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ABSTRACT 

As an important step in the characterization of a particular dynamic surface 

displacement transducer (IQI Model 501 ), this report presents one dimensional 

wave propagation in isotropic nonpiezoelectric and piezoelectric rods of variable 

cross section. With the use of the Wentzel-Kramers-Brillouin-Jeffreys (WKBJ)  

approximate solution technique, an approximate formula, which relates the ratio of 

the amplitudes of a propagating wave observed at any two locations along the rod 

to the ratio of the cross sectional radii at these respective locations, is derived. The 

domains of frequency for which the approximate solution is valid are discussed for 

piezoelectric and nonp iezoelec t r ic materials. 
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INTRODUCTION 

In the characterization of a transducer designed for ultrasonic and acoustic 

emission measurements, it is important to understand the behavior of wave prop- 

agation in all components of the transducer, especially in the piezoelement. The 

piezoelement is important because it is through its behavior that ultrasonic waves 

are introduced into and received from the materials whose properties are sought 

by nondestructive evaluation (NDE) .  A transducers is usually designed with some 

specific measurement capabilities, such as 

(a) the type of waves (longitudinal, shear, surface, etc.) it can generate and/or 

I 
, 
I 
I 

detect; and 

(b) the frequencies at which it can best produce its desired response. 

In terms of its frequency characteristics, the transducer can often be classified aa 

either narrow-band or broadband. The transducer whose characterization is sought 

in this study is a broadband type. The transducer is manufactured by Industrial 

Quality Incorporated (Gaithersburg, MD) and designated as I Q I  Model 501. The 

sensing elements of the transducer consist of two components: a conically shaped 

piezoelement fabricated from lead zirconate-titanate (PZT - SA) and a backing 

material fabricated from brass. The transducer is designed for acoustic emission as 

well as ultrasonic signal generation. 

The aim of this report is to investigate how the piezoelement supports one 

dimensional longitudinal wave propagation. One of the earliest methods of a p  

proaching this problem analytically was presented by Redwood [l]. Several other 

authors, including Filipczynski [2], Kazhis and Lukoshevichyus [3] and Williams 

and Doll [4], have subsequently dealt with the subject in various detail. However, 

unlike the present case where the piezoelement is conical, these authors dealt with 

cases where the piezoelement had a constant cross section. 

The first and the second sections of this analysis deal with the derivation of 
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the governing wave equation in isotropic nonpiezoelectric and piezoelectric rods 

of variable cross section, respectively. The third section is devoted to solving the 

derived wave equations by using a phase-integral method known as the WKBJ 

approximate solution technique. Through this method, an approximate formula, 

which relates the ratio of amplitudes of a propagating wave at any specific locations 

along the rod and the ratio of the cross sectional radii at these respective locations, 

is derived. The approximation is based on the first term of an asymptotic power 

series. Usually in such approximations, there is an inherent error that imposes a 

limit on the use of the approximate solution. These limits are also discussed in this 

report. 

Another problem with the approximation is the existence of points of discon- 

tinuity, known also aa the transition points. Heading (51 summarized attempts by 

several authors to improve on the approximation so as to be valid at the transi- 

tion points. Gans [6], who studied the propagation of light in a stratified medium, 

examined the effects of the transition points in a systematic way. Since Gans, sev- 

eral authors have suggested ways to improve the WKBJ solutions. For instance, 

Bailey [7] produced an improvement when considering reflections of waves in an in- 

homogeneous medium, replacing the WKBJ solution by an approximation that is 

valid through a transition point. Bailey also discussed an iterative process whereby 

results could be further improved. Iami [8] produced a better representation of 

the WKBJ solution through the transition point and later applied the technique 

to heat transfer in a laminar boundary layer. Finally, Moriguchi [9] considered a 

phaseshift approach to a formula developed by Hines [lo]. 

Concerning the validity of the WKB J approximate solution, this report will not 

only address the conditions under which the approximation is true, but it will also 

establish the frequencies under which the conditions are met. Parameterized curves 

that relate the amplitude ratios to the frequencies of propagation are developed for 
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this purpose. 
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ONE DIMENSIONAL PLANE WAVE PROPAGATION IN 

NONPIEZOELECTRIC ROD OF VARIABLE CROSS SECTION 

In this section the one dimensional plane longitudinal wave equation is derived 

for an isotropic elastic rod of variable cross section. 

Consider an isotropic elastic rod of variable cross section extending from the 

origin z = 0 to z = L along the z-axis as shown in Fig. 1. Assuming that a 

propagating plane wave becomes incident on the rod at the origin, an equation 

of motion which describes the propagating wave can be derived by considering a 

differential element dx  of the rod as shown in Fig. 1 .  

A momentum equation of the differential element dx  of the rod can be written 

as 

where A(z) [in2] is the cross sectional area of the rod at any location along z-axis, 

p [lb-sec2/in'] is the mass density, 0 [lb/in2] is the longitudinal stress, and u(z,t) 

[in], which is a function of both space z and time t , is the displacement along the 

x-axis. 

Neglecting the terms of the order of dz2 , eqn.(l) can be simplified to 

After rearranging the left-hand side of eqn.(2) as 

eqn.(2) can be rewritten as 
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The relationship between the stress Q and the displacement variable u can be 

written via Hookes’s Law as 

where E [lb/in2] is the modulus of elasticity of the rod. 

Substituting eqn.(5) into eqn.(4) gives 

a a*u(x ,  t )  
E- a x  [ A ( X ) ~ ~ ( ~ ’ ~ ) ]  az = p A ( x )  at2 

which is the one dimensional plane wave equation for an isotropic elastic rod of 

variable cross sectional area A ( z ) .  Note that E is a constant for homogeneous 

isotropic elastic materials. 

Eqn.(6) is a second order partial differential equation with a variable coefficient. 

An analytical solution can be obtained by a phase-integral method known as the 

WKBJ approximate solution technique. This technique is presented later in this 

report. 

6 



ONE DIMENSIONAL PLANE WAVE PROPAGATION IN 

PIEZOELECTRIC ROD OF VARIABLE CROSS SECTION 

I In this section, a one dimensional longitudinal wave equation is derived for an 
~ 

isotropic piezoelectric rod of variable cross section. 

The momentum equation (see eqn.( 1)) is unaffected by the piezoelectric effect 

but the Hooke's Law which requires an additional term [ 11 for piezoelectric materials 

becomes 

Eqn.(7) shows that the presence of an electric flux D, in the z-direction pro- 

duces a "piezoelectric stress" D,, where D, [coul/in2] is the electric flux density in 

the z-direction, and h (lb/coul] is the piezoelectric constant of the material measured 

with D, held constant. 

Substituting eqn.(7) into eqn.(4) and simplifying give 

Even though the electric field is not uniformly distributed in the rod along 

the z-axis as shown in Fig. 2, there is no free charge inside the piezoelectric rod. 

Therefore, Gauss's Law, which is given by (11 

V . D = O  , (9) 

where the vector D is the resultant electric flux density, remains valid. 

Eqn.(9) can also be written as 

where D,, D, and D, repesent the 2, y and z components of the electric flux 

density, respectively. 
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Since plane wave propagation is assumed, differentials with respect to y and z 

are zero. In particular, 

Therefore, from eqn.( 10) 

= o  . aDz 
az 
- 

Considering eqn.(l2), eqn.(8) reduces to 

a d2U(X, t )  
E- az [A(.) a u ( z ’ t ) ]  a2 = p A ( z )  at2 9 

which is the one dimensional plane wave equation for a piezoelectric rod of variable 

cross section. 

Note that eqn.(l3) is identical to eqn.(6) which holds for a nonpiezoelectric 

rod. Consequently, eqn.( 13) can also be solved by the WKBJ approximate solution 

technique which is presented in the next section. 
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I W KBJ APPROXIMATE SOLUTION TO 
I 

I A SECOND-ORDER PARTIAL DIFFERENTIAL EQUATION WITH 

A VARIABLE COEFFICIENT 

The Method 

The method derives its name from the physicists Wentzel, Kramers, Bril- 

louin and Jeffreys, who were the first to develop and apply the technique to solve 

l 
I 

wave propagation equations for slowly-varying stratified media; hence, the name 

"WKB J" method. 

Stratified media are not relevant in the present case; however, the method 
I 

I will be applied to the wave equations derived for an isotropic rod of variable cross 
I section. 

Application of the Method I 
Recall the wave equation derived earlier for isotropic piezoelectric and non- 

piezoelectric rods of variable cross section: 

The WKBJ approximation technique presupposes a gradual variation of the 

cross section A(z) and assumes a solution of the form 

9 (15) u ( z , t )  = a(z)e i e ( t , t )  

where a(z) is the amplitude of the propagating wave, t = f i ,  and 8 is the phase 

which can be defined as 

where k(z) is the wave number of the propagating wave, w is the circular frequency, 

and t is the time variable. 
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Eqn.(lS) can de differentiated as 

But a(z) is a function of z only. Therefore, 

Considering eqn.(l8), eqn.(l7) can be expressed as 

Also, 

Similarly, 
f32u(z, t )  

= -pA(z)w2a(z)e" . 
at2 

Substituting eqns.(20) and (21) into eqn.(l4) and dividing through by e'' give 

Solution of eqn.(22) can be obtained by introducing a dimensionless variable, 

E ,  which can be defined aa 
z E=z 9 

where z is the independent variable along the direction of wave propagation and L 

is the scale length, which can be defined as the distance from the point of incidence 

of the propagating wave to the location of the output measurement. 
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Differentiating eqn.(23) gives 

Assuming that the wave number ko of the incident wave is large or simply that the 

i frequency of the incident wave is high, the amplitude a(€ )  can be asymptotically 

[I11 

expanded in powers of a dimensionless constant koL by using Poincare's definition 

d 1 d  
d z  L d (  * 

- -  - -- (24) 

where a0 (0 , a1 (E) , . . . , an (6) , . . . represent the amplitude terms of the asymptotic 

I ~ power series. 
I Substituting eqn.(25) into eqn.(22) and rearranging give 

+ [ p A ( € ) w 2  - EA(()k'(E)]  [a&) + a + ---I 
k0 L 1 

I Multiplying the first, second, and third terms of eqn.(26) by ( k o / k o ) 2 ,  ( k o / k o ) ' ,  

and (ko/ko)O,  respectively, results in 

= o  . 
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or 

But the ph se velocity c of the propagating wave is defin 

c = f i  , 

(30) 

d a s  

and so, considering eqn.(31), eqn.(30) becomes 

W 

C 
k(€) = - * (32) 

Since the circular frequency w and the phase velocity c are constants, the wave 

number k ( ( )  is also constant and hence independent of [. Denoting this constant 

as k yields 

(33) 
W 

C 
k = -  . 

If the dispersion relation as expressed in eqn.(29) is true, then the last terms of 

the second and the third expressions of eqn.(28) vanish. So, the second expression 

of eqn.(28) can be expanded as 

(34) 
d + “.O(E)G [EA(€)k(€)l  = 0 2 J w € ) k ( € )  -&-- dao ( €1 
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and rearranged as 

or i 
~ EA(E)kao2(E) = constant . (36) 

For any segment L of the rod between the z = z1 and z = 22,  it can be 

deduced from eqn.(36) that 

I where a(z1) and a(z2) represent the amplitudes of the propagating wave at the loca- 

tions z = z1 and z = 5 2 ,  respectively, and A(z1) and A ( z 2 )  are the corresponding 
l 

1 cross sectional areas. 

I Eqn.(37), which relates the variation of the amplitudes of the traveling wave 

to the cross sectional areas of the rod, was also derived by Green [12] and Liouville 

[13] who were the early investigators of this type of problem. Green [12] arrived at 

this solution by an energy conservation argument. 

Eqn.(37) can be simplified to 

where t (z1) and (22) are the radii of the rod at the locations z = z1 and z = z 2 ,  

respectively. 

Eqn.(38) is useful for quick practical approximations but it lacks information 

about the frequencies at which this approximation is true. In order to incorporate 

the information on the frequency into the approximation, it is necessary to inves- 

tigate the order of magnitude of the second term, a l ( ( ) ,  of the asymptotic power 

series such that the approximate solution is true only when the first term ao(E) is 

retained. 
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The order of magnitude for a1(() can be obtained from the third term of 

eqn.(28) which can be reproduced as 

The second term of eqn.(39) can be expanded as 

Therefore, eqn.(39) becomes 

k o z d  [EA$] + iko { 2EAk- dal + -[EA,]} d = 0 , 
d€ d€  d €  

where the argument f is dropped for convenience. 

But from eqn.(34) 

- [ E A k l = - ( ~ ) x  d 2EAk da0 . 
d€ 

Substituting eqn.(42) into eqn.(4l) and rearranging give 

ko- d [ EA- thy] +%EA& . ( d a i  ---- ai d u o )  = o  . 
d €  d€ a0 d €  (43) 

The expressions in the second set of parantheses in eqn.(43) can be rearranged as 

Substituting eqn.(44) into eqn.(43) and rearranging give 

Since it is desired to have the results in terms of L, dividing both sides of 

eqn.(45) by koL gives 

L d  [%I = -(-) i 1 -$[EA%] , 
koLd6 m 2kL E A a o  

14 
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or 

Also since the only purpose here is to estimate how large al/koL is with respect to 

a0 , from eqn.(47) one can write 

where "0" represents "order of". 

Note that since both sides of eqn.(47) have the same scale length, the term 

- - [ E A 2 1  1 d  , 
EAQO d e  

can be estimated to be order of unity. 

Integrating eqn.(48) results in 

Ql/kOL QO =.(A) . 

Substituting for ( from eqn.(23) into eqn.(W) and rearranging result in 

(49) 

Eqn.(Sl) gives the order of magnitude of the second term u1 of the asymptotic 

power series as a function of the first term UO. 

Substituting for a1 into eqn.(25) yields 

The concern here is to determine, analytically, the condition under which the 

higher order terms of the asymptotic power series, including the second term u1, 

can be neglected in applying the WKBJ approximation. The condition can be 

derived from eqn.(S2) as follows. Since a1 is of "order" ( z / L ) / k L  and also since ko 

was assumed to be large, then if 

- zlL < < 1  , 
kL (53) 
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the first and other higher terms of the power series can be neglected. Therefore, 

the WKBJ solution expressed in eqn.(38) would be true if the condition stated in 

eqn.(53) is satisfied. 

The physical signficance of the condition expressed in eqn.(53) can be obtained 

by expanding the equation as 
X 
- < < k  L2 , (54) 

or 
2 27r - << - L2 A ’  (55) 

where X is the wavelength of the propagating wave. 

Consider a situation where the rod has a finite length L and where an observer 

is located at the end of the rod. In other words, the variable x is equal in magnitude 

to the scale length. In that case, eqn.(55) becomes 

1 27r 
- << - L A ’  

or 

A<<27rL . (57) 

The inequality eqn.(57) is satisfied only by very short wavelengths or simply 

when the frequency of the propagating wave is high. Also, the inequality statement 

implies that the error associated with the W K B J  approximation is negligible at 

high frequencies. In short, according to Heading [5], the error associated with use 

of the WKBJ solution is expressed as O(l/kL) times the approximation (eqn.(38)). 

Hence, 

Eqn.(58) can also be derived from eqn.(52). Finally, the solution can be summarized 

as 



A = R [l + 0 (&)I 
X - < < k L  , L (59) 

where A replaces the ratio a(z2)/a(xl), and R equals the ratio r(zl)/r(z2).  

The expressions of eqn.(59) represent the complete WKBJ solutions, after 

Wentzel [ 141 , Kramers [ 151, Brillouin [ 161, and Jeffreys [ 171, for this problem. 

The conditional statement in the second expression of eqn.(59) indicates that 

the use of the formula is limited to cases when the frequency of the incident wave 

is high. How high the frequency must be is one of the issues of investigation in this 

report. The results are presented for some well-defined geometric parameters of the 

rod and are presented in the next section. 
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RESULTS AND DISCUSSIONS 

It is clear from the preceeding section that the validity of the W K B J  solu- 

tion rests on two important parameters, namely, the scale length, which in practice 

represents the length of the rod, and the frequency of the propagating wave. The 

W K B J  solution was derived under the assumption that the frequency of the prop- 

agating wave was high. How high the frequency must be in order to satisfy the 

solution is therefore an important question. 

In this section, investigation of the lower bound frequency at which the WKBJ 

solution is valid is pursued for both piezoelectric and nonpiezoelectric materials. 

One part of the investigation focuses on four piezoelectric materials and the other 

focuses on two nonpiezoelectric materials. 

The piezoelectric materials selected are lead mentaniobate (PbNbz O,), lead 

zirconate-titanate (PZT - 5A), quartz (SiOz), and lithium niobate (LiNiO3) with 

longitudinal wave speeds of [18] 131 x lo3 in/sec (3,323 m/sec), 172 x lo3 in/sec 

(4,350 m/sec), 226 x lo3 in/sec (5,740 m/sec), and 291 x lo3 in/sec (7,400 m/sec), 

respectively. These four materials represent the most widely used piezoelectric 

materials in ultrasonic and acoustic emission transducers. 

For this report, a range of values from 0.025 in (0.635 mm) to 0.25 in (6.35 

mm), which represents the usual thickness range of piezoelements of ultrasonic 

and acoustic emission transducers, was assigned to the length of the rod of each 

piezoelectric material. Six values, namely, 0.125 ,0.250 ,0.375 ,0.500 ,0.625 , and 

0.750, were selected as values of the ratio of the cross sectional radii. 

Based on the WKBJ solution 

A=R(l+&) , - < < k L  z 

where “0” is omitted for computational convenience, six plots (one for each value 

of R) were generated for each piezoelectric material. These plots are shown in 
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Figs. 3 through 6 .  Each plot represents a family of ten curves that relate the 

amplitude ratio A to the different frequencies of the propagating wave. Each curve 

was generated for one value of L. 

Before discussing the results of these plots, it is necessary to state that the 

WKBJ solution is satisfied when A is approximately equal to R , that is, 

Although the frequencies at which the solution is satisfied can be deduced from 

Figs. 3 through 6 ,  it is probably not the easiest way to do so. For this reason, it is 

necessary to recall that the error associated with the solution (eqn.(60)) is given by 

which in percentage terms may be written as 

E[%] = lOOR (&) . 

With this in mind, it becomes a matter of selecting an acceptable error and 

thereafter establishing the minimum frequency that satisfies the solution. In this 

report, an arbitrarily acceptable error of 1.4% is selected. The frequency at which 

the error is approximately 1.4% is termed the lower- bound frequency and is denoted 

by FT . So, from eqn.(63), FT can be defined as 

c R  
L E a  

FT w 16-- , 

where c is the wave speed in the material, R is the ratio of the cross sectional radii, 

and L is the length of the rod. 

Eqn.(64) shows that FT increases proportionally as R and decreases propor- 

tionally as L. Because R and L are variables, eqn.(64) is most easily understood if 

either R or L is a constant. 
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By k i n g  the value of L at 0.25 in and Ea at 1.4%, plots of FT versus R are 

generated for the four piezoelectric materials and shown in Figs. 7 through 10. The 

linear relationship between FT and R can be observed from these plots. Similar 

plots can be generated for other values of L. 

In order to show the relationship between E 

as 
C E(%) x 16R- 
FT 

and L, eqn.(64) can be reexpressed 

(65) 

But the wavelenght AT at the lower bound frequency can be expresssed as 

C 
AT=-. . 

FT 

Combining eqns.(65) and (66) gives 

E(%) x 16R- AT 
L 

So, based on eqn.(67) the relationship between E and L in parametrized form 

were generated and shown in Figs. 11 through 1 4 .  For each piezoelectric material, 

the plots are generated for only 3 values of R because the relationship between E 

and R can easily be deduced from other values of R . It can be observed from Figs. 

11 through 14 that when the value of L is 0.25in, the value of E is equal to the 

acceptable error E, which was k e d  to about 1.4%. A list of the estimated values 

of the lower bound frequencies and the corresponding acceptable errors are shown 

in Table 1. 

Another aspect of this report is directed towards establishing similar param- 

eters in nonpiezoelectric materials. Aluminum and brass with longitudinal wave 

speeds of 250 x lo3 in/sec (6,350 m/sec) and 175 x lo3 in/sec (4,430 m/sec), re- 

spectively, were selected for the investigation. These two materials were selected 

primarily in preparation for experimental studies of wave propagation in isotropic 

elastic rods of variable cross section, which are presented in sbsequent report. Also, 
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brass was selected because its acoustic properties are very close to those of PZT-SA 

from which the piezoelement of the IQI transducer was fabricated. For instance, 

the longitudinal wave speed in PZT - 5A is only 1.7% lower than that of brass. 

Aluminum was selected because it is widely used in nondestructive testing (NDT) 

of materials and also for reference purposes. 

A range of values varying from 0.25 in to 2.5 in, which represents the usual 

thickness range encountered in UT of materials, was assigned to L . The same set 

of values of R was also selected in this case. 

With these parameters and using eqn.(60), parametrized curves that relate 

the amplitude ratio to the frequencies of the propagating wave are generated and 

shown in Figs. 15 and 16 for aluminum and brass, respectively. The interpretations 

of the results from these plots are quite similar to those presented above for the 

piezoelectric materials. 

Similarly, plots of FT versus R are generated for aluminum and brass by using 

E, = 1.4% (68) 

in eqn.(64) but by assigning the value of 2.5 in to L . These plots are shown in Figs. 

17 and 18. Also, plots of E versus XT/L are generated and shown in Figs. 19 and 

20 for aluminum and brass, respectively. The estimated lower bound frequencies 

and the corresponding acceptable errors are shown in Table 2 .  Note that the 

lower bound frequencies are lower because the values of L for the nonpiezoelectric 

materials are ten the values of L for the piezoelectric materials. 

It c a n  be observed that, in general, the lower bound frequency not only varies 

with respect to the geometric parameters of the rod, such as R and L, but also it 

varies with respect to the acoustic properties of the rod, such as wave speeds. This 

observation is important when applying the WKB J approximate solution technique 

to solving wave equations for materials whose properties not only vary in cross 
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section but also in acoustic properties in the direction of the wave propagation, 

such a8 stratified media. 
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CONCLUSIONS AND RECOMMENDATIONS 

In this report, a formula that relates the ratio u ( z Z ) / u ( z l )  of the amplitudes of 

a longitudinal propagating wave to the ratio r(zl)/r(zz) of the cross sectional radii 

was derived by using the WKBJ approximate solution technique. Furthermore, 

the WKBJ solution was shown to hold only when the frequency of the propagating 

wave was high, that is, z / L  << k L  . 
How high the frequency should be was investigated for four piezoelectric mate- 

rials and two nonpiezoelectric materials. The minimum frequency, at which the ap- 

proximate solution is valid is within 1.4% error, was defined as the lower bound fre- 

quency. At  the lower bound frequency, the error associated with the approximation 

was fixed at approximately 1.4% for all the materials discussed here. For instance, 

it was found that FT was attained in all the piezoelectric materials when the ratio 

AT/L was 1.4,2.8, . . . ,8.4 for the corresponding values 0.125,0.250, . . . ,0.750 for 

R . So, for the piezoelement of the transducer with L = 0.100 in and R = 0.250, 

the lower bound frequency can be deduced to be approximately equal to 4600 k H z .  

In conclusion, one can say that the one dimensional wave propagation anal- 

ysis presented here not only enhances understanding of wave propagation in rods 

of variable cross section, but also forms a step in the characterization of conical 

transducers in general and, in particular, in the characterization of transducer I Q I  

model 501. 

Note, however, that the analysis neglects the effects of attenuation (energy loss) 

of the propagating wave in the materials and hence on the WKBJ solution. For 

this reason, it is recommended that the WKBJ solution presented here be verified 

experiment ally. 
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Table 1 

Lower Bound Frequencies for Four Piezoelectric Materials 

Mat e r ial Lower bound 
frequency 

FT(kHz) 

Ratio 

0.125 

Error at FT 

750 1 . 4 3 1  

0 .500 3000 5.925 

0.625 3750 7 .156 

0 .750 

0.125 

4500 8 .588 

1000 1 . 4 5 3  

ead zircon- 
te-titanate 

0.250 2000 2 .906 

0.375 3000 4.359 
. 

(PZT - 5A) 0 . 6 2 5  5000 7.265 

0 .750 6000 8 . 7 1 8  

0.125 

0 . 2 5 0  

1300 1 . 4 3 8  

2600 2 .876 

0.375 3900 4 . 3 1 4  

0 . 5 0 0  

0.625 

5200 5 .752 

6500 7 . 1 9 0  

0.750 7800 8 .626 

0.125 

0.250 

1 6 0 0  1 . 3 7 2  

3200 2 .744 
~~ 

0.375 4800 

0 .500 6400 

0.625 8000 

0 .750 9600 

Lithium 

niobate 

4.116 

5 .488 

6 .868 

8.232 

I R L 

1 . 4 0 0  

I 0.250 I 1500 I 2.862 1 .400 

Lead I 0.375 I 2250 I 4.294 1 .400 

1 . 4 0 0  

1 . 4 0 0  

1 . 4 0 0  

1 . 4 0 0  

1 . 4 0 0  

I 0.500 I 4000 1 5.812 1 . 4 0 0  

1 . 4 0 0  

1 . 4 0 0  

1 . 4 0 0  

1 . 4 0 0  

1 . 4 0 0  

1 . 4 0 0  

1 . 4 0 0  

1 .400 

1 . 4 0 0  

1.40G 

1 . 4 0 0  

1 . 4 0 0  

1 . 4 0 0  

1 . 4 0 0  
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Table 2 

I 

0 . 1 2 5  100 
I 

Lower Bound Frequencies for Two Nonpiezoelectric Materials 

1.389 

1 Material Ratio I Lower bound I 

0 . 2 5 0  

0.375 

0 . 5 0 0  

0.625 

200 2.778 

300 4.167 

400 5 .556 

500 6.945 

1 Brass 

0.750 600 8 .330 

0.125 

0 .250 

143 1 . 5 0 0  

286 3.000 

0.375 

I I 0.500 I 572 I 6.000 

429 4 .500 

0.625 

0 .750 

~~ 

Error at FT 

715 7 . 5 0 0  

858 9 , 0 0 0  

1 . 4 0 0  

1 . 4 0 0  

1.400 

1 . 4 0 0  

1 . 4 0 0  

1 . 4 0 0  

1 . 4 0 0  

1.400 

1 . 4 0 0  

1 .400 

1 . 4 0 0  

1 . 4 0 0  
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conduct ing l o n g i t u d i n a l  wave p r o p a g a t i o n  i n  x - d i r e c t i o n .  
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