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SUMMARY

A compressible, unsteady, full Navier-Stokes, finite difference code has
been developed for modeling transonic flow through two-dimensional, osciliating
cascades. The procedure introduces a deforming grid technique to capture the
motion of the airfoils. Results using a deforming grid are presented for both
isolated and cascaded airfoils. The load histories and unsteady pressure dis-
tributions are predicted for the NACA 64A010 isolated airfoil and compared with
existing experimental data. Results show that the deforming grid technique can
be used to successfully predict the unsteady flow properties around an oscil-
lating airfoil. The deforming grid technique has been extended for modeiing

‘unsteady flow in a cascade. The use of a deforming grid simpliifies the speci-

fication of boundary conditions. Unsteady flow solutions similar to the
isolated airfoil predictions are found for a NACA 0012 cascade with zero inter-
blade phase angle and zero stagger. Experimental data for these cases are not
avajlable for code validation, but computational results are presented to show
sample predictions from the code. Applications of the code to typical turbo-
machinery flow conditions will be presented in future work.

INTRODUCTION

The analysis of flow around advanced turboprop airfoil sections requires
methods capable of modeling unsteady, transonic flow. As the number of blades
increase, the cascade effects are expected to become more significant. To
date, most of the flow codes that model unsteady, transonic cascades are line-
arized potential solvers. While these codes are fast and more practical for
load predictions, they are not expected to model the true physics of the flow.
There is no experimental data available for propfan sections that can determine
the extent of the unsteady effects. In an attempt to bridge the gap in under-
standing and modeling unsteady, transonic flow through cascades, a compressible
Navier-Stokes code has been developed for such applications. The present code
introduces a deforming grid technique to capture the blade motion in the cas-
cade. The use of a deforming grid is convenient for treatment of the outer
boundary conditions since the outer boundary can be fixed in space, while the
inner boundary moves with the blade motion. This is desirable for oscillating
airfoils in a cascade since the outer boundary position must be known. Sample
calculations are presented for both isolated and cascaded airfoils and compared
to experiment when possible.

*Member, AIAA.
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NOMENCLATURE
sonic velocity
19ft coefficient
moment coefficient about the leading edge
pressure coefficient
free-stream speed of sound
blade chord length
total energy of the fluid per unit volume
Geometric Conservation Law
gap-to-chord ratio
Jacobian of transformation
reduced frequency based on semichord, wc/2Uq
Mach number
Reynolds number based on chord
upstream-running Riemann invariant
arclength of a grid 1ine in the n-direction
time normalized by c¢/Cy
free-stream velocity
Cartesian velocities normalized by C,
total velocity
weighting function for grid deformation
Cartesian coordinates normalized by chord length
angle of attack in degrees
mean angle of attack
amplitude of pitching
ratio of specific heats
normal direction of transformed coordinate gystem
chordwise direction of transformed coordinate system
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P density
T time variable

w airfoil oscillation frequency

GOVERNING EQUATIONS

The code is an extension of the isolated airfoil code developed by Sankar
and Tang (ref. 1). This code solves the two-dimensional, unsteady, Reynolds-
averaged, compressible Navier-Stokes equations on a body-fitted moving coordi-
nate system in strong conservation form using an ADI procedure. The cascade
code uses the same ADI procedure to solve for the interior of the computational
domain. The outer boundary conditions are modified to model cascaded airfoils
and are described later in this paper. A complete description of the formula-
tion for isolated airfoils is included in reference 1, and only a brief outline
s given here.

The two-dimensional, unsteady Navier-Stokes equations can be written as:
q +F +6 =R +S (")

where

q =37 {p,pu,pv,e} (2)

and p 1is the fluid density; u and v are the Cartesian components of the
fluid velocity; e 1s the total energy per unit volume. The body-fitted
(t,n,t) coordinate system is related to the Cartesian coordinates using

the following transformation: '

E = E(X.y't)
n =n(x,y,t) (3)
t =1t

The Jacobian of the transformation is given by:

J = Eyny - 0y = (xgY, 1 X V) (4)
and the metrics of the transformation are given by:
B = Y,
Ey B _an
ny = -d¥; - - (5)
ny = JxE



Standard central differences were used to compute XEsYE+ X and y, which
were then gsed to calculate the metrics.

The and G terms in equation (1) _are the inviscid flux terms in the
§ and n-directions, respectively. The R and § quantities are the cor-
responding viscous stress terms. The viscous terms can be omitted to give
solutions for the Euler equations. The Beam-Warming, block ADI algorithm 1is
used to solve the governing equations. The viscous terms are treated explicitly
to reduce the computational time. Artificial dissipation is added to help the
stabi1ity and follows an improved method used by Sankar and Tang (ref. 1) to
reduce excessive smearing of embedded vortices. The discretized form of
equation (1) becomes:

“n+l

Aq - - R R
13 n+l n+l n n n
where
“n+l “n+1 “n

D44 1s the dissipation term, e controls the amount of dissipation, Ar is
the time step, and &g and &, are standard central difference operators.
The f and ﬁ terms are nonlinear and are calculated using a Taylor series
about the “n" time level. The solution is second-order accurate in space and
first-order accurate in time. The Baldwin-Lomax, two-layer algebraic model
(ref. 2) is used to evaluate the eddy viscosity and the entire flow field is
assumed to be turbulent.

GRID

The flow solver uses a C-grid generated from Sorenson's (ref. 3) GRAPE
(GRids about Airfoils using Poisson's Equations) code. Several test cases
have been presented by Huff, Wu and Sankar (ref. 4) using the present code and
C-grids from the GRAPE code for isolated airfoils. For cascaded airfoils, the
grids are generated by specifying an outer boundary shape for the C-grid and
forcing periodicity on the upper and lower boundaries, as shown in figure 1.

Solutions for pitching or plunging isolated airfoils are found by moving
the entire grid as a rigid body. This procedure is valid when the outer bound-
ary remains in the free stream. For cascade analysis, the outer boundary posi-
tion must be known to apply the appropriate boundary conditions. A deforming
grid technique is used in this analysis to locate the position of the grid as
a function of time. The inner boundary moves with the airfoil, while the outer
boundary remains fixed in space. The grid lines connecting the inner and outer
boundaries of the C-grid are allowed to deform. This avoids difficult inter-
polation of the flow properties along the periodic boundaries. The amount of
deformation is a function of the distance away from the surface of the airfoil.
Define a weighting function, w, to be:

Slem)

MBS ()

(8)




where s the arclength of a grid 1ine from the airfoil surface (n = 1) to
some grid point along % = constant, and npgx = the outer boundary grid line.
From equation (6), we see that w =1 when s(E,n) = 0 and w = 0 when

S(E,n) = S(E,npax)- This function is used to find the amount of grid deform-
ation for each new time step:

n+l n
1907 Xyt My (Pagdng
: (9)
n+ n
Yig = iy * Wy (By5)pg

where (Bxyj)rig and (Ayyj)pyg are the spatial differences if the entire grid
were rotated as a rigid body. Finally, the amount of deformation of the grid
over one time step can be defined as:

(A%350def = ¥13(8%33)riq

(10)
(8Y45)ger = ¥33(8Y45) g

The total velocity of the flow at any point on the grid is equal to the grid
velocity plus the velocity of the flow with respect to the grid. At the outer
boundary, the grid is fixed in space and the grid velocity is zero. The grid
velocity changes with the amount of deformation, giving the following Cartesian
grid velocities:

() o 9% (8%44) def
i3/« " dr At
(11)
oy o dr s)ger
Yigx S dxr © 7 &

With the grid velocities known, the flow solver can predict the unsteady
flow properties at any desired time. However, as noted by Thomas and Lombard
(ref. 5) and Shamroth and Gibeling (ref. 6), a moving grid requires careful
treatment of the metric data to account for the time variation of the Jacobian
of transformation. The Geometric Conservation Law (GCL) was introduced by
Thomas and Lombard (ref. 5) as a way to maintain global conservation of a mov-
ing grid when transforming from a body-fitted coordinate system to the computa-
tional plane. A grid that remains fixed in space does not need to account for
the GCL since the time-dependent terms of the mapping are zero. When the grid
deforms, the change in the Jacobian of transformation from the previous time
level must be calculated using the GCL. In the present study, the GCL is both
included and excluded from the calculations to investigate its importance for
the deforming grids.

BOUNDARY CONDITIONS

In order to properly model flow through a cascade, the outer boundary
conditions must capture the physics of the flow field. The technique used
here 1s similar to the approach used by Chima (ref. 7). The solution models a
single blade and assumes periodic boundaries along the upper and lower grid
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1ines. This will be true for cascades with zero interblade phase angles.
Based on Shamroth, McDonald and Briley's (ref. 8) experience with modeling
cascades, the metric data is also forced to be continuous along the periodic
boundaries.

The inlet conditions are assumed to be at free stream total pressure and
temperature. The desired flow angle is also a necessary input to completely
specify the inlet boundary conditions. Simililar to Jameson (ref. 9) the
upstream-running Riemann invariant based on total velocity is calculated and
extrapolated from the interior to give a nonreflecting boundary condition:

- 2C
R = [ - ;—:—T] (12)

the total velocity
the sonic velocity

where V
C

Although this boundary condition is only valid for steady flows, it is
used here as an approximation for the full unsteady boundary condition by
assuming that the unsteady terms are negligible. In theory, the nonreflecting
boundary condition allows the upstream boundary to be closer to the biade with-
out decreasing the convergence rate. With R- known at the inlet, the total
velocity and velocity components are known. The static pressure and density
are found assuming isentropic flow, and the energy is found from the relation:

]

2
Yy -1 v

e = p+ 1 eu? + VR (13)

This gives all inlet conditions specified in terms of the conservation vari-
ables used in equation (2).

The exit boundary conditions extrapolate p, pu, and pv from the inte-
rior and specify free stream static pressure to calculate energy. An exit
Riemann invariant cannot be specified since it would vary across a viscous
wake.

The remainder of the boundary conditions are identical to those used for
isolated airfoils in reference 1. This includes solid wall boundaries on the
airfoil surface and averaging the flow conditions across the sl1it aft of the
airfoil.

RESULTS AND DISCUSSION

Results from the sample runs are divided into two categories: (1) a
pitching, isolated airfoil to test the deforming grid technique, (2) steady and
unsteady predictions for a cascade with zero interblade phase angles and zero
stagger. The airfoils used in this investigation are thicker than typical
sections found on the propfan. They have been chosen for code validation since
experimental data for thinner sections does not exist. Preliminary caicula-
tions have been done for the NACA 16 series airfoils and will be presented in
a future paper.




NACA 64A010 Isolated Airfoil

The NACA 64A010 airfoil has been chosen for testing the deforming grid
concept because of the extensive data presented by Davis and Malcom in
reference 10. This data was taken in the 11 by 11 foot transonic wind tunnel
at the NASA Ames Research Center. A test case commonly used by other
researchers is: M = 0.80, Re = 12.56 million, oy = -0.21°, a1 = *1.02°, and
k = 0.202 (reduced frequency based on semichord). This case is used in the
present study for comparisons with code predictions.

Figure 2 shows a fully deformed grid superimposed on a simplified C-grid
for the NACA 64A010 airfoil. The actual grid used in the predictions is a 157
by 58 C-grid, with 97 points wrapped around the airfoil and 60 points in the
wake. The grid is initially generated at the mean angle and then allowed to
deform so that the maximum deformation occurs at the maximum and minimum pitch-
ing angles. The plot shows two grids: (1) the initial, rigid grid generated at
o = ap (solid 1ine), and (2) the fully deformed grid at the maximum pitching
angle (dashed 1ine). The grid will also deform in the opposite direction to
the minimum pitching angle. Notice in figure 2 how the outer boundary remains
fixed, while the inner boundary moves with the motion of the airfoil surface.
The grid connecting the inner and outer boundaries deforms, as i1llustrated by
the space between the solid and dashed grid lines.

An average outer boundary distance of ten chord lengths was chosen based
on the results of a grid parameter study in reference 4 using the NACA 0012
airfoil. The distance of the first grid 1ine off the surface of the airfoil
is 0.00005 chords, which should be adequate for the selected Reynolds number.

Three separate calculations were studied for this test case. The first
calculation rotates the grid as a rigid body that follows the airfoil motion.
The second calculation (deforming, with GCL) uses a deforming grid and includes
the Geometric Conservation Law in the calculation of the Jacobian. In order to
determine the importance of the GCL for deforming grids, the third calculation
(deforming, without GCL) uses a deforming grid without conserving the time
dependent terms in the Jacobian calculation. A1l three calculations were per-
formed using five cycles of pitching and were found to be periodic in the fourth
cycles. The mean angle of attack used in the predictions was adjusted to
op = -0.19° instead of oy = -0.21° used in the experiment. This was done
to match the mean 1i1ft coefficient. (Since the object of this analysis is to
obtain load information, matching the 1ift and moment coefficients is more
useful than only matching the pressures on the surface with the shock wave.

The resuits may stil1l need to be corrected for wind tunnel wall interference.)

The 11ft and moment predictions from all three cases are shown in figures 3
and 4, respectively. The coefficients from a Fourier transform on the fourth
cycle are shown in table I, with the results plotted in figures 5 and 6 for
comparison with experiment. The steady-state pressure distributions for the
adjusted mean angle are compared with experimental data in figure 7. The real
and imaginary components of pressure normalized by the amplitude of oscillation
are plotted in figures 8 and 9, respectively.

The results are in reasonably good agreement with experiment and are com-

parable to the results reported by Chyu and Davis (ref. 13), who also used a
Navier-Stokes solver. Furthermore, the predictions using-a rigid grid are
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very close to the predictions using a deforming grid, which validates the use
of a deforming grid for unsteady analysis. There are only minor differences
between the deforming grid calculations when the GCL is included and excluded.
The time step used for these calculations was small enough that the error from
excluding the GCL 1s very small. It is expected that including the GCL in the
formulation will be more important for grids with higher deformation and larger
time steps. Also, the deforming grid technique is expected to lose accuracy
as the pitching angle becomes large since the orthogonality and smoothness of
the grid 1s not as good as the numerical grid generated at the mean angle.

One way to get around this is to generate another grid after a few degrees of
pitching and then continue the deformation technique.

NACA 0012 Cascade

The deforming grid technique can be extended to predict the flow field for
an oscillating cascade. No experimental data is available to validate such cal-
culations. The solutions presented here will be a first attempt to capture the
flow behavior for oscillating cascades using a full Navier-Stokes solver. The
first case to be considered is a NACA 0012 cascade with g = 3.6, M = 0.80,

Re = 3.45 million, and o = 0.0°. The steady-state solution for pressure
distribution is shown in figure 10, along with predictions from other flow
solvers in references 11 and 12. Caughey and Jameson (ref. 11) show results
from a transonic potential solver and present solutions using a 80 by 12 grid
and a 160 by 24 grid. Farrell and Adamczyk (ref. 12) also use a transonic full
potential solver for the same case using a 98 by 25 grid. The shock strength
and location predictions from the present analysis are in good agreement with
the other solutions. The shock is smeared, but can be made sharper by adding
more grid lines in the E-direction.

Two cases for a gap-to-chord ratio of one are considered next, with
M =0.593 and M = 0.660 (Re = 3.21 million, apn = 0.0°). These cases repre-
sent predictions for the cascade with both subsonic and transonic flow. A 157
by 40 grid was used for these calculations and is shown in figure 1. The
unsteady load histories for the airfoils with a7 = #2.0° about the mean
angle, M = 0.593, and k = 0.20 are shown in figures 11 and 12. The solutions
reach a periodic solution by the third cycle. Results for M = 0.660 are not
plotted since they look very similar. The Fourier Transform coefficients for
the first harmonics on the fourth cycle of pitching are included in table I.
Predictions for the mean, real and imaginary components of pressure are pre-
sented in figures 13 to 15, respectively. The mean pressure distributions
show a weak shock developing when M = 0.660. The imaginary components of
pressure are relatively small for both cases.

A1l runs were done on the CRAY-XMP computer at NASA Lewis. The steady-
state solutions required about 2000 iterations for convergence and took
3.8x10-9 sec per iteration per grid point. The unsteady solutions for the
NACA 64A010 airfoill used 7854 iterations to complete one cycle of pitching
using a time step size of 0.0025. Both of the unsteady runs for the NACA 0072
cascade required a time step size of 0.004 and took 6545 iterations per cycle
for M = 0.593 and 5861 iterations per cycle for M = 0.660. The unsteady
calculations use 4.3x10-9 sec per iteration per grid point.




CONCLUSIONS

A compressible, unsteady, full Navier-Stokes code has been developed for
the analysis of oscillating cascades. The present study introduces a deforming
grid method to model the airfoil motion and boundary conditions. Results from
the deforming grid computations are in good agreement with isolated airfoil
predictions that use a standard rigid grid. Including the Geometric Conserva-
tion Law in the Jacobian of transformation has 1ittle effect on the solutions
investigated in this study. The deforming grid technique has been extended to
model cascaded airfoils and is ready for comparison with experiment. To this
author's knowledge, this is the first time that a deforming grid has been
included in a Navier-Stokes code for oscillating cascade analysis. 1In addition
to the valuable aid to the analysis of unsteady flow through cascades, this
method can be extended to aeroelastic modeling of nonrigid airfoils.
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TABLE 1. - FOURIER COEFFICIENTS FOR LIFT AND MOMENT
TIME HISTORIES (FIRST HARMONICS)

Case ag aq by

CL = ag + ay cos(wt) + by sin (wt)

NACA 64A010

Rigid grid -0.0283 | 0.0995 0.0242
Deforming grid, with GCL -.0283 .0972 .0254
Deforming grid, without GCL -.0284 .0969 .0255
Experiment (ref. 6) -.0290 .0862 .0444
NACA 0012
Cascade, M = 0.593 .0004 .0708 -.0323
Cascade, M = 0.660 .0006 .0NM7 -.0338
Cm = ag + a7 cos(wt) + by sin (wr)
NACA 64A010
Rigid grid 0.0092 | -0.0352 ; 0.0015
Deforming grid, with GCL .0092 -.0344 .0009
Deforming grid, without GCL .0092 -.0343 .0oos
Experiment (ref. 6) .0040 -.0249 .0004
NACA 0012
Cascade, M = 0.593 .0004 -.0069 .0136
Cascade, M = 0.660 .0004 -.0019 .0146
10
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FIGURE 1. - GRID FOR THE NACA 0012 CASCADE.
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FIGURE 2. - DEFORMING GRID TECHNIQUE FOR AN ISOLATED AIRFOIL.
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AIRFOIL: M = 0.80: g, = -0.19: a4 =

+1,02: k = 0.202; Re = 12.56x10°,

PRESENT ANALYSIS, 157x58 GRID

0O CAUGHEY (REF. 11), 80x12 GRID
-1.0 ] QSONIC (REF. 12), 98x25 GRID
AN CAUGHEY (REF. 11), 160x24 GRID
-1.5 ! 1 1 ] J
0 .2 .4 .6 .8 1.0
CHORD

FIGURE 10. - PRESSURE DISTRIBUTION. NACA
0012 CASCADE: g = 3.6: M = 0.80: a = 0.
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FIGURE 11. - CL VERSUS TIME. NACA 0012 CAS-
CADE: M
+2.0: k

0.593: g = 1.0: ap = 0: aq =
0.20; Re = 3.21x10°.

-cP

UPPER SURFACE

=50 ———— LOWER SURFACE
=75k
-1.00 1 1 1 1 |
0 .2 4 .6 .8 1.0
CHORD

FIGURE 13. - MEAN PRESSURE DISTRIBUTION.
NACA 0012 CASCADE: ¢ = 1.0: @ = O:
Re = 3.21x10.
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FIGURE 12. - CM VERSUS TIME. NACA 0012
CASCADE: M = 0.593: g = 1.0; ap = 0:
gy = £2.0: k = 0.20: Re = 3.21x10°.
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FIGURE 14. - REAL COMPONENT. FIRST HARMONIC
OF PRESSURE DISTRIBUTION ON UPPER SURFACE.
NACA 0012 CASCADE: g = 1.0: app = 0: 04 =

£2.0: k = 0.20: Re = 3.21x105.
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FIGURE 15. - IMAGINARY COMPONENT. FIRST
HARMONIC OF PRESSURE DISTRIBUTION ON
UPPER SURFACE. NACA 0012 CASCADE:
g=1.0: Oy = 0: 0 = +2.0:

= 0.20; Re = 3.21x105.
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