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SUMMARY

The Boundary Force Method (BFM) was formulated for the tEEE? fundamental
problems of elasticity: the stress boundary value problem, the displacement
boundary value problem, and the mixed boundary value problem. Because the BFM
is a form of an indirect boundary element method, only the boundaries of the
region of interest are modeled. The elasticity solution for the stress
distribution due to concentrated forces and a moment applied at an arbitrary
point in a cracked infinite plate is used as the fundamental solution. Thus,
unlike other boundary element methods, here the crack face need not be modeled
as part of the boundary. The other boundaries are divided into a finite number
of straight-line elements, and at the center of each element, concentrated
forces and a moment are applied. This set of unknown forces and moments are
calculated to satisfy the prescribed boundary conditions of the problem.

The formulation of the BFM is described and the accuracy of the method is
established by analyzing a center-cracked specimen subjected to mixed boundary
conditions and a three-hole cracked configuration subjected to traction boundary
conditions. The results obtained are in good agreement with accepted numerical
solutions. The method is then used to generate stress-intensity solutions for
two common cracked configurations: an edge crack emanating from a semi-
elliptical notch, and an edge crack emanating from a V-notch.

The BFM is a versatile technique that can be used to obtain very accurate
stress—intensity factors for complex crack configurations subjected to stress,
displacement, or mixed boundary conditions. The method requires a minimal
amount of modeling effort and, therefore, stress-intensity factor analyses for a

range of crack lengths can be performed with ease.




INTRODUCTION

Accurate stress-intensity factors are important in the prediction of crack
growth rates and fracture strengths. These predictions are essential in the
fail-safe design of aircraft structural components. Thus, in the field of
fracture mechanics, one of the major research activities is the development of
new techniques to obtain accurate stress-intensity factors for arbitrarily
shaped plates with cracks.

At present, for two-dimensional fracture mechanics analyses, the three most
popular numerical techniques for the computation of stress-intensity factors are
the boundary element method (BEM), the finite element method (FEM), and the
collocation method. In a recent paper [1], a more general numerical method, the
Boundary Force Method (BFM), was introduced. The BFM is a form of an indirect
BEM. There are two major differences between the present BFM and the other BEM
[2-7]: the BFM does not require the modeling of the crack faces and the BFM
inciludes the moment as an unknown. These two features were incorporated in the
BFM through the use of Erdogan's analytical solution [8] for a vertical and a
norizontal force and a moment in an infinite plate with a crack as the
fundamental solution. The stress-free conditions on the crack faces, therefore,
are exactly satisfied and only the boundaries of the analysis domain need to Dbe
modeled in this method. The effect of adding the moment unknown to the BFM will
be investigated and the convergence rates will be compared with BEM using forces
only as the unknowns.

Unlike in the BFM, with the FEM the entire region of interest has to be
discretized. Thus, in fracture mechanics where a fine mesh is needed in regions
with high stress gradients (crack tip), the FEM can be cumbersome to use.

Therefore, for configurations with cracks and notches, the number of elements




required to accurately model these problems can be extremely large. Moreover,
in crack-growth-rate predictions, stress-intensity factors must be found for
various crack lengths. Thus, in the FEM, a new mesh must be generated for each
crack length to accurately model the region near the crack tip and a large
amount of time is needed for modeling.

In the collocation method, only the boundaries of the region of interest
need to be modeled as in the BFM. However, unlike the BFM, the basic stress
functions are different for each class of problems. Therefore, in the
collocation method, a large amount of time can be spent in developing and
formulating new stress functions.

The purpose of this paper is to present the formulation of the BFM for
displacement and mixed boundary value problems. The following section briefly
describes the formulation of the BFM for the stress boundary value problem, the
displacement boundary value problem, and the mixed boundary value problem.
Complete details on these formulation can be found in [9]. To evaluate the BFM
for displacement and mixed boundary value problems, an end-clamped-tension
specimen Wwith a central crack was analyzed. And to further validate the BFM for
stress boundary value problems, a three-hole cracked specimen was also analyzed.
The solutions for these configurations are available in the literature for
comparison. Also, stress-intensity factor solutions were obtained for the
following two engineering problems for which no stress-intensity factor
soclutions are available: an edge crack emanating from a semi-elliptical notch

and an edge crack emanating from a V-notch.

LIST OF SYMBOLS
a crack length or one-half crack length

b half height of notch



resultant couple

Young's modulus

influence coefficient matrix

stress-intensity correction factor

resultant forces in the x- and y-directions, respectively
height and width of rectangular plates, respectively
stress-intensity factor

length of element i

concentrated moment

number of subdivision per element

number of elements

unit loads and moment on the ith element

concentrated forces in the y- and x-directions, respectively
vector of unknown forces and moments

externally applied load vector

notch radius

remote applied stress

displacements in the x- and y-directions, respectively
Cartesian coordinates

complex variable, z = x + iy

location of forces and moment, 2z, = x, + iy0

0 0

material constant: 3-4v for plane strain

(3-v)/(1+v) for plane stress

projection of sub-arc onto the x- and y-axes, respectively
shear modulus

Poisson's ratio

rotation of element

Cartesian stresses




L Ot normal and shear stresses on the boundary
¢*,Q*, ¢O complex stress functions
FORMULATION OF THE BOUNDARY FORCE METHOD

In this section, first the formulation of the BFM for a stress boundary
value problem is presented. Next the formulation for the displacement and the
mixed boundary value problems is presented.

As mentioned earlier the fundamental solution used in the BFM is the
solution for a horizontal force, a vertical force, and a moment acting at an
arbitrary point in an infinite plate [8]. The details of this fundamental
solution are presented in Appendix A. The BFM utilizes this solution in
conjunction with the superposition technique to satisfy the boundary conditions
on the boundaries of a finite cracked plate. The method is explained below
using the stress boundary value formulation.

Stress Boundary Value Problems

For the first fundamental problem of elasticity, where only tractions are
applied on the boundaries, consider a centrally cracked rectangular plate
subjected to tractions with the coordinate system shown in Figure 1. For ease
of illustration, the applied traction at the ends is assumed to be symmetric
about the x- and y-axes. Therefore, only one quarter of the region needs to be
modeled.

The first step in the BFM is to discretize the boundary by enclosing the
region of interest with a finite number of elements. Since only one quadrant of
the plate in Figure 1 needs to be modeled the region of interest is 0 £ x & W/2
and O £ y £ H/2, where W is the width of the plate and H is the height of the
plate. For illustration, the boundaries AB and BC (see Figure 1) are divided

into a total of N equal-sized elements. The solution to this problem is

obtained by the superposition of the concentrated forces and moments in an




infinite plate as shown in Figure 2 for N = 4,

The dashed lines in Figure 2

correspond to an imaginary boundary on the infinite plate traced from Figure 1.

element create resultant forces Rx

resultant couple Cj on the jth element. The forces
the outward normal at a distance Gi from the center
boundaries.
boundaries without encountering singularities.

one-quarter of the element size.

and R
3 Y

This offset was used to facilitate the

The

th

The concentrated forces Pi’ Qi’ and the moment Mi acting on the i

in the x- and y-directions, and a

and moment were applied on

of each element on the

computation of stress on the

value of Gi was chosen to be

The resultant forces and couple on element j

due to the forces and moments on all the elements are

where

F
X

R F M) (1)
xj =1 xin i qul i xjmi i
N
R = Yy (F P. + F Q F M,) (2)
Y; j=1  Yypp 1 Y9 1 yym i
N
cC. = Y (c,. P, + C., Q + C. M.) (3)
J i=1 Jp; 1 Ja; 1 Jm, 1
force in the x-direction on the jth element due to unit loads in
the y-direction at four symmetric points: unit load pi at
(XO.’ yO.) and (—xo., yo') and unit load -p; at (XO.' -yo') and
i i i i i i
(—x0 Yo ). Point (xO v Yo ) is the load point of p; on element
i i i i
i.




Fy D = force in the y-direction on the jth element due to unit loads at
jfi
the four symmetric points.
ij = resultant moment on the jth element due to unit loads at the four
i
symmetric points.
Similar definitions exist for F , F s C. , F s F and C., . The
X.q, Y.q. Jq. X.m, y.m, m,
Jjii J7i i Ji jii i

resultant forces and couples are assumed to act at the center of the
corresponding element. For each element there are 3 equations (degrees of
freedom) and, therefore, for a any number of element N on the boundary the

resulting system of equations is
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where [F] is the influence coefficient matrix containing the Fx . Fy p.
Jji jhi
C. , etc. terms. Here
jm,
i
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n = number of subdivisions on each element, F and F are defined above
Y:P: Y q.
J1 J1
h A

and superscript k refers to the kt subdivision.

S . th Co

Ax = x-distance from the center of the k subdivision to the
J
.th
center of the j element and
A; = y-distance from the center of the kth subdivision to the
J

center of the jth element.

Once the influence coefficient matrix is computed and the applied loads
have been determined, the unknown forces and moments along the boundaries can be

found.



To determine the applied loads, again consider the simple example shown in
Figure 1. Because the boundary AB 1is a free boundary, the resultant forces
and moments due to the externally applied loads are zero for elements on

boundary AB. Thus,

R =0
X,
J
Ry =0 for element j on boundary AB W)
J
C. =0
J

For the jth element on boundary BC the resultant forces and moment created by

the externally applied loads are




R =S, x L, for element j on boundary BC (5)

where Sj is the applied traction per unit thickness on the jth element and Lj is
the length of the jth element

Replacing the left-hand side of equations (1), (2), and (3) by equations
(4) and (5) results in a 3N set of linear algebraic simultaneous equations. The
unknowns are P, Q,, and M, (i =1 toN). The solution of this set of
equations leads to the determination of Pi’ Qi’ and Mi' The stresses and
displacements at any point can then be found using equations (A2) and (A3),
respectively, given in Appendix A. The stress-intensity factor is found using
equation (A6).

Displacement Boundary Value Problems

For the second fundamental problem of elasticity, where only displacements
are prescribed on the boundaries, consider the centrally cracked rectangular
plate subjected to prescribed displacements (see Figure 3).

Let the boundaries AB and BC be divided in N elements. Consider a

representative element j on boundary AB. The displacements and rotation of the

jth element created by Pi’ Qi' and Mi (i =1 to N) are

N
2uuj = Y (D P. + D Q. + D M, ) (6)

N
2uv, = ) (D P. + D Q. +D M, ) (7



N
2u8, = ) (G, P, + G, Q. + G, M,) (8)

J j=1 JPy i Jag; i jmy 1
. .th - X .
where Dx = x-displacement of the ] element due to unit loads acting in the
3P
y-direction on the ith element at four symmetric points: wunit load
p; at (xo v Yy } and (--xO » ¥y ) and unit load -p; at (x0 » 7Yy )
i i i i i i
and (-XO‘ ) -yo.).
i i
D = y-displacement of the jth element due to unit loads at the four
Yjpi
symmetric points.
Gjp = rotation of the jth element due to unit loads at the four

i

symmetric points.

The rotation Gjp of the jth element due to a unit load P; acting on ith

i

element is obtained from the following expression:

O N N
G, = = (%)
i Ly Lx
h

where zj and Zj+1 are the end points of the jt element and

Lj = y-projection of the jth element

Li = Xx-projection of the jth element

Similar definitions are used for DX , D
3%
Replacing the left-hand side of equations (6), (7), and (8) by the

xm’D 9Dm,G. ,andG.m.

corresponding prescribed displacements results in a 3N set of linear algebraic
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simultaneous equations. The unknowns are Pi’ Qi and Mi (i =1toN). The
solution of this set of equations determines Pi’ Qi’ and Mi' and then the
stresses and displacements at any point can then be found using equation (A2)
and (A3), respectively. The stress-intensity factor is found using equations
(A6).
Mixed Boundary Value Problems

For the third fundamental problem of elasticity, where tractions are
applied on a portion of the boundary and displacements are prescribed on the
rest of the boundary, consider the centrally cracked rectangular plate shown in
Figure 4. An example of such a problem is the end clamped tension specimen with
a central crack, where the vertical ends of a rectangular plate are clamped and
given an applied displacement. Because of symmetry, only the upper right-hand
quadrant of the rectangular plate needs to be modeled.

Let the boundaries AB and BC be divided into N elements. As in the
two previous cases, an influence coefficient matrix must be determined. 1In this
case, the element j on boundary AB, the boundary conditions are the stress-free
boundary conditions; thus, equations (1) through (3) apply. For element j on
boundary BC, the boundary conditions are in terms of displacements; thus,
equations (6) through (8) apply.

Again, this results in a 3N set of linear algebraic¢ simultaneous equations.
The unknowns are Pi’ Qi' and Mi (i =1 to N). The solution of this set of
equations determines the un%nown. The stresses and displacements at any point
can then be found using equations (A2) and (A3). The stress-intensity factor is

found using equation (A6).
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RESULTS AND DISCUSSION

In this section, first, the accuracy of the BFM, where both forces and
moments are used as unknown, is compared with other boundary methods where only
forces are used as the unknowns. The convergence characteristics of the BFM are
studied by analyzing a center-cracked tension specimen with a large crack. The
accuracy of the BFM for displacement boundary value problems is investigated by
analyzing a end-clamped tension specimen with a center crack subjected to mixed
boundary conditions. Also, to further validate the BFM for stress boundary
value problem, a three-hole cracked specimen subjected to uniform tension was
analyzed. Accurate solutions for these two configuration are available in the
literature for comparison. Finally, the method is used to obtain stress-
intensity factor solutions for complex crack configurations for which no
solutions are available, an edge crack emanating from a semi-elliptical notch,
and an edge crack emanating from a V-notch,

Accuracy and Convergence Studies

Previous work on boundary element methods has shown that improved accuracy
is obtained when the boundary conditions were satisfied in terms of resultant
forces instead of stresses [6]. In the BFM, an additional degree of freedom was
added to each element so that the boundary conditions are satisfied in terms of
resultant forces and moments. To illustrate the further improvements of this
technique over previous work, where only resultant forces are used, a center-
crack tension specimen with a large crack (2a/W = 0.8) was analyzed with the BFM
using resultant forces only and using both resultant forces and moments. In
Figure 5, the relative error is plotted against the number of degrees of freedom
for either the "force" method or the "force and moment" method. The relative

error is defined as:
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Kcomputed Kref.

Kref.

Relative Error =

where Kref. is obtain from [10]. Figure 5 shows that the accuracy and the rate
of convergence of the solution improved significantly when resultant forces and
moments are used instead of resultant forces alone.

The results in Figure 5 were obtained with equal size elements on the
boundaries. As shown in Figure 6, a further improvement in convergence was
obtained with a graduated element distribution on the boundaries. This
graduated element distribution was generated using the radial-line method
described in Appendix B. A graduated boundary mesh was used in all the problems
analyzed in the following sections.

Comparison with Existing Solution
Because solutions for displacement boundary value problems with cracks are
not available for comparison, a mixed boundary value problem was used to
demonstrate the applicability of the BFM to problems with prescribed
displacements. Since the solution for a end clamped tension specimen with a
central crack is available in the literature [11], this configuration was used
to verify the BFM for a mixed boundary value problem. Next, to further validate
the BFM for stress boundary problem, the method is used to analyze a three-hole
cracked specimen subjected to uniaxial tension and compared to a solution

obtained using the finite element method [12].

End clamped tension specimen. - The results for a end clamped tension

specimen with a center crack are shown in Figure 7. Because of symmetry, only
the upper right quadrant was modeled. The crack tip was chosen as the origin of
the radial lines. Zero tractions are prescribed on the vertical boundary (x =

W/2) and a constant normal displacement v, is prescribed on the horizontal

0
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boundary (y = H/2), as shown in Figure 7. The height-to-width ratios (H/W)

considered were 0.5, 1.0, and 1.5. The stress-intensity correction factors

obtained for several crack-length-to-width (2a/W) ratios are presented in Figure

7 and Table I, together Wwith the results obtained by Isida [11] using the

collocation technique. The agreement between the present results and the .
results obtained by Isida [11] is within 1 percent.

Three hole cracked specimen. - Stringers are widely used in aircraft

structures as stiffening members. To simulate the effect of a stringer on a
propagating crack, the three hole crack specimen shown in Figure 8 was developed
[12].

For cracks with a/W < 0.1, the crack tip was chosen as the origin of the
radial line for all boundaries. However, for cracks with a/W > 0.1, the crack
tip was chosen as the origin of the radial line for all boundaries except the
boundary of the circular hole from which the crack emanates. For this boundary,
the center of the hole was chosen as the origin of the radial lines to ensure
that a sufficient number of elements were used to model this boundary.

The stress-intensity correction factors obtained for several crack lengths
are presented in Figure 8 and Table I1I, together with the results obtained by
Newman [12] using the finite element method. The agreement between the present
results and those obtained by finite element method [12] are within 1 percent
for intermediate crack lengths (a/W = 0.125 to 0.300). However, for short or
long crack lengths, the present results are 2 to 3 percent higher than those
obtained by Newman [12]. Based on convergence studies, Newman estimated that
for short and long crack lengths his results were 2 to 3 percent lower than the
"correct" solution. Thus, the BFM yielded a more accurate solution than those

used in [12].
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Solutions for Cracks Emanating from Notches
In this section, two practical engineering configurations for which stress-
intensity factor solutions are needed, and are not available in the literature,
are analyzed. The configurations considered are an edge crack emanating from a
semi-elliptical notch and an edge crack emanating from a V-notch, both subjected
to uniaxial tension. For each configuration, several crack-length-to-notch-

radius ratios were considered.

Edge crack emanating from semi-elliptical notch. - The stress-intensity

correction factors obtained for three values of notch-depth-to-width ratio (r/W
= 0.25, 0.125 and 0.0625) and for various crack lengths are presented in Figure
9 and Table III. The aspect ratio for all values of r/W is b/r = 0.25. The
solution for a single edge crack without a notch is also shown in Figure 9.

Even for a relatively short crack, the results showed that the stress-intensity
correction factors approached that of a single edge crack without the notch. 1In
contrast, Figure 10 shows the stress-intensity correction factors for an edge
crack emanating from a semi-circular notch [1] (aspect ratio b/r = 1.0). 1In
this case, the stress-intensity correction factors approached that of a single
edge crack more gradually, that is, for a longer crack. Thus, the solution for
a single edge crack can be used even for relatively short cracks emanating from
a semi-elliptical notch having a small aspect ratio, whereas the solution for
single edge crack can only be used for relatively longer cracks emanating from a

semi-circular notch.

Edge crack emanating from a V-notch. - The stress-intensity correction

factors obtained for three values of the notch-depth-to-width ratioc (r/W = 0.25,

0.125, and 0.0625) are presented in Table IV. As for the semi-elliptical notch,
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the aspect ratio considered here is 0.25. The results showed trends similar to
the previous case. Again, even for relatively short cracks, the stress-
intensity correction factors approached that of a single edge crack without a
notch.

CONCLUDING REMARKS

The Boundary Force Method was formulated for the three fundamental problems
of elasticity: the stress boundary value problem, the displacement boundary
value problem, and the mixed boundary value problem.

The accuracy of the BFM was established by comparisons to crack
configurations for which exact or accurate numerical stress-intensity factor
solutions are available in literature. These crack configurations included
mixed boundary value problems and stress boundary value problems. The method
yielded stress~-intensity correction factors which were in good agreement with
those in the literature for the end clamped tension specimen with a center crack
and the three-hole cracked tension specimen.

Two complex crack configurations for which no solutions are available were
also analyzed: an edge crack emanating from a semi-elliptical notch and an edge
crack emanating from a V-notch. For each configuration, several crack length-
to-notch-radius ratios were analyzed and stress-intensity correction factors
were presented. Because only the boundaries are modeled for each
configuration, the stress-intensity factors were obtained for several crack
lengths with very little increase in modeling effort.

The BFM is a versatile technique that can be used to obtain very accurate
stress-intensity factors for complex crack configurations subjected to stress,
displacement, or mixed boundary conditions. The method requires a minimal
amount of modeling effort and, therefore, stress-intensity factor analyses for a

range of crack lengths can be performed with ease.
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APPENDIX A -~ FUNDAMENTAL SOLUTION

The BFM formulation uses the elasticity solution for concentrated forces
and a moment in an infinite plate with a crack. Such a solution was formulated
by Erdogan (8] for linear, isotropic and homogeneous materials. For
completeness, the solution is presented below.

Stress Functions

Consider an infinite plate with a crack subjected to concentrated forces

Q and P and a moment M at an arbitrary point 2y = X5 + iy0 as shown in Figure

A.1. The complex variable stress functions [8] are

* T
¢ (z) = - - ¢0(Z)
0
T(z, - z.) + im
Q*(z) . KT_ + 0 9 5 + ¢0(z)
- (z - z.)
z -z, o
4o(z) = — [ == [1(2) - 1(z)] (A1)
2wzi- a? 0
- T (H2) - (7))
z -z,
_ I(z) - I(z,) J(z.)
- [ T(z, - z.) + im][ o . 9
0 0 (z - z )2 zZ - 2
0 0
where ms= E%—

1
I(z) = n[vV2?* - a2 - z ]
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Stresses

The stresses at any point z = x + iy are obtained from the stress functions

as

* *
o * oy = 2[¢ (z2) + ¢ (2)]

- %! * - %
oy -o, 12oxy =2[(z - 2)¢ (2) - ¢ (z) + Q (2)] (A.2)
The barred quantities are the complex conjugates and the primed quantities
represent the derivatives with respect to z.
Displacements, Forces and Moments
The displacements u and v at any point z = x + iy are obtained from the

stress functions as

z z
2u(u + iv) =« [ ¢*(z)dz - J Q*(Z)di - (z - £)¢*(z) (A.3)
0 0

where p is the shear modulus. The resultant forces Fx' Fy and the resultant

moment Mo across the arc z, to z, (see Figure A.1) due to the concentrated

1

forces P and Q and moment M can be obtained either by integrating the stresses

19




in equation (A.2) from Z4 to Z5, Or by using the stress functions in the

following equations:

Z

* * - - - * 2
F_+ iF = -i[ [ ¢ (z)dz + I Q (z)dz + (z - 2) ¢ (2)] (A.4)
X y z1
M, = Re C [ J (¢(z) + Q(z)}dzdz - z I {6(z) + (z)}dz
- Z2
+ z(z - 2)¢(z)] (A.5)
24

Stress-Intensity Factor
The stress-intensity factors for concentrated forces P and Q and moment M

applied at an arbitrary point z0 = xo + iyo in an infinite plate with a crack

are

1 : a+ oz, a+zg
- {(@+ 1P (———=-1) - k(——— - 1)]
(0 + x)
2v/na V27 - a2 z? - a?

al(qQ - ip)(zo - zg) + 101 + M)
* — } (A.6)

- =
(zO a)y/ 2§ a?
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APPENDIX B - RADIAL LINE METHOD

This appendix describes a systematic procedure, called the radial-line
method, for modeling the boundaries of a crack configuration using a finite
number of elements. 1In the BFM, the accuracy of the stress-intensity factors
depends on how well the boundary conditions are approximated. Because the
boundaries near the crack tip are subjected to higher stress gradients than the
boundaries far from the crack tip, smaller elements are needed to accurately
model regions near the crack tip. Therefore, a method that will automatically
generate smaller line elements on the boundaries near the crack tip and larger
line elements on the boundaries away from the crack tip was developed. With the
radial-line method of modeling, the number of degrees of freedom needed is
significantly reduced without sacrificing accuracy. This procedure can be best
described using the following example.

Consider a center-crack tension specimen with a crack of length 2a, as
shown in Figure B.1. Because of symmetry, only one quarter of the plate needs
to be modeled. The boundary of this quadrant can be divided into two sections:
Boundary 1 - the vertical line A to B and Boundary 2 - the horizontal line
B to C. Because the stress-intensity factor is the quantity of interest here,
let the crack tip at x = a be the point from which all radial lines originate.
To determine the clement sizes on Boundary 1, first the distance between the
origin of the radial lines (the crack tip) and the starting point 2z, (point A)

1

is computed. Label this distance r,. The size of the first element (z1 to 22)

is chosen to be a fraction of the distance ry- Thus, the distance from z1 to z2

is set equal to r1/DF where DF is referred to as the dividing factor. Because

the factor DF is assumed to be known, the distance to point 22 can be

determined. Next, r the distance from the origin of the radial lines (the

2’
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crack tip) to Z,, is computed. The size of the second element, z, to 2z is

2 3’
equal to r2/DF. The dividing factor DF is assumed to be identical throughout
the entire modeling. This procedure has to be modified near the end points,
such as point B in Figure B.1. If the end point of the last element exceeds the
end point of the boundary (point B), the end point of the boundary is assigned
as the end point of the last element on that boundary. The same procedure is
repeated for Boundary 2 where the starting point of Boundary 2 is the end point
of Boundary 1.

In the radial-line method, the size of the elements or the distribution
density of the elements is determined by the choice of the origin of the radial
line and the value of the dividing factor DF. Both can be chosen arbitrarily.
In all the problems investigated in this paper, the origin of the radial-line
was chosen to be the crack tip since the stress-intensity factor is the quantity
of interest. A DF value of 10 was used in all problems.

The most significant advantage of the radial-line method can be
demonstrated in the case of a very small crack emanating from a semi-circular
notch (see Figure 10). Because of the high stress gradient near the crack tip,
small elements are needed on portions of the semi-circular boundary nearest the
crack tip. 1If equal size elements are used, a large number of elements are
needed on this curved boundary. However, the portion of the curved boundary
that is away from the crack tip does not have high stress gradients and so small
size elements on that portion of the boundary are unnecessary. The radial-line
method generates small elements near the crack tip and larger elements away from
the crack tip. This type of modeling will significantly reduce the number of
degrees of freedom necessary to model the curve boundary without sacrificing

accuracy.
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Table I - Stress-intensity correction factors for end-clamped
tension specimen with a center crack.

H/W F
2a/W Present Collocation{11].
0.5 0.1 1.0247 1.0300
0.2 0.8915 0.8970
0.3 0.7604 0.7600
0.4 0.6595 0.6570
G.5 0.5863 0.5900
0.6 0.5319 0.5370
1.0 0.1 1.0514 1.0500
0.2 1.0074 1.0100
0.3 0.9453 0.9500
0.4 0.8763 0.8800
0.5 0.8089 0.8120
0.6 0.7u84 0.7520
0.7 0.6975 0.7020
0.8 0.6601 0.6650
1.5 0.1 1.0326 1.0370
0.2 1.0146 1.0200
0.3 0.9872 0.9900
0.4 0.9534 0.9550
0.5 0.9167 0.9200
0.6 0.8810 0.8830

23




Table II - Stress-intensity correction factors for a three hole
crack specimen.

a/W F
Present Results FEM [12]

.025 2.2655 2.2221
.050 1.7125 1.6930
.075 1.u4829 1.4663
.100 1.3510 1.3372
.125 1.2504 1.2406
.150 1.1558 1.1487
175 1.0506 1.0483
.200 0.9341 0.93u7
.225 0.8101 0.8122
.250 0.6918 0.6939
.275 0.5999 0.5992
.300 0.5508 0.5455
.325 0.5491 0.5403
.350 0.5892 0.5773
375 0.6551 0.6417
. 400 0.7323 0.7183
L4225 0.8119 0.7972
.450 0.8901 0.8747
475 0.9682 0.9523
.500 1.0524 1.0348
.525 1.1507 1.1305
.550 1.2774 1.2557
575 1.4609 1.4374
.600 1.7723 1.7296
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Table III - Stress-intensity correction factors for an edge

crack emanating from a semi-elliptical notch.

a/r F(r/Ww = .25) F(r/w = .125) F(r/W = .0625)
1.0 | ----e- 1.17M1 1.0995
1.05 1.4861 |  eee--- | ===
1.06 | = ------ 1.2112 1.1301
1.08 | = ------ 1.22N 1.1434
1.10 1.5674 1.2397 1.1504
1.1 | ==m--- 1.2558 1.1583
1.20 1.6614 1.2676 1.1626
1.30 | ==mm-- 1.2905 1.1688
1.50 1.9794 1.3407 1.1825
1.75 2.3375 1.4137 1.2033
2.00 2.8180 1.4985 1.2248
3.00 }  --mme- 1.9787 1.3403
yo0 {  -m-=-- 2.8182 1.4985
6,00 | = --==e- | mmm—-- 1.9791
g.00 { = -==m-- 1 mm=m=- 2.8180
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Table IV - Stress-intensity correction factors for an edge crack emanating from

a V-notch.
a/r F(r/W = .25) F(r/W = .125) F(r/W = .0625)
1.04 | --em-- 1.1932 1.1160
1.05 1.4950 | m==e-- 1  ===---
1.06 |  -==m-- 1.2106 1.1300
1.08 | ------ 1.2228 1.1387
1.10 1.5575 1.2322 1.1450
1.1 | = ====-- 1.2501 1.1548
1.20 1.6565 1.2644 1.1609
1.30 | =m---- 1.2898 1.1693
1.50 1.9797 1.3410 1.1834
1.75 2.3383 1.4137 1.2027
2.00 2.8200 1.4982 1.2248
3.00 |  -=--=-- 1.9792 1.3400
yoo |  --——-- 2.8199 1.4981
6.00 | = ee===--—- |  e=—--- 1.9782
8.00 |  ==m=--- |  ====-- 2.8204
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Figure 1 - Stress boundary value problem.
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Figure 2 - Superposition of unknown forces Pi' Qi and moment Mi on elements i, i

= 1 to U.
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Figure 3 - Displacement boundary value problem.

29




Ay,v u=20

/v = constant
f - °
/-on
Zj+1
Z.
N J
—» X, U
e—2a—+ A
4+ W

Figure 4 - Mixed boundary value problem.
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Figure 5 - Convergence of relative error using either "force" method or "force
and moment" method.
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Figure 6 - Comparison of convergence rate for equal size elements and graduated
elements discretization.
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1.2 B Collocation [11]
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Figure 7 - Stress-intensity correction factors for a end clamped tension
specimen with a center crack.
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Figure 8 - Stress-intensity correction factors for a three hole crack specimen.
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Figure 9 - Stress-intensity correction factors for a single edge-crack specimen
and an edge crack emanating from a semi-elliptical notch.
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Figure 10 - Stress-intensity correction factors for a single edge-crack specimen
and an edge crack emanating from a semi-circular notch.
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Figure A.1 - Concentrated loads and moment in a infinite plate with a crack.
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Figure B.1 - Radial-line method for generating mesh points.
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