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ABSTRACT

Ef fects of diffraction and non-11inear photographic emuision characteristics
on the performance of deferred electronic heterodyne moire deflectometry are
investigated. The deferred def lectometry is used for measurements of
non-steady phase objects where it is difficult to complete the analysis of the
field in real time. The sensitivity,laccuracy and resolution of the system
are calculated and it is shown that they are weakly affected by diffraction
and by non-linear recording. The features of the system are significantly
improved compared with the conventional deferred intensity moire technique,
and are comparable with the on-1ine heterodyne moire. The system was evaluated
experimentally by deferred measurements of the refractive index gradients of a
weak phase object consisting of a large KD*P crystal. This was done by photo-
graphing the phase object through a Ronchi grating and analyzing the trans-
parency with the electronic heterodyne readout system. The results are
compared with the measurements performed on the same phase object with on-line
heterodyne moire deflectometry and with heterodyne holographic interferometry
methods. A good agreement was observed. Some practical considerations for
system-improvement are discussed.

In the second part of the project, an algorithm for reconstruction of 3-D
phase objects from incomplete deflections data, has been developea. The
algorithm is based on the inverse Cormack transformation. The advantages of
the present reconstruction method are: 1. The measured deflections are readily
used in the inversion transform; no numerical derivations have to pe performed
like in the case of interferametry. 2. No iterations between the object domain
and the projection domain are necessary. The algorithm has been evaluated by
a computer simulation; an asymmetric analytical density field around a

circular opaque object was successfully reconstructed.
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FIGURE CAPTIONS

Fig. 1. Schematics of a conventional moire system. L.S. is a point light
source (may be a focused laser beam). M is a parabolic mirror. Gy
and 62 are Ronchi rulings and S is a mat transparent screen.

Fig. 2. Schematic of the setup for recording the phase object. @& is the
refraction angle; R(x) is the distance from the phase object at which
the refracted ray seems to emerge.

Fig. 3. Schematic of the experimental setup for postanalyzing phase objects:
G, Ronchi ruling; R.S. and T.S., reference and test signals
respectively; G.S., gating signal.

Fig. 4. Intensity transmittance - exposure curves.

I U - S S n . 3 i
a) For Agfa Gevaert 10E75 plate; the dashed curve is the third-order

©

polynomial approximation, and b) For Kodak G49F plate; the dashed
curve is the second-order polynomial approximation.

EL and Eo are respectively the width of the linear portion of the
curves and the exposure at which they start.

Fig. 5. Calculated moire intensity vs. phase for various values of f. f =0.0,
0.02, 0.04, 0.10, 0.15, 0.0, 0.25, 0.3, 0.35, 0.4, 0.45, and 0.50
for (a), (b), (c), (d), (e), (f), (@), (h), (i),(§), (k), and (1)
respectively. In each figure, the upper two curves are for
Agfa-Gevaert 10E75 plates prefogged with exposure EO =12 erg/cm2
and with E' = 8 erg/cm2 and E' =18 erg/cm2 for the solid Tine and
dashed line, respectively. The lower curve is for Kodak 649F plates

with E, = 0 and E' = 55 ud/cn’.
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x - derivative of refraction index for flow simulator.

a) Deferred heterodyne moire

b) On-line heterodyne moire.

x - derivative of refraction index for flow simulator - heterodyne
holographic interferometry.

Object field and the geometry of the transform.

The object function used in the study of the algorithm. The

functions is defined by Eq. 12. The segment r<0.6R0 is missing.
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PART 1 PERFORMANCE OF MOIRE DEFLECTOMETRY WITH DEFERRED

ELECTRONIC HETERODYNE READOUT

I. INTRODUCTION

Moire deflectometry is a simple technique for optical testing of phase
objects and specular surfaces, based on the moire effect1‘4. The method
provides mapping of ray deflections caused either by a phase object or upon
reflection from a surface. From this information the index of refraction
field of the phase object or the quality of the reflecting surface are
obtained. A summary of progress through 1984 is contained in the reviewing
article by Kafri and Glatt®.

A. Background

A conventional moire def lectometer consists of two identical Ronchi
gratings, a collimated light source and a diffusing screen attached to the
output grating. A schematic description of the system is shown in Fig. 1.
The gratings are shown separated by a distance a and their lines are rotated
relative to each other by a small angle e. When a collimated 1ight beam
passes through the gratings a moire pattern is produced on the screen. The

pattern consists of straight fringes perpendicular to the original grating

1ines, separated by a distance of p'1
v P ~ B
P = B Tner2) ~ 6 ()

where p is the pitch of the gratings.

The moire effect for very small grating separation distance can:be
explained by pure geometrical optics. However, when grating separation
increases, diffraction introduces undesired effects which 1imit the

6.7

performance of the system To minimize these effects, the distance a

between the gratings must be exactly one of the Fourier image planes of the



gratings namelyb’7

2

=9 P -
by =2 5 9 =1,2530... (2)

For these distances, the fringe contrast will be maximum. When
_ 1y P
A= (2 + 2) x (3)

the fringes will vanish completely. 1In Eqs. (2) and (3) a» is the wavelength
of the collimated 1ight beam.

It the collimated 1ight is refracted by a phase object before it enters
the deflectometer, the original straight parallel moire fringes will be
distorted. ¢x(r), the angle of refraction in the x-airection at a point
r = x,y, is related to the fringe shift chy(r) in the y-direction by

e sh (r) p &h (r)
Yy y
¢X(r) = A = pl A (4)

By measuring éhy(r), ¢x(r) can be calculated. In turn, the x component of

the index of refraction gradient may be calculated by using the equation1

Z
s r) =L Fa) g, (5)
f z,

3‘0—'

or

6 Zf apir) ‘
¢ .(r) = ﬁ'; zf ax 42 (6)
0

where Z, and z¢ are the boundaries of the phase object along the 1ine of

sight, n is the index of refraction which is related to the density o by

n-1==G6p (7)
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where the coefficient 6 is the Gladstone-Dale constant, a function of the
wavelength A». For air, at a wavelength of » = 6328 A, 6 = 0.227 cm3/gr. ne is

the index of refraction of the medium surrounding the object.

B. Electronic Heterodyne Method

Recently, the accuracy and sensitivity of the moire method, for on-line
real tijme measurements, has been significantly improved by applying the
heterodyne technique for reading the deflections of the moire fringe58°10.

The basic idea of the heterodyne technique is to measure the phase of the
signal from a photodetector detecting the light transmitted through a
travelling moire fringe pattern. The moving fringes may be accomplished by
translating the output grating G2 relative to Gl at a constant speed V in

the x-direction. When the collimated 1ight is not disturbed by the phase
object (straignt line fringes), the first harmonic of the photodetector signal

is given by9

T (y,8%,t) = §§ cos(nA*)cos[2n(% + %9 + %% t)] (8)

where a* = A/(pzlx) is the distance between the gratings in Fourier units and
x/p and ye/p are phase shifts related to the relative translation and rotation

of the Ronchi gratings. Here x is the x-directed offset between the lines of

the two gratings. & is the fundamental frequency
v ,
Q=21 = Yy
" | L ©)

In deriving Eq. 8 the following assumptions were made:
1. Paraxial approximation.
2. Slow variations of the phase object over a pitch scale.
3. Small e.

4, Fresnel diffraction.
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The effect of refraction by a phase object is to introduce a phase shift9

g, (r)a

AIJ)(Y‘) = 21 D (10)

A procedure for measuring this phase shift is to record the electronic phase
relative to that of a reference signal, with and without the phase object, and
subtracting the two phases. Equations (4) and (6) are then used to compute
the properties of the phase object. Since phase measurements can be
accomplished for better than a degree, fringe interpolation accuracies better

than 1/360 fringe are possible.

C. Transient Phase (bjects

Wnen unsteady phenomena occur, it is difficuit to complete the analysis of
the whole field in real time. In these cases, it is necessary to freeze the
phase object and post-analyze it after the factll’lz. The idea of applying
the electronic heterodyne readout technique for the deferred moire fringes
readout was recently 0emonstrated13. In this case, the second Ronchi
grating (see Fig. 2) is replaced by a photographic plate. The phase object is
recorded on the photographic plate by exposing it to the collimated beam
transmitted through the phase object and the first grating, thus the distorted
image of the first grating due to refraction by the phase object is recorded.
Readout is accomplished by placing the moving grating immediately in back of
the processed photographic plate as shown in Fig., 3. When the combination is
iTluminated, a time varying signal is obtained and analyzed by the heterodyne
technique in a manner similar to that describea for the on-line case.

The purpose of this work is to investigate, both analytically and
experimentally, the effects of diffraction and non-linear response of the

photoaraphic fiim on the performance of the deferred heterodyne moire
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def lectometry. The resolution, accuracy, and sensitivity of the method will
be evaluated and compared with those of the real-time moire deflection
method. Some practical considerations for the most efficient use of this
method will be discussed.

In the next section, the theory of the method is presented and in Sec. III
mapping the index of refraction of a weak phase object using this method is

demonstrated.

I11. THEORY

As mentioned above the measurements of the density field of a transient
phase object involves three steps: Recording, moire fringe formation, and
electronic heterodyne readout. First, the distorted shadow of the first
grating is recorded on a photographic plate when placed in the position of the
second grating - Fig. 2. The grating is illuminated with the collimated beam
passing through the phase object. The photographic plate is later processed
to a transparency, which later is referred to as the phase object
transparency. The distortion of the grooves of G are mainly caused by three
reasons:

1. Refraction by the phase object.
2. Diffraction by the Ronchi grid.
3. Non-linear response of the photographic emulsion.

This step is repeated when the phase object is absent, the transparency
obtained is called the reference transparency. Even in this case the image of
the grooves may be distorted as a result of diffraction and non—]inéar
photographic effects.

Next, the moire fringes are formed by placing the shadow transparency in
front of the second Ronchi grating. When the combination is illuminated,
moire fringes are observed. Since the shadow transparency and the Ronchi
grating are in contact, the formation of moire fringes is a purely geometrical

effect.
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The readout step is accomplished by translating the grating (thus causing
the moire fringes to move) and recording the phase of the signal output of the
photodetector (Fig. 3) as described for the on-line case.

In the course of calculating the output signal of the photoaetector we

will follow the three steps described above,

A. Intensity Transmission Distribution of the Transparency

Assuming an infinite Ronchi grating with square wave line profile
illuminated by an infinite beam, and assuming Fresnel diffraction, the
intensity distribution of the beam passing through the phase object and the
Ronchi grating at a distance a (where the photographic plate is located) is

given by7:

I(u,a*,£) cos[m (2n+1) “ua*] +

L}

2 z sin[2x{2n+1 )ué]
{4 (2n+1)

+ 4 f sin2[2n(2n+1)ug] + 8 ) sin[2x( 2n+1)ug1
1!2 n=0 (2n+1)2 1r2 n#m (2n*1)
X sin[2?§§TI%)u£1 cos{wUA*[(2n+1)2— (2m+1) ]}} (11)

where & = x/p, U = Z@é%%y and R(x) and ¢X(r) are defined in Fig. 1. In

deriving Eq. (11) the paraxial approximation was assumed, which in this case

means that K(x) >> a,x. According to this assumption it is ciear that the

intensity in Eq. (11) is practically independent on the origin of

coordinates. MNote that when no U1ase object exists, u = 1. The transmittance‘

of the photographic plate is proportional to this spatially varying intensity.
Generally it is assumed that there is a linear relation between IT12,

the intensity transmittance of the photographic plate, and the exposure E.

However, the actual !T[Z-E curves for photographic materials are always
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nonlinear to some degree. Figures 4a and 4b display the lTlZ-E curves for a
Agfa-CGevaert 10E75 plate and for a 649F Kodak plate, respectively. In the
figure, E  denotes the exposure at which the linear region starts and EL
denotes the width of the linear portion of the curve.

If the photographic plate is uniformly prefogged by exposure Eo, and
illuminated by a pattern of amplitude E' (the total exposure is E0 + EY)
then a moderate portion of the ITIZ—E curve can be approximated by a cubic

polynomial,

2 2

' ] 1 3
m= = R0 + Rl(E0 + E') + R2(Eo +E')° o+ R3(E0 + E') (12)

Figure 4a illustrates the polynomial approximation for the Agfa-Gevaert plate

with E0 =12 erg/cmz, 0<E'<18 erg/cmz, R0 = 1.1847, R1 = -7.4385 x 1()—2

PR in—=3 - -5 . .
R2 = 1.5550 x 10 7, and R3 =-1.0726 x 10 . In this exposure range, the third order
term is small and may be neglected. The dashed curve in Fig. 4b is a quadrature
polynomial approximation for the Kodak plate; here EO =0, 0 <E'" <53 uJ/cmZ,

R, = 8.6668 x 01, R, = -5.3625 x 1073

, and Ry = - 7.3440 x 107 Replacing
E' in Eq. 12 by I, given in Eq. 11, times the intensity of the collimated

1ight beam used for illumination, ITi 2 may be written as

2 f 2
ITH= = a, + all + aZI ‘ (13)

where the coefficients a , a;, and a, inciude all the parameters which

appear in Eq. 12 and the intensity of the light beam used for the illumination.

B. The Moire Image

The moire image is evaluated by multiplying the intensity transmittance

distribution of the transparency and that of the grating, and averaging the
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product over a pitch distance, name]y6

g+l 2
M(r,a,R,¢ ) = [ ITI%6 dg (14)
3

where lTl2 is given in Eq. 13 and G, the intensity transmittance distribution

of the grid is represented by a Fourier series7

1,2
"

6(e,y) = & sin[2n(2n+1%é§;xlp+yelp)] (15)

n=0

where x/p and ye/p represent the phase shifts related to the relative

translation and rotation of the Ronchi grating. G is not affected by

diffraction since the light intensity is measured directly behind the grating.
When Egs. (11), (13) and (15) are substituted in Eq. (14) and the

integration is performed, we get:

COS2[nUA*(2n+1)21

M(r,8,R,0,) = A+ B 5 +
n=0 (2n+1)
: {auar (20+1)2- 2n#1)2)) costauat] (2k+1)%- (22+41)2])
+C y cos{inua n -(2m cos{nua - §(myn,k,2)
m,n .k ,2=0 (2n+1) (2m+1) (2k+1)(22+41)
¢ A
© cos[2n(2n+1) (X + £ + X )] »
+D ) P 5 P P cos[rua*(2n+1)°] -
n=0 (2n+1) '
(16 )
’ e x2
7 cos[2n(2nt]) & + I + ] oot (2mr1)?]
a0 (2m1) (D)
2 2
cos{nua*f (2k+1)°-(22+41)° T}
X (2k+17 (22_'_1) é(m,n,k,l)
ao alu 3a2u2 a2u2 B 2a1u a2u2 4a2u2
Wh&Y‘eA:-Z—*’—Z——-——BZ ,B:—-—-—“Z,C-:?,D:"Z*“Z,E: “4 , and
s(m,nk,2) = o[ (n-m)-(k-2)] + o[ (n-m)-(a—k )] + o[ (n*m)-(2+ )] - [ (n-m)-(k+2+1)]

- [ (m-n)-(k+£+1)] - o[ (n*m)-(k-2-1)] - o[ (n*m)-(2-k-1)], where each & on the
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right hand side of the equation is the Kronecker s.

As seen from Eq. 16, the moire image is strongly affected by diffraction
(associated with the first Ronchi grating) and by nonlinear recording. Since
the conventional deferred deflectometry suggests analyzing the moire pattern

by measuring the transmitted 1'ntens1'tyll’12

, it is interesting to display

the moire image as calculated in Eq. 16. Figures 5a-51 illustrate the moire
intensity vs the phase (x/ptyelp), for various grating-photographic plate
distances. All curves shown are without a phase object i.e. u =1 and

bx = 0. The distances are a = Az + fay where f is a fraction that was

varied in the range of 0.00-0.50. Al and b1 are defined in Eq. 2. In each
figure the two upper curves are the results for Agfa-Gevaert plates, prefogged

with Eo 12 erg/cm2 and exposed, through the grating, by a collimated beam

with E' = 8 erg/cm2 and E' =18 erg/cm2 for the solid and dashed curves,
respectively. The lower solid curves are for Kodak plates with E0 =0 and
E' = 55 uJ/cmZ. Exposure of E' = 8 erg/cm2 falls in the linear region of
the Agfa-Gevaert |T F - E curve, thus the E' = 8 erg/cn? moire intensity
curves exhibit only effects of diffraction. The effects of nonlinear
recording may be observed by comparing the E' = 8 er'g/cm2 curves with the
E' = 18 erg/cn? and with the E' = 55 uJ/cm2 curves which are affected both
by diffraction and nonlinear recording. ~

For f = 0 a triangular wave form is obtained, both for the 1inear and
nonlinear curves (Fig. 5a). At this distance, the exact dependence of the
moire image on the phase is known, thus neither diffraction nor nonlinearity

7. As f 1ncrease§, the

affect the accuracy and sensitivity of the system
behaviour is changed: the maxima and minima are rounded, the contrast is
reduced and higher spatial frequency waves are superimposed on the triangular

wave. These changes are more pronounced in the nonlinear curves, and thus may
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introduce higher uncertainties in the deflection measurements. At f = 0.25
the wave form is again triangular, but with lower contrast as compared to that
of f = 0. At f = 0.50 the intensity is independent of the phase and the
contrast is zero. These results are of practical importance since
experimentally it is hard to adjust the spacing between the Ronchi grating and
the photographic plate to be exactly one of the Fourier image planes,
especially in the case of an arbitrary phase object where such a single

spacing, for the whole object, does not exist6’7.

C. Heterodyne Readout

As in the case of the on-line heterodyne moire, the heterodyne readout is
accomplished by translating the Ronchi grating relative to the photographic
transparency in the x-direction. The motion will cause the moire fringes to
move in the y-direction. Assuming a Tinear motion of the grating with speed

V, the phase of the moire image will vary with time as

v(y,t) =2ﬂ(§+13+—x-+9—t) (17)

where & = 24 %. 1f the hidher harmonics of the signal given by Eq. 16

are filtered out, the signal is given by:

@, a
MTl(r,R,A,t,¢x) = COS[Zn(% + 1% + —%—-+ %; t)] {Dcos(nua*) +
(18)
o 2 2 2
cos[wua*(2m+1)“] cos{nua*{ (2k+1)“-(20+1)°}} _

m,k ,2=0

The fundamental frequency component of Eq. (16), for the reference

transparency is:
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MRl(y,A*,t) = COS[Zw(X'+ AL %—-t)]{DCOS(ﬂA*) +

p P n
2 9 ) (19)
® cos[na*(2m+1)]) cos{na*[ (2k+1)%-(22+1)¢]}
" m E 2=0 - 2£+1 : ?Zkgﬁ)(Zzll)( - 8(m,n=0,k,2 )}

Comparing the transmitted signals with and without the phase object, it is

seen that the effect of refraction is to introduce a phase shift av(r) given
by

¢, (r)a

ap(r) = 2w 5

(20)

already discussed in connection with Eq. 10. The procedure for measuring this

phase shift is similar to that described for the on-line heterodyne

def1ectunetry9’10. Th

£ dbhn o3 rmal walads 3
I the signal, relative to a reference signal

phase o

[qn)

e a
is measured twice at each point on the combination transparency-grating: once
with the transparency recorded with the phase object and once with the
transparency recorded without the phase object. The difference between the
two readings gives the absolute phase shift given by Eq. 20. The reference

signal is the output of a photodetector placed at a fixed point in part of the

fringe pattern not affected by the phase object.

D. Advantages of the Heterodyne Readout

Tne theoretical analysis above shows some of the aavantages of the
deferred electronic heterodyne readout technique over the conventional
deferred intensity readout method:

1. The errors introduced because of inaccurate positioning of the
photographic plate precisely on one of the Fourier planes (diffraction and
the nonlinear recoraing effects) are small compared with those in

intensity measurements. This is true since the electronic phase recording
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of the fundamental frequency signal is insensitive to small fringe
contrast variations and to the fine structure of the fringes (see Fig. 5).
Variations of intensity over the fringe pattern due to optical
imperfections and other effects do not affect the phase measurements since
the phase is computed as a quotient of two intensity terms. However,
for intensity measurements, this effect may lead to significant errors.
The electronic heterodyne method has the ability to interpolate
continuously between fringe maxima, and has computer compatibility.
In principle, by using the third harmonic term of Eq. 16 (with the time
varying phase term 3 %; t) the electronic phase of 3ay will be measured,

which is equivalent to tripling the sensitivity of the Systemg.

E. Spatial ana Agular Resolution

Diffraction effects, detector aperture and electronic instrumentation

determine the spatial and angular resolution of the system. Since the

nonlinear photographic recordings do not affect the resolution of the system,

the resuits of the spatial and angular resolution obtained for the on-line

deflectometry are valid for the present deferred case”.

S

The spatial resolution of the system is

%= o* + 2a% (21)

where p* = p/p is the dimensionless size of the detector.

The angular resolution is given by:

(Ab)min = 36%13? (22)

where x* = Ax/p.
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F. Some Practical Considerations

It is important to point out that the final accuracy and sensitivity of

measuring phase ap is strongly dependent on the manner in which it is

practically performed.

1.

The electronic processing of the photographic transparencies is performed
on a separate bench. The procedure for measuring ay (Eq. 20) is to record
the electronic phase, relative to that of a reference signal twice: once
when the phase object transparency is placed in front of the grating and
once with the reference transparency in front of the grating. ay is then
obtained by subtraction of the readings. It is clear that the accuracy of
the system and the ability to measure small deflections is dependent on
the capability to accurately place the two transparencies precisely in the
same position relative to the grating and to the detectors. Small
misalignments will result in considerable errors in the measured phases
and thus in fringe deflections.

Practically the phase meter output is dependent on the visibility of the
fringes and on the distortions of the fringe profile caused by the
nonlinear recording. Increasing the visibility, on the one hand, reduces
the error of phase reading. On the ather hand it increases the effects of
nonlinear recording which affects the measurement as well. Thus in
forming the transparencies, one must compromise between those two effects.

In the previous section it was mentioned that by using the third harmonic

component of the moire signal, it is possible to tripple the sensitivity of

the system. It is worthwhile to point out that practically it is hard to

materialize this useful feature since the third harmonic signal is weak and

thus the signai-to-noise ratio is low.
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II]. EXPERIMENTAL

The deferred electronic heterodyne technique was evaluated by measuring
small fringe shifts caused by a weak phase object. The phase object used was
a large crystal of KD*P whose refractive index distribution could be changed
when voltages are applied to the electrodes mountea on the crystal. A
detailed description of this phase object, a so-cailed gas-flow simulator, is
given in Ref., 15. The flow simulator was chosen to be tested because of two
reasons: a. The flow simulator was previously investigated by the electronic
heterodyne holographic interferometry and by the on-line electronic heterodyne
moire def lectometry methodsg’lo. The availability of these measurements,
which serve as a comparison makes it possible to evaluate the system. b. The
flow simulator is a very weak phase object which exhibits a fine structure
close to the 1imit of the angular and spatial resolution of the system. The
ability to measure such a phase object validates the theoretical predicted
performance.

The moire setup for recording the phase object was the same as that
described previously for the on-11ine expem‘ment9 except that the second
grating was replaced by a photographic plate. We used Agfa-Cevaert 10E75
plates. The phase object transparency was recorded when the high voltage of 5
kv was applied to the crystal. The reference recording was performed with the
crystal in place, but without the voltage.

Other parameters in the experiment were the same as those in Ref. 9,
namely: the separation between the grating and the photographic plate was a =
32 cm, the grating pitch was p = 0;17 mm thus Az* = 3.27x10'3, a* =‘7, the
spatial resolution, calculated from Eq. 21 was ax = 3.1 mm and the angular

resolution, from Eq. 22 was ab = 1.5x10'6 rad.

min
The electronic processing of the developed photographic plates was

performed on a separate bench. The distorted moire fringes were observed when
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the phase object transparency was placed in front of the Ronchi grating and
illuminated by the collimated beam. The separation between the fringes, in
the region away from the phase object measured p' = 4.47 mm. The measurement
was as follows: while the grating was in motion and the reference detector was
fixed at one position, the test detector was moved in the y-direction until
the phase meter output covered exactly 360° indicating that the detector had
moved a distance equal to p', the period of the moire fringes.

The fringe motion was achieved by engaging the grating, as described in
Ref. 10, to an electrical vibrator. The detectors and the rest of the
electronic system were the same as those described in Ref. 10. The phases
relative to the reference detector, were recorded by a the test detector aiong
the center line of the crystal's image, at stations separated by 1 mm.

At this point the phase object transparency was replaced by the reference
transparency and phases were recorded exact ly at the same stations as before.
The exact positions of the detector were determined by an interferometer. A
point by point subtraction of the phases, with and without the phase object,
yield the phase shift as a function of position and thus the index of
refraction gradient vs. position. The results are shown in Fig. 6a. The
results show that the measurements were performed close to the angular and
spatial resolution limits. Indices of refraction of the.order 2x1070 ¢!
were measured and the peak structure of spatial scale of 3-7 mm was resolved.

Figure 6b displays the results measured with the on-1ine heterodyne
def lectometry method. The results obtained with the heterodyne holographic
interferometry method are shown for comparison in Fig. 7. The figdres show
that within the error limits, the results obtained by the three methods agree
very well. It is seen that the deferred results are consistently higher,

except at the top of the third peak, than those obtained by the two other
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methods. The source of this error may result from the transparency
misalignment which could have caused a constant phase shift over the whole
field.

Reproducibility of the measurements was then tested on a few photographic
plates taken of the same object with different exposure levels. We found that
the phase ay was only reproducible to within #4° over the field. These errors
may be attributed to mechanical misalignment of the plates and to contrast
variations and non-1inear recording effects. More experimental work has to be
performed in order to investigate these effects.

For sinusoidal grating motion, rather than motion at a constant velocity,
the output of the electronic phase meter does mot vary linearly with
refraction angle, thus calibration of the system is requiredg. In the
present experiment the calibration procedure waé the same as that followed in
the on-11ine experiment, except that it was performed with the reference
transparency in place (Fig. 3) rather than with the actual KD*P crystral.
Similar calibration curves to those shown in Fig. 7 of Ref. 9 were obtained.

Since the accuracy and sensitivity of the system is largely dependent on
the transparencies alignment, a special effort was made to put the reference
transparency precisely in the same position, relative to the Ronchi grating
and to the detection system, as that of the phase object fransparency. This
was achieved by the following: a. The transparencies were mounted on a plate
holder, fixed to the optical bench. The use of the plate holder ensures that
the surface coordinates of both transparencies was the same. b. The rotation
angle between the reference transparency and the grating was adjustéd by
measuring p', the separation distance between the moire fringes. The angle
was varied until the value of p' reached the same value as that measured with
the phase object transparency, namely p'=4.47 mm. c. A geometrical point,

photographed on both transparencies, was chosen as a reference point for the
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alignment procedure. Before removing the phase object transparency, the x, y
coordinates of this point were measured. In order to align the transversal
position of the reference grating, it was transversally moved until the x, y
coordinates of the reference point attained equal values to those measured on

the phase object transparency.

IV. CONCLUSIONS

It has been shown that the electronic heterodyne technique can be applied
for accurate and sensitive readout of moire fringes of unsteady phase
objects. Theoretically it was shown that.the accuracy and sensitivity of the
system are weakly affected by diffraction and non-linear photographic emulsion
characteristics. The analysis showed that non-1inear recording does not
affect the spatial resolution of the system. The spatial resolution is mainly
affected by diffraction.

The system was evaluated experimentally by mapping a weak phase object.
The results compared favorably with observations performed with the electronic
heterodyne holographic interferometry and with the on-1ine heterodyne moire.
The theoretical analysis and the experimental measurements have shown that the
performance of the the heterodyne deferred moire is of the same order as the
on-line heterodyne moire.

The method offers many advantages: low stability requirements, adjustable
sens itivity, not affected by noise sources, low cost and computer
compatibility. To conclude it can be said that the method is suitable and
attractive to use for non-steady phase objects. '

The deferred electronic heterodyne moire requires continuing research and
development. More experimental investigation is necessary in order to better

understand the reasons for the low reproducibility observed. It is suggested
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to consistently study the effects of photographic plates exposure levels and
developing processes on the system performance. In the present research the
only photographic emulsion used was the Agfa-Gevaert 10E75 one, not
necessarily the most suitable for moire. Other emulsions with different
characteristics should be tested as well. The errors caused by mechanical
misal ignment of the reference transparency when placed in the position of the
phase object transparency, have to be reduced. This can be achieved by
including better alignment facilities on the processing bench. Also, as in
the on-line case, the sinusoidal motion of the Ronchi grating is undesirable
because of the need for calibration. A technique for linear motion has to be

developed.
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PART 2: MEASUREMENTS OF 3-D DENSITY FIELDS WITH OPAQUE OBJECTS

BY MOIRE DEFLECTOMETRY

I. INTRODUCTION

Tomographic reconstruction of 3-D refractive-index fields from measured
ray deflections by moire method was demonstrated in Ref. 16. It was shown
that if the data on deflections is complete i.e. the field is not blocked by
an opaque object and deflections of 360° coverage are available, the inverse

Radon transforml7’18

may readily be used for field reconstruction. The
advantage of the deflectometry method is that the measured deflections are
directly used in the inversion transformation. This is not the case with
interferometry. Interferometric measurements, namely fndx where n is the
index of refraction and x is the aistance coordinate along the ray, should be
mathematically processed in order to obtain numerical derivatives. This
process may add errors to the reconstructed field.

In some cases it is desired to use moire deflectometry for measuring 3-D
density fields where an opaque object is present in the field. This situation
occurs when def lectometry is used to study density fields in compressible gas
flowing around a test object or to study the temperature fields around heated
opaque objects, etc. In such cases the object blocks many of the optical rays
used for the measurements and thus part of the data is missing. Since the
missing data is necessary for evaluating the inverse Radon transform, the
direct use of the reconstruction technique is impossible.

The same problem arises when interferometric incomplete data is used for

19, Vest and Prikry]20 and Medoff et

field reconstruction; Zien et al.
-a1.21 proposed to solve the problem by using algorithms based on iterations.

For reconstruction it is necessary to extrapolate the projection data into the
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region of missing data. The artificial field evolves during the iterative
process by transforming repeatedly between the image domain and the projection
domain, applying measured information and other criterions at each iteration.
Empirical studies of this algorithm shows?® that the algorithm does not
converge. The studies indicate that the field reaches a best estimate after a
number of iterations and then diverges. A similar iteration technique was
previously used with deflections data to reconstruct the flow field around a
cone at an angle of attackzz. The probiem of algorithm divergence was also
encountered in that study.

In many practical situations the opaque object presented in the field is
of circular or elliptical cross-section. This occurs in aerodynamics of
ngle

circular bodies, an ang

circular pipes, etc. For such bodies it is shown, that by using the inverse

Cormack t\r‘ansformlg’z3

the field can be reconstructed directly without the
need for iterations. The Cormack transform is based on circular harmonic
decomposition of both the image space and the projection space and solving the
relation between these decompositions. It is interesting to note that Cormack
transform is an extension of Abel transform (for circular symmetric fields
(ormack transform reducés:to Abel transform).

A brief description of the inverse Cormack transform is given in Sec. II.
It is shown how this transform is used with deflections data. An algorithm,

based on Cormack transform, is developed and evaluated in Sec. III. The

Popendix contains listing of the comuter program.

I11. THEORY
Cormack's approach is based on the fact that for each r the object
function f(r,e) is periodic in e with period 2=, where r and e are the polar

coordinates defined in Fig. 8. Therefore, f(r,e) can be expanded in Fourier
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Series of the form of

\
| f(roe) = 1 f,(r)e'® (1)
| Lo
where
1 2T ~ige
fl(r) = 5= [ f(r,e)e de . (2)
0

Similarly, the interferometric projection r(p,p) can be expanded as

\ AMpubl = T a,(ple™® (3)
. L= =x
L with
1 J'ZTT —12,d
xl(p) = 5= . r(p,ble db (4)

r(p,H) is defined by the line integral
o 2
ap,p) = [ [ f(r,e)slp-rcos(e—)]Irdrde (5)
00

where the integration is performed over the infinite plane but the delta
function in this equatioﬁ has the effect of reducing the area integral to a
11ine integral along p=rcos(e-¢), shown in Fig. 8. ¢ is the direction of
integration and p is the distance of the line of integration from the origin.
Cormack transform gives the relationship between the Fourier coefficients

18,
Al(p) and fQ(r) :

Ap(p) = 2 [ —~———=—rdr (6)
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where Tﬂ(g) is the Tschebycheff polynomial of the first kind of order g defined

by:

cos(gcos—lx) Ix] <1
TR(X) = -1 (7)
cosh(gcosh "x) x| > 1

Note that if f(r,e) is rotational symmetric, fl(r) is non-zero only for
2£=0 and in this case Eq. 6 reduces to the Abel transform, since To(x)=1 for
all x.

For the reconstruction of the object from its projections, we must
determine the inverse (ormack transform i.e. to express fg(r) explicitly. The

solution, in one of its forms, is given byl8:

_2 P
dp Tz(r)

=

1 (=]
folr) === dp (8)
r
Interesting features of this result are:
1. Only values of rA(p,#) for p> are required to reconstruct f(r,e), thus Eq. 8
can directly be used for reconstructing fields around circular objects

since the data gap in the region p<r is not required for the integration.

dx (p)

2. Tne derijvatives ép —, which appear in Eq. 8, are exactly the g'th

Fourier coefficients of the function il%%;ﬁl = A2'(p,d). The proof is straight-

forward, since x(p,d) is periodic ind, »'(p,8) is also periodic,

therefore can be expanded in Fourier series of the form of:

V(0.0 = T a)(p)e™! (9)
= —oo
where
* AN -isd
»p)=5- [ a(p.ble” " Vdb (10)
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by appliying Eq. 4, Eq. 10 may be written as

2w . dx (p)
* _1 8 -ied, e
(P =72 35 oj Ap.dle” " db = —45 (11)
ar(p,h) . . 1
It turns out that ——=>= is measured directly by deflectametry” and

ap
therefore no differentiation of experimental data is required prior to the

expansion of the measured data in Fourier series.

ITI. COMPUTER SIMULATION

The reconstruction procedure discussed in the preceding section was
evaluated by a computer simulation. The phase object studied was analytically
defined and the algorithm was used to reconstruct the object from computed-
generated deflections data. The object function was zero everywhere outside a
circle of radius Ro’ and an opaque object of circular cross section of
radius RC was placed in the object field. In order to have a basis for
comparison of the accuracy of the reconstruction obtained in the present work

with that obtained by using an iteractive method, we chose to study the same

object as that studied by Vest in Ref. 0.

The phase object studied, shown in Fig. 9 is given by:

—6[(X—0°6)2+y2]} + 0.5 exp{_6[(x+0'6)?+y2]}

f(x,y) = exp{

1-(x%4y?) 1-(x24y?)
2 2 2 2
+ exp{‘ﬁ[x +(.Y"O °6) ]} + 0.5 EXD{—6[X +§y+g'6) ]} (12)
1-(x%+y°) 1-(x+y%)
for Rosr <Ry

and f(x,y) =0 for 0O0<rc« RC and v > Ro‘
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The computer simulation program, listed in the Appendix, consists of the
following steps:
1. Numerical generation of deflections data, »'(p,p). For this purpose
f(x,y) was expressed as a function of p, s, and ¢ according to the

coordinate transformation

X = pcosg - ssinp
(13)

y =psing + scosh

where s is the coordinate along the ray direction - see Fig. 8. Next, the
object function was differentiated with respect to p and numerically
integrated along s, yielding A' (p,b).

It was assumed that we have N projections spaced by equal intervals

2d = ﬁl . The number of data points along the p axis is M thus the

Ro'Rc
increment in p is ap = T

2. For each p, »'(p,b) is expanded in Fourier Series in the azimuthal
direction (Eqs. 3 and 4). The number of terms retained is % max=L-

3. Equation 8 is used to calculate fl(r), the Fourier coefficients of the
azimuthal expansion of the object function. In Eq. 8 the integrand

becomes infinite as p->r. The singularity at p=r can be evaluated by

dividing the integral in Eq. 8 into two part524
. dxﬁ(p)T @ - dxl(p)T @ dxl(p)T ®

L o dp 2 o1 ~dp v g, 1o _dp 2w 4,

v rZ.2! =5 7 2 " Lo 7 2

p-r p-r p-r
~ (14)

For small values of h, the first integral is approximated by

1 d*z(r) -1 h
- [__35__ Tﬁ(l) cosh™ ~(1 + F)]’ thus Eq. 14 becomes
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da (p) b dx (p) 0
1 Ro - dp T (F) ) g (r) -1 h Ro g T CF)
- = f L dp = - ={—%— 7 (1)cosh™*(1+ 2) + —P 2T 4p)
m L ap 2 r L
r |2 2 h [ 2 2
\ p--r p -r
(15)

The approximation error is of the order of 0(h3/2).
4. The object field function is calculated from Eq. 1 using the computed
f .
2(r)
A summary of the reconstruction results is given in Table 1.

TABLE 1 Reconstruction Errors Obtained by Inverse Cormack Transform

and Iterative Convolution Methods*

Opaque object N M L Number of Maximum Averaged
grid points Error, % Error, %

35 29 8 1015 182. 0 9.5

0 25 6 750 15.8 1.8

Circle (RC=0.3RO) 0 25 5 7% 8.7 1.6

30 0 5 900 8.5 1.7

Iterative convolution 19.5 1.8

35 11 10 . 385 . 22.0 2.7

35 16 6 560 6.5 1.3

35 16 8 560 5.4 1.3

Circle (RC=O.6RO) 35 16 10 560 2.0 0.3

30 16 10 48 5.3 0.6

0 16 5 480 8.5 1.5

Iterative convolution 27.5 3.7

*[terative convolution results are from Ref. 0.

In the table the maximum error is defined as the maximum value of the
differences between computed and actual values of the object function at each

point, divided by the maximum value of the function that occurs in the object
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domain. The average error is defined as the average of the absolute values of
the errors over the whole grid. For comparison, the errors calculated by the
jterative convolution method are shown in the Table as well. From the Table,
it can be seen that for this example, the inverse Cormack transform is
considerably more accurate than the iteration method; maximum errors for
RC=O.3R0 and for RC=0.6R0 are 8.5% and 2.0%respectively as compared

to errors of 19.5% and 27.5% obtained from the iterative convolutin method,

respectively.

IV. CONCLUSIONS

The series expansion approach used in our investigation yielded a fairly
efficient reconstruction code. 1t was shown that the use of the inverse
Cormack transform for reconstruction of fields with circular missing
deflections data is quite accurate and convenient for use. The accuracy of
the algorithm was tested by applying it to data generated by numerical
simulation. The relatively high accuracy found is mainly due to the fact that
no iterations are necessary.

Qur study was limited in this project to asymmetric fields around circular
cross sectiona]‘obaque.objecfs. It is important to continue and expand the
algorithm for elliptical cross-section opaque bodies (which often occur in
aeronautics, when circular bodies are at an angle of attack) and for general
shaped bodies. Also more analytical studies have to be done in relation to
the efficiency of the algorithm.

It has to be emphasized that in the present study we have not made any
effort to reduce computational time. The principal factor in determining
computational time is the number of grid points and the number of terms
retained in the Fourier series. Thus by using the Fast Fourier Transform

technique the computational time may be considerably reduced.
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APPEND I X

LISTING OF THE COMPUTER RECONSTRUCTION PROGRAM

KF = Number of Fourier coefficients in the series expansion.
NP = Number of data points along p axis.

NFI = Number of projections.

RCRO = Rc/Ro'

DFI = The interval in projection angle.

DP =  Increment in p.

MAIN PROGRAM

e Re Ar alr A e e whe i Ve e e she Vs b oo e A sl nts Ao b
RN RN ECEEFEERrrm TN

THIS PROGRAM RECONSTRUCTS DENSITY FIELDS AROUND CIRCULAR
OPAQE OBJECTS FROM DEFLECTIONS DATAL.THIS PROGRAM EMPLOYS
THE INVERSE CORMACK TRANSFORM

—— - ———— . — — T D e M Y e i e S W e T — - - —— — - e - ————

IMPLICIT REAL%X8(A-H,0~2)

INTEGER 1ER

EXTERNAL F,RFF,AIFF,FOU,FOUR

DIMENSION P(30),F1(H0) ,RDON(60,30},RLMD{30),AILMD{3C),RD(60)

DIMENSION FID(60),RAF(30,60)3;RIAF(30,60),RREAL{60,30),RAIM{60,3

DIMENSION XX{560),YY(60),FX{4),FY(4),Cl4,3])

DIMENSION RF(60,30),AIF{60,30)

COMMON/FM/SP, SN CS,PM,PCS,PSN

COMMON/RFM1 /RLMD,AILMD,NP

COMMON/RFM2/P,RyRSQ, IR

COMMUNZAAA/RD,,FIZNFIP

COMMON/B83B/LRyNF 1
DEFINITION OF THE DENSIT

e e e e We e dlo als wle e 2t o sl als Wt 3t oty Al ol wta afs o
AR RIS F R NI RN -

PEXP{X)Y)=DEXP =6k {(X=0eb) % 2¢¥%2) /{1~ (X2X+Y%Y)]})+0.5%DEXP(~

BU(X40eB)XE24YE%2) /{1oa— (XEXAYEY ) )I4DEXO (6% XEH2+{Y=-0.6)%%2) /(]
AXEE24Y3%2) ) ) 4+ 0 e SHDEXP(—6 e { X524 {( Y40 ,6)%uu22¥ /({1 e~ XHX+YEY)))

CALL UERSET{O0,LEVOLD)
PYC=3.14159265358979
CR=50/174.,0

CH=0,01

AERR=0.

FAERR=0.

RO=1.00

KF=10



10

11

70
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RCRO=.6
RERR=.01
FRERR=0.01
NP=11

SRO=RO%x%
RC=RCRO%RO
NFI=25
NFIP=NFI+1
TTL=NF I%NP
DFI=2.*PYE/NFL
DFID=360./NFI
NPM=NP-1
DP=(RO=-RC )} /NPM
DO 10 M=1,NP
AMM=M-1
P{M)=RC+DPHAMM
CONT INUE

DO 11 N=1,NFIP
AMM=N-1
FI(N)=DFI%AMM
FID({N)=DFID%*AMM
CONT INUE

WRITE{6;70) NFI,NP,KF,CH,TTL

FORMAT(ZX,'NFI,,NP,,KF,,CH,,TTL’,B(BX,IZ),BX,ZFIO.Z’

CALCULATION OF THE DEFLECTION PROJECTIONS (INTEGRAL)
OF THE GIVEN FUNCTION PEXP(X,Y) FOR THE DEFINED
VALUES F1 AND P WHICH WE CALL RON{(PHI,P).

13

12

19

S3
50
54
51

e i o e g Ar e WAz e e L e afr A o A i she S LU A Sl ahe o st vl wAe e ale b e s
Ik xmekkr ek ksl ok

FRENRREIRRIRE

WRITE(6,51)

DO 12 N=1,NFI
CS=DCOS(FI(N))
SN=DSINI(FI(N))
DO 13 M=1,NPM
PM=P{#M)

SP=P (M) %2
PCS=P(M)%CS
PSN=P{M)%SN
B=DSQRT{SRO-SP)

RA=-8
RDNINyM)=DCADRE({F yRA, 3, AERR RERR,ERROR, [ER)
CONT INUE

RDN{NyNP)=0.0

CONT INUE

DO 19 M=1,NP
RON(NFIP,M)=RDN(1,M)
CONTINUE
WRITE(6,50) (FID(N) yN=1,NFIP)
WRITE(65S0) (P(M),M=1,NP)

DO 53 M=1,NP

WRITE (6,54) (RDN{N,M),N=1,NFIP)

CONTINUE

FORMAT (3X310F10.4//)
FORMAT[3X,10F10.4)

FORMAT (3X, 'PHI= P=

202 shr Ao Ay b ate o oS Ao Ao
B R AR R SR et
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26

17

57

55
56

68

220

210
200
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cXPANSION OF RDN{FI,P) IN FOURIER SERIES
WITH P ASA PAQAVETER

o e e sl Shosie el v e e e A ok ik Rk ok
RN NN E RN RN ER PR SRR ENER

3
i
3¢

55=0.

TT=2 FPYE -

DO 17 M=1,NPM QRIETL T o

DO 250 N=1,NFIP AF POOR DUALTTY
RD{N)=RDN(NyM) h

CONT INUE

DO 26 LR=1,KF

RREAL(LRyM}=DCADRE(FOU)SS; TT,,FAERRFRERR, ERROR;1ER)
RREAL(LRyM)=RREAL{LR,M}/PYE
RAIM(LR,yM)}=DCADRE(FOUR,)SS,; TT,FAERR,FRERR, ERROR, IER)
RAIM{LR,M)=RAIM{LR,M)/PYE

CONT INUE

CONT INUE

DO 57 LR=1,KF

RAIM(LRyNP)=0,0

RREAL {LR)NP)=0.0

CONT INUE

DO 55 M=1,NP

WRITE(6,56]) M,P{Mm)

WRITE(6,54) (RREAL(LR,M),LR=1,KF)

WRITE{&;54) {(RAIMILR ;M) ,LR=1,KF)

CONT INVUE

FORMAT{4X, '"FOURIER COEF. OF RDON ,M=',13,3X,F6.3)
FORMAT{3X3F14.632XyF14+6,2X316,2X,14})

CALCULATIAN OF THE FOURIER SERIES EXPANSION OF THE
DENSITY FUNCT[DN BY USING THE INVERSE CORMACK TRANSFORM

V2 o fesie sl e ez sl e e e e s see e A e A oA A A A A A
N R SN R RN RN RN ENRN NN R RN ERERERXERERNE R R RN

4

H=CH%ERC

00 200 [R=1,NPM

R=P(IR)

RSQ=R%%

AR=R+H

ARH=AR/R .
ACSH=DLODGIARH+DSQRT{ ARHZx%:2—-1)} ’

DD 210 LR=1,KF

00 220 M=1,NP

RLMD (M} =RREAL{LR M)

AILMD(M)=RAIM(LR,M)

CONT I NUE
RF{LRyIR)=DCADRE[RFF AR, R0, AERR,RERR,ERROR, IER)
AIF{LR,IR)=DCADRE(AIFF AR, RO,AERRyRERR ,ERROR, I1ER)
RF(LR,IR)=(—-1/PYE}%(RLMD{IR)IZACSH+RF{LR,IR))
AIF(LR,,IR)=(-1/PYE})%(ATLMD (IR)&:ACSH+AIF({LR,IR))
CONT [ NUE

CONT INUE

RECONSTITUTION OFTHEZ DENSITY FUNCTTION FROM THE
CALCULATED FOURIER COEFFICIENTS

B Ao Sty SR A e wts Ay wte wle B2 e uBe sl A Sy ot e sl e wis oo e Sl ate vhe SRo e 1 sle a8 AL e Ao oA SR 2l A
ek % e ks T e e e e o sl e e e el e o fefe e el ek ik e el ok

APMR=0.0
DO 400 IR=1,NPM

DO 312 N=1,MFI

RAF (IR,N)=C+5%RF (1, IR}
RIAF(IR,N)=0.

DO 3060 L=2,KF




-30-

f'\:-a.\.., —

. xf?ElS
\)F Puu 14 i ALiTY N

Z=L-1
RAF{IR,N)=RAF (IR, N1+RF{L, IR)%DCOS(Z%FI(N))+AIF(L,IR)* DSIN(Z¢FI(N))
300 CONTINUE
X=P(IR)%*DCOS(FI(N))
Y=P({IR)%DSIN{FI(N))
IF({DABS (1e-X%%2~-Y%%2) LE.CR) GO TO 444
PP=PEXP{ X,y Y)
GO TO 445
444 PP=0.0
445 CONTINUE -
PPMR={PP-RAF{IR,N))%*100.
APMR=APMR+DABS (PPMR)
WRITE(6,18) PP,RAF({IR,N),PPMR,IR,N
18 FORMAT(3X,F14.6,2X,Fl4. 612X F16.692Xy16,2X,14)
312 CONTINUE
400 CONTINUE
APMR=APMR/TTL
WRITE (6,987) APMR,TTL
987 FORMAT(5X///1AVERAGE ERROR='",F10.4,' NUMBER OF POINTS =1!,F5.1)
sToP
END

e e oo She A Ao Ao e Ao Yy Ao i e e Ao A
IR AFEREXEFEEE SRS

FUNCTION F(S)
IMPLICIT REAL%B(A-H,0-2)
DIMENSION P(30),RLMD(30),AILMD(30)
COMMON/RFM1/RLMD ,AILMD, NP
COMMON/RFM2/P,R,R5Q) IR
COMMON/FM/SP, SN, CS,PM,PCS, PSN
COMMON/BBB/LR,,NF 1
T=SP+S%%
G=1e=-T
IF(Q.LE«1.00-76) GO TO 111
SQ=Q%%
SCS=S%C5
SSN=S%SN
EF1=(T+0.36-1.2%(PCS-5SSN))/Q
IF(DABS(EF1)«GTe29.0) GO TO 10
F1=DEXP{—=6.0%EF1)
DF1=-6,0%F1%( (2e%PM-1+2%CS)+2.%PMZEF1)/Q
GO TO 11

10 F1=0.0
DF1=0.0

11 EF2=(T+0e30+12%{PCS=55N)1/Q
IF(DABS(EF2) +GTe29.0) GU TO 20
F2=0.5%DEXP (=64 0XEF 2)
DF2=-6,0%F 2% ([2.PM+1 «2%CS5 ) +2.%PMXEF2)/Q
GO TO 21

20 F2=0.0
DF2=0.0

21 EF3z(T+0.36-1.2%(PSN+5CS5))/Q
IF (DABS{EF3)eGT«29.,0) GO TO 30
F3=DEXP(~-6.,0%EF3)
DF32-6,0%F3%( (2 %PM=142%SN)+2.%PMXEF3) /N
GO0 TOo 31
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31

40

a1

111

222
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F3=0.0

DF3=0.0

EF4=(T+0.36+1.2%{PSN+5CS5})/Q

IF {DABSI[EF4)+GT.29.0) GO TO 40
F4=0,5%DEXP[—6.0%EF4) : ,
DF4=-6e0%F4%( (2.%PM+1.2%5SN) + 2. PM$EF4)/Q
GO TOD 41 o o '
F4=0.0,_

OF4=0.0 .

CONTINUE

F=DF1+DF2+DF3+DF4& "

GO TO 222

F=0.0

CONT INUE

RETURN

END -
' PP PN G PSS AT P S
FUNCTION FOU({X)

IMPLICIT REAL%8B(A-H,0-2Z)

DIMENSION FI(60),RD{60)
COMMON/ZAAA/ZRD,FIZNFIP

‘COMMON/BBB/LRNFI

CALL FINTER(NFIP,FI,RD,X,YY).
LLL=LR-1
FOU=YY%DCOS{LLL%X)
RETURN
END

B R R T LT o T TP L
FUNCTION FOUR(X)
IMPLICIT REAL%8(A=-H,0-Z)
DIMENSION FI{60),RD(60)
COMMONZAAA/RD, FI,NFIP
COMMON/BBB/LRy NF I
CALL FINTER(NFIP,FI;RD;X,YY)
LLL=LR-1
FOUR=YYZDSIN{LLL%X)
RETURN
END -

FUNCTION RFF(X}

IMPLICIT REAL%8{(A-H,0-Z)
DIMENSION P(30)RLMD(30),AILMD(30)
COMMDON/RFM1 /RLMD , AILMD, NP
COMMON/RFM2/P,RyRSQ, IR
COMMON/BBB/LRyNF I

LL=LR-1

MM=NP

XR=X/R

CALL FINTER(MMyP, LMDy X, YY)

RFF=YYXOCOSH(LLE=DLOG(XR+DSQRT(XR%*%2-1))})/DSQART { X**

RETURN
END

2-RS5Q)
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FUNCTION AIFF(X)

IMPLICIT REAL%B{A-H,0-2)
DIMENSION P{30),RLMD({30),AILMD{30)
COMMON/RFM1/RLMD, AILMD, NP
COMMON/RFM2/P 3 RyRSQ, IR

. COMMON/BBB/LRyNFI

LL=LR~-1

MM=NP

XR=X/R

CALL FINTER(MM,P,AILMD,X,YY) .
AIFF=YYZDCOSH{LLZ*DLOG{XR+DSQRT {XR%%2-1)) ) /DSQRT{ Xx%2-RSQ)
RETURN

END

SUBROUTINE FINTER(N, XX,Y
IMPLICIT REAL%B(A-H,0-2)

DIMENSION P(30),RLMD(30),AILMD(30)

DIMENSION F1([(60),;RDN{60,30)

COMMONZAAA/RDN,FI

COMMON/RFM1/RLMD,AILMD,NP

COMMON/RFM2/P 43R, RSQ, IR

DIMENSION XX{N)3YY{N),FX{4),FY(4),Cl4,3)

NF=N

IF(DABSI{XX{1)=X)eLE+DABS(1D-6%¥XX[1)))} X=xX{(1)
IF(DABSIX=XX{(NF))+sLEDABS{1.D-6%XX{NF))) X=XX{NF)
IF{XeLTaXX([1)eOReXaGT,XX{NF)) GO TO 4

DO 7 I=2,NF

IF(XeGE«XX(I}) GOTO 7

K=1-3

M=2

IF{1.EQe2) K=0

IF(1eEQeNF) K=NF=4

IF(1.EQe2) M=1 _

IF{1.EQaNF} M=3 - . : ' )

DO 8 J=1,4 '

FX(J)=XX{K+J)

FY{J)=YY({K+J)

CALL IQHSCU(FX,FY,4,Cy4,1ER)
Y={{CIMy3)a(X~FXIM))+C{M,;2) Y= (X-FX{M))+C(M;1))={X=FX{M))+FY(M)

GOT0 3 '

CONTINUE

Y=YY (NF) . ’ :

GO TOo 3

WRITE(6)5) NFyXX{1),XX(HF) X%

FORMAT (1X,'ERROR IM FINTZR,X OUT OF RANGE, NF;XX({1);XX{NF),
xX=1 ,.SX,I3’3(3X)DIO-3’,

RETURN

END
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Schematics of a conventional moire system. L.S. is a point light
source (may be a focused laser beam). M is a parabolic mirror.
and G2 are Ronchi rulings and S is a mat transparent screen.
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Fig. 3: Schematic of the experimental setup for postanalyzing phase objects:
6, Ronchi ruling; R.S. and T.S., reference and test signals

respectively; 6.S., gating signal.
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