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ABSTRACT

A new algorithm for solving subset regression
problems is described. The algorithm performs a QR
decomposition with a new column-pivoting strategy,
which permits subset selection directly from the
originally defined regression parameters. This, in
combination with a number of extensions of the new
technique, makes the method a very flexible tool
for analyzing subset regression problems in which
the parameters have a physical meaning.

INTRODUCTION

The subset regression problem analyzed in this
paper is formulated for the following least-squares
problem:

min| Jax - b1, Q)
X

The system matrix A € R™" (m > n) is assumed to

contain a number of columns that are "nearly" lin-
early dependent on an independent set of columns
of A. The task now is to find the minimal number
of columns comprising that independent set. Fur-
thermore, the adjective "nearly" is used to indi-
cate that small perturbations of A, that is, of
the order of the inaccuracies (O(e)) on the entries
of A, establish that linear dependency.

A numerically reliable technique used so far
to detect near dependencies is that of singular-
value decomposition (SVD) [1]. This technique
determines a minimal set of columns. Say that the
dimension of this set is k. But, each of these
selected columns now is a linear combination of the
original columns of A. Hence, that minimal set
will generally contain more than k individual
columns of A. This is a major drawback for prac-
tical subset regression problems, such as aerody-
namic model identification (2],[3].
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This paper describes a new technique that
allows the direct selection of k individual col-
umns of A. The technique performs a QR decomposi-
tion with a new column-pivoting strategy. Further-
more, it is not necessary to compute the full SVD
of A in order to determine k. This is because

-accurate estimates of the singular values, which

allow such a determination, are also obtained.

This new technique is described first, and
then a number of extensions and modifications of it
are presented that allow its application to practi-
cal problems in subset regression analysis. These
problems are in the order to be discussed:

1. The determination of the interrelationship
between the defined independent and dependent col-
umns of A by the new technique.

2. The inclusion of a priori information
about the structure of the regression model, as
well as about estimates of the individual compo-
nents of x in (1) and their corresponding
uncertainties.

3. The capability to jointly process columns
of A that are contaminated by noise and others
that are noise-free without using scaling
techniques.

4. The efficient solution of the closely
related total least-squares problem, described in

[4].

NEW COLUMN-PIVOTING STRATEGY IN QR DECOMPOSITION

The QR decomposition of the matrix A
is denoted as

in (1)

T i
QOA = [ﬁ] (2)

w?ere R ¢ R™*" i3 upper triangular and

Q Q This transformation differs from the
SSD in tnat no right orthogonal transformation on
A is applied. It is precisely this right-
transformation that obscures the selection of k
individual columns of A. To avoid this problem,
the only right-transformation on A allowed is a
column permutation.




The idea of column pivoting is to exploit the
freedom introduced by this column permutation to
solve the rank-deficient least-squares problem
(1). Based on the new pivoting strategy, it will
be shown that this can be done as reliably as with
the SVD method without relying on complete SVD.

Let us clarify this for the rank-one deficient
case, that is, for k = n - 1, implying that
o, = O(e) and On_1 2> op. (For the sake of
brevity, we restrict without loss of generality to
this case throughout the whole paper.) Here the
singular values o; of A are ordered in
decreasing magnitude.

From (5] (for example) it is known that the
magnitude of the last diagonal element of R in
(2) is an upper bound for o,. Therefore, the
rank-one deficiency can be revealed with column
pivoting if we can find a column permutation
matrix w_  such that

n
R?, [
T N BRI R

QnR!n = *;— ;;— (3)
22

where |r" i is "small" of O(e). The existence

of such'a permutation is indicated by exercise
P-6-4-U4 of [6].

Furthermore this exercise gives a constructive
way to find this permutation. The key information
is the computation of the right singular vector
corresponding to the smallest singular value ¢

n
This can be done, for example, by the inverse
iteration method [6].
The decomposition (3) combined with (2)
produces:
1 Batfia
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Therefore, if we explicitly accumulate Q: (which
can be done efficiently because we are working only
in the n-dimensional parameter ?pace as opposed to
the sample space) and perform Q_  with

Householder transformations such as described in

(7], the basic solution x,, the residual v, and

the estimate b of (1) can be computed in a manner
that is completely similar to that in [7]. These
quantities can now be given as follows:

x, = Rj;b, ¢ R (6)

[9
. Q [
q |-nto (8)

where (Aan)k denotes the k selected columns
of A.

DETERMINING INTERRELATIONSHIPS IN THE
REGRESSION MODEL

The above algorithm rearranges the columns
of A as [ag; ... agudcy,y -+~ 3c ]J. Here the
vectors [a¢ . ag, ) correspond to the so-called
identiflable or independent components of x,
denoted previously as x,, and [ag, , ... acn]
corresponds to the dependent ones.

For a number of applications it is necessary
to specify these dependencies more precisely. In

this case, it is necessary to know on which minimal

set of vectors from [ac,

.. ag,] each vector from
[a°k+l . acn] depends.

The decomposition obtained in (4) reveals the
information necessary to answer this question.
First, focus on the following least-squares

problem:
R r
e 2
22 2

Elements of the solution 8 = R;:riz are the coor-

min
]

dinates of the projection of ag in the space
n
spanned by [ac1 v acn_jl. Of course, "large"

components in B8 suggest a strong correlation
between the corresponding columns of

lagy --- ag,_q] and ac,. However, it is more
convenient to normalize these coordinates. Let us
therefore define the following cosines:

FESIIENIR
cos 0. = for i=1:k (10)
! Fi2lt2

with r; denoting the ith column of Ryq in
(9). This set of numbers ranges from -1 to +1 and,
therefore, can be interpreted completely anal-
ogously to the commonly used cross-correlation
coefficients [5]. Normally, the latter are

e——



retrieved from the covariance matrix of the least-
squares estimates of x in (1). Since A here is
assumed to be rank-deficient, this covariance
matrix cannot be computed unless use is made of
pseudoinverses.

Based on the following theorem we can however
gain an understanding of this covariance matrix
because of the inclusion of a dependent column.

Theorem 1:

If an upper triangular matrix R € RUXD s
given as

0 rs

with Ry; of rank n-1 and rss arbitrary, then

1o |RRp T vagall-as
®TR)7! =

+
T (1)

w >

-G a

¥

NN

: ° -1
with 8 = Rl1r12 and a = 1/r

2
Proof: The proof of Theorem 1 could be obtained
directly from the definition of the inverse of a

matrix.

For the decomposition obtained in (6),
Theorem 1 allows us to exactly calculate the influ-

ence of any - rp, on the estimated va¥iances of Xy

(given by the diagonal elements of (R11R1l) ).

When we make the practical observation that "a
component of x 1is called not identifiable if its
corresponding estimated variance becomes unaccepta-
bly large," then another procedure for determining
the dependencies more precisely corresponds to

determining whether an unacceptable increase in the

variances of the components of x, occurs.

Both of the procedures described above supply
parameters and insights that have commonly been
used to analyze identifiability problems in practi-
cal regression problems.

INCLUSION OF A PRIORI INFORMATION

For the physical applications addressed in
this paper, information is often available about
(1) the structure of the regression model, that is,
which of the components of x in (1) have to be
in Xy, and (2) a priori estimates of individual
components of x with corresponding variance. For
the sake of brevity, only the capabilities of the
new procedure in dealing with the first a priori
information source are presented here.

We can include that information after the
decomposition given in (4) has been obtained. Here
we would then use the cosines defined in (10) or
the revealed influences of the dependent terms on
the estimated variances of the independent terms
of x. This information would allow us to inter-
change columns of [ag . ag,] with columns of

[ac e ag ]. Algorithmically, the necessary

pergﬁéation cin again be done efficiently, since we
can remain working on the compressed matrix struc-
ture defined in (4). Furthermore, information
could be revealed about the effect of this inter-
change by computing the change in residual v,
efficiently computed as given in (7).

JOINTLY PROCESSING NOISE-FREE AND NOISY
COLUMNS IN A -

In many regression models there is a so-called
offset term. This results in a column of A of
all ones. The other columns might result from
observations and are, therefore, contaminated by
errors, often of different magnitudes for each
column. A rough partitioning of the A-matrix in
(1) is therefore

A= [ | A | (12)

2
Contaminated by errors

1

Noise-free

The described algorithm requires, as the SVD,
a threshold o to determine the rank of A in (1)
[5]. The use of such a single o requires column
scaling [5], so that the magnitude of the errors on
the columns of this scaled matrix is of the same
order. The mixing as given in (12) results in a
very bad conditioning of this scaled matrix and,
therefore, should be avoided. The new algorithm
might handle the situation in (12) without scaling

when modified in the following stages.

Stage 1:

Process A; by the algorithm given in the
second section to produce

. . NLRREIR
QA7 Q850 = 0 Rypl13 (13)
oo |R

23

This investigates the dependencies among the noise-
free columns and, therefore, a threshold

o, = O(machine precision) should be used. Before
continuing to the second stage, check whether
columns of A, are dependent on the columns
represented in Ryy in (13). This corresponds to
checking whether

Heps(11, < o /m (14)



as outlined in [8]. Here 523(1) denoted the

ith column of Rya in (13) and o; the corre-
sponding standard gevlatlon of the errors on that
column. This procedure reduces Ry3,Ry3 in (13)
to R13,R23, respectively.

Stage 2:

Appll the algorithm given in the second sec-
tion to R23:

Rk P
R

0 {Rap

(15)

using a threshold 32 = 0 (magnitude of errors on
A,).
2

Remark: This two-stage procedure might be extended
to the following three-stage procedure, where A
is partioned as

A= A, [ A, | Ay ]
—_— - ) . )
Noise-free Mild errors Large errors

(16)

EFFICIENT SOLUTION OF TOTAL LEAST-SQUARES PROBLEM

This problem is not addressed here; the reader
is referred to [8] for that discussion.

CONCLUDING REMARKS

A new scheme was presented for efficiently
solving subset regression problems. The scheme is
as reliable as the singular value decomposition
technique, but does the subset selection directly
from the defined set of regression parameters,
Furthermore, a number of interesting extensions and
modifications of this new procedure have been pre-

sentad that allow the flexiple solution of subset
regression problems where the regression parameters
are of physical interest.

(1]

(2]

{31

(4]

(5]

(6]

(7]

(8]
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