ¢ sin L0 for it and

simplifying we get

cos © = (cos a, cos §,) cos Le + (sin a, cos §, cos ¢ + sin 6, sin e) sin L0 .

(19)
Since 0 is a constraint angle (constant), this equation has the form
acosL0+bsmLo=c
with solution
L *=tan ! (9) +cos L f—C ) (20)
(0] a 5
a” +b

Since Lo A (t-to), the time interval when the constraint is satisfied is given by,

L +
t+=to+[—f-’— (21)
L
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t =to+ | — (21)
L (con.)

As an example: Let

oy = 90° 23.95

™
I

30°

84 = 23.95 ©

Then

a=0 , b=10 , c=0.866

L = 60°
L, = 120°
t = March 21 + =00 = March 21 + 61 days = May 21
- 0.9856°/day
1200

n

t+ = March 21 + 0.9856°/day March 21 + 122 days = July 21 .

Thus, a target at (a,8) = (90°, 23.°5) with a constraint angle of 30° from the Sun
could not be viewed from about May 21 to July 21 on any year. This example is,
of course, obvious from inspection.

If the target star is out of the ecliptic plane by more than the half-cone inter-
ference angle © then the Sun will never interfere with the observation of the target
star. The distance ¢ that the target star is out of the ecliptic plane is illustrated
in Figure 17 and can be calculated from

ﬁ* . js cos (w/2 - ¢) = sin ¢

cos e sin s, - sin a, €os & sin € . (22)

If |6| > © There will never by any interference from the Sun and in this case equa-
tion (20) would have no solutions.
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Figure 18 shows the position of the Sun or the celestial sphere on the first day
of each month for a whole year with a 45° constraint angle (half-cone angle) about
each position which is the specified solar avoidance angle for ASTRO-1. This posi-
tion marked 1 is for January 1, the position marked 2 is for February 1, and so on
for each month of the year. For any given time of the year, then, one can tell fairly
accurately from this chart where the Sun is and what the avoidance region for that
time of year will be.

Interference from the Moon is a much more difficult case to give a simple
approximate equation for because of the complexity of the moon's motion. Its orbit
plane is inclined at about 5.°1 to the ecliptic plane. The right ascension of its
ascending node oscillates between about *13° about the vernal equinox with a period
of about 18 years. Its sidereal period about the Earth is about 27.3 days. If there
is interference from the Moon it will occur on a monthly basis rather than an annual
basis as with the Sun. The usual practice in mission planning is to launch near
"new Moon" so that the Sun and Moon are in the same part of the sky and give only
one area of interference. This has the additional benefit of giving dark night skies
for observations.

Figure 19 shows the position of the Moon on the celestial sphere over a period
of about one month with the position of the Moon shown at three day intervals. The
lunar positions shown on this Figure were generated for early 1989. The position
marked 1 (near 0° right ascension and 0° declination) is for January 13, 1989; the
position marked 2 is for January 16, 1989; 3 is for January 19, 1989, and so on.

The final position marked 10 is for February 9, 1989. The large circle around each
lunar position is a 45° lunar avoidance area for night-time target scheduling and the
small circle is a 20° lunar avoidance area for day-time target scheduling. This move-
ment of the moon relative to inertial space repeats itself every 27.321 days. For
example, the Moon has 0° right ascension on January 12, 1989 at about 22.2 hrs GMT;
then 27.321 days later on February 9, 1989, at about 6.0 hrs GMT the Moon is again
at 0° right ascension and so on. By continually adding 27.321 days to the previous
date one can get approximate times every month for the Moon's starting position on
the chart. Continuing this indefinitely will gradually lead to sizeable errors, but for
the years 1989 and 1990 the following table gives the approximate times when the
moon will be at 0° right ascension.
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Day
Jan. 12
Feb. 9
Mar. 8
Apr. 5
May 2
May 29
June 26
July 23
Aug. 19
Sept. 16
Oct. 13
Nov. 10

Dec. 7

Approximate Dates in 1989 and 1990 when the
Moon will be at 0° Right Ascension

1989

Hour (GMT)

22.2
6.0
16.7
3.5
14.0

22.0

16.6

13.0

Day

Jan.

Jan.

Feb.
Mar.

Apr.

3

30

27

26

22

May 20

June 16

July 13

Aug.

10

Sept. 6

Oct.

Oct.

Nov.

3

31

27

1990

Hour (GMT)
13.7
19.4

3.0
12.8
22.5

9.8
17.2
22.9

4.4
11.6
20.9

7.5

17.8
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APPENDIX A

DERIVATION OF BETA ANGLE, ARGUMENT-OF-LATITUDE OF
CULMINATION, AND ORBITAL ELEVATION ANGLE

The unit angular momentum vector of the orbit (which is the orbit pole) illus-
trated by Figure 3, is given by

A

J=1i(sinisin Q) +j (-sinicos 8) +k (cos i) . (A-1)
A unit vector to a star with right ascension o, and declination § . is
R* =i (cos o, cos §,) + 5 (sin o, cos §,) + k (sin S4) . (A-2)

(See Figure 3 for an illustration of these vectors.) By definition, the g-angle of the
star is the angle between the vector to the star and the projection of that vector
onto the orbit plane. This is also illustrated in Figure 3. Mathematically the g-angle
is calculated as

~

R* . j = cos (90-pg*) = sin B* . (A-3)

Using equations (A-1) and (A-2) to construct the scalar product indicated in equation
(A-3) gives the following result for the angle

p* = sin” 1 [cos i sin 8§, - cos &8, sin i sin (o,-Q)] . (A-4)

By convention, the B-angle is positive if the star is on the same side of the orbit
plane as J and negative otherwise.

The culmination of a star is the place in the orbit plane where the star attains
its maximum elevation angle above the local horizontal plane. This occurs in the
orbit plane where the star's position vector is projected onto the orbit plane by a
great circle containing R* and J. This position in the orbit plane, measured from
the ascending node of the orbit, is called the argument of latitude of culmination,

Us-
The argument of latitude of culmination can be calculated as follows: A point
in the orbital plane 90° from orbital noon in the direction of orbit travel (which would

be the terminator for the star on the surface of the Earth), which is called R*GT,
is calculated as

J x R* = |J]|R*| sin (90°- %) R¥gy = cos B* R¥yy (A-5)
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or

+ j (cos i cos o  cos §, - sin i sin Q sin §,)

+ k (sin i cos 8, sin (o,-Q))] / cos B8* (A-6)
Let a unit vector to the ascending node of the orbit plane be denoted by i’; i.e.,
P =1 (cos 9) +j (sin Q) + k(0) . (A-T)

The argument of latitude of the star-set terminator u*SST can be calculated from

u* = cos-1 (ﬁ*

R -1 -sin i sin §, - cos i cos &, sin (o, Q)
- P) = cos

SST GT cos R*

(A-8)

The argument of latitude of culmination is 90° less than the argument of latitude of
the star-set terminator; i.e.,

% _ % °

us = uggyp - 90° . (A-9)
Therefore

. * o * oy - % A-10

sin u, = sin (uSST - 90°) = -cos Uggp - (A-10)
Combining equations (A-8) and (A-10) gives

« Sinisin §, + cos i cos 6, sin (0, Q)
sin us = cos BF . (A-11)

&

%
It is also necessary to have an expression for cos us 1n order to determine uc without

any ambiguity as to quadrant.

~ ok
A unit vector to culmination, RC, is
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koo G xRM xd o1 2 ora. e -

Rc —RGTxJ— cos BF = Gos BF [J (J-R*) - R* (J- I)]
or

R = - 1 [T (sin 8*) - R¥| A-12

C - ~ cos g¥ n . ( )
Then,

1'\) A*_ *

-RC—-cos uC , (A-13)

substituting equations (A-7) and (A-12) into equation (A-13) gives

* 1 . ~ oo ALn
cos u, = - Gos BF [sin B* (P+J) -~ R*.P] (A-14)

but P.J = 0, therefore

* 1 U | _ _
COS Un = oo g% [P-R*] = Sos B¥ [cos §, cos (o,-Q)] . (A-15)

From equations (A-11) and (A-15) one then gets

%
_1 [ sin ug _q [sin i sin 6, + cos i cos §, sin (a*-Q)] Al
cos &, cos (0,-Q) (A-16)

The radius vector of the vehicle points to the local zenith which is 90° from
the local horizontal plane. By definition, the orbital elevation angle, OEA, of a star
from the local horizontal is

OEA = 90° - cos 1 (R_-R*) (A-17)

The unit vector to the star ﬁ* is given by equation (A-2). The unit vector to the
vehicle is

~

RV =1 (cos 2 cos u - sin Q cos i sin u)

+ j (sin Q cos u + cos Q cos i sin u) + k (sin i sin u) . (A-18)
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Rewriting (A-17), we get
90° - OEA = cos | (R_-R¥)
or cos (90° - OEA) = sin (OEA) = (ftv~f{*)
OEA = sin" ' (R_-R¥) . (A-19)

Substituting equations (A-2) and (A-18) into equation (A-19) gives

OEA = sin_1 {cos u [cos 8, cos (0,-Q)] + sin u [cos §, cos i sin (a,-Q)

+ sin 6§, sin i]} . (A-20)

One can substitute equation (A-15) for the coefficient of cos u into equation (A-20),
and equation (A-11) for the coefficient of sin u into equation (A-20) to get

- *
OEA = sin 1 {cos u [cos u; cos Bf*] + sin u [sin U, cos g*1}

which simplifies to

OEA = sin”! [cos B* cos (uz-u)] . (A-21)

*
The angles g* and Ue calculated in equations (A-4) and (A-16) change very slowly

and can be considered constant for one orbit. Thus, equation (A-21) can be used
to calculate the orbital elevation angle of a given star from any point u in the orbit.
u can be varied arbitrarily from 0° to 360° to obtain the elevation angle at any point
in the orbit. The OEA will vary between the limits *|90-g*|.

Conversely, equation (A-21) can be inverted to calculate the argument of
latitude u required for a star to obtain a given OEA.

* ok -1 {sin (OEA) _
uA,L = uC + cos [W] (A 22)

The minus sign gives the argument of latitude of acquisition while the plus sign gives
the argument of latitude of loss. OEA can be chosen arbitrarily between the
physically meaningful limits of *90°. In practice, it is chosen to satisfy some physical
or scientific constraint. The observation time per orbit above a given OEA is
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OT = 2* cos ! [S—II(%;—OFE%AQ] /a . (A-23)

u in equation (A-23) is the orbital mean motion of the vehicle; expressed in degrees
per minutes gives the OT in minutes; expressed in degrees per hour gives the OT
in hours.

The time from the ascending node that the star is acquired and lost is
*

* % E N
TACQ = uA/u ; TLOSS = uL/u (A-24)

The mission elapsed time (MET) of acquisition and loss is obtained by adding
the time of the ascending node to the above times

* *
MET pcq = METyopg + Tacq
% _ *
MET} 6gs = METNopE * Tross (A-25)

If a minimum OEA is known or given, it can be substituted directly into equa-
tion (A-22). If the constraint is expressed as having the line-of-sight from the
orbiting vehicle to the star pass through the atmosphere at an altitude not lower than
ALT A and the vehicle is at an altitude of ALTO, then the minimum OAE is calculated

as

R, + ALT
_ -1 E A -
OEA = cos (R—W) . (A 26)

E 0]
This is illustrated in Figure A-1. A negative sign is given to OEA when ALT A is
less than ALTO. The elevation angle of the limb of the Earth is calculated from equation
(A-26) by letting ALTA
the Earth is at an elevation angle of = -18.56.

= 0. From an altitude of 350 km, for example, the limb of

If the viewing telescope has an FOV of X° and the bottom edge of the FOV
should not come closer than ALT A to the limb of the Earth, then the minimum OEA is

that calculated by equation (A-26) and then adding (X/2)° to the result.
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APPENDIX B
CALCULATING THE RIGHT ASCENSION OF THE ASCENDING NODE
OF THE ORBIT PLANE

In order to maximize the usefulness of the equations presented in the body of
this report, it is necessary for a user to be able to determine the right ascension of
the ascending node of an orbit plane. This appendix gives an approximate way of
doing this. It will be accurate enough for feasibility analyses.

The right ascension of the ascending node at any time after insertion at time
to is given by

@=q, +Q (t-to) (B-1)

where @, the regression rate of the line of nodes, is given to first order by

Q@ =-3/217, (re/a(l—ez)) n_ cos i (B-2)

and where

r, = Earth's equatorial radius (6378160 meters)

a = semi-major axis of orbit

eccentricity of orbit

[
]

i = inclination of orbit

J, = 1.0827 x 10°°
n = v u/a3 (mean motion)
- 14 3,2 e s
u = 3.986012 x 107" m"/s” (gravitational constant)

Q, computed in MKS units, comes out in units of radians/second. It is more useful
to convert it to degrees/day which is done by multiplying it by the conversion

factor

180° _
T radians® 86400 sec/day = 4950355.3
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In equation (B-1), the quantity Qo’ the right ascension of the ascending node at

orbital insertion, is given by

QO = >\0 + GST m)\0+[GST + L * DOY + W * GMT] (B-3)

MNO

where

Ao = longitude of the ascending node at orbital insertion which is a function
of orbital inclination, altitude and launch profile.

GST = Greenwich siderial time or the hour angle of the vernal equinox
measured from the Greenwich meridian.

GST = GST at midnight on January 1 of any given year (=100°).

MNO

Wy = rotational rate of Earth (15°/hr).

GMT

Greenwich Mean Time of Day at orbital insertion

= GMT MET

+ . .
Launch Insertion

The only quantity listed above that is not readily available from standard references
is A 0
>‘0 can be calculated approximately from spherical trigonometry as illustrated in

Figure B-1 and some assumptions on the launch profile. From Figure B-1, one can
see that if orbital insertion occurred at the launch site the longitude of the ascending
node would be given by

sin (AN - )‘LS) = cot 1 tan GLS

or
tan §
_ -1 LS
AN T Mg t Sin [—t'a' ni ]

where )‘LS is the longitude of the launch site (-80.°6) and GLS is the latitude of the

launch site (28.°5). Both terms on the right side of the above equation for ) are

N
to be taken as negative (west of Greenwich). Insertion, however, does not occur at
the launch site but at a downrange position in the orbit plane, Au/u * w ¢» added to
it so that finally,
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tan §
. -1 LS Au i
}\0 = ALS + sin [m—] + [ﬁ_] * we (B-4)

Au varies with altitude, inclination, and launch profile, u = 240°/hr and Wy = 15°/hr.

On one of the early iterations of the SPACELAB 1, as an example, we had

i =570 LD = 12/3/80 DAY = 337
Spg = 28.% LT = 18:00 GMT

ALg = 80.96 INS Time = 0.716 hr

uyg = 188.°077 ug = sin”! [E;%S_fﬁ] = 34.°67
Au = Wng " Yo = 154,.°2

Ay = - [80.°6 + 20.°65 + 22222 151 - _110.09

0 240

GST = [100° + 0.9856%337 + 15 * 18.716] = 352.°9

29 = )‘0 + GST = 352.°9 - 110.°9 = 242.°0

The actual value of QO was 242.°685.

The largest contributing error to Ao will be due to the uncertainty Au in the

downrange insertion distance from the launch site. This term is multiplied by the
factor 15/240 = 0.0625 however, so even a 10° error in the downrange position will
contribute an error of only 0.°6 in the position of the node which will not be sig-
nificant for feasibility calculations.

Based on several previous flights, a downrange insertion value of Au = 155°
seems to be a good average value although, on occasion, a flight may have a value of
15° or 20° more than this, depending on the trajectory shaping.

For the very specific case of the ASTRO-1 mission with i = 28.°5 and alt = 350
km, we show in Figure B-2 the right ascension of the ascending node at orbital
insertion for any given launch time of day for a launch on the first day of the month
for any month of the year. With a little interpolation one can use this chart to get
a very good value for @ for any day of the year.
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Figure B-1. Illustration of the ascending node of the orbit plane.relative to the
meridian of Greenwich, England and to the vernal equinox.
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