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SUMMARY 

A compressible, unsteady, full Navier-Stokes, finite difference code has 
been developed for modeling transonic flow through two-dimensional, oscillating 
cascades. The procedure introduces a deforming grid technique to capture the 
motion of the airfoils. 
isolated and cascaded airfoils. 
tributions are predicted for the NACA 64A010 isolated airfojl and compared with 
existing experimental data. Results show that the deforming grid technique can 

2 be used to successfully predict the unsteady flow properties around an oscil- 
2 lating airfoil. The deforming grid technique has been extended for modeling 

unsteady flow in a cascade. The use of a deforming grid simplifies the speci- 
fication of boundary conditions. Unsteady flow solutions similar to the 
isolated airfoil predictions are found for a NACA 0012 cascade with zero inter- 
blade phase angle and zero stagger. Experimental data for these cases are not 
available for code validation, but computational results are presented to show 
sample predictions from the code. 
machinery flow conditions will be presented in future work. 

Results using a deforming grid are presented for both 
The load histories and unsteady pressure dis- 

Applications of the code to typical turbo- 

INTRODUCTION 

The analysis of flow around advanced turboprop airfoil sections requires 
methods capable of modeling unsteady, transonic flow. As the number of blades 
Increase, the cascade effects are expected to become more signiflcant. 
date, most of the flow codes that model unsteady, transonic cascades are line- 
arized potential solvers. While these codes are fast and more practical for 
load predictions, they are not expected to model the true physics of the flow. 
There is no experimental data avallable for propfan sections that can determine 
the extent of the unsteady effects. In an attempt to bridge the gap in under- 
standing and modeling unsteady, transonic flow through cascades, a compressible 
Navier-Stokes code has been developed for such applications. The present code 
Introduces a deforming grid technique to capture the blade motion in the cas- 
cade. The use of a deforming grid 1s convenient for treatment of the outer 
boundary conditions since the outer boundary can be fixed In space, while the 
inner boundary moves with the blade motion. This is desirable for oscillating 
airfoils in a cascade since the outer boundary position must be known. Sample 
calculations are presented for both Isolated and cascaded airfoils and compared 
to experiment when possible. 

To 
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sonic velocity 

lift coefficient 

moment coefficient about the leading edge 

pressure coefficient 

f ree-stream speed of sound 

blade chord length 

total energy of the fluid per unit volume 

Geomet r ic Conser vat1 on Law 

gap-to-chord ratio 

Jacobian of transformation 

reduced frequency based on semichord, wc/2U, 

Mach number 

Reynolds number based on chord 

upstream-running Riemann invariant 

arclength of a grid line in the n-direction 

time normalized by c/C, 

free-stream velocity 

Cartesian velocities normalized by C, 

total velocity 

weighting function for grid deformation 

Cartesian coordinates normalized by chord length 

angle o f  attack in degrees 

mean angle o f  attack 

amplitude of pitching 

ratio of specific heats 

normal di rection of transformed coordinate system 

chordwise direction Of transformed coordinate system 

. 
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density 

time variable 

airfoil oscillation frequency 

GOVERNING EQUATIONS 

The code is an extension of the isolated airfoil code developed by Sankar 
and Tang (ref. 1). 
averaged, compressible Navier-Stokes equations on a body-fitted moving coordi- 
nate system in strong conservation form using an AD1 procedure. 
code uses the same AD1 procedure to solve for the interior of the computational 
domain. The outer boundary conditions are modified to model cascaded airfoils 
and are described later in this paper. A complete description of the formula- 
tion for isolated airfoils i s  included in reference 1,  and only a brief outline 
is given here. 

This code solves the two-dimensional, unsteady, Reynolds- 

The cascade 

The two-dimenstonal, unsteady Navier-Stokes equations can be written as: 

qr + Ft + G = RE + Sn n 

where 

and p is the fluid density; u and v are the Cartesian components of the 
fluid velocity; e is the total energy per unit volume. The body-fitted 
( E , ~ , T )  coordinate system I s  related to the Cartesian coordinates using 
the following transformation: 

r = t  

The Jacobian of the transformatjon is given by: 

and the metrics of the transformation are given by: 

E, = JY, 

E n = J X  Y 
3 



Standard central differences were used to compute xF,yE,x, and y, which 
were then 

6 and 4-directlons, respectively. The R and 5 quantities are the cor- 
responding viscous stress terms. 
solutions for the Euler equatlons. The Beam-Warming, block AD1 algorithm is 
used to solve the governing equations. 
to reduce the computational time. 
stability and follows an improved method used by Sankar and Tang (ref. 1) to 
reduce excessive smearlng of embedded vortices. 
equation ( 1 ) becomes : 

sed to Salculate the metrics. 
The 1 and G terms in equation (1) are the inviscid flux terms in the 

The viscous terms can be omitted to give 

The viscous terms are treated explicitly 

The discretized form of 

Artlficlal dissipation is added to help the 

where 

*ntl ^ntl 
Aqij = qij 

Dij is the dissipation term, EE controls the amount of dissipation, AT is 
the time step and 6~ and 6, are standard central difference operators. 
The F and terms are nonlinear and are calculated using a Taylor series 
about the ‘Init time level. The solution is second-order accurate in space and 
first-order accurate i n  time. The Baldwin-Lomax, two-layer algebraic model 
(ref. 2) is used to evaluate the eddy viscosity and the entire flow field is 
assumed to be turbulent. 

GRID 

The flow solver uses a C-grid generated from Sorenson’s (ref. 3) GRAPE 
(GRids about Airfoils using Poisson’s Equations) code. Several test cases 
have been presented by Huff, Wu and Sankar (ref. 4) using the present code and 
C-grids from the GRAPE code for isolated airfoils. For cascaded airfoils, the 
grids are generated by specifying an outer boundary shape for the C-grid and 
forcing periodicity on the upper and lower boundaries, as shown in figure 1. 

Solutions for pltching or plunging isolated airfoils are found by moving 
the entire grid as a rigid body. 
ary remains in the free stream. 
tion must be known to apply the approprlate boundary conditions. A deforming 
grid technique i s  used I n  this analysis to locate the position of the grid as 
a function of time. The inner boundary moves with the airfoil, whlle the outer 
boundary remains fixed in space. The grid lines connecting the inner and outer 
boundaries of the C-grid are allowed to deform. This avoids difficult inter- 
polation of the flow properties along the periodic boundarles. The amount of 
deformation is a function o f  the distance away from the surface of the airfoil. 
Define a weighting functlon, w, to be: 

This procedure is valid when the outer bound- 
For cascade analysis, the outer boundary posi- 
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where s the arclength of a grid line from the airfoil surface (n = 1 )  to 
some grid point along 
From equation ( 6 ) .  we see that w = 1 when ~ ( 1 . 0 )  = 0 and w = 0 when 
~ ( 1 . 0 )  = s(f,nmax). 

1 = constant, and nmax = the outer boundary grid line. 

This function i s  used to find the amount of grid deform- 
ation for each.--new time step: 

ntl 
xi 3 

Y;;l 

where (Axij)rig and (AYij)rig 
were rotated as a rigid body. 

n 
(Axi j rig = xij wij 

= YCj + wij (‘Yi j)rig 

Finally, the amount of deformation of the grid 

( 9 )  

are the spatial differences if the entire grid 

over one time step can be defined as: 

The total velocity of the flow at any point on the grid i s  equal to the grid 
velocity plus the velocity of the flow with respect to the grid. 
boundary, the grid i s  fixed in space and the grid velocity i s  zero. The grid 
velocity changes with the amount of deformation, giving the following Cartesian 
grid velocities: 

At the outer 

With the grid velocities known, the flow solver can predict the unsteady 
flow properties at any desired time. However, as noted by Thomas and Lombard 
(ref. 5) and Shamroth and Gibeling (ref. 6), a moving grid requires careful 
treatment of the metric data to account for the time variation of the Jacobian 
of transformation. The Geometric Conservation Law (GCL) was introduced by 
Thomas and Lombard (ref. 5) as a way to maintain global conservation of a mov- 
ing grid when transforming from a body-fitted coordinate system to the computa- 
tional plane. A grid that remains fixed in space does not need to account for 
the GCL since the time-dependent terms of the mapping are zero. When the grid 
deforms, the change in the Jacobian of transformation from the previous time 
level must be calculated using the GCL. In the present study, the GCL i s  both 
included and excluded from the calculations to investigate its importance for 
the deforming grids. 

BOUNDARY CONDITIONS 

In order to properly model flow through a cascade, the outer boundary 
conditions must capture the physics of the flow field. The technique used 
here i s  similar to the approach used by Chima (ref. 7). .The solution models a 
single blade and assumes periodic boundaries along the upper and lower grid 
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l i n e s .  This  w i l l  be t r u e  f o r  cascades w i t h  zero i n t e r b l a d e  phase angles. 
Based on Shamroth, McDonald and B r i l e y ' s  ( r e f .  8) exper ience w i t h  modeling 
cascades, t h e  met r ic  data i s  a l s o  forced t o  be continuous a long t h e  p e r i o d i c  
boundaries. 

The i n l e t  condi t ions are  assumed t o  be a t  f r e e  stream t o t a l  pressure and 
temperature. The des i red  f l o w  angle i s  a l s o  a necessary i n p u t  t o  completely 
spec i f y  t h e  i n l e t  boundary cond i t ions .  S i m i l i a r  t o  Jameson ( r e f .  9) t h e  
upstream-running Riemann i n v a r i a n t  based on t o t a l  v e l o c i t y  i s  ca l cu la ted  and 
ex t rapo la ted  f r o m  t h e  i n t e r i o r  t o  g i v e  a non re f l ec t i ng  boundary cond i t i on :  

R- = [v - 51 
where V = t he  t o t a l  v e l o c i t y  

C = t h e  sonic v e l o c i t y  

Al though t h i s  boundary c o n d i t i o n  i s  on ly  v a l i d  f o r  steady f lows, i t  i s  
used here as an approximation f o r  t he  f u l l  unsteady boundary c o n d i t i o n  by 
assuming t h a t  the unsteady terms a re  n e g l i g i b l e .  
boundary cond i t i on  a l lows the  upstream boundary t o  be c l o s e r  t o  t h e  b lade wi th- 
out  decreasing the convergence ra te .  With R- known a t  t h e  i n l e t ,  t h e  t o t a l  
v e l o c i t y  and v e l o c i t y  components a r e  known. 
a re  found assuming I s e n t r o p i c  f low,  and the  energy i s  found f rom the  r e l a t i o n :  

I n  theory,  t h e  n o n r e f l e c t i n g  

The s t a t i c  pressure and dens i t y  

This g ives a l l  i n l e t  cond i t ions  spec i f i ed  i n  terms o f  t he  conservat ion v a r i -  
ables used i n  equation ( 2 ) .  

The e x i t  boundary cond i t ions  ex t rapo la te  p ,  pu, and pv f rom t h e  i n t e -  
r i o r  and spec i fy  f r e e  stream s t a t i c  pressure t o  c a l c u l a t e  energy. An e x i t  
Riemann i n v a r i a n t  cannot be s p e c i f i e d  s ince i t  would vary across a v iscous 
wake. 

The remainder o f  t he  boundary cond i t ions  a re  i d e n t i c a l  t o  those used f o r  
i s o l a t e d  a i r f o i l s  i n  re ference 1. This inc ludes s o l i d  w a l l  boundaries on the 
a i r f o i l  sur face and averaging the  f l o w  cond i t ions  across t h e  s l i t  a f t  o f  t h e  
a i r f o i l .  

RESULTS AND DISCUSSION 

Resul ts  f r o m  t h e  sample runs a re  d i v ided  i n t o  two categor ies:  (1 )  a 
p i t c h i n g ,  i so la ted  a i r f o i l  t o  t e s t  t he  deforming g r i d  technique, ( 2 )  steady and 
unsteady pred ic t ions  f o r  a cascade w i t h  zero i n t e r b l a d e  phase angles and zero 
stagger.  The a i r f o i l s  used i n  t h i s  i n v e s t i g a t i o n  a r e  t h i c k e r  than t y p i c a l  
sect ions found on t h e  propfan. They have been chosen f o r  code v a l i d a t i o n  s ince  
exper imental  data f o r  t h inne r  sect ions does n o t  e x i s t .  P re l im ina ry  ca l cu la -  
t i o n s  have been done f o r  the  NACA 16 ser ies  a i r f o i l s  and w i l l  be presented i n  
a f u t u r e  paper. 
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NACA 64A010 I s o l a t e d  A i r f o i l  

The NACA 64A010 a i r f o i l  has been chosen f o r  t e s t i n g  t h e  deforming g r i d  
concept because o f  t h e  extens ive data presented by Davis and Malcom i n  
reference 10. This  da ta  was taken i n  t h e  11 by 11 f o o t  t ranson ic  wind tunne l  
a t  t he  NASA Ames Research Center. A t e s t  case comnonly used by o ther  
researchers i s :  
k = 0.202 (reduced frequency based on semichord). Th is  case i s  used i n  t h e  
present  study f o r  comparisons w i t h  code p red ic t i ons .  

M = 0.80, Re = 12.56 m i l l i o n ,  a,,, = -0.2lo, a1 = +,1.02', and 

F igure  2 shows a f u l l y  deformed g r i d  superimposed on a s i m p l i f i e d  C-gr id 
f o r  t h e  NACA 64A010 a i r f o i l .  The actual  g r i d  used i n  t h e  p r e d i c t i o n s  i s  a 157 
by 58 C-grid, w i t h  97 p o i n t s  wrapped around t h e  a i r f o i l  and 60 p o i n t s  i n  t h e  
wake. The g r i d  i s  i n i t i a l l y  generated a t  t he  mean angle and then a l lowed t o  
deform so t h a t  t he  maximum deformation occurs a t  t h e  maximum and minimum p i t c h -  
i n g  angles. The p l o t  shows two gr ids :  (1 )  t h e  i n i t i a l ,  r i g i d  g r i d  generated a t  
a = a,,, ( s o l i d  l ine). ,  and (2 )  t he  f u l l y  deformed g r i d  a t  t h e  maximum p i t c h i n g  
angle (dashed l i n e ) .  The g r i d  w i l l  a l so  deform i n  the  opposi te  d i r e c t i o n  t o  
the  mlnimum p i t c h i n g  angle. Not ice  i n  f i g u r e  2 how t h e  ou ter  boundary remains 
f i xed ,  w h i l e  t h e  i nne r  boundary moves w i t h  t h e  mot ion o f  t h e  a i r f o i l  surface. 
The g r i d  connect ing t h e  i nne r  and outer boundaries deforms, as i l l u s t r a t e d  by 
the  space between t h e  s o l i d  and dashed g r i d  l i n e s .  

An average ou ter  boundary distance o f  t e n  chord lengths  was chosen based 
on the  r e s u l t s  o f  a g r i d  parameter study i n  re fe rence 4 us ing  t h e  NACA 0012 
a i r f o i l .  
i s  0.00005 chords, which should be adequate f o r  t h e  se lec ted  Reynolds number. 

The d is tance o f  t he  f i r s t  g r i d  l i n e  o f f  t h e  sur face o f  t h e  a i r f o i l  

Three separate ca l cu la t i ons  were s tud ied  f o r  t h i s  t e s t  case. The f i r s t  
c a l c u l a t l o n  r o t a t e s  t h e  g r i d  as a r l g i d  body t h a t  f o l l o w s  t h e  a i r f o i l  motion. 
The second c a l c u l a t i o n  (deforming, w i th  GCL) uses a deforming g r i d  and inc ludes  
the  Geometric Conservation Law i n  the c a l c u l a t i o n  o f  t h e  Jacobian. I n  order  t o  
determine t h e  importance o f  t h e  GCL f o r  deforming g r ids ,  t h e  t h i r d  c a l c u l a t i o n  
(deforming, w i thou t  GCL) uses a deforming g r i d  w i t h o u t  conserving the  t ime 
dependent terms i n  t h e  Jacobian ca l cu la t i on .  A l l  t h ree  c a l c u l a t i o n s  were per-  
formed us ing  f i v e  cyc les o f  p i t c h i n g  and were found t o  be p e r i o d i c  i n  t h e  f o u r t h  
cyc les.  
a,,, = -0.19' ins tead o f  a,,, = -0.21' used i n  t h e  experiment. This was done 
t o  match t h e  mean l i f t  c o e f f i c i e n t .  (Since t h e  o b j e c t  o f  t h i s  ana lys i s  i s  t o  
ob ta in  load in fo rmat ion ,  matching the l i f t  and moment c o e f f i c i e n t s  i s  more 
usefu l  than on ly  matching t h e  pressures on t h e  sur face w i t h  t h e  shock wave. 
The r e s u l t s  may s t i l l  need t o  be corrected f o r  wind tunne l  w a l l  i n te r fe rence . )  

The mean angle o f  a t t a c k  used i n  the  p r e d i c t i o n s  was adjusted t o  

The l i f t  and moment p red ic t i ons  f rom a l l  t h r e e  cases a re  shown i n  f i g u r e s  3 
and 4, respec t i ve l y .  The c o e f f i c i e n t s  f rom a Four ie r  t rans form on the  f o u r t h  
cyc le  a r e  shown i n  t a b l e  I, w i t h  the r e s u l t s  p l o t t e d  i n  f i g u r e s  5 and 6 f o r  
comparison w i th  experiment. 
ad jus ted  mean angle a r e  compared w i th  exper imental  da ta  i n  f i g u r e  7. 
and imaginary components of pressure normal ized by t h e  ampl i tude o f  o s c i l l a t i o n  
a r e  p l o t t e d  i n  f i g u r e s  8 and 9, respec t ive ly .  

The steady-state pressure d i s t r i b u t i o n s  f o r  t h e  
The r e a l  

The r e s u l t s  a r e  i n  reasonably good agreement w i t h  experiment and a re  com- 
parab le  t o  the  r e s u l t s  repor ted by Chyu and Davis ( r e f .  13)., who a l s o  used a 
Navier-Stokes so lver .  Furthermore, t he  p r e d i c t i o n s  us1ng.a r i g i d  g r i d  a r e  
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very close to the predictions using a deforming grid, which validates the use 
of a deforming grid for unsteady analysis. 
between the deforming grid calculations when the GCL is included and excluded. 
The time step used for these calculations was small enough that the error from 
excluding the GCL is very small. It is expected that including the GCL in the 
formulation will be more important for grids with higher deformation and larger 
time steps. 
as the pitching angle becomes large since the orthogonality and smoothness of 
the grid is not as good as the numerical grid generated at the mean angle. 
One way to get around this is to generate another grid after a few degrees of 
pitching and then continue the deformation technique. 

There are only minor differences 

Also, the deforming grid technique Is expected to lose accuracy 

NACA 0012 Cascade 

The deforming grid technique can be extended to predict the flow field for 
an oscillating cascade. 
culations. The solutions presented here will be a first attempt to capture the 
flow behavior for oscillating cascades using a full Navier-Stokes solver. 
first case to be considered is a NACA 0012 cascade with g = 3.6, M = 0.80, 
Re = 3.45 million, and a,,, = 0.0". The steady-state solution for pressure 
distribution is shown in figure 10, along with predictions from other flow 
solvers in references 1 1  and 12. Caughey and Jameson (ref. 1 1 )  show results 
from a transonic potential solver and present solutions using a 80 by 12 grid 
and a 160 by 24 grid. 
potential solver for the same case using a 98 by 25 grid. The shock strength 
and location predictions from the present analysis are in good agreement with 
the other solutions. The shock is smeared, but can be made sharper by adding 
more grid lines In the E-direction. 

No experimental data is available to validate such cal- 

The 

Farrell and Adamczyk (ref. 12) also use a transonic full 

Two cases for a gap-to-chord ratio of one are considered next, with 
M = 0.593 and M = 0.660 (Re = 3.21 million, a,,, = 0.0'). 
sent predictions for the cascade with both subsonic and transonlc flow. 
by 40 grid was used for these calculations and is shown in figure 1. 
unsteady load hlstories for the airfoils with a1 = 52.0" about the mean 
angle, M = 0.593, and k = 0.20 are shown in figures 1 1  and 12. 
reach a periodic solution by the third cycle. Results for M = 0.660 are not 
plotted since they look very similar. The Fourier Transform coefficients for 
the first harmonics on the fourth cycle of pitching are included in table I. 
Predictions for the mean, real and imaginary components of pressure are pre- 
sented in figures 13 to 15, respectively. The mean pressure distributions 
show a weak shock developing when M = 0.660. The imaginary components of 
pressure are relatively small for both cases. 

These cases repre- 
A 157 

The 

The solutions 

All runs were done on the CRAY-XMP computer at NASA Lewis. 
state solutions required about 2000 iterations for convergence and took 
3 . 8 ~ 1 0 - ~  sec per iteration per grid point. The unsteady solutions for the 
NACA 64A010 airfoil used 7854 iterations to complete one cycle of pitching 
using a time step size of 0.0025. 
cascade required a time step size of 0.004 and took 6545 iterations per cycle 
for M = 0.593 and 5861 iterations per cycle for M = 0.660. The unsteady 
calculations use 4.3~10-5 sec per iteration per grid point. 

The steady- 

Both of the unsteady runs for the NACA 0012 



CONCLUSIONS 

A compressible, unsteady, f u l l  Navier-Stokes code has been developed f o r  
t h e  ana lys i s  o f  o s c i l l a t i n g  cascades. 
g r i d  method t o  model t h e  a i r f o i l  motion and boundary cond i t ions .  
t h e  deforming g r i d  computations are  i n  good agreement w i t h  i s o l a t e d  a i r f o i l  
p r e d i c t i o n s  t h a t  use a standard r i g i d  g r i d .  
t i o n  Law i n  t h e  Jacobian o f  t ransformat ion has l i t t l e  e f f e c t  on t h e  s o l u t i o n s  
i n v e s t i g a t e d  i n  t h i s  study. 
model cascaded a i r f o i l s  and i s  ready f o r  comparison w i th  experiment. To t h i s  
au tho r ' s  knowledge, t h i s  i s  t he  f i rs t  t ime  t h a t  a deforming g r i d  has been 
inc luded i n  a Navier-Stokes code for o s c i l l a t i n g  cascade ana lys is .  I n  a d d i t i o n  
t o  t h e  va luab le  a i d  t o  t h e  ana lys is  o f  unsteady f l o w  through cascades, t h i s  
method can be extended t o  aeroe las t lc  modeling o f  n o n r i g i d  a i r f o i l s .  

The present  study in t roduces  a deforming 
Resul ts  from 

I n c l u d i n g  t h e  Geometric Conserva- 

The deforming g r i d  technique has been extended t o  
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TABLE I. - F O U R I E R ,  COEFFIC IENTS FOR LIFT AND MOMENl 

TIME HISTORIES (FIRST HARMONICS) 

C L  = a0 t a1 COS(UT)  t b l  s i n  (UT) I 
NACA 64A010 

R ig id  g r i d  
Deforming g r i d ,  w i t h  GCL 
Deforming g r i d ,  w i t h o u t  GCL 
Experiment ( r e f .  6) 

Cascade, M = 0.593 
Cascade. M = 0.660 

NACA 0012 

-0.0283 
- .0283 
- .0284 
- .0290 

.0004 

.0006 

0.0995 
.0972 
.0969 
.0862 

.0708 

.0717 

c~ = a0 + a1 coS(wi )  t b l  s i n  (UT) 

0.0242 
.0254 
.0255 
.0444 

- .0323 
- .0338 

NACA 64A010 
R ig id  g r i d  
Deforming g r i d ,  w i t h  GCL 
Deforming g r i d ,  w i t h o u t  GCL 
Experiment ( r e f .  6) 

Cascade, M = 0.593 
Cascade, M = 0.660 

NACA 0012 

0.0092 
.0092 
.0092 
.0040 

.0004 

.0004 

-0.0352 
-. 0344 
- .0343 
- .0249 

- .0069 
-.0019 

10 

0.0015 

.0004 

.0136 

.0146 



FIGURE 1 .  - GRID FOR THE NACA 0012 CASCADE. 

DEFORMED GRID __--- 

FIGURE 2. - DEFORMING GRID TECHNIQUE FOR AN ISOLATED AIRFOIL.  
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R I G I D  GRID. CL = 0.0698 
DEFORMING GRID (WITH 

. 1 5 r  A I GCL), C L  = 0.0678 

I I I I 
-.15! 20 40 60 80 

T 

FIGURE 3. - CL VERSUS TIME.  NACA 64A010 
AIRFOIL ;  M = 0.80; a,,, = -0.19; 01 = 

i1.02: k = 0.202; R e  = 12.56x1O6. 

R I G I D  GRID 
DEFORMING GRID (WITH GCL) 
DEFORMING GRID (WITHOUT GCL) 
EXPERIMENT (REF. 10) 

-.15 )IJ I I I 1 

0 60 120 180 240 300 360 
UT, DEG 

FIGURE 5. - F I R S T  HARMONICS OF FOURIER 
TRANSFORM FOR L I F T  COEFFICIENT ON 
THE FOURTH CYCLE. NACA 64A010 A I R -  
FOIL: M = 0.80; a,,, = -0.19; a1 = 

i1.02: k =  0.202; Re = 1 2 . 5 6 ~ 1 0 ~ .  

GCL). CM = -0.0250 

GCL), CM = -0.0248 

-.06 -.04 0 L 20 40 60 80 

T 

FIGURE 4. - CM VERSUS T I E .  NACA 64A010 
AIRFOIL ;  M = 0.80; a,,, = -0.19; 01 = 

i1.02; k = 0.202; Re = 1 2 . 5 6 ~ 1 0 ~ .  

R I G I D  GRID 

DEFORMING GRID (WITHOUT GCL) 
__- DEFORMING GRID (WITH GCL) 

.06 
0 EXPERIMENT (REF. 10) I 

-.04 c 

0 60 120 180 240 300 360 
-.06 

LIT, DEG 

FIGURE 6. - F I R S T  HARMONICS OF FOURIER 
TRANSFORM FOR MOMENT COEFFICIENT ON 
THE FOURTH CYCLE. NACA 64A010 A I R -  
F O I L ;  M = 0.80; a, = -0.19: a1 = 

i1.02: k = 0.202; Re = 1 2 . 5 6 ~ 1 0 ~ .  
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FIGURE 7. - E A N  PRESSURE DISTRIBUTION. 
NACA 64A010 AIRFOIL: M = 0.80; 
a,,, = -0.19; Re = 12.56~106. 

R I G I D  GRID 

DEFORMING GRID (WITHOUT GCL) 
----_- DEFORMING GRID (WITH GCL) 

0 EXPERIENT. UPPER SURFACE 
0 EXPERIHENT. LOWER SURFACE - 

0 - 

R I G I D  GRID 
----- DEFORMING GRID (WITH GCL) 

DEFORMING GRID (WITHOUT GCL) 
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- 
0 
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-15 1 I I I I I 
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CHORD 

FIGURE 9. - IMAGINARY CWONENT. FIRST HAR- 
MONIC OF PRESSURE DISTRIBUTION. NACA 
64A010 AIRFOIL: M = 0.80; Om = -0.19; 

al = f1.02: k = 0.202: Re = 12 .56~10~ .  

1 .o 

.5 

-.5 

PRESENT ANALYSIS. 157x58 GRID 
CAUGHEY (REF. 11). 80x12 GRID 

CAUGHEY (REF. 11). 160x24 GRID 
-1.0 QSONIC (REF. 12). 98x25 GRID 

-1.5 
0 .2 .4 .6 .8 1.0 

CHORD 

FIGURE 10. - PRESSURE DISTRIBUTION. NACA 
0012 CASCADE: g = 3.6: M = 0.80; a = 0. 
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FIGURE 11. - CL VERSUS T I M E .  NACA 0012 CAS- 

-.lo' 

CADE; M = 0.593: g = 1.0; a,= 0: al = 

+2.0; k = 0.20; Re = 3.21x1O6. 

1.25 . oo n f l  = 0.660 

I I I I I I 
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T 

FIGURE 12. - CM M R S U S  TIME.  NACA 0012 
CASCADE; M = 0.593: g = 1.0; a, = 0: 

-.03[ 

al = 9.0; k = 0.20; R e  = 3.21~10~. 

lo I 

- UPPER SURFACE 
LOWER SURFACE 

-.75 

-1 .OO 
0 .2 . 4  .6 . 8  1.0 
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FIGURE 13. - MEAN PRESSURE DISTRIBUTION. 
NACA 0012 CASCADE; g = 1.0; a = 0; 
Re = 3.21~10~. 

M = 0.593 
----_ M = 0.660 

-51 - 
-loo u .2 . 4  .6 .8 1.0 

CHORD 

FIGURE 14. - REAL COMPONENT. F I R S T  HARMONIC 
OF PRESSURE DISTRIBUTION ON UPPER SURFACE. 

f2.0; k = 0.20; Re = 3.21~10~. 
NACA 0012 CASCADE: g = 1.0: a,,, = 0: al = 

M = 0.593 
_ _ _ _ _ _  M = 0.660 

- l L  -2 0 .2 . 4  CHORD .6 .8 1.0 

FIGURE 15. - IMAGINARY COMPONENT. F I R S T  
HARMONIC OF PRESSURE DISTRIBUTION ON 
UPPER SURFACE. NACA 0012 CASCAM: 
g = 1.0; a,= 0: a1 = f2.0; 
k = 0.20; Re = 3.21~10~. 
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