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1. SUMMARY

A method has been developed which calculates two-dimen-
sional, tramsonic, viscous flow in ducts. The finite volume,
time marching formulation 1is used to obtain steady flow solu-
tions of the Reynolds—-averaged form of the WNavier Stokes
equations. The entire calculation is performed in the physi-
cal domain. This paper Iinvestigates the iIntroduction of a
new formulation of the energy equation which gives improved
transient behavior as the calculation converges. The effect
of variable Prandtl number on the total temperature distribu-
tion through the boundary layer is also investigated.

A turbulent boundary layer in an adverse pressure gradi-
ent (M = 0.55) i{s used to demonstrate the improved transient
temperature distribution obtained when the new formulation of
the energy equation is used. A flat plate turbulent boundary
layer with a supersonic freestream Mach number of 2.8 is used
to investigate the effect of Prandtl number on the dis-
tribution of properties through the boundary 1layer. The
computed total temperature distribution and recovery factor
agree well with the measurements when a variable Prandtl
number 1s used through the boundary layer.
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2. INTRODUCTION

This paper 1is an extemsion of the work reported else-
where in this conference [1]. A review of the features of
the new method will be Included here but a more complete
discussion may be found in references 1 and 2.

The features of the current method can be summarized as
follows., Control volumes are chosen so that smoothing of
flow properties, typically required for stability, is not
needed. Different time steps are used in the different gov—
erning equations to improve the convergence speed of the
viscous calculations, A multi-volume method for pressure
changes in the boundary layer allows calculations which use
very long and thin control volumes (length/height = 1000).

3. GOVERNING EQUATIONS

The unsteady forms of the continuity equation, the x-
momentum equation, the y-momentum equation, and the energy
equation, in integral form, are used to obtain steady-state
solutions for flow through 2-dimensional ducts, This ap-
proach differs from our previous work (1] where the assump-
tion of constant total temperature was used Instead of the
full energy equation. The 1ideal gas equation of state and a
Prandtl mixing length turbulence model [1] complete the
governing equations needed to solve for the unknown vari-
ables p,u,v,P,u, and T.

For a finite control volume where we can assign one
value of density to the control volume, and for a finite time
step, 8t, continuity states that,

pn'*'l-pn:Gp:-[fprndﬁ]F‘% (1)

where the 1integral is evaluated explicitly at the current
time step, n. In arriving at an expression which relates the
pressure change directly to the continuity error, we will
assume that changes in temperature are small in comparison to
other changes for one time step. Thus, we can relate changes
in pressure to changes in density through the ideal gas equa-

tion of state.

pttl _ p? a2 sp = rT[ [] o bed ﬁ] 33;1 (2)

For the method introduced in the current work, a non-conserv-
ative form of the unsteady momentum equation 1is used. The
non-conservative form is used because 1t allows the current
method to use different time steps for the continuity, momen-
tum, and energy equations. The difference between the non-
conservative and conservative forms of the unsteady momentum



equation 1is assoclated with the unsteady and convectlive
terms., Specifically, we note that

3(pu) du
= +V-p22=pn+pB-VP_ (3)

and the right hand side of Eq. 3 can be rewritten as
du du

pﬁ+pg°vg=pﬁ-+v°pgg-g(v~pg) (4)

When the right hand side of Eq. 4 is combined with the pres-—
sure and viscous terms, the momentum equation in 1integral
form becomes

@™ - @ =8 = [ffpuu-dra+T [ ou-dnr

(5)
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To maintain stability, the properties must be updated in the
proper sequence, In the current method, the sequence is:

l. update the pressure from the continuity equation;

2., update the velocities from the momentum equations using
the new pressure and old velocities and old density;

3. update the density from the 1deal gas equation of state;

4, update the temperature from the energy equation.

4, ENERGY EQUATION

For many calculations of transonic viscous flow, the
assumption of constant total temperature will give a suffi-
cient representation of the energy equation in the flow
field. By assuming constant total temperature, the computa-
tions are 1less expensive to run and the computer storage
requirements are less. The assumption of constant total
temperature is usually satisfactory 1if:

1. an adiabatic wall is assumed in the calculations;

2. no work 1s done on the fluid at the solid boundaries;

3. the Mach numbers in the flow flelds are low enough that
total temperature gradients within the boundary layer are
small; )

4. the Prandtl number 1s approximately 1.0,

For a Prandtl number of 0.9, the solution should not
deviate greatly from the constant total temperature assump-
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tion. However for high speed flow, the energy equation
should be 1included in the calculations especially if the
Prandtl number deviates greatly from 1.

Two forms of the Integral formulation of the energy
equation will be derived next.

The energy equation in differential form is

dE
t T

T+V‘ = =Y e + 9 . . v + v -V
3 Et u q [u (u u u u ] Pu

(6)
where the total emergy per unit volume, E., is
E =0 (e+ 1/2(u2+vz)) = pe, (7)
The left hand side of Eq. 6 can be rewritten as
BEt a(pet)
etV B UtV ree U (8)
and
a(pet) aet
gtV eeJu=e g teuc Ve (9
then, expanding the right hand side of Eq. 9, we get,
de 3e

t t .
Py tprpuc-Ve =pe—=+TVue, e (V+pu (10)

The procedure just outlined 1is identical to what was
done to the unsteady and convective terms in the momentum
equation (see Eqs. 3,4).

The heat flux vector, g, can be represented as

q = ~kVT (11)

Substituting Eqs. 8-11 into Eq. 6, we get
de
95?5=-V -puet+et(V *p ) =9V « (-kVT)

+ 9V . [‘E o (v u+uv 2? )] -7+Pu

(12)

The integral form of the energy equation is then
Get
o} O x 6Vol =

-[foue -da+e [[ou-da-[[ T da
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+ff{u-(wWu+uwwu')eaa-[fPu-daa

where e » 18 an average value for the control volume. As
with the momen tum equation, Eq. 13 has a

term e ff puedA, which removes the continuity error
contrigution to the energy error.

This form of the energy equation, when incorporated into
the current method, behaved poorly. Initially there were
large errors in continuity and momentum and these large er-
rors acted through this energy equation to cause errors in

the total energy for a control volume. This interaction was
destabilizing,

An alternative form of the energy equation will now be
derived. This alternative form has enhanced convergence
properties when compared with the above formulation. Brief-
ly, the energy equation 1is reformulated so that changes in
total enthalpy, h,, are calculated rather than changes 1in
total energy, e,, which was done previously. This allows us
to see the terms which cause departures from uniform total

temperature - for both the steady state solution and the
transient solution.

The total enthalpy can be defined in terms of the total
energy and the static temperature

ht =e, + P/p (14)
or

h, =e,  +RT (15)
Taking the derivative with respect to time and multiplying by
the density, we get

aht de

t aT
P =P 3 +p R 7T (1l6)

The static temperature T can be represented in terms of the
total enthalpy and the absolute velocity as

h 2
t A4
T=z - (17)
P p
Therefore
T 1 e ¥ (18)
3t C_73t C_at
P p
Substituting Eq. 18 into Eq. 16, we obtain
de sh
t_op t R av
S i 1l oA (19)
P
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where Y 1s the ratio of specific heat capacities and V 1s the
magnitude of the wvelocity vector. Using equations (19) and
(14) to eliminate e, from equation (12) we get

oh

p t=l--. _P L[] .
73 v P u ht + (ht 3—)(V P 2) + F+kVT

(20)
+ 0 [u- (uu +u7 o] —p%—V-?rY:
Using h, = C

p
p T + V2/2 and k = u Cp/Pr, kVT may be replaced
by

2
=X _k v
KT = o= Vh - &= V(‘z‘) (21)

and from continuity we may replace Vep u with =3p/dt,

Therefore the energy equation written as a conservation equa-
tion for total enthalpy is
ah .

P__t_ g . K

(1) (11) (1I1) (22)

+ Veu(l1 - %.r.)v(.‘z’_) + Veu(uev) u +.§3r‘: - %5 ' %‘é
P

(1Iv) 42 (VI) (VII)

Terms I and II when combined give - p u ¢ Vh_,. Therefore
terms I + II and III contain h, only in the form Vh_. Thus,
when these are the only important terms in the equation, flow
with uniform total temperature at the inlet will retain this
uniform total temperature provided that the boundary condi-
tions are consistent with this,

Term IV is a viscous transport term for total enthalpy when
the Prandtl number is other than 1., Term V 1is another vis-
cous transport term, It however contains the expression
(u * V) u which is the gradient of the velocity in the direc-
tion of the velocity; these gradients are usually small com-
pared with other velocity gradients. Since terms IV and V
have the form V * ( ), they are not source terms, rather they
can only redistribute the total enthalpy. Terms VI and VII
on the other hand have the form of source terms. Relative to
the steady state, they are proportional to the continuity
error and the momentum error, respectively, We may write
them as

M=2 %% +m %% (23)

At the steady state, Eq. 22 becomes
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b 1 ,o(V2
0=-Vepuh +V = Vh +7eu(l -P_r)v(_)
2 (24)

+Veu(us9v)u

Therefore we may artibrarily alter the variables 1 and m in
Eq. 23 and the steady form of the energy equation, Eq. 24,
will be obtained for converged solutioms. The transient
behavior of he is improved in the calculation procedure by
choosing 1 = m = 0, i.,e. by omitting the transient source
terms in the enthalpy equation,

In integral form then the equation for enthalpy changes 1is
Sh

Py Vol =vy{- [ ounh +dA+R [fou-da
(25)

+ff‘lj_t\7ht-.d_4+ff[(u-%;)3-v3T+u3.v3]~dA

H e Ve

where u = uy + ut and T = FE; + F?: .

The time step used for the enthalpy equation is the same as
for the momentum equation, If the transient source
term%i—% had been retained in the enthalpy equation, it

would have been necessary to link the continuity and energy
equation time steps., Omitting this term allows us to use

different time steps for the energy equation.

5. TEST CASES

Two test cases will be used to explore various aspects
of the more complete form of the energy equation, Eq. 25,
discussed previously.

5.1 Turbulent Boundary Layer in an Adverse Pressure Gradient

The geometry and grid used in this test case are shown
in Fig. 1. Flow in this geometry was used in Ref. 1 to test
the accuracy of the new computational scheme. In Ref, 1 the
velocities in the duct were low enough that the flow could be
treated as Incompressible. Here, the inlet freestream Mach
number was increased to 0.55. The purpose of thils test case
was to i1llustrate the advantage of the new formulation of the
energy equation. ‘

The static temperatures presented in Fig. 2 are from

calculations after 500 iterations. It can be clearly seen
that the new formulation, Eq. 25, gives a better transient
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solution to the energy equation and it should result in a
reduction in the computer time required to reach a steady
state solution. Fig. 3 shows the corresponding total temper-

ature profiles for the two formulations of the energy equa-
tion.
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Fig. 1 Grid and Geometry Used to Demonstrate the
Advantages of the New Formulation of the
Energy Equation
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Fig. 2 Static Temperature Distribution Through
the Boundary Layer at M=0.55, x=200 mm,
after 500 iterations

5.2 Flat Plate Turbulent Boundary Layer at M = 2,8

Van Driest [3] presents the total temperature distribu-
tion within a flat plate turbulent boundary 1layer with a
freestream Mach number of 2.8. The experimental total tem—
perature distribution is shown in Fig. 4., The geometry and
grid for these calculations are shown in Fig, 5. The height
of the duct was 63.5 mm and the length of the duct was 254
mm. The computational grid shown in Fig., 5 consists of 21
axial grid points and 14 transverse grid points. The inlet
boundary layer thickness of 6.35 mm was 10% of the duct
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Fig. 3 Total Temperature Distribution Through the
Boundary Layer at M=0.55, x=200 mm,
after 500 iterations

height. The_Rey;nolds number based upon axial distance is
approximately 10 To stabilize these supersonic flow
calculations, the upwind effective density method was used
[2]. This means that an effective density used at a grid
point is calculated with the 1ideal gas equation of state
using the pressure from the next upstream grid point. The
inlet velocity, total temperature, and total pressure were
specified at the upstream boundary. Three calculations were
performed with different assumptions about the turbulent
Prandtl number. These assumptions were

1. Pr, = 0.90 }?1':2 = 0,73
2. Pr, = 0.73 Pr, = 0.73
3. Pr, varies linearly through the boundary layer from 0.9

at the wall to 0.66 in the freestream,

The turbulent Prandtl number 1s typically set equal to a
constant of 0.9 in calculations [4]. The calculated total
temperature distribution through this boundary layer using a
constant turbulent Prandtl number of 0.9 is shown in Fig. 6
(represented as 0 ). The recovery factor 1is calcu-
lated to be 0.920 which compares with the empirically deter-

"mined value of 0.90, However, the distribution of total

temperature through the boundary layer does not compare well
with the experiment. If the turbulent Prandtl number is set
equal to the laminar Prandtl number of 0.73, the total tem-
perature distribution changes as seen in Fig. 6 (represented
at O's). The distribution through the outer part of the
boundary layer has improved but the recovery factor of 0.813
does not compare well with the experimental value of 0.90.
Schlichting [5] notes that the turbulent Prandtl number {is
not constant through the boundary layer. The experiments of
H. Ludwieg [6] for turbulent flow through a pipe show that
the Prandtl number varies from approximately 0.9 at the pipe
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Experimental Total Temperature Distribution
in a Flat Plate Turbulent Boundary Layer
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Fig. 5 Geometry and Grid For Boundary Layer Calculations
at M=2.8
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Fig. 6 Total Temperature Distribution For Flat Plate

Boundary Layer at M=2.8
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wall to 0.66 at the center of the pipe. This distribution is
shown in Fig., 7. The variation 1is almost linear., For the
third set of calculations, the Prandtl number was assumed to
vary linearly through the boundary layer from 0.9 at the wall
to 0.66 at the edge of the boundary layer. The total temper-
ature distribution for this case is shown in Fig. 6 (repre-
sented as\'s). The total temperature distribution calcu-
lated using a variable Prandtl number is also compared with
the experimental results in Fig. 8. Both the distribution of
total temperature through the boundary layer and the recovery
factor of 0.90 are in good agreement with the experimentally
measured values,
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Fig. 7 Ratio of the Turbulent Transfer Coefficient Over
the Length of a Radius in Turbulent Pipe Flow
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Fig. 8 Total Temperature Distribution For Flat Plate
Boundary Layer at M=2.8 Computation vs. Experiment

-81-



6. CONCLUSIONS

A new formulation for the energy equation was introduced
which has improved transient behavior when compared with the
standard formulation. The new formulation removes the 1n-
fluences of continuity and momentum errors from the energy
equation during transients in the solution.

For flat plate turbulent boundary layer flow with a
freestream Mach number of 2.8, the calculated total tempera-
ture profile was improved by using a variable Prandtl number
through boundary layer. The recovery factor of 0.90 agreed
very well with the empirically determined value of 0.9.
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