r,

S - e
/'; PR B as % et i
VAP AV~ V-7
SOFTWARE ENGINEERING LABORATORY SERIES SEL-83-003
-

COLLECTED SOFTWARE
ENGINEERING PAPERS: VOLUME 1

NOVEMBER 1983

National Aeronautics and
Space Administrauon

Goddard Space Flight Center
Greenbelt. Maryland 20771




SOFTWARE ENGINEERING LABORATORY SERIES | SEL-83-003

COLLECTED SOFTWARE
ENGINEERING PAPERS: VOLUME 1l

NOVEMBER 1983

NNS

National Aeronautics and
Space Administration

éoddard Space Flight Center
Greenbelt, Maryland 20771



FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space
Administration/Goddard Space Flight Center (NASA/GSFC) and
created for the purpose of investigating the effectiveness
of software engineering technologies when applied to the
development of applications software. The SEL was created
in 1977 and has three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciences Department)
Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software de-
velopment process in the GSFC environment; (2) to measure
the effect of various methodologies, tools, and models on
this process; and (3) to identify and then to apply success-
ful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software En-
gineering Laboratory Series, a continuing series of reports
that includes this document. The papers contained in this
document appeared previously as indicated in each section.

Single copies of this document can be obtained by writing to
Frank E. McGarry
Code 582

NASA/GSFC
Greenbelt, Maryland 20771

"~ ZCEDING PAGE BLANK NOT FILMED

RAGE__ /[ _INTENTIONALLY BLANK



TABLE OF CONTENTS

Section l - Introduction. o o e o o & & o e e o o o « o l-l

Section 2 - The Software Engineering Laboratory . . . . 2-1

"Measuring Software Technology," W. W. Agresti, /
F. E. McGarry, D. N. Card, et al. . « ¢« « « « « « . 2=-37

"Technical Summary 1982: Report to the National
Aeronautics and Space Administration," V. R. Basili 2-9 —

Section 3 - Resource ModelS . « « « o o o o o o o o o « 3-1 - e T

"Comparison of Regression Modeling Techniques for
Resource Estimation," D, N. Card. . . +« ¢« ¢« ¢« &« « « 3=3- 0

"Early Estimation of Resource Expenditures and y
PIOgram Size," D. NQ Card o e e e ® e e o o v e e . 3-25"

Section 4 - Software MEASULES . « o o o o o o o o o o o 4=l—qu [

"Metric Analysis and Data Validation Across
FORTRAN Projects," V. R. Basili, R. W. Selby, -~
and T. Phillips . . . o o - Y Y . . . - . Y - . Y - 4-3~J

"Monitoring Software Development Through Dynamic
Variables," C. W. Doerflinger and V. R. Basili. . . 4-45 -G

"Software Errors and Complexity: An Empirical
Investigation," V. R. Basili and B. T. Perricone. . 4-73 "’7

.

Section 5 - Data CollectionNn « v + o o o o o« o« o o « « « 5-1 N S

"A Methodology for Collecting Valid Software .
Engineering Data," V. R. Basili and D. M. Weiss . . 5-3 '(/

"Data Collection and Evaluation for Experimental
Computer Science Research,” M. V. Zelkowitz . . . . 5=27

‘Bibliography of SEL Literature

~rzerniNG PAGE BLANK NOT FILMED

MGL_J,_.‘/:_.,IMENTIONALLX BLANK



SECTION 1 — INTRODUCTION



SECTION 1 - INTRODUCTION

This document is a collection of technical papers produced

by participants in the Software Engineering Laboratory (SEL)
during the period January 1, 1982, through November 30, 1983.
The purpose of the document is to make available, in one ref-
erence, some results of SEL research that originally appeared
in a number of different forums. This is the second such
volume of technical papers produced by the SEL. Although
these papers cover several topics related to software engi-
neering, they do not encompass the entire scope of SEL activ-
ities and interests. Additional information about the SEL
and its research efforts may be obtained from the sources

listed in the bibliography at the end of this document.

For the convenience of this presentation, the nine papers
contained here are grouped into four major categories:

The Software Engineering Laboratory
Resource Models

Software Measures

Data Collection

The first category presents summaries of the SEL organiza-
tion, operation, and research activities. The second and
third categories include papers describing the results of
specific research projects in the areas of resource models
and software measures, respectively. The last category
presents papers describing strategies for data collection
for software engineering research.

The SEL is actively working to increase its understanding and
to improve the software development process at Goddard Space
Flight Center. Future efforts will be documented in addi-
tional volumes of the Collected Software Engineering Papers

and other SEL publications.



- o um =

SECTION 2 — THE SOFTWARE ENGINEERING LABORATORY



n

SECTION 2 - THE SOFTWARE ENGINEERING LABORATORY

The technical papers included in this section were origi-

nally prepared as indicated below.

Agresti, W. W., F. E. McGarry, D. N. Card, et al.,
"Measuring Software Technology," Computer Sciences
Corporation, Technical Memorandum, November 1983
(reprinted by permission of the authors)

A version of this paper will appear in Program
Transformation and Programmer Environments.

New York: Springer-Verlag, 1984.

Basili, V. R., "Technical Summary - 1982: Report
to the National Aeronautics and Space Administra-
tion," University of Maryland, Technical Memoran-
dum, December 1982 (reprinted by permission of the
author)



A

N87‘24896

MEASURING SOFTWARE TECHNOLOGY

W. W. Agresti, D. N. Card, V. E. Church, and G. Page
Computer Sciences Corporation
System Sciences Division
8728 Colesville Road
Silver Spring, Maryland 20910

F. E. McGarry
National Aeronautics and Space Administration
Goddard Space Flight Center
Code 582
Greenbelt, Maryland 20771

ABSTRACT

Results are reported from a series of investigations into the effec-
tiveness of various methods and tools used in a software production
environment. The basis for the analysis is a project data base,
built through extensive data collection and process instrumentation.
The project profiles become an organizational memory, serving as a
reference point for an active program of measurement and experimenta-
tion on software technology. ‘

INTRODUCTION

Many proposals aimed at improving the software development process
have emerged during the past several years. Such approaches as
structured design, automated development tools, software metrics,
resource estimation models, and special management technigques have
been directed at building, maintaining, and estimating the software
process and product. '

Although the software development community has been presented with
these new tools and methods, it is not clear which of them will prove
effective in particular environments. When this question is ap-
proached from the user's perspective, the issue is to associate with
each programming environment a set of enabling conditions and "win"
predicates to signal when methods can be applied and which ones will
improve performance. Lacking such guidelines, organizations are left
to introduce new procedures with little understanding of their likely
effect. '

Assessing methods and tools for potential application is a central
activity of the Software Engineering Laboratory (SEL) (1, 2]. The
SEL was established in 1977 by the National Aeronautics and Space

FoiCIDUG PAGE BLANK NOT FILMED
2-3

PAGK_Z - L _INTENTIONALLY BLANK



Administration (NASA)/Goddard Space Flight Center (GSFC) in conjunc-
tion with Computer Sciences Corporation and the University of
Maryland. The SEL's approach is to understand and measure the soft-
ware development process, measure the effects of new methods through
experimentation, and apply those methods and tools that offer im-
provement. The environment of interest supports flight dynamics ap-
plications at NASA/GSFC. This scientific software consists primarily
of FORTRAN, with some assembler code, and involves interactive
graphics. The average size of a project is 60,000 to 70,000 source
lines of code.

SEL investigations demonstrate the advantages of building and main-
taining an organizational memory on which to base a program of ex-
perimentation and evaluation. Over 40 projects, involviné

1.8 million soufce lines of code, have been monitored since 1977.

Project data have been collected from five sources:

° Activity and change forms completed by programmers and man-
agers

® Automated computer accounting information

° Automated tools such as code analyzers

° Subjective eyaluations by managers

° Personal interviews

The resulting data base contains over 25 megabytes of profile infor-
mation on completed projects.

Some highlights of SEL investigations using the project history data
base are presented here, organized into three sections:

Programmer Productivity
Cost Models
e Technology Evaluations

PROGRAMMER PRODUCTIVITY

The least understood element of the software development process is
the behavior of the programmer. One SEL study examined the distri-
bution of programmer time spent on various activities. When specific
dates were used to mark the end of one phase and the beginning of the
next, 22 percent of the total hours were attributed to the design
phase, with 48 percent for coding, and 30 percent for testing. ‘How-
ever, if the programmers' completed forms were used to identify ac-
tual time spent on various activities, the breakdown was




approximately equal for the four categories of designing, coding,
testing, and "other" (activities such as travel, training, and
unknown) [3]. Although an attractive target for raising productivity
was toé eliminate the "other" category, the SEL found that this was
not easily done.

Regarding individual programmer productivity, the SEL found differ-
ences as great as 10 to 1, where productivity was measured in lines
of code per unit of effort (4]. This result was consistent with
similar studies in other organizations [(5].

COST MODELS
Cost is often expressed in terms of the effort required to develop
software. In the effort equation,

E = ar?

where E equals effort in staff time and I equals size in lines of
code, some studies reported a value of b greater than one, indicating
that effort must be increased at a higher rate than the increase in
system size. The SEL analysis of projects in its data base did not
support this result, finding instead a nearly linear relationship
between effort and size [6]. This conclusion may be due to the SEL
projects being smaller than those that would require more than a
linear increase in effort.

In a separate study, the SEL used cost data from projects to evaluate
the performance of various resource estimation models. One study,
using a subset of completed projects, compared the predictive ability
of five models: Doty, SEL, PRICE S, Tecolote, and COCOMO [(7]. The
objective was to determine which model best characterized the SEL
environment. The results showed that some models worked well on some
projects, but no model emerged as a single source on which to base a
program of estimation [8]). 1In the SEL environment, cost models have
value as a supplementary tool to flag extreme cases and to reinforce
the estimates of experienced managers. ’

TECHNOLOGY EVALUATIONS

Several SEL experiments have been conducted to assess the effective-
ness of different process technologies. One study focused on the use
of an independent verification and validation (IV&V) team. The



premise for introducing an IV&V team into the software development
process is that any added cost will be offset by the early discovery
of errors. The expected benefit is a software product of greater
quality and reliability. In experimenting with an IV&V team in the
SEL environment, the benefits were not completely realized [9]. The
record on early error detection was better with IV&V than without it,
but the reliability of the final product was not improved. Also, the
productivity of the development team was comparatively low, due in
part to the necessary interaction with the IV&V team. The conclusion
was that an IVaV team was not effective in the SEL environment, but
méy be effective where there are larger projects or higher reli-
ability requirements.

A recent SEL investigation measured the effect of seven specific
techniques on productivity and reliability. From the project data
base, indices were developed to capture the degree of use of quality
assurance procedures, development tools, documentation, structured
code, top-down development, code reading, and chief programmer team
organization. The results showed that the greatest productivity and
reliability improvements due to methodology use lie only in the range
of 15 to 30 percent. Significant factors within this range are the
positive effect of structured code on productivity and the positive
effects of quality assurance, documentation, and code reading on re-
liability ({10].

Figure 1 summarizes the perceived effectiveness of various practices
in the the SEL environment {4]. The placement of the models and
methods is based on the overhead cost of applying the model or method
and the benefit of its use. This summary must be interpreted in the
following context:

° The placement reflects subjective evaluations as well as
experimental results.

° The chart is indicative of experiences in the SEL environ-
ment only.

® The dynamic nature of the situation is not apparent. The
evaluation may reflect on an earlier and less effective ex-
ample of the model or method.




OVERHEAD COST

’
A Ve
. ,’
STRUCTURED
AXIOMATIC ’
AUTOMATED
FLOW
CHARTERS
RESOURCE
ESTIMATION
MODELS
COE
@ READING
Co0E FORMALISMS
AUDITORS
’ .
04
R4
0
P
BENEFIT : DEPAG)
Figure 1. wWhat Has Been Successful in Our Environment?
CONCLUSIONS

The experiences of the SEL demonstrate that statistically valid eval-
uation is possible in the software development environment, but only
if the prerequisite quantitative characterization of the process has
been obtained. Through its program of assessing and applying new
methods and tools, the SEL is actively pursuing the creation of a
more productive software development environment.



REFERENCES

1.

10.

V. R. Basili and M. V. Zelkowitz, "Operation of the Software
Engineering Laboratory,"” Proceedings of the Second U.S. Army/IEEE
software Life Cycle Management Workshop. New York: Computer
Societles Press, 1978

D. N. Card, F. E. McGarry, G. Page, et al., SEL-81-104, The Soft-
ware Engineering Laboratory, Software Engineering Laboratory., 1982

E. Chen and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate
Software Engineering Methodologies," Proceedings of the Fifth
International Conference on Software Engineering. New York:
Computer Societies Press, 1981

F. E. McGarry, "What Have We Learned in the Last Six Years Meas-
uring Software Development Technology,” SEL-82-007, Proceedings
of the Seventh Annual Software Engineering Workshop, Software

Engineering Laboratory, 1982

H. Sackman, W. J. Erikson, and E. E. Grant, "Exploratory Experi-
mental Studies Comparing Online and Offline Program Performance,"”
Communications of the ACM, January 1968, vol. 11, no.l, pp. 3-1l1

J. W. Bailey and V. R. Basili, "A Meta-Model for Software Devel-
opment Resource Expenditures," Proceedings of the Fifth Inter-
national Conference on Software Engineering. New York: Computer
Socletles Press, 1981

IIT Research Institute, Quantitative Software Models, Rome Air
Development Center, New York, 1979

J. Cook and F. E. McGarry, SEL-80-007, An Appraisal of Selected
Cost/Resource Estimation Models for Software Systems, Software
Engineering Laboratory, 1980

G. Page, "Methodology Evaluation: Effects of Independent Verifi-
cation and Integration on One Class of Application,” SEL-81-013,
Proceedings of the Sixth Annual Software Engineering Workshop,
Software Engineering Laboratory, 1981

D. N. Card, F. E. McGarry, and G. Page, "Evaluating Software
Engineering Methodologies in the SEL" (paper presented at Sixth
Minnowbrook Workshop on Software Performance Evaluation,
Minnowbrook, New York, 1983)




!
N
1

!
L
1

:

I

;

:

I

!

i

!

!

!

;

i

TECHNICAL SUMMARY
1982

REPORT TO THE NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION

Grant 01-526104

Department of Computer Science
University of Maryland
College Park, MD 20742

Principal Investigator:
Dr. Victor Basili



Overview

During 1982, in conjunction with NASA/GSFC Software Engineering
Laboratory (SEL), research was conducted in 4 areas: Software Develop-
ment Predictors, Error Analysis, Reliability Models and Software Metric

Analysié. Summaries of the projects follow below.

1. Software Development Predictors

A study is being done on the use of dynamic characteristics as
predictors for software development. It is hoped that by examining a
set of readily available characteristics, the project manager may be
able to determine such things as when a project is in trouble and evalu-

ate the quality of the product as it is being designed.

Project DEB was selected as the control for the project since it
was considered fairly successful and is well documented. Information
found in the history files and resource summary files was initially
utilized. These files were chosen because the information they contain
is readily accessible to the manager (ie. number of lines of code, man-
power, computer time, etc.). Several profiles of project DEB were then
made using this information. Project DEA s profiles were then compared
with these results. This project was chosen because it was very similar

to DEB but was considered less successful.

The history file was first examined to see if any growth pattern
existed for the lines of code. The initial look at DEA and DEB looked
hopeful but further investigation of other projects showed no discerni-

ble pattern. Other examinations of this file yielded similar results.

N
|

10

---------‘l



i

When a comparison of the information in the history and resource
summary files was made some differences did appear. Initial plots used
accumulative totals versus different time factors. These plots did
demonstrate visible differences between the two projects. Further
investigation using weekly totals instead of accumulative totals showed

an even larger difference between the projects.

Project DEA had a higher frequency of changes at the beginning
of the project, while at the same time, the number of hours of manpower
reported for the interval ﬁas less. The number of computer runs made
was higher for DEB in the partAof the project where DEA was experiencing
the higher number of changes per manpower. In all, project DEA appears
to have had less effort placed during the early phase of the project
which may of led to the problems in the end. Another important aspect
of project DEA was that several thousand lines of code appear to have
been transported. Adaptation of this code may explain the high number

of changes initially seen in DEA.

From this examination the following general goals and

hypothesis have been generated:

A) The manpower usage in the SEL environment is a discernible pattern
and may be used as a predictor.

1) The ideal staffing for a successful project is a two hump curve
with the second hump beginning roughly 2/3 into the project.

2) The two humps mentioned in hypothesis 1 should peak at approxi-
mately the same height.

3) The maximum peak height of the first hump is proportional to the
final size of the project. This also hold for the second hump based

on hypothesis two.

4) The location of the two peaks is constant with relation to the
amount of manpower utilized.

5) The amount of manpower expended between the two peaks is con-
stant.

2-11



6) Projects deemed less successful by subjective analysis have
sharp changes in the amount of manpower spent per change.

B) The pattern of changes in relation to manpower, computer runs, lines
of code, etc. may be used as a predictor in the SEL environment.

1) The amount of manpower'to make a change should increase toward
the end of a project and be stable at the beginning.

2) The manpower per change should be lower in the beginning of the
project. See also goal D.

3) Projects deemed less successful by subjective analysis have
sharp changes in the amount of manpower spent per change.

4) The ratio of changes to computer run should decrease as the pro-
Ject evolves.

5) The amount of computer time spent on detecting and correcting a
given change will remain constant.

C) The number of computer runs is closely related to the development of
a project and may be used to judge project development.

1) The number of computer runs remains constant during the initial
hump of the staffing curve. The number of computer runs will drop
during the second hump of the staffing curve.

2) The ratio of changes to computer runs should decrease as the
project evolves.

D) A close examination of the types of changes and the pattern they make
over time should be a good indication of the success of a given project.

1) Time consuming changes that occur late in the project more often
appear in modified code.

2) Unit testing is not as extensive on modules with modified code.
Undetected errors may cause major problems latter in development.

3) The types of changes vary éEross the development of a project.

%) The number of changes per hour of manpower is related to the
type of changes being done.

5) The types of change that require more time to correct occur dur-
ing the second staffing hump.

Several projects will now examined to test the validity of these
finds. The change report forms will also be examined to see if the

information in them ylelds any useful predictors.

To conclude, the study has completed its initial analysis of the
two projects. It appears there are some significant factors that could

be useful as predictors. Further analysis may yield some information

2-12




that would be useful to a project manager.

2. Error Analysis

A). Publication of existing results -- Three papers are being prepared
from earlier work on error analysis conducted by the SEL laboratory.
One is on the data collection methodology and the validation of the
accuracy of the data, the second one is on the analysis of the SEL pro-
jects directly and the third one is a comparison of the SEL projects
with projects of the Naval Research Laboratory. These papers are
currently being submitted for publication and will be published as

University of Maryland Technical Reports in the interim.

B). A study on software errors and complexity -- The distribution and
relationships derived from the change data collected during the develpp—
ment of the medium scale satellite project shows that meaningful results
can be obtained which allow insight into software traits and the
environment in which it is developed. The project studied in this case
was GMAS. Modifiéd and new modules were shown to beﬁéve similarly. An
abstract classification scheme for ;;rors which allows a better under-
standing of the overall traits, of a software project was also provided.
Finally, various size and coﬁﬁlexity metrics are examined with respect
to errors detected within the software yielding some interesting
results. A University of Maryland Technical Report describing these

results was published [Bas82]. This paper has been submitted for publi-

cation.

C). A further examination of the error characteristics of the DE_A and

DE_B projects is currently being undertaken. This error analysis is

2-13




being conducted using the techniques developed and documented in [Wei81]
and [Per82]. The focal point of this research effort is to characterize

errors in the NASA/GSFC software development environment.

A preliminary review of a sample of the Change Report Forms from
both DE_A and DE_B has been conducted. The sample included only those
CRF’s for which an error change was reported. The purpose of this
review was to ‘get a flavor® for the data collected and to preliminarily
assess the consistency of that data with the results found to date by

SEL personnel.

The sample included 98 CRF’s from DE_A and 90 CRF’s from DE_B. Of
the 98 CRF’s from DE_A, 63 (64.3%) of the errors were classified as an
‘error in the design or implementation of a single component.” Of the
90 CRF’s from DE_B, 16 errors were reported as ‘elerical errors.’ Of the
remaining 74 DE_B errors (non-clerical errors), 61 (84.2%) of the errors
were also classified as ‘errors in the design or implementation of a

single component.’

Although the percentage classi?ied as ‘errors in a single com-
ponent” for DE_B was higher than the other studies, these preliminary
results appear to follow the results of previous analyses {Wei81]. As im
that previous work, the distribution of errors in other categories does
not neatly fit a pattern. In fact, there are too few events in the
other categories to draw any initial conclusions. It will be interest-
ing to explore the reason(s) DE_B experienced a substantially larger

number of ‘clerical errors.’

There are marked differences in the remaining DE_A and DE_B error

reports. This may be attributable to the reported differences in the

2-14




two projects. It is not possible at this time to conjecture on more
tangible causes for the differences. The full set of error change

reports will have to be examined, for both projects.

It is worth noting here that for DE_A, 31 of 98 error reports
(31.6%) examined were classified as being an ‘error in the deéign or
implementation of more than one component.” Based on previous results
cited above, this is an unusually high percentage. Only Y4 components
(4.1%) had errors reported that were not in the design or implementation

of component(s) categories.

As part of the preliminary work toward the above goal, the related
literature released by SEL was reviewed. A conclusion reached was that
the definitions of several critical terms were not necessarily con-
sistent, and often times the technical reports make too great an assump-

tion about the uniformity of use of software engineering terms.

‘Interface’ provides a good example of an ill-defined yet oft used
term. Using the definition from [Wei81] (the same definition is used in
[Bas80b] and [G1079]) it is arguable that interface errors can be cap-

tured five ways from the CRF:
-an error involving more than one component;
-an error involving a common rqutine;

-from textual comments in the CRF (eg: a CRF for which the error
was entered as having affected one component but the text indicated
that the error was in a subroutine call statement);

-an error reported as having been located in one component but the
change required to repair the error affected more than one com-
ponent; and

-a change that caused an error because either the change invali-
dated an assumption made elsewhere in the software or an assumption
made about the rest of the software in the design of the change was
incorrect (contingent on ability to capture supporting text and
ability to distinguish from erroneous assumptions made atout a sin-
gle component).

2-15



An effort is currently underway to develop a more restrictive set
of definitions for software engineering terms, specifically those that
apply to error analysis. The basis of this effort is the set of defini-
tions published in [Bas80] and [Glo79] and will be modified, as neces-
sary, in consultation with those persons associated with SEL in the past

and present, whose work is or was related to the error analysis effort.

3. Reliability Models

A study is being performed in the area of reliability models. This
research includes the field of program testing because the validity of
some reliability models depends on the answers to some unanswered ques-

tions about testing.

_ The eventual goal of this research is to understand how and when to
use reliability models. Qe are investigatfng the use of functioéal
testing because some reliability models make assumptions about the way
program testing is accomplished (Musa]. It is not known if functional
testing satisfies the random testing assumptions made by the reliability
models. The validity of reliability models that use data generated by

functional testing is uncertain until this question is answered.

We'are using structural coverage metrics to gain further insight
into the effects of functional testing. A structural coverage metric is
a measure of how much of a program was executed for given input data.
Studying the coverage metric may allow us to develop other measures of

reliability.

An additional bonus of this research is that it allows us to com-

pare functional testing and structural testing. It is not known how

2-16




these two methods of testing are related. The results of this investi-

gation may answer that question.

Since January background material has been studied with regard to
reliability models, and functional and structural testing [Mueller]. A
FORTRAN preprocessor has been written to calculate the structural cover-

age metrics of GSFC FORTRAN source code.

The preprocessor calculates the simplest metric, the percent of
executable code that is executed. There are several ways to measure
coverage [Auerbach]. One method uses interpretation of the source code.
The interpreter records which statements are executed. At the end of

interpretation, it writes a list of executed statements.

The second method uses "switches", small sections of code that are
inserted into the source program text wherever the flow of control
diverges or converges. The switch has 2 values: 0 if it was not exe-
cuted, 1 if it was executed. The value of the switches is output after
execution.

An example:

INTEGER SWITCH ( N )

FOR I = 1,
SWITCH (I)

N
=0

READ ( J )3
IF ( even ( J ))
THEN
SWITCH ( 1)

“
—_
e

ELSE
SWITCH ( 2 )

1}
—
..



ENDIF

FORI =1, N
WRITE ( SWITCH ( I ));
END

When this program is executed, one of the two branches of the if
statement will be executed. By examining the values of the array
SWITCH, we can determine what code was executed. By analyzing the code
and counting statements, the number of statements executed can be deter-
mined. In practice, the amount of data generated will be large.

Software tools are needed to help analyze the data.

The switches can be inserted by a preprocessor (before compilation)
or by a compiler (during compilation). The switches may be in-line code
(as in the example) or a call to a switch subroutine that records the

flow of control.

.This latter approach was taken and a preprocessor was developed
that runs on VAX/Unix at UMCP. The preprocessor takes a copy of the
input source code, and modifie€s it. This modified copy will be returned
to the source computer (at GSFC) where it will be compiled and executed.
" The execution produces the desired coverage data. The coverage data

will be returned to the University for analysis.

Many things remain to be done before we reach our goal of under-
standing how and when to use reliability models. The immediate goal is
to try to answer the functional testing / reliabiiity model question.
The project RADMAS has been chosen as an experimental system [CSC]. The

preprocessor must be used to modify the RADMAS source code. (The RADMAS

2-18




project and its functionally-generated acceptance tests have been made
available for the coverage experiment.) The modified RADMAS code must be

executed at GSFC using the functionally-generated acceptance tests.

This experiment should answer these questions about functional

testing and reliability models:
-What is the percent coverage of functional testing?
~Does functional testing meet the randomness requirements
of the MTTF models? 1If not, can it be made to?
-Do the structural metrics show any useful patterns in
the way that functional testing tests programs? How

does the coverage set grow? At what rate does the coverage set
grow?

-How independent are individual tests from a coverage

point of view?

The results of this experiment will raise further questions about
functional testing and reliability models. This will require more exper-

imentation. If these questions are answered, there is more work to do

concerning how and when to use reliability models.

4. Software Metrics.

The attraction of the ability to predict the effort in developing
or explain the quality of software has led to the proposal of several
theories and metrics [Hal77, McC76, Gaf, Che78, Cur79]. In the Software
Engineering Laboratory, the Halstead metrics, McCabe’s cyclomatic com-
plexity and various standard metrics have been analyzed for their rela-
tion to effort, development errors and one another [Bas82al. This study
examined data collected from seven SEL (FORTRAN) projects and applied
three effort reporting accuracy checks to demonstrate the need to vali-

date a database.




The investigation examined the correlations of the various metrics
with effort (functional specifications through acceptance testing) and
development errors (both discrete and weighted according to amount of
time to locate and fix) across several projects at once, within indivi-

dual projects and for individual programmers across projects.

In order to remove the dependency of the distribution of the corre-
lation coefficients on the actual measures of effort and errors, the
non-parametric Spearman rank-order correlation coefficients were exam-
ined [K¢n79]. The metrics’ correlations with actual effort seem to be
strongest when modules developed entirely by individual programmers or
taken from certain validated projects are considered. When examining
modules developed totally by individual programmers, two averages formed
from the proposed validity ratios induce a statistically significant
ordering of the magnitude of several of the metrics’ correlations. The
systematic application of one of the data reliability checks (the fre-
quency of effort reporting) substantially improves either all or several
of the projects’ effort correlations with the metrics. In addition to
these relationships, the Halstead metrics seem to possess reasonable
correspondence with their estimators, although some of them have size
dependent properties. In comparing the strongest correlations, neither
Halstead’s E metric, McCabes’ cyclomatic complexity nor source lines of

code relates convincingly better with effort than the others.

The metrics examined in this study were calculated from primitive
measures derived from a source analyzing program (SAP -- Revision I)
[Dec82]. An earlier version of this static analyzer implemented a less

comprehensive definition of Halstead operators and operands{0 ‘Ne78].

2-20




Some work has been done comparing the metrics’ correlations when they
have been determined from the different interpretations of the primitive

measures.

This investigation has been submitted for publication to the Tran-
sactions on Software Engineering and will appear as a University of

Maryland Technical Report.



5. References

[Auerbach] Auerbach Publishers Inc., "Practical Measures for Program
Testing Thoroughness", 1977.

[Bas80] V. Basili, Tutorial on Models and Metrics for Software Manage-
ment and Engineering, p. 340, IEEE 1980

[Bas82a] V. Basili, R. Selby and T. Phillips, "Data Validation in a
Software Metric Analysis of FORTRAN Modules," -- to appear
IEEE Transactions on Software Engineering, July 1982.

[Bas82b] V. Basili and B. Perricone, "Software Errors and Complexity:
An Empirical Investigation,"” The Software Engineering
Laboratory, University of Maryland Techriical Report TR-1195,
August 1982

[Bas82c] V. Basili, "An Assessment of Software Measures in the Software
Engineering Laboratory," presented at Goddard Space Flight
Center, January 1982.

{Card82] Card, D., F.McGarry and J. Page, "Evaluation of Management
Measures of Software Development,”" Vol I & II, Software
Engineering Laboratory Series, SEL - 82 - 001, Goddard Space

~ Flight Center, September 1982.

[(Chen 78] E. T. Chen, "Program Complexity and Programmer Productivity,"
IEEE Transactions on Software Engineering, Vol. SE-4, No. 3,
pp. 187-194 (May 1978).

{cSC] Computer Sciences Corporation, RADMAS User’s Guide., September
1981.

[Curtis et al 79] Curtis, Sheppard and Milliman, "Third Time Charm:
Stronger Prediction of Programmer Performance by Software
Complexity Metrics," Proceedings of the Fourth International
on Software Engineering, pp. 356-360 (1979).

[Decker & Taylor 82] W. J Decker and W. A. Taylor, "FORTRAN Static
Source Code Analyzer Program (SAP) User’s Guide (Revision
1)," SEL-78-102, Software Engineering Laboratory, (May
1982).

[Gaffney & Heller ] J. Gaffney and G. L. Heller, "Macro Variable
Software Models for Application to Improved Software
Development Management," Proceedings of Workshop on Quanti-
tative Software Models for Reliability, Complexity and Cost,
IEEE Computer Society.

[(G1lo79] S. Gloss-Soler, The DACS Glossary -- A Bibliography of Software
Engineering Terms, Data and Analysis Center for Software, p.
56, October 1979

[Halstead 77] M. Halstead, Elements of Software Science, Elsevier North-
Holland, New York (1977).

[Kendall & Stuart 79] M. Kendall and A. Stuart, The Advanced Theory of
Statistics, Vol. 2, Fourth Ed., MacMillian, New York, 1979,

pp. 503-508.

[3S)
|

22




[McCabe 76] T. J. McCabe, "A Complexity Measure," IEEE Transactions on
Software Engineering, Vol. SE-2, pp. 308-320 (December
1976).

[Mueller] Mueller, Barbara, "Test Data Selection: A Comparison of Struc-
tural and Functional Testing", April 1980, private paper.

{Musal Musa, John, D., "Software Reliability Management", Software Life
Cycle Management Workshop, August 1977.

[0°Neill et al 78] E. M: 0'Neill, S. R. Waligora and C. E. Goorevich,
"FORTRAN Static Source Code Analyzer (SAP) User’s Guide,"
SEL-78-002, Software Engineering Laboratory (February 1978).

[Pic82] G Picasso, "The Rayleigh Curve as a Model for Effort Distribu-
tion Over the Life of Medium Scale Software Systems,"
Department of Computer Science, University of Maryland
Technical Report TR-1186, July 1982.

[Wei81] D. Weiss, "Evaluating Software Development by Analysis of
Change Data," The Software Engineering Laboratory, Univer-
sity of Maryland Technical Report TR-1120, November 1981



SECTION 3 — RESOURCE MODELS



SECTION 3 - RESOURCE MODELS

The technical papers included in this section were origi-

nally prepared as indicated below.

Card, D. N., "Comparison of Regression Modeling
Techniques for Resource Estimation," Computer
Sciences Corporation, Technical Memorandum,
November 1982 (reprinted by permission of the
author) |

Card, D. N., "Early Estimation of Resource Expend-
itures and Program Size," Computer Sciences Corpo-
ration, Technical Memorandum, June 1982 (reprinted
by permission of the author)




Dz
N87-24898

COMPARISON OF REGRESSION MODELING

TECHNIQUES FOR RESOURCE ESTIMATION

Prepared by
COMPUTER SCIENCES CORPORATION

D. N. Card

For

GODDARD SPACE FLIGHT CENTER

Under
Contract NAS 5-27555

Task Assignment 85100

November 1982

"PECEDING PAGE BLANK NOT FILMED

BAGE_3 -2 INTENTIONALLY BLANK




INTRODUCTION

The development and validation of resource utilization models has
been an active area of software engineering research. Regression
analysis is the principal tool employed in these studies. How-
ever, little attention has been given to determining which of the
various regression methods available is the most appropriate.

The objective of the study presented in this memorandum is to com-~
pare three alternative regression procedures by examining the re-
sults of their application to one commonly accepted equation for
resource estimation. This memorandum summarizes the data studied,
describes the resource estimation equation, explains the regres-
sion procedures, and compares the results obtained from the pro-
cedures.

DATA SUMMARY

This study is based on data collected from 22 flight dynamics soft-
ware projects studied by the Software Engineering Laboratory (SEL}.
The general class of flight dynamics software includes applications
to.support attitude determination, attitude control, maneuver plan-—
ning, orbit adjustment, and mission analysis (Reference 1). The
specific projects selected for this analysis were developed in
FORTRAN for operation on the same computer system. The range of
systen size (developed lines of source code) and development effort
(staff-months) for these 22 projects is indicated in Table 1.

THE RESOURCE ESTIMATION EQUATION

Variations of one basic eguation have been incorporated in many re-
source estimation models (Reference 2). This egquation relates proj-
ect size to development effort. Additive and/or multiplicative fac-
tors based on experience, complexity, software tape, etc. are added
to form more sensitive models. The SEL also has developaed a model
based on this equation (Reference 3). The general form of the esti-
mating equation is

-

g = ar® (1)
where

H = staff-months of effort

L = lines of source code

A, B are constants




2po) aoanos jo sautr] padoroasd -

sSyjuou-3jjyels Iayjo pue ‘aabeury ‘aoumeaborg -
syjuowu-jyels xsbeuey pue gsuumearbord -
yjuow-jyeas xauwwerboxd -

- N N >

Tg]

|

™
S9°v L9* 8T°T 66° 2+ (aoud-ndd) 501
€6° ¥ 09°1 ET°1 0S°€ (OWaH) 901
9L° b 9% 1 €T°T SE°E (WdH) 50T
VS b - oot €1°T 1€ (aH) 9071
€S V0T $6°1 8V TE 0Z°VE ,O¥d~ATA
ZE'BET 96° ¥ v Ly 08°¥S LOWdH
82 91T T€°¥ €L°OF 0E" LY _WaH
$8°E6 66°2 £2°Z¢€ L0°LE (dH
WOWIXYW WOWINIW NOILVIATA NVAW FANSVAR

QUYANVES

s2aInseaW JO Axeuumsg 1 I9Tqel

Il B OGN I O N BN Y BN 4Gy I an BN EN A B G S ae



Because the projects studied by the SEL include a substantial pro-
portlon'of reused code, a "developed" lines of source code measure
was devised to account for the higher productivity due to reusing

code (Reference 3). The equation for computing developed lines of
source code is

L=N+E+0.25 + 0.2U0 (2)
Where

L = developed lines of source code
N = newly coded lines

E = extensively modified lines

.S slightly modified lines

U = lines reused unchanged .

This software product measure (L) can be related to three measures
of development effort (H). These measures, as they are defined for
the subsequent analysis, are the following:

e HP - programmer staff-months of effort
e HPM - programmer and manader staff-months of effort

e HPMO - programmer, manager, and other (total) staff-months of
effort

ALTERNATIVE REGRESSION PROCEDURES

Three alternative regression procedures are availabe for deriving
values for the constants in Equation 1. These are the following:

e Non-linear regression of original data
e Linear regression of original data
@ Linear regression of logarithmically transformed data

A non-linear regression procedure can find a least-squares solution

for the constants in Equation 1 without requiring either a manipula-
tion of the equation or a transformation of the data. Several such

algorithms have been implemented. However, the calculation of non-

linear solutions is computationally intensive. Thus, it consumes a

substantial amount of computer resources. Reference 4 describes the
derivative-free algorithm used in this study.

Equation 1 can be reduced to a linear form by fixing the value'of
the exponent (B) at 1.0. The resulting equation is the following:

H = AL (3)

Then ordinary linear least-squares regression can be applied to the
untransformed data. Unfortunately, this simple solution ignores the
conceptual importance of a.potential exponential relationship between
software size and development effort.

IS TN EN N En D A =




This rglationship can be captured by performing a locgarithmic trans-
formation of Equation 1 and the data. The resulting equation is

Log (H) = Log (A) + B Log (L) (4)

Solutions for A and B in this equation can be derived by ordinary
linear least-squares regression. Although this procedure is compu-
tationally less intensive than the non-linear procedure, it re-
quires a prior transformation of the data. The range of the loga-
rithmically transformed data is shown in Table 1.

COMPARISON OF RESULTING MODELS

Each of the regression procedures described in the previous section
were applied to the data for each measure of effort. These analyses
were performed with the Statistical Analysis System software package
(Referance 5). Table 2 summarizes the results. The goodness-of-

fit cbtained by any regression model is measured by the mean square
error (MSE)} and correlation coefficient (R).  Unfortunately, as shown
in Table 2, these values are not directly comparable for all the re-
gression models considered here.

However, it is clear from Table 2 that for all measures of effort
the results provided by the linear and log-linear procedures are
very similar. The estimates of A and B for the log-linear model
{Equation 4) are close to thnse of the linear model (Equation 3);
slight decreases in 8 in the log-linear case are compensated by in-
creases in A. Furthermore, the correlation coefficients obtained

by the two procedures are nearly identical in all three cases.
Therefore, the linear regression procedure produces a model as good
as that of the log-linear procedure in a considerably more straight-
forward manner. :

The model produced by the non-linear procedure differs considerably
from those produced by the linear and log-linear procedures (see
Table 2). The values of B (Equation 1) Jdepart significantly from
1.0; the relationship defined is clearly exponential. Furthermore,
the mean square error of the non-linear model is substantially less
than that of the linear model. Although a direct comparison between
the non-linear and log-linear models (in terms of MSE or R) is not

. possible, the log-linear model is so close to the linear model that

we can safely conclude that the non-linear model is the most accurate
of the three.

Figures 1 through 3 illustrate the relationships between system size
and development effort defined by the linear and non-linear models.
(The log-linear model is not shown because it is so similar to the
linear model). A cursory examination of these figures indicates
that the linear model fits the data at the low end of the range bet-
ter while the non-linear model fits the data at the high end of the
range better.




arqexeduwod jou apnjtubey - 2

snyea paXxtd - P

arqeotridde 3oN - O

7 bo1.94 + ¥ BbOoT = H bo1 sxeduTtI-bol
¢ = H tI1eauT]

gl¥ = H $IRDUTTUON - q

xtpuaddy 2y3 utr pautelUuUOD IR SITYERI pIaITelsq - ®©
6-Y €6° o~ z6° 11°¢ aeauttThot
8-v¥ £6° 0LE @oo.H 16°T Ieaut]

L-v o~ 90¢ LL” -E0°F I1eaUTTUON OWdH
9-¥ £6° P AN 18°1 aesautibo1
S-Y 4N - TC¢ ﬁoo.a, £€C°1 Iedut]

b-¥ o~ 8G¢C pL® 98°¢ IedUTTUON Wdf,
£-¥ 6~ s~ £6° (1A aeaut1bho]
Z-¥Y £6° SLY @oc,H Z0°1 IeauT]

1-¥ o~ Iv1i LL vL°¢ JedUTTUON dH

q4T9VL INIIDIJIT0D youud g v qTAaoW LY044ad a0

qdTIVLIQ NOILVIZYH0O FYYNOS NVAW JANSVIANW
mmaczHBmm
pS¥INSaY 19pon 3o uostaedwo) *z arqel




SYIUOH-3Je3ls Iaumreaboig i0j ST9POW JO uostaedwo)y °T 2anbrd

N30O0IH S80 L 310N
13Na0Y¥d Q34013A30

ozy Sty Ot SOF OO0¥ S6 06 114 oe SL oL G9 09 -1 0s sy . Or S€ o€ 114 or -1 (1) S o

B N N S At B i R T R N R it it ST TEEEY SEEEE 2
+ 0
L]
. AN
« 1 NN
Rl + Ol
q N
hl N
* ° z
93jrWTISd ILDUTTUON = N . N + OC
93JeWTISdD AedUTT = I | N
elep Tenioy = » *
N + O€
KXoy I s
H
L
N + OF N
0
"
ahh] + 05 N SA
1.N v !
NN W o
o1
N + 09 M
» 3
"
- [,
[ ] + 0L V¥
-]
. . 9
. [}
N + 08 .4
1 d
-
N + 06
- ]
N
+ 001
1
+ Ot




- Er T Oy S G A Gy B BN Dy BN Ol SN G I 'En

SINOH 3J3je3ls 1dbeuey pue reuwweiboid I10j STOPOW JO UosTIedwo)d *Z danbIg

N30GIH SBO 6 *310N
12N00Y¥d Q3d4013A30

ozl Sy OKs SO 001 S6 06 -1 oe SL oL €9 09 11 0s 114 or s€ ot 14 ot Si ol S o

D S e o P TP LR SRR TE DS SELEL SELEE Shthd St Sttt Subeininh A
+ 0O

mn

. 3N

« 1 NN (e ]}

ot

(o]~

-l @
-

93eWT}S? ILDUTT-UON
9jeWTISD awvaUT]
ejep [enjoy

]

(o] 4

]

* 32
-
2z

A9y N 0s

09
ARA]

|
+

|

+

|

*

. |
+

|

*

|

+

|

+

3-10

oL

4

o8

+

.
a
-

(o]

2
+
8
LUIER T2V E«<21ETO0OZ2-IT 0

ot

2
-

oz

(e}

ort

0S4

o]}




SyjuoN-jjeis (e3iol 103 STOPOW IO uostxedwo)

g 2anbrg3

N3QOIH SE0 6 :310N
19N004d 03d40713A30

0ZI G4 Ol SOb O0L S8 06 08 SL OL €9 ©09 & O Gr Or SE Ot S O S+ OV S o

nca-ouonuo..-uuonu-ovvu-.-nv'onnnnof.»;ounuaonucnoonnno-uuuo-....#--ouo---nA--.-¢||||¢|:n|¢||||¢|||v¢o||n¢||||0||bvonu-uouuonon
+ 0
12
.« AINN
« 1 N
At :
] N + OZ
T « NN
N
N e
23LWY3IS® IEdUTT-UON .= N
2jewr3isd Ieduyl = ‘I , . + OF
ejep [enjoy = & 1
(22}
= W Koy N
[ 11] = + 09
< s
&3 1 u
[«

(@ a L
-l NN + 08 O
<t (@] R )
= O N -
- N
m.-.u. P » A
[¢ 4N TS . - + 00l N
OO L]

1
v
. . M
N + 0z O
1 . 1
N
. 1 + Ovs
N
1
+ 0914
+ 081

St

11

3




This phenomenon suggests an explanation for the closeness of the
log-linear model to the linear model. The effect of the logarith-
mic transformation is to weight smaller data values relatively
higher; Table 1 shows that large data values are affected more
dramatically by the transformation. Thus, the log-~linear regres-
sion procedure produces a nearly linear result because it is
weighted in favor of smaller data values where observation indi-
cates that the relationship between system size and development
effort is most nearly linear.

CONCLUSION

The non-linear regression procedure emerges from this study as the
superior technique. The foregoing evaluation of the three alterna-
tive regression procedures is summarized in Table 3. The total rat-
ing of each procedire shown in the table would be changed if the
three elements, of which it is compos.d (numerical accuracy, con-_
ceptual accuracy, and computational cost), were not weighted. equally.

In addition to the implication for the choice.of statistical tech-
niques, the results of the study suggest some other factors that
should be considered in future research. The estimate of the ex-
ponent (B) derived by each procedure is fairly constant for all
measures of effort (see Table 2). The additional effort contrib-
uted by managers and others is accounted for by an increase in the
‘multiplicative factor (&) for the [IP{ and HPMC measures, cf effort.
Furthermore, the effort contributed by managers and other nonpro-
grammer personnel is strongly affected by the complexity of a proj-
ect, the experience of the development team, and the development

methodologies employed. This confirms that these other effects should

be represented as multiplicative factors in a comprehensive resource
estimation model. FPublished models generally have taken this ap-
proach.

The exponential relationship, illustrated in Figures 1 through 3
has another implication. Although the relationship between system
size and development effort is nearly lineax for small systems, the
development effort due to size alone does not increase in proportion
to size for large systems. This suggests that the influences of
factors such as methodology, experience, and complexity, may be

more important for large systems.

The results of this study allow the optimistic conclusion that the
basic relationship presented in Equation 1 provides a sufficient
framework for the construction of comprehensive resource estimation
models when the appropriate statistical techniques are applied.




*shurjex par3 jo
§98eD UT pIpaeme 3ar siuex 2bhevadsay 3500 3samotr ‘Aoeanooe 3saybry st Hurjex umwzoqm

3-13

0°9 4 S 1 4 TesurI-HoT
S°9 T £ g°Z Iesut]
S°9. € S°1 ‘ 1 IeduTT-UoN
ONILVY LS00 T AOVaNDOVY XOY4NOOV FINAAD08d
TYLOL TVYNOILYLNAWOD TYNLAAONOD TYOIHIWAN NOISSIYOAY

[N

S5°1npad01d uorssaxbay jo.sbuyjiey aarjeray ¢ o1qel




APPENDIX

~ REGRESSION ANALYSIS RESULTS

This appendix reproduces the computer generated output from which

Table 2 was compiled.

Table

Content

The following detailed tables are included:

A-1
A-2
A-3
" A-4
A-5
A-6
A-7
A-8
A-9

Non-Linear Model
Linear Model for

for Programmer Staff-Months
Programmer Staff-Months

Log~Linear for Programmer Staff-Months

Non-Linear Model
Linear Model for
Log-Linear Model
Non-Linear Model
Linear Model for
Log-Linear 'Model

for Programmer and Manager Staff-Months
Programmer and Manager Staff-Months

for Programmer and Manager Staff-Months
for Total Stai.-Months

Total Staff-Months ‘

for Total Staff-Months




"Pi-L d ‘OL6) ANYNNEIF ‘SOTULINONHOIIL ‘HITHUNNIN ONY NOLSIVY :3ONIHIJIY " ILVWIXONAJY ¥V SOILSIAVIS DIL0LAWASY 1TV :3ION

Q00000° 1 PUPIE6°0- 8
+8ri66 0- 0000004 v
a v

SYIL3INVYEVD IHL JO XIAL1vW NOTLVI3HHOD DI1LOLJNASY

oereLrLs O 9¢E9EBRSS 'O 98GS1 8660 0 €IPLS99L°O a8
r68018€E1 S 3197Z64E°0 LEIERLEY 4 GSL99EVL' T v
83ddn ¥IN0I L
IvAN3INT 3DN3AT INDD 30¥Y3 ‘01S —
% 668 21101dnASY Ji1101dWASY 3ivmILS3 ¥31Invyvd Q_J
86600218 0T8I T 1t (Iviol 03123¥¥03)
06S0ELTS LFOZS te 1101 03193840INN
69EZ6I P SV SLELYBEB 916T ot wvnisIy
1091 PPYE  SOSHE ©1Z€88B9 OEI 6P t NOISS38D3Y
34YNOS NV INW S34VN0S 40 WNS 40 308Nn0S
dH 3718VIYVA INION3HIO SOILSIiviS >I<S!=w SIYYNOS LSYIT HVINIT-NON

SYjUOR-3JJels xaumexboaq 103 vaoz IPDUTI-UON °T-¥Y 219%eL




$91 LEISO O 1000°0 19°94 $S9LZ610° 4 Qoy¥d” A3Q
3LYWILS) . O=¥313NVHVd IAVHILSI ¥313IWvvd
30 uouM3 a1$ |1] < ud TOH 804 1

1000 0 €8 SLT .pau.»vn,mwmoe ' 1000°0 €9°SLT §L6TI LYE SIEBY ' aoyd A3Q

4 < ¥4 INVA 4 SS Al 3dAL . 40 4 < ud INVA 4 $S 1 3dAL 40 323N0S
68669990 LE SEELIIVT €} i 06%0€ELTG LYOTS 114 V101 G3123IBU0INN wm
NY3W gH ' A30 QiS "GICLBIPE "GLB 61911081 " TH9E 1z yO¥Y3 1r

6€ZL SC rSZ6T6°0 10000 €8°SLT VLEZILVE G9EBY VLETILPE SIEBY ‘ ' J300m

] 38vNOS-¥ 4 < ¥d INVA 4 IYVROS NVIW S3HVNOS 30 WNS 40 323n0S

SHANOW-NYR ¥INNVHS0ud dH :3T1BVINYA IN3ION3Id30

33N03008d ST1300W AVINIT IVHINTGD

SY3UOK-JJL3lS Iaumexboxq I10J TOPOW IedutlT °z-¥ 2Tqel




996991S0°0 1000°0 t6 LV TLLTLSTE'O 100¥dA30

6E91 L5931 'O 0350°'0 €0'Z L16ZTOEE O 143D831NI

31VW11S3 O=431INVYVd J1YNILS3 ¥313nvavd

40 ¥OU¥3 OiS 11} < u4 TOH 804 A

1000 O r0O ITE CLESESHY "ST ' 1000°0 PO IZE CLESEG: ) "ST ' 100Y¥dA3Q

4 < dd INIVA 3 $S Al 3dAL 40 4 < ¥d ANIVA 4 SS 1 3dAL 40 328Nn0S

8061530} "€ . vELE96LE O 8LG966L19 9T 1z IVi0L 03103300
NY3IN LdH A3CQ OIS 09€28L0°0 SOZIOPYs ot ELEEE] ~
€00 6 9GEIPE O $000°0 v0° 1 ZE €LEGESH) G2 CLESESHS "ST ' I3a0mn .|_*
o

NI JuvNOS-u 4 < ud INTIVA 4 walz.ow NY3NW SIUVNOS 40 NNS 40 3J¥n0s
, 144 :31BYINVA 1NIONIAIO

9N03208d $1300M HV3INIT Ivy3IN3D

SYjUOH-JJels Ioumexboird 103 [OPOW Ieauri-6oT ‘€-v 91qel




‘Pi-1 d ‘8261 ANVANE3S "SOTNLIWONHIIL 'HOIUNNIM ONVY NOLSTVY :3ON3AFI3Y * 3LVYWIXOUddY wr< SO14S1L1VLS D1104dWASY 11V 310N

000000t 880166 O-
880166 0- 000000 4

v

mzubm:<x¢a.mtb 40 XI¥1YW NOILYTIIYI0D O1L0LJWASY

LS0TSPS6° O 08LLLLTS O
86S1110€ ' ¢L . 6ETrIVIE'O
¥3ddn ¥3n0Y

TIVAYILNT ION3AS INOD
% $6 J1101dNWASY

6v60vLLE "8ST
OSOLVYEES TrréeE

J¥vNOS NYIN

wdH 37189VI¥VA INION3IJ30

8668ZZ01 'O
rosorer9

youy3d "ais
J1101dWASY
B0EGE6YS "OEBPE

180E1GIZ ESOrE
TO6918V5 LIS

001 ¥6999°5888L

S3YvNOS 40 WNS

1
SOELSIAVLIS ABVAANS SIHVNOS 1SY3IT UYININ-NON

(X4
(44
ot
T

4a

ET6VIIPL'O
E1629C98 '€,

ILvniLs3

(v101 031233¥03)
Tvi10f G3123HY0OONN
vnqaIs3y
NOISS3393%

308N0S

Y313INVIVd

syjuon-Jyeils idbeueny pue quEmumaum I03 T9POW IL9UT'I-UON °*p-¥ 2TqelL

3-18




9t00IEBO O : $1000°0 1G°6GI TTLO98BHT '} 00dd A30

) 31VNWI1S3 0=¥313IWVEYd 31VN11S3 ¥31INVEvd
40 ¥o¥y3 a1S 11] < ud ‘OH HO04 L
100C 0 9y Ot LEVEESI ) TOELL ' . 10000 oy ore LErOEBI ) "TOELL 1 aoyd A3Q
4 < ¥4 INIVA 4 $8 Al dal ) 40 4 < ¥d INIVA 4 SS I 3dAL 40 3204N0S
9ro62Z10€ LY 655688626° L 180CIGI T ESOPS 44 V104 G3123¥HOONN
o))
NY3IN WaH A30 Q1S SHLEGLOBY ILE yrorL9c0 16L9 %4 FLEEE] —
|
L6806 LE 189618°0 1000°0 oy ore LEVEEDL L " ZOELL LEVBEBL ) "TOELL ' 300N ™
‘ATD J4VNOS- 4. < ud INIVA 3 Juvr0S Nv3W $348VNOS 40 WNS 4a 258n0S
SHINOW-NYW BONW-UWDJ WdH :378VINVA IN3IONISI0

38N03J03d S13A0W HVINIT TYY3INID

‘syjuoy-yye3ls aabeury pue asumeiboxg 03 TIPpow IEBUTT G-y IB[qeL

.
S n e ey -k a4 W=




10000

4 < Y¥a

SOZELISE €
NY3W INdH
606Z ' 6

‘AT

9€ 98T

INTIVA 4

1E9L26° 0

34vYNOS-Y

SYyjuon-JJels i1abeuey pue asumexboird I0F TOIPOW absuti-bol

LS60ELSH vT

SS Al 3dA1

€S69EIIE O
A3Q 018
1000°0

4 < ¥d

v1916L60° O 1000°0
891 8ve81 'O TrY00°'0
31vNILS3 .

30 ¥0¥¥3 Q1S |L] < ud

’ 1000°0 9€ 962

410 4 < ¥d INIVA 3
66066960 0

9¢ " 962 zSEhEFSE P

ANIVA 4

33N0300¥d ST1I00W AVINIT TIVHINID

33vNOS NVIW

10°94
ET'E

O=4313nVYvd
‘OH ¥04 1
14-1:3: 10 4-1: B 44

SS 1 3dAL

9Z6OVEGL 9T
YLELOBES I
TSEBEVEE  bT

S3I¥VNOS 40 WNS

TLSO60T6°0
11248 4-1: 13- o]

3LVALLSI

40

(X4

oT

40

100¥dA30
143083 INI

Y313Iwvavd

100¥dA3Q

30¥N0S

IViOL 031233300
Youy3
1300W

32uN0S

INdH :378VISYA IN3ON3430

‘9-¥ 919wl

3-20




.v-ur d “0L61 AWVANE3II “SOIYLINONHIIL "HOLUNNIC ONY NOLSIVY :3IONIUIIFY “ILYWIXOUdAY IV SOTLSILVLIS JILOLJWASY 1TV :3ILON

000000° s 89VEEE O- 8
890E66°0- 000000 | v
8 v
3 " SHILINVHVA 3HL 40 XIHLYW NOILVIIBHOD D1 10LdWASY
—— .
L M 621581160 68164 ¥95°0 €964 LL60°0 654Z089L°0 ]
&) S1109825 ¢ LIEOTBZS O 6LE86LLY | 94Z0vezZ0" ¥ v
] ¥3ddn ¥3In01
oo IVA¥IINT 3DNIGI 3NOD HO¥NI "0LS
e % S6 D110LdWASY J1101dWASY 31Ywi1s3 ¥3LInvavd
<9 , —~
e O .
5 SPTIICET OTTLY 'z (V101 03193¥803) o~
(] |
m [T B9EC0ESBY  LGZTELS (44 IVA0L O3IL1DIVHOONN ™
G o 19Z61EPT  90E 012S8€98° $Z19 oz Ivna1s3y
6LSTLOI v 9BSES 8SIGPIZO TLl LOY z NO1SS3u93Y
J3vNOS NV3IW S3uvYNOS 40 WNS 40 32uNn0S

OWgH 319VI¥VA INIONIJIA SOLLSTILIVAS AHVWWNS SINVYNDS 1SVIT ¥YINIT-NON

SYJUOW-3J©IS [LIOL IOF TOPOH ILSUFI-UON *L-V OTqel

 EE O T E U TR G vy T W A N N S R ak e e




-y WS Ty A W ap A ¢y AN Iy AN B By EE B A e aEm .

26160680 0 40000 0691 €0199506" | aoyd A3a
ILYNILS3 0=¥313WVHVd 31vWI1S3 ¥3LINvHVd
4C youy3d ais 11] < wve :0H d04 1

10000 a5 58z 00610186 9ESSO4 ' 10000 85582 ‘ 00610186 9£SGO4 t (EEREL]

4 < ud NIVA 3 SS Al 3dAL 40 4 < ¥d INVA 4 SS I 3dAL Pl 323N0S

9rseETO8 5 . 68998622 "6} 89EOEGHI " LE6TELS 11 ‘Iv101 031238¥IONN
NV3IW OWdH A30 OIS Z€830L55 69€ 99+Z2869 09LL %4 youY3I m“
TLLO SE Z051€8°0 1000° 0 85682 006L0L96" 9ESSO) 006LOLEE  9EGSOL ' RELLT LJ

‘ATD 3yvNoS -y 4 < ud INIvA 4 JYVNOS Nviw $34vNdDS 340 WNS 40 323108

SHINON-NVK 1v101 OWdH :318VI¥YA INION3dIO

3BNA3IO08d SITIQOW ¥Y3INIT Jdu.waO

SYjUOR-JJe3IS Tel0l A0J TI9POW ibouyl °g-v a1qel




€1882250°0 $000°0 L0 9 EEGFEOTE O 100¥dA30
€€05LEDY "0 90000 S0 ¥ 09rL9t¥L O 143043INT
u:s:mu. 0=3313I0VYVd 31VWI1S3 ¥ILINVYEV
40 HOBY¥I Q1S 11| < ug TOH 04 L
1000 O 60°8ST TLSIEYTB vT ' 1000°0 80°8S? TLSOENZE VT ] 10084A3Q
4 < ¥4 3NTVA 4 $S Al 3dAL Jq 4 < ¥8d inva 4 SS 1 3dAl 40 328N0S
PO6Z686+ € 91GEI0IE O LOZTrO8YL 9T 1z VY101 Q3133¥30D
NV3IN 10NdH A30 015 Z8BESI 960 O SE9LOELE 4 oz ¥ouY3 ™
teog'8 z80826°0 1000°0 60° 852 TLSIEYTB ¥T TLGIEYTE KT ' 13qow 7_~
‘A°D IyvnoOS - 4 < dd ANTIVA 4 JBYNANS NvIW S3¥YNDS 40 NNS 40 329N0S «

10WdH :31BVI¥VA INION3I43d

33N33508d S1300W ¥V3INIT TY¥3INID

SYjUOH-3JJe3ls TeI0L I0J [9POW IedurI-bor °6-V 91qel



REFERENCES

Software Engineering Laboratory, SEL-81-104, The Software Engineer-
ing Laboratory, D. N. Card, F. E. McGarry, G. Page, et al., February
1982

V. R. Basili, "Models and Metrics for Software Management and Engi-
neering, "ASME Advances in Computer Technolcgy, January 1980, Vol. 1

J. W. Bailey and V. R. Basili, "A Meta-Model for Software Cevelop-
ment Resource Expenditures," Proceedings of the Fifth International
Conference on Software Engineering. New York: Computer Socleties
Press, 1981

M. L. Ralston and R. I. Jennrich, "Dud, A Derivative-Free Algorithm
for Nonlinear Least Squares," Technometrics, February 1978, Vol. 20,
No. 1. .

SAS Institute, Statistical Ahalysis System User's Guide,
J. H. Goodnight, J. P. Sall, J. T. Helwig, et al., 1979

W N G TN WE Wy My o ma mw Gm By M) BN AP Sx e S S A




N87-24899

EARLY ESTIMATION OF RESOURCE EXPENDITURES

AND PROGRAM SIZE

Prepared by
COMPUTER SCIENCES CORPORATION

D. Card

For

GODDARD SPACE FLIGHT CENTER

Under
Contract NAS 5-24300

June 1982

3-25



1. INTRODUCTION

A substantial amount of software engineering research effort
has been focused on the development of software cost estima-
tion models. A concensus (of sorts) has emerged on that
topic. The following relationship is widely accepted:

H, = aLP (1)
where H_ = staff-hours of effort
L = lines of code
a = a constant
b = a constant

The Software Engineering Laboratory (SEL) has devised a
measure of lines of code based on the origin of the delivered

code that is substituted in the equation above. This is

Ldev =N+ E + 0.2 (S+0) (2)

where Ldev‘= "developed" lines of code
= newly implemented lines of code
= extensively modified lines of code

= slightly modified lines of ccde

O 0 m =
I

= 0ld (unchanged) lines of code

Equation 1 using "developed" lines of code has given good
results as an estimator of development effort. (The anal-
yses in this document are based on -a sample of 20 ground-
based attitude systems). Table 13 shows a regression analy-
sis that produced a correlation of 0.99 and an estimate of

b of 1.1 when the value of a was fixed at 1.0 in Equation 1.
Despite these encouraging results, this model has two sig-
ificant limitations. These are the following:

e The substantial amount of development work done in
activities other than code implementation may not be
adequately considered in the lines of code measure.




y
-

e The lines of code, whether "delivered" or "developed",
is not known accurately until late in the development
cycle when accurate estimates are less useful.

The purpose of this memorandum is to discuss these limita-
tions and to propose some alternative estimation models that
can be used earlier in the development process, e.g., during
requirements analysis and preliminary design.

2. MODELS OF WORK

The obvious alternative to lines of code as a measure of the
work done is pages of documentation. Although only a por-
tion of a software development team is involved in coding,
almost everyone produces some documentation. This includes
requirements, design, and operations documents. Table 1 com-
pares the components of developed lines of code with pages

of documentation as estimators or programmer hours. A re-
gession model based on the two most strongly correlated
measures is described in Table 2. This model showed the
following relationship:

Hp = 0.056 N + 4.15D (3)

where Hp = programmer hours
N

newly implemented lines of code
D = pages of documentation

A similar comparison is made in Table 3 for these measures
as estimators of staff-hours (including programmer, manager,
and other hours). A regression model based on the two most
strongly correlated measures is described in Table 4. This
model showed the following relationship:

Hs = 0.051 N + 7.10D (4)
where Hs = staff-hours
N = newly implemented lines of code
D = pages of documentation -




The correlation coefficient (r) associated with each of the
relationships expressed in Equations 3 and 4 was 0.97, com-
parable to that obtained by substituting Equation 2 for L in
Equation 1. These results suggest that the best measures of
work done are lines of new code and pages of documentation.
Reused lines of code do not seem to contribute directly to
resource expenditures. However, the requirements analysis
and design effort involved in reusing previously developed
code may be included in the pages of documentation measure.

Although pages of documentation appears to be an important
measure of work, it has the same limitation as lines-of-code
measures. Pages of documentation cannot be determined accur-
ately early in the development cycle. The next sections dis-
cusses some other measures that can be used to develop models
for early estimation of resource expenditures and program

size.

3. 'MODELS FOR EARLY ESTIMATION

Few objective measures are available early in the software
development process. The following five measures were con-

sidered in this analysis:

e Number of subsystems - regquirements analysis
e Number of data sets - preliminary design

e Complexity (PRICE-S) - preliminary design

e Number of new modules - detailed design

e Number of reused modules (extensively modified, slightly
V modified, and old) - detailed design

The following sections discuss the use of these measures for

early estimation of program size and resource expenditures.

28

w
1




3.1 PROGRAM SIZE

The correlations of the measures described here with deliv-
ered lines of code are compared in Table 5. Three regression
models were developed (Tables 6, 7, and 8). The two most
useful of these are the following:

Ldel = 7596 S (5)
Ldel = 168N + 195R (6)
where Ldel = delivered lines of code
S = number of subsystems
N = number of new modules
R = number of reused modules

Equation 5 (r = 0.99) defines an estimating relationship for
program size that can be used during the requirements analy-
sis phase. Equation 6 (r = 0.98) defines an estimating re-
lationship of comparable reliability that can be used during
the design phase.

3.2 RESOQURCE EXPENDITURES

The correlations of the measures described here with staff-
hours of effort are compared in Table 9. Three regression
models were developed (Tables 10, 11, and 12). The two most
useful of these are the following:

Hg

Hy

1634 S (7)

45 N + 28 R (8)

Hs = staff-hours

S = number of subsystems

N = number of new modules

R = number of reused modules

Equation 7 (r = 0.93) defines an estimating relationship for
resource expenditures that can be used during the require-

ments analysis phase. Eguation 8 (r = 0.94) defines an

3-29



estimating relationship of higher reliability that can be
used during the design phase.

4. CONCLUSION

The preceding analysis has demonstrated two important points.
These are the following: '

e New measures of productivity which incorporate other
development products besides lines of code must be in-
vestigated. Pages of documentation is a good candi-
date.

e Effective estimates of program size and resource ex-
penditures can be made using measures that are avail-
able early in the development cycle.




SIOVHI0G SINITOOW SINITMIN 1 89€EET98° 0 €
S$S3OVdO0Q SINITAT0 SINITIMIN 05988858°0 €
S3I9VdO00 SIANITAI0 SINITAOW LvyeTLSCS8° 0 €
S3INITAI0 SINITOON SINITIMIN 88858918°0 €
S$39VdO00 SINITIMIN 98TL8BS8 0 T
S39vd300 SINITGOW 18686168°0 T —
$39vdd00 SINITAT0 €896C1S8°0 T ™
SINITOT0 SINITMIN G9818518°0 T LJ
S3INITOON SINITMIN ¥L905¢v08°0 T
S3INITGI0 SINITQoN 08598€E6¢ 'O T
S39vd4200 1099¢+058°0 ]
SINIIMIN T990Sv08° 0 '
SINIGOW 859rv0O6Y "0 '
S3INITC0 1ETEYEB0°'0 J
T3IA0N
TI00N NI S3IN8VIUVA 3YVNOS - NI ¥3IBNNN
SUHANDD 3TBYIYVA IN3IANIJ3IQ 04 STIGOW NOISSIUO3Y oz =N

3310334 Isumerboag Jo sjuauodwo) T 9[qel

G T N YR a0 U A A W AR WH A O BN NN G ) W e




0158689 b} THi0'0 £€8'C 66TL98IS IV $39vd200
606V9EES O 080€°'0 S0} £8126655 0 SINTININ
JLVNILST 0=331INVHYd 31YNI1S3 ¥3LINVYVd
40 YO¥Y¥3 O1S j1]| < ud TOM 804 1
IO 0 66°L GL0OZO! "8YLIBOVSZE ' zHio'0 66°L GLOZOL "8¥ LI BOVSZE ' $39Yd200
080€°0 o1t »6891) "9EGI I ZBYY ' 1000°0 68 €ST 08G90¥  PBZEGYESEEOS |} SINIIMIN
4 < ud INIvA 4 SS Al 3dAL 49 4 < td NIVA 4 $S 1 3dAL 40 374r0s ~
o™
0000000T * 895G 1EVLID LLIOT 000000 9PPLZOIEEEIL  OT 1v101 GI13IHOOINN 2.4
NY3N SHHUNDJ A3C O1S »96E61 " SYTIEL LOY QYELGY €1 ¥YZSPBTEL 8l BOHY3
9SET°9E 8L95€6°0 1000°0 6 0€t GTEYSZ 9IGLBLEOEES  0S98BOG TEOSLSLO930V T 1300n
‘A°D 39VNOS-Y 4 <ud INVA 4 IYVYNDS NVIN SIYVNOS 40 WNS 40 . 323N0S

SHHEINDd 3T1EVI¥VA INIONIJID

3¥N03008d S1ICOW HVINIT TYYINID

uhnﬁmwm..H0===ﬂHmqumm JO TOpPOW ‘2 919l




S$39VdO0Q SINITAOW S3INITMIN 0EI90168°0

€
S$39vdd00 SINITOI0 SINITMIN 095870680 €
S$39YdJ00 S3ININGI0 SINITOOW 665€7688 0 €
S3INITOI0 SINITAOW SINITTMIN 1LTTOLEO O €
S$S39vdI0a S3INIIMIN 18292068°0 T
$39vd000 S3INITaT0 90Z€0888°0 [ 4
S3IOYJI00 S3INITAOW 9LEBLLEBB O (4
SINITQTIO SINITMIN SG186LT8°0 (4
SINITAOW SINITM3IN ¥L90€S18°0 4
SIANITAI0 S3INITOOW EBLEBSES 'O 4 -
||||||||||||||||||||||||||||||||||| ™
$39vdo00 80505.88°0 3 1
SINITM3IN 669V¥9€1I8°0 3 ™
SINITAON 99TTITES 'O '
S3NITNQT0 ¥9TLOLEO O J
1300W
73008 NI S3T8VIAVA JYVNOS-y NI ¥38WNN
SYHNVA ITEVIYVA INIONIJIO 304 S13I00W NOISS3IHOIN oz =N

3X0334 3Fels [elof Jo sjuauodwo) ‘¢ ITqel




610STLEE 6 81000 99°¢ 99vTrYIO IL
610580L 'O 96LY "0 Lo v£Z68805°0
I1YNILS] . O=431INVHVd ETLLTPEY ]
40 ¥Ou¥3I O1S J1] < ud :OH ¥04 1
8100°0 or el 865vSY° ¥610SE61S8 1 8100°0 ‘orel 86SFGP " Y61 0G661G6. '
96LY' 0 TS0 SYGEGS ¥6I LEZOLE [} 1000°0 ¥S ' TTE 065002 6806Z08806ZC
4 < ud INVA 4 SS Al 3dAL 40 4 < ud nva 4 $S 1 3dAL 40
000000SL * 80¥Z8 1881 ¥8° 05992 000000° L66IBLTEELST  OT
NV3IN SHHNYNW A30 Q1S 109€96 " TLELIZOML 81BYYE E1LTIEPRLES 8
B6EE " TE y¥I6Y6°0 1000°0 L6° L9 065L28 I¥96B6EC0E6II OB)SG9 €EBTELELOIBET T
"A'D JAVNOS-Y 4 < ¥d INwvA 3 33YNOS NVIN S34VNOS 40 WNS 40

3YNAIO0Nd STIAON ¥VINIT TVHINID

310334 JJelas 1elol JO T9POW b d1qel

S39vdl00
SINIINAIN

¥313INVYVd

$39vd4o0d
SINITA3IN

.
323N0S

Y101 031D3IYYOINN
YoYU
1300K

338N0S

SYHNYN :ITEVINVA INIONIJ3IA

34




ALX1dWOD SAOW3IY 13SIVOON SASENSON 6L15G56L6°0 v
ALXTINOD SOOWIY QOWMIN SASBNSON vELLOBLE6 O 14
SQOW3Y CGOWM3N 'L13ISLVAON SASBNSON SPBroLLE6 O 1 4

ALXTdWOD QOWMIN 13S1VAON SASBNSON GEETYLLE O v
ALX1dWOD SOONW3IY QOWM3IN L3S1VAON 88y8L0v6°0 v

ALXTdWOD SOOW3Y SASBNSON 601 LO6LE6°O €

SQOW3Y L3ISLVOON SASSNSON 66vLSLLE6 O €

SAOW3Y OOWM3N SASHNSON 6EVYIVLLE6 O €

ALXT1dWNOD L13ISLVAON SASHNSON 986689L6°'0 €

ALXT1dW0D QOWM3IN SASHNSON LTTOSSL6°0 €

OOWMIN L3SLIVAON SASBNSON 8ELLBVLE O €

SQON3IY¥ QOWM3IN L3IS1VAON 1198T6€£6°0 €

ALXTINOD SAOW3Y CGOWMIN EPIGSSEG 'O €

ALXTdNOD SAOW3IY 13S1VAON 1-T44:Tel4:1: 0] €

ALXTdNOD QOWM3N 13S1VAON LLEEOYEL O €
|||||||||||||||||||||||||||||||||||||||||| e}
+ SQOW3Y¥ SASBNSON 6EVLELLE O (4 A
ALXI4HOD SASENSON OOEEVELE O z qr

JOWM3IN SASBNSON LLEO9SELE O z

13S1VAON SASENSON 948808TL6 'O 4

SOOW3Y JOWM3IN 1 4:14: 12442+ A

SAoW3yd 13SI1VAON 18ETO6L8° O [4

ALXTdNOD QOWM3N cTEVIIGL O 4

GOWM3IN 13SL1VAON IELET6LLO 4

ALX1dNOD SAOW3Y EOSYSIIL O T

ALXTdNOD 13SLIVAON LSEBBE09°0 z

SASENSON 99L49696°0 }

QOWM3N LEBOLTLL O 3

SAoN3IY €ZITSEB9 O '

13S1VAON €6892ZSL09°0 3

ALXTdW0D T68LB0S0°0 3

T3g0N
T3G0N N1 S318VIYdVA YVNOS - NI 33I8ANN
S3INITL0L 318VIYVA LIN3ION3I43IC ¥04 SI1300W NOISSIADIY oz =N

sxojewtisyg 9218 Araed jJo uostaedwo) °g ITqel



6€8198b9 vTT 1000°'0 18°€€ LLTYOLLL G6SL SASBNSON
J1YWELSI O=4313IWvHvd JLVNIAS) yILINVEVI
40 yOH¥3I OiS Jol < ¥4 TOH HO4 L
1006°0 2311 069E169° TLIYLIEBPLY  § 10000 yZ EPI OTLEV69 TLIVLIEBYLY SASHNSON
4 < 4d INIVA 4 SS Al 3dAL 30 4 < yd INTVA 4 SS 1 3dAL 40 308N0S
00O0000GE “ 1 § L9E TTOEPIL PPVO 0000000° 6L} LTBZLZEY O Y101 G31D3UHOINN ©
Nvan SINIli0L A3Q Q1S ZOBTLEY TYEPESIY } LZ9BOE  90STSI6BL 6t LT T E ) qﬂ
1SSS L} TG9€86 'O 1000°0 T EVIL OCZLEIGY TLIVLIEBVLY OZTLEL69 TLOVLOEEPLY 3 1300n ™
A°D INYNOS-¥ 4 < dd ANIVA 4 JHVYNOS NVIW SIYYNOS 4O KNS 40 324N0S

SINITLOL :3T18VIYYA INIONIJIO

J¥NA3IJ0¥d STICOW ¥VY3INIT IVYINID

19POW Hutjewtlsy 9zTS TEWIUTH °9 3Tqed




LEETLIIL 6T 1000°0 LS'9
6LSIVTTL 8 1000°0 968
31YNI1S3 0=%313INVYVd

40 20¥Y¥3 OIS J1]| < ud :OH ¥D3 2
1000 0 (1 8945001 ' LBIVIISBPE ' 1000°0 $VEP €LLSOO) " LBOr9I SBPE
1000°0 99°08 08SOLYI "OI ZSLOI TGS ' 10000 66 GES OLYLEZO 98} ZVETEEEY
4 < ud NIvA 3 SS Al 3dAL 40 4 < ud INIVA 4 $S 1 3dAl
OO0000SE " § } L9E ¥SESSZL 1668 0000000 6L} LTHZLTBY
NvY3In S3INITLO0L A3Q O1S 90LBEOY " BT 1 5809 9v L9698 SOEOLESSH)
(o[ 2 2 258696 0 1000°0 €S 68T 0791696 "9EPESLBOPET OSZEOE) "E€LBIOSLIBIY
‘ATD JHVNOS- 4 < ud NIVA 4 UVYNOS NV3IN SIYVNOS 40 WNS

JYNAIO0Ud STIIAON HYINIT TV¥INID

19pPOoW burtjeurysy ozys Tewrldo °f or1qed

18216501 "G61 SGON3Y

80L98ZF) "891 QONMIN
31YNI1S3 ¥ILINVAVL
' Saon 3y
' COWM3IN
40 323N0S
oz V10! 03123J0ONN
8 R ot £ |
z 13000
40 323n0S

S3INITL10L *318YIYVA INIGNIHIO

37

3




£9r060L9 " 8} SETO'0 6v T- +IGLEBSY 9P - ALX1dWOD
LETE656E €T 86£0°0 €ee'e 0ESYSSH0° TS SQoNIY
GZOSEHEY " LGP 10000 68 ¥ L188Z8L6 80bL SASHNSON
31YNI1S3 0=4313INVYVd 31VMI1S3 ¥31INVHVd
40 ¥ONY¥I a1S j1) < ud TOH ¥O3J 1t
S€Z0°'0 61°9 SOl 1BEY  LOESOEED ' SETO' O 61°'9 GO 16CF° LOESIEEDS ' ALX1dH0D
86€0°0 96" ¥ 11G90SP SPLILLOES ' 0610°0 L9 0SOPI 1T 9699€ETLLI ' SQON3Y
1000°0 8- 1ze 0BOL1 96 ECBILEESBS ) $000°0 T9 66L) LOTLEYGI TLOVLIEBVLY | SASENSON
00
4 < ud anva 4 SS Al 3dA1 40 4 < ud IMVA 4 SS 1 3dAL 40 358N0S ™
1
(%)
0O0C0OSE * | § LOE ¥089¥99°9EIS 0000000 6L LTIZLLBY O V104 03123340INN
: NYIN SINITLIOL A30 Q1S STHLOED FZESBEIT STH1859° B0SOSSAPY L oyl
0zes €l 80L066°0 1000 0 84 " $09 06Z908L 9SSSTYIPEGE OLSBIVE OLIILIYIEBLY € 1300W
‘A’ IWYNOS-Y 4 < ud NIvA 4 33YN0S NYaw S$33VNOS 40 WNS 40 358N0S

. SINITL0L :3V1BVI¥VA INIONILIQ

3YNAID0Y4 ST1ICON VVYINIT TVHINID

19POH butjewrlsy 9ZTS DATIRUIDI[VY °g I[qel




ALXTdWOD, SOOW3IY OOWMIN 13ISIVOON S1986809°0 1 4
ALXTdNOD QOWM3IN L13SLVOON SASENSON TOELSS09 'O v
ALXTdNOD SOOW3IY QOWMIN SASHENSON ¥TB8ST008°'0 14
SQONWIY GOWMIN 13ISIVAON SASHNSON 1$0680LL O 14
ALXTdNOD SOOM3Y L3ISLYOON SASHNSON 8S1098bL°0 14
ALXT1dNOD SQONIY CONMIN 08y vZ008°0 €
ALXTdNOD QOWM3IN SASBNSON IEESYSBL O €
ALXTdNOD QOWM3IN L13SEYOON 9569SILL°O e
SOONIY QOWM3IN 13S1YOON €019569L°0 €
SOOW3IY OOWMIN SASBNSON '98v6899L°0 €
GONMIN L3SLVOON SASBNSON LOLIEOSL O €
ALXT1dN0D L3ISLVAON SASHNSON T66POSPL'O €
ALXTVANOD SOOWIY SASENSON 9VEQIEYL O €
SQON3IY 13SLYAON SASENSON TOBEOGZL O €
ALXdWOD SOOM3Y L3ISLVAON 99790619°'0 €
SAUN3Y QONWMIN $960899L°0 4
ALXTINOD "OOWM3IN $605609L°'0 T
QONM3N SASBNSON 0otr8906vL 0 [ 4
ALXTIIWOD SASBNSON eri1osTYL O T
13S1YODN SASBNSON esiLLezL’ 0 t
SOOW3d SASBNSON 809859TL°0 T
GOWMIN 13S1VAON €998L11L°0 T
SQOW3Y 13S1VAON 1L9760919°0 T
ALXTdWOD SOOWIY r198119¢°0 T
ALXT1dNWOD 13SIVAON 1919295#°0 T
SASSNSON LS09Y9ZL°0 J
QOWM3IN 0%9T680L°0 3
13S1YOON LEGIPSSP 'O '
Soon3Yy TS610GSP°0 '
ALXTdNOD »0806S10°0 '
300n
1300W NI SINBVINVA 3¥VYNOS-Y NI ¥38WnN
SYHNYW I18VINVA INIONIJIO ¥O04 STI00W NOISSIYDIY ot =N

s10jeurlsy 30i1n0say Atraed jo uostaedwo)y ‘6 arqelL

3-39




4

o9rT68r98 IZY) 4000°0 6r 4 8090069G " I YESI SASHNSON

31VNLILS3 O=4313INYHYd 31YNI1S3 ¥313NnvHvVd
40 ¥OY¥¥3 O1S TURRT! {OH 404 1
$000°0 80°Z€} O6LLZL SGOTLYBLLELZ o 1000°0 60" ZE} OV QLZL SGOTLPELLEIT | SASHNSON
4 < ¥d INTVA 3 S$S A1 3dAL 40 4 <ud nva 4 S$ 1 3dAL 40 334N0S
s
000000SL * 80YTE 6ZL9TY OBLOY 000000° L6616LTBEIGT  OT V101 G3I1DIVHOONN 1
NVIN SUHNYN A30 a1s 9EGE69° T 68GBED9L 981 TLZ I VEBIEEIDIE 64 youy2 “
LLEY BY LYTYLE O 1000°0 60°ZEL OV18LTL SSOTLYGLLBIT OLBLZL SSOTLYSLLEIT | 1300M
A°D WYNOS-A 4 < ud 3INvA 4 JYVYNOS NY3IN SIUYNOS 40 NS . 40 3233N0S

SHHNYNW :318VIYYA INION3I430

339N03008d STIAOW ¥VINIT TVHINID

19POW ButjeuTIST 90INOS9Y [RWIUTH °OT @TdeL




S1%0°0 te'y EYErLS OV6LBIBITL
1000°0 |- 7 A ] €I LTSE 6GUBLEIBSLY
4 < ¥d INTVA 4 SS Al 3dAL

O00000SL " 80vZE I19€Z¥8 €OLEGE

NY3N SHHNVYN A3Q OIS
L596° 9¥ Triten o 1000°0
‘A°D VYNOS - 4 < yd

L500ZT16 LT}
L8TLY8E8S 08

31YniLS3

40 ¥OHY¥3 Q1S

40

16°vL

INIVA 4

3¥NQ3008d STICON YVINIT TVY3INID

12poW bHurjewrlsy aoanosay tewrido

SI¥0°0
$1000°'0
J1| < ud
St+¥0°0 E4: A8 4
1000°0 00°Sht
4 < ¥d INIVA 4

116905 °C1PLOBBLEY)
OBLLES 9LTEOSKITZTIY

3¥vN0S NY3IN

oTt't ETLSLEBL 08T Soow3y
$9°S [Ao IR 4-1-1:1 0 4-1 4 GOWM3IN
O=4313INVYVd J1VYNi1S3 d313INvYvd
‘OH ¥04 1
9Y6PLS OV6LOIBITL ' Sagon3Iy
05900€ "E$90€80L TLIT ' O0NMIN
SS 1 3dAL 40 32¥N0S
000000 " LB61BLTGELIST oz IVI0L GILDIYVOINN
YOreTi "EFPELLEIEIT -1 Hoyy3
06SGL0 €GSBLO6TYYZT (4 REL L]
S34YNDS 40 WNS 40 308n0S
SHYHNYNW :3ITBVINYA INIONIJIC
*TT 91qes

3-41



LSYBLLYE OV 5199°0 TS 9¥90V86L " T9- ALX1dWOD
6GLLYIZE TEY 62v0°0 61z 99LLYOVS 68T SQON3Y
L5988898G " 004 z000°'0 LL'Y LYEGOEDD 6LV QOWM3IN
I1YWILSI O=4313NVivd I1VNILS] HILINVYVI
40 You¥3 OLS 11] < ud TOM ¥O4 L
$199°0 oz'o 1SZLO9 GTTTLTIIE : 5199°0 0z'0 1GZL09 STTTTTILE ] ALX1dWOD
6TY0°0 6L’y TLESBY "TII08190SL ) 99Y0°0 09V 9v6rLS OP6LBIBITL ' saon3y
. T000°0 9L TT €10BLY LOVEBYI UIGE ' $000°0 [-1-38: 1]} 0S900€ " €190€801ZLIT | OONM3N
4 < ¥d INTIVA 4 SS Al 3dAL 40 4 < ud INIVA 4 SS 1 3dAL 10 373¥N0S
N
000000SL * 8OFZ8 6008 ¥ SES6E 000000" LEGLELTEEISE  OF V101 031333300NN Aw
NY3IN SHHNYW A30 O1S . 981 TPy "OEL L6LLISH 991 LIS  LITISSTGI9T Lt HOHY3 ™
9LyYO" 8Y 0B6EGS "0 1000 0 8L LY 0£6091 "E6SEIYEIGFL  OCBTBY BLLOVZOVLYZZ € 1300M °
‘A°D IYVNOS-Y 4 < ud INVA 4 3YVYNDS NvY3W S34VNOS 40 WNS 40 324N0S

SHHNYW :3THYIHYA INIONILIO

JYNA3IO0Nd STIA0W YVINIT IVYINID

19poW Butjeutlsy 99IN0S8Y IATIRUIBITY 2T 2@T19ed




690008000 1000°0
31vwiisa

40 ¥0¥¥3 01$ J1} < 84
1000°0 V¥ 56081 ¥6Y0LOSS 8YET ' 10000 1 G606}
4 < ¥d aniva 4 SS Al 3dAL 40 4 < ¥d INIVA 4
16269984 08 8L6690SE 0
NY3IN SHHNVYNW A30 a1s YEOE6TZI "0
TIST'€E 900666 "0 1000 0 ¥ G606 PErOLOSS " BPET
‘A’D IWYNOS-¥ 3 < ¥d nwva 4 3UYNOS NYIN

3YNAID0Y4 ST300M YVINIT TVEINID

61 "9¢cl
0=U31INVYYI
‘OH ¥04 1
¥6V0LOSS "BYET

SS 1 3dAL

SEITSL88° 0OSET
I¥9189€E°T
v6+0L0OSS " BYET

S3¥vYNOS J0 WNS

drysuotrjeray 9z15-30IN0S3aY 3JO TIPOoW boT g1 arqel

(4014 :1-1-{e ] 30 | S3INITA30
31YN11S3 ¥3I13Invyvd
] SINITAI0
40 324N0S
oz V101 G31D3IUYOINN
61 yoHY3I
] T3I00n
40 303n0S

SYHNYH :3T1BVINVA INIONIL3IO0

43




A3 9L
88 EET
8 TVS'¥ 6°0vC’8
T°160°€ v 89G°S
S9¢'9T TIL'9€E
0SS ‘€T 826°'Ge
29L G566
NVIAQaW NVEN

SHINSYVAW ¥0d SOILSILYLS AYVWHWAS

B!

SUOWHY
JOWMIN
SYHNYRW
SYHIWOC
SANITLOL
SANTI'TMIN
SADYdO0d

JINSVIR

oTqel

3-44




N30QGIH S80O 310N
aonm3IN
O8r O9r Oy OZF¥ OOF OBC O9E OFE OZE OOE 0BZ OIT OvZ OZT OOZ O8BF 091 OV OTF OO} os 09 or oz (]

e e e i e e e e B e N it it STToIy SepEp SRy EpR s SUPR GRS ISP PO SIS
. [+]

z 2 GG
Z 823
22 z¢
N N N Yy

Y
0000Z

0000€
YN

3-45

000004
00001 1

0000T
S3NIT101

+
+
|
+
|
+
_
+
_
+
|
+
N UYNY . _
+
_
+
|
+
|
+
|
+
|
i

¥ S1 43ISN 10EWAS SAGON3Y¥.SINITI0L 10 104
N ST Q3ISN 108NWAS GONA3N«SINITIOL 40 107d

92z1S 03 sarnpoW Jo drysuorjegay °1 daInbrg




N3Q0IH S80 9 2310N

SASENSON

-
o~
o
N
]
-
<
-
™~
-
@
-
n
-
b4
-
[
-
™
-
-
-
[=]
-
o
-}
~
+ ©
n
-
™
o~
-

000014

Q8 aa
(-]
(]

00007

0000t

0000¢

0000S

00009

0000L

3-46

OOOOﬁ
00006

00000t
000014
0000TH

S3INITL101

G S1 03ISN TOBWAS 13S1VOON.S3INIT10L 40 1074
S S1 43aSN T08WAS , SASBNSON«SINITLOL 30 107d

9z1g 031 walsAs jo drysuorjersy -z danbryg




NJIQQIH SH0 T

CONWMIAN

0By 09 OvPr OT¥ OOF OBE O9E OFPE OTE OOE O8Z 09T Ovt OT 00T OBl 091 Okt OTY 001 o8 09 ov oz o
. it S e e e B il it it bt il e S S N R et S S S R e Lt ST
: +
N ]
N ¥ Ny
N N ¥ Yy
N . ] N Yy +

N Y

N ]
N +
N ]

.} N

3
+
+

N ]
+

N ]
N N ] ]
+
N ] +
N . ]
N

—

4 S1 Q3SN 108BNAS SAOW3Y«SAHNYN JO 107d
N ST 03SN 108NAS GOWAIN.SYHNYN 30 10

310334 3JelS [eAOL 03} SOTNPoW Jo diysuoriersy ‘g aInbrd

310N

o

000ST

0000S

000SL

000001}

000STH

47

0000S

000S LY

00000

000SZT
SUHNVYN




NJIOQIH S80 )

SASHNSON
1] L 91 1) (4} Et 14} " (o]} 6 [} L 9 S v
o - tomm—- oo - L D e it D e L om—-- 4 o ———— D $o----
Q
a a o}
a
[} [¢]
(¢}
(1] S
a
Q S
(4] S
a S
S a S
S
a S

Q SL 03sn 108NWAS 13S1VOON+SYHNYN 40 107d
S S1 03SN 108NAS SASBNSON»SYHNYN 40 107d

310333 33e3S Teiol 03 walsAs jo drysuotrjeisy 'y danbig

w v o awva

-—

310N

0008Z
0000S
000SL
000004
000S5T!
000051
@OQMH—
000002

000SZT
SUHNYH

3-48




SECTION 4 — SOFTWARE MEASUPRES



i
T

SECTION 4 - SOFTWARE MEASURES

The technical papers included in this section were origi-

nally published as indicated below.

Basili, V. R., R. W. Selby, and T. Phillips,
"Metric Analysis and Data Validation Across FORTRAN
Projects," University of Maryland, Technical Report
TR 1228, November 1982 (reprinted by permission of
the authors)

A version of this paper also appears in IEEE Trans-

actions on Software Engineering, November 1983,

vol. 9, no. 7.

Doerflinger, C. W., and V. R. Basili, "Monitoring
Software Development Through Dynamic Variables,"
University of Maryland, Technical Memorandum,
August 1983 (reprinted by permission of the
authors) .

A version of this paper also appears in Proceedings

of the Seventh International Computer Software and

Applications Conference. New York: Computer

Societies Press, November 1983.

Basili, V. R., and B. T. Perricone, "Software Er-
rors and Complexity: .An Empirical Investigation,
"University of Maryland, Technical Report TR-1195,
August 1982 (reprinted by permission of the authors)

A version of this paper will appear in Communica-
tions of the ACM, January 1984, vol. 27, no. 1.




—»\

D5~/

N87-24900

Technical Report TR-1228 November 1982
NSG-5123
AFOSR-F49620-80-C-001

METRIC ANALYSIS AND DATA VALIDATION
ACROSS FORTRAN PROJECTS *

Victor R. Basili, Richard W. Selby, Jr.
and Tsai-Yun Phillips

Department of Computer Science
University of Maryland
College Park, MD 20742

*Research supported in part by the National Aeronautics and Space
Administration Grant NSG-5123 and the Air Force Office of Scientific
Research Contract AFOSR-F49620-80-C-001 to the University of Maryland.
Computer support provided in part by the facilities of NASA/Goddard
Space Flight Center and the Computer Science Center at the University
of Maryland.

_--=3iNG PRGE BLANK NOT FILMED pael Y - L INTENTIONALLY BLANK



ABSTRACT

The desire to predict the effort in developing or explain the
quality of software has led to the proposal of several metrics in
the literature. As a step toward validating these metrics, the
Software Engineering Laboratory has analyzed the Software Science
metrics, cyclomatic complexity and various standard program meas-
ures for their relation to 1) effort (including design through
acceptance testing), 2) development errors (both discrete and
weighted according to the amount of time to locate and fix) and
3) one another. The data investigated are collected from a pro-
duction FORTRAN environmenﬁ and examined across several projects
at once, within individual projects and by individual programmers
across projects, with three effort reporting accuracy checks
demonstrating the need to validate a database. When the data
come from individual programmers or_certain validated projects,
the metrics’ corﬁelations with actual effort seem to be strong-
est. For modules developed entirely by 1ndividuai programmers,
the validity ratios induce a statistically significant ordering
of several of the metrics’ correlations. When comparing the
strongest correlations, neither Software Science’s E metriec,
ecyclomatic complexity nor source lines of code appears to relate

convineingly better with effort than the others.




I. Introduction

Several metrics based on characteristiecs of the software
product have appeared in the literature. These metrics attempt
to predict the effort in developing or explain the quality of
that software [11], [17], [19], [23]. Studies have applied them
to data from various organizations to determine their validity
and appropriateness [1], [13], [15]. However, the question of
how well the various metrics really measure or predict effort or
quality 1is still an 1issue in need of confirmation. Since
developmént environments and types of software vary, individual
studies within organizations are conround;d by variations in the
predictive powers of the metrics. Studies across different
environments will be needed before this question can be answered

with any degree of confidence.

Among the most popular metrics have been the Software Sci-
ence metrics of Halstead [19] and the cyclomatic complexity
metric of McCabe [23]. The Software Science E metric attempts to
quantify the complexity of understanding an algorithm.
Cyclomatic complexity has been applied to estabiish quality
thresholds for programs. Whether these metrics relate to the con-
cepts of effort and quality depends on how these factors are
defined and measured. The definition of effort employed in this
paper is the amount of time required to produce the software pro-
duct (the number of man-hours programmers and managers spent from
the beginning of functional design to the end of acceptance test-

ing). One aspect of software quality is the number of errors




reported during the product’s development, and this is the meas-

ure associated with quality for this study.

Regarding a metric evaluation, there are several issues that
need to be addressed. How well do the various metrics predict or
explain these measures of effort and quality? Does the correspon-
dence increase with greater accuracy of effort and error report-
ing? How do these metrics compare in predictive power to simpler
and more standard metrics, such as lines of source code or the
number of executable statements? These questions deal with the
external validation of the metrics. More fundamental questions
exist dealing with the internal validation or consistency of the
metrics. How well do the estimators defined actually relate to
the Software Science metrics? How do the Software Scilence
metrics, the cyclomatic complexity metric and the more tradi-
tional metrics relate to one another? In this paper, both sets
of issues are addressed. The analysis examines whether the given
family of metrics is internally consistent and attempts to deter-
mine how well these metrics really measure the quantities that

they theoretically describve.

One goal of the Software Engineering Laboratory [61, (7],
(8], [10], a Jjoint venture between the University of Maryland,
NASA/Goddard Space Flight Center and Computer Sciences Corpora-
tion, has been to provide an experimental database for examining
these relationships and providing insights into the answering of

such questions.




The software comprising the database 1is ground support
software for satellites. The systems analyzed consist of 51,000
to 112,000 lines of FORTRAN source code and took between 6900 and
22,300 man—houfs to develop over a period of 9 to 21 months.
There are from 200 to 600 modules (e.g., subroutines) in each
system and the staff size ranges from 8 to 23 people, including
the support bersonnel. While anywhere from 10 to 61 percent of
the source code is modified from previous projects, this analysis

focuses on just the newly developed modules.

The next section discusses the data collection process and
some of the potential problems involved. The third section
defines the metrics and interprets the counting procedure used in
their calculation. In the fourth section, the Software Science
metrics are correlated with their estimators and related to more
primitive program measures. Finally, the fifth section deter-
nines how well this collection of volume and complexity metrics

corresponds to actual effort and developmental errors.

Il. The Data

The Software Engineering Laboratory collects data that deal
with many aspects of the development process and product. Among
these data are the effort to design, code and test the various
modules of the systems as well as the errors committed during
their development. The collected data are analyzed to provide
insights into software development and to study the effect of

various factors on the process and product. Unlike the typical



controlled experiments where the projects tend to be smaller and
the data collection process dominates the development process,
the major concern here is the software developmeqt process, and
the data collectors must affect minimal interference to the

developers.

This creates potential problems with the validity of the
data. For example, suppose we . are interested in the effort
expended on a particular module and one programmer forgets to
turn in his weekly effort report. This can cause erroneous data
for all modules the programmer may have worked on that wveek.
Another problem is how does a programmer report time on the
integration testiné of three modules? Does he charge the time to
the parent module of all three, even though that module may be
just a small driver? That is clearly easier to do than to propor-
tion the etforﬁ between all three modules he has worked on.
Another issue is how to count errors. An error that is limited to
one module is easy to assign. What about an error that required
the analysis of ten modules to determine that it affects changes
in three modules? Does the programmer associate one error with
all ten modules, an error with just the three modules or one

third of an error with each of the three?~ The larger the system

~ Efforts [18], [21] have attempted to make this assignment
scheme more precise by the explanation: a "fault" is a specific
manifestation in the source code of a programmer "error®™; due to
a misconception or document discrepancy, a programmer commits an
"error" that can result in several "faults" in the program. With
this interpretation, what are referred to as errors in this study
should probably be called faults. In the interest of consistency
with previous work and clarity, however, the term error will be
used throughout the paper.




the more complicated the association. All this assumes that all
the errors are reported. It is common for programmers not po
report clerical errors because the time to £f1il1ll out the error
report form might take 1longer than the time to fix the error.
These subtleties exist in most observation processes and must be
addresseq‘in a fashion that is consistent and appropriate for the

environment.

The data discussed in this paper are extracted from several
sources. Effort data were obtained from a Component Status
Report that is filled out weekly by each programmer on the pro-
ject. They report the time they spend on each module in the sys-
tem partitioned into the phases of design, code and test, as well
as any other time they spend on work related to the project,
e.g., documentation, meetings, etc. A module is. defined as any
named object in the system; that is, a module is either a main
procedure, block data, subroutine or function. The Resource Sum-
mary Fornm, filled out weekly by the project management,
représenta accounting data and records all time charged to the
project for the various personnel, but does not break effort down
on a module basis. Both of these effort reports are utilized 1in
Section V of this paper to validate the effort reporting on the
modules. The errors are collected from the Change Report Forms
that are completed by a programmer each time a change is made to
the system. While the collection of effort and error data 1is a
subjective process and done manually, the remainder .of the

software measures are objective and thelr calculation is




automated.

A static code analyzing program called SAP [25] automati-
cally computes several of the metrics examined in this analysis.
On a module basis, the SAP progran ‘determines the number of
source and executable statements, the cyclomatic complexity, the
primitive Software Science metrics and various other volume and
complexity related measures. Computer Sciences Corporation
developed SAP specifically for the Software Engineering Labora-
tory and the program has been recently updated [14] to incor-
porate a more consistent and thorough counting scheme of the
Software Science parameters. In an earlier study, Basili and
Phillips [3] employed the preliminary version of SAP in a related
analysis. The next section explains the revised counting pro-

cedure and defines the various metrics.

III. Metric Definition

In the application of each of the metrics, there exist vari-
ous ways to count each of the entities.  This section interprets
the counting procedure used by the updated version of SAP and
defines each of the metrics examined in the analysis. These
definitions are given relative to the FORTRAN 1language, since
that 1is the language used in all the projects studied here. The
counting scheme depends on the syntactic analysis performed by
SAP and is, therefore, not necessarily chosen to coincide exactly

with other definitions of the various counts.




Primitive Software Science metrics Software Science

defines the vocabulary metric n as the sum of the number of
unique operators n1 and the number of unique operands n2. The
operators fall into three classes.

i) Basic operators include

-+ - * / s = () & // .NE. OEQO .LE. .LT.
.GE. «GT. «AND. +.OR. .XOR. .NOT. .EQV. L.NEQV.

ii) Reyword operators include

IF() THEN /% logical if %/
IF() THEN ELSE /% logical if-then-else #*/
IfF() , , /% arithmetic if %/
IF() THEN ENDIF /% block if #/
IF() THEN ELSE ENDIF /% block if-then-else #/
IF() THEN
ELSEIF() THEN

cee ENDIF /% case if #/
DO /% do loop #/
DOWHILE /* while loop #/
GOTO <target> /% unconditional goto: distinct

. targets imply different operators #/

GOTO (T1...Tn) <expr> /* computed goto: different number of
targets imply different operators #/

GOTO <ident>, (T1...Tn) /* assigned goto: distinct identifiers

. . imply different operators #/
<subr>( , ,®<targetd) /®* alternate return #/

END= /%* read/write option %/
ERR= /* read/write option #/
ASSIGNTO /®* target assignment %/
EOS /% implicit statement delimiter %/

1i1) Special operators consist of the names of subroutines,
functions and entry points.

Operands consist of the all variable names and constants. Note
that the major differences of this counting scheme from that used
by Basili and Phillips [3] are in the way goto and if statements

are counted.

The metric n#* represents the potential vocabulary, and

Software Science defines it as the sum of the minimum number of



operators ni1#®* and the minimum number of operands n2%, The poten-
tial operator count ni1®* is equal to two; that is, n1®* equals one
grouping operator plus one subroutine/function designator. In
this paper, the potential operand count n2®% is equal to the sum
'ot the number of variables referenced from common blocks, the
number of formal parameters in the subroutine and the number of

additional arguments in entry points.

Source lines This is the total number of source lines that

appear in the module, including comments and any data statements

while excluding blank lines.

Source lines - comments This is the difference between the

number of source lines and the number of comment lines.

Executable statements This is the number of FORTRAN exe-

cutable statements that appear in the program.

Cyclomatic complexity Cyclomatic complexity is defined as

being the number of partitions of the space in a module’s
control-flow graph. For programs with wunique entry and exit
nodes, this metric is equivalent to one plus the number of deci-
sions and in this work, is equal to the one plus sum of the fol-
lowing constructs: logical 1if’s, if-then-else’s, block-if’s,
block if-then-else’s, do loops, while loops, AND’s, OR’s, XOR’'s,
EQV’s, NEQV’'s, twice the number of arithmetic if°s, n - 1 deci-

sion counts for a computed goto with n statement labels and n




decision counts for a case if with n predicates.

A variation on this definition excludes the counts of AND’s,
OR’s, XOR’s, EQV’s and NEQV s (later referred to as

Cyclo_cmplx_2).

Calls This is the number of subroutine and function invo-

cations in the module.

Calls and jumps This is the total number of calls and

decisions as they are defined above.

Revisions This is the number of versions of the module

that are generated in the program library.

Changes This is the total number of changes to the system
that affected this module. Changes are classified into the fol-
lowing types (a single change can be of more than one type):

a. error correction

b. planned enhancement

¢. implement requirements change

d. improve clarity

e. improve user service

f. debug statement insertion/deletion
g. optimization

h. adapt to environment change

i. other

Weighted changes This is a measure of the total amount of

effort spent making changes to the module. A programmer reports

the amount of effort to actually implement a given change by



indicating either

a. less than one hour,

b. one hour to a day,

¢c. one day to three days or

d. over three days.
The respective means of these durations, 0.5, 4.5, 16 and 32
hours, are divided equally among all modules affected by the
change. The sum of these effort portions over all changes

involving a given module defines the weighted changes for the

module.

Errors This is the total number of errors reported by pro-
grammers; 4i.e., the number of system changes that listed this
module as involved in an error correction. (See the footnote at

the bottom of page 4 regarding the usage of the term "error".)

Weighted errors This is a measure of the total amount of

effort spent isolating and fixing errors in a module. For error
corrections, a programmer also reports the amount of effort spent
isolating the error by indicating either

a. less than one hour,

b. one hour to one day,

¢c. more than one day or

d. never found.
The representative amounts of time for these durations, 0.5, 4.5,
16 and 32 hours, are combined with the effort to implement the
correction (as calculated earlier) and divided equally among the
modules changed. The sum of these effort portions over all error

corrections involving a given module defines the weighted errors

for the module. -




IV. Internal Validation of the Software Science Metrics

The purpose of this section 1is to briefly define the
Software Science metrics, to see how these metrics relate to
standard program measures and to determine if the metrics are
internally consistent. That 1is, Software Science hypothesizes
that certain estimators of the basic parameters, such as program
length N and program 1level L, can be approximated by formulas
written totally in terms of the number of unique operators and
operands. Initially, an attempt is made to find correlations
between various definitions of these quantities based on the
interpretations of operators and operands given in the previous
section. Then, the family of metrics that Software Science pro-

poses is correlated with traditional measures of software.

Program length Program length N is defined as the sum of

the total number of operators ﬂ1 and the total number of operands
N2; i.e., N = N1 + N2. Software Science hypothesizes that this
can be approximated by an estimator N” that is a function of the
vocabulary, defined as
N® = n1log2(nt) + n2log2(n2).

The scatter plot appearing in Figure 1 and Pearson correlation
coefficient of .899 (p < .001; 1794 modules)”~ show the relation-
ship between N and N° (polynomial regression rejects including a
second degree term at p = .05). Several sources [12], [16],

[26], ([27] have observed that the length estimator tends to be

~ The symbol p will be used to stand for significance level.




high for small programs and low for large programs. The correla-
tions and significance levels for the pairwise Wilcoxon statistic
[(20], broken down by executable statements and length, are
displayed in Table 1. In our environment, either measure of size
demonstrates that N° significantly overestimates N in the first
and second quartiles and underestimates it (most significantly)
in the fourth quartile. Feuer and Fowlkes [15] assert that the
accuracy of the relation between the natural logarithms of
estimated and observed length changes less with program size. The
scatter plot appearing in Figure 2 and correlation coefficient
for 1n N vs. 1n N of .927 (p < .001; 1794 modules) show moderate

improvement.

<< Figure 1 >>

Table 1. Observed vs. estimated length broken down by program size.

a. N vs. N broken down by executable statments. .
XQT STMTS MODS R™ ESTIMATION WILCOXON SIGNIF
0 - 19 446 .601 over <<.0001
20 - U0 442 <511 over <<.0001
41 - 78 us7 .478 under .0367
79 <= 449 <751 under <<.0001
b. N vs. N° broken down by N.
Length N MODS R™ ESTIMATION WILCOXON SIGNIF
0 - 114 449 .750 over ’ €<<.0001
115 - 243 445 LUn7 over <<.0001
244 - 512 453 .348 under .0010
513 <= byt «T31 under <<.0001
= (p < .001)

<< Figure 2 >>




Program volume A program volume metric V defined as N

log2 n represents the size of an implementation, which can be
thought of as the number of bits necessary to express 1it. The
potential vélume V# of an algorithm reflects the minimum
representation of that algorithm in a language whefe the required
operation 1is already defined or implemented. The parameter V'iis
a function of the number of input and output arguments of the
algoriéhm and is meant to be a measure of its specification. The
metric V® is defined as
V® = (2 + n2%) log2 (2 + n2%*).

The correlation coefficient for V vs. V® of .670 (p < .001; 1794
modules) shows a reasonable relationship between a program’s

necessary volume and its specification.

Program level The program level L for an algorithm 1is

defined as the ra&io of its potential volume to the size of its
implementation, expressed as |
L = VY¥/V.

Thus, the highest level for an algorithm is its program specifi-
cation and there L has-value unity. The larger the size of the
required implementation V, the lower the program 1level of the
implementation. Since L requires the calculation of V¥%, which is
not always readily.obtainéble, Software Science hypothesizes that

L can be approximated by



The correlation for L vs. L° of .S531 (p < .001; 1794
modules) 1s disappointingly below that of .90 given in {191].
Hoping for an increase in the correlations, the modules are par-
titioned by the number of executable statements in Table 2.
Although the upper quartiles show measured improvement over the
correlation of the whole sample, a more interesting relationship
surfaces. The level estimator significantly underestimates the
program level in the second, third and fouréh quartiles, with the
hypothesis being rejected in the first quarﬁlle. The increase in
magnitude of the n2%* parameter does not appear to be totally cap-
tured by the definition of L°-.

Table 2. Relationship of observed vs. estimated program level
broken down by program size.

XQT STMTS MODS R” ESTIMATION WILCOXON SIGNIF
0 - 19 446 .48% - -

20 - 40 442 .672 under <<.0001

41 - 78 457 .597 under <<.0001

79 <= 449 .615 " under <<.0001
all 1794 .531 under <<.0001

= (p < .001)

Program difficulty The program difficulty D is defined _as

the difficulty of coding an algorithm. The metric D and the pro-
gram level L have an inverse relationship; D is expressed

D = 1/L .
An alternate interpretation of difficulty defines it as the

inverse of L, given by

|



1 niN2

D2 =2 == 2 cocaa-
L® 2 n2
Christensen, Fitsos and Smith [12] demonstrate that the unique
operator count n1 tends to remain relatively constant with
respect to length for 490 PL/S programs. They propose that the
average operand usage N2/n2 is the main contributor to the pro-
gram difficulty D2. The scatter plot appearing in Figure 3 and
Pearson correlation coefficient of .729 (p < .001; 1794 modules)
display the relationship between N2/n2 and D2 for our FORTRAN
modules. The application of polynomial regression brings in a
second degree term (p < .001) and results in a correlation of

-738.

<< Figure 3 >>

However, after observing in Figure 4 that n1 varies with progranm
size, it seems as if the ni1’s inflation might possibly better
explain D2. The scatter plot appearing in Figure 5 and the
correlation of .865 (p < .001; 1794 modules) show the relation-
ship of D2 vs. n1. Step-wise polynomial regression brings in a
second degree term initially, followed by a linear term (p <
.001), and results in a correlation of .879. 1In our environment,
the unique operator count n!1 explains a greater proportion of the
variance of the difficulty D2 than the average operand usage

N2/n2.

<< Figure U4 >>



<< Figure 5 >>

Program effort The Software Science effort metric E

attempts to quantify the effort required to comprehend the imple-
mentation of an algorithm. It is defined as the ratio of the
volume of an implementation to its level, expressed as

\ (v)ss=2

E 2 cce 2 macaea ,
L \Ad
The E metric increases for programs implemented with large
volumes or wqitten at low program levels; that is, it varies with
the square of the volume. An approximation to E can be obtained
without the knowledge of the potential volume by substituting L®

for L in the above equation. The metric

v n1l N2 V n1 N2 N log2 n

E‘ 2 - . w» - : - an an ar ab @ o @ e = - D WD D D S P D D WD D B WD en -
L 2 n2 2 n2
defines the product of one half the number of unique operators,
the average operand usage and the volume. In an attempt to
remove the effect of possible program impurities [9], [19], N~ is

substituted for N in the above equation, yielding

The correlation coefficients for E vs. E*, E vs. E°", 1n E vs. 1ln
E® and in E vs. 1ln E”" are given in Table 3a. A fit of a least

squares regression line to the log-log plot of E vs. E” produces




the equation

ln E = .830%1n E” + 1.357 .
Equivalently,

E = exp(1.357) & (E")##0,830 .
Due to this non-=linear relationship and the improved correlation
of ln E vs. 1ln E®, the modules are partitioned by executable
statements in Table 3b. The application of polynomial regression
confirms this non-linearity by bringing in a second degrée term
(p < .001), resulting in a correlation of .698. In Table 3b,
notice that the correlations seem substantially better for
modules below median size. The significant overestimation in the
upper three quartiles attributes to the relationship of L and L”

described earlier.

Table 3. Observed vs. estimated Software Science E metric.

a. Pearson Correlation (p < .001; 1794 modules).

R
E vs. E* .663
ln E vs. 1n E® «931
E vs, E*° .603

in £ vs. 1n E*° .890

b. E vs. E® broken down by executable statements.

T XQT STMTS  MODS R= ESTIMATION WILCOXON SIGNIF
0 - 19 . 446 .708 under .0050
20 - U0 4y2 .T709 over <<.0001
41 - 78 457 411 over <<.0001
79 <= 4agqg .550 over £<<.0001

= (p < .001)

Program bugs Software Science defines the bugs metric B as

the total number of "delivered"” bugs in a given implementation.

Not to be confused with user acceptance testing, the metric B 1is

4-21



the number of inherent errors in a system component at the com-
pletion of a distinet phase in 1its development. Bugs B is
expressed by

E v

Bz L e =z --

Eo Eo
where Eo is theoretically equivalent to the mean number of ele-
mentary discriminations between potential errors in programming.
Through a calculation that employs the definitions of E, L and
lambda (lambda = LV* is referred to as the language level), this
equation becomes

(lambda)®#1/3 (E)#*#2/3

B = - D ah D e D WD b WD D WD P D =S - - = °
Eo
The derivation determines an Eo value of 3000, assumes

(lambda)®*®#1/3 ~= 1 and obtains

(E)®#2/3

The correlation for B vs. B® is .789 (p < .001; 1794 modules).

In summary, the relationship of some of the Software Science
metrics with their estimators seems to be program size dependent.
Several observations lead to the result that the metric N° signi-
ficantly overestimates N for modules below the median size and
underestimates for those above the median size. The level estima-

tor L° seems to have a moderate correlation with L, and its sig-




nificant underestimation of L 4in the upper three quartiles
reflects 1its failure to capture the magnitude of n2% in the
larger modules. With respect to the E metric, the effort estima-
tor E® correlates better over the whole sample than E**, and
their strongest correlations are for modules below median size.
The estimator E" shows a non-linear relationship to the effort
metric E. The correlation of 1ln E vs. 1ln E® significantly
improves over that of E vs. E*, with the E” metric’s overestima-
tion of E for larger modules attributing to the role of L" in its
definition. With the above family of metrics, Software Science
attempts to quantify size and complexity related concepts that
have tra&itionally been described by a more fundamental set of

measures.

Table 4 displays the correlations of the Software Science
metrics Qith the élassical program measures of source lines of
code, cyclomatic complexity, etec. There are several observations
worth noting. Length N and volume V have remarkably similar
correlations and correspond quite well with most of the program
measures. Several of the metrics correlate well with the number
of executable statements, especially the program "size" metrics
of N1, N2, N and v (also B). The level estimator L and its
inverse D2 seem to be much more related to the standard size and
complexity measures than their counterparts L and D1. The
language level lambda does not seem to show a significant rela-
tionship to the standard size and complexity measures, as

expected. The E*" metric relates best with the number of execut-



able statements and the modified cyclomatic complexity, while
correlating with all the ﬁeasures better than the E metric ‘and
slightly better than E°. None of the Software Science measures
correlate especially well with the number of revisions or the sum

Table 4. Comparison of Software Science metrics against more
traditional software measures.

Key: ? not significant at .05 level
b significant at .05 level
a significant at .01 level

otherwise significant at .001 level

Source_Lines Source-Cmmts Cyclo_cmplx_2 Calls_&_ Jumps

| | T |
|

} Execut_Stmts| Cyclo_cmplx Revisions |

! | |
a1l «T76 .854 .778 . 796 .818 «361 .802
n2 .852  .867 .853  .767 .TT4  .430 .809
N1 .824  .964 .368  .881 .889  .328 .869
n2* .792 «691 +.T54 .635 .629 «501 .683
N .829 <961 .873 .874 .884 .343 874
N°® .864  .897 .864  .800 .811 . 420 .836
v - .837 .962 .875  .873  .883  .343 .876
Ve T76 677 .T34  .618 <611 . 485 .66
L «.098 -.179 =-.112 =.170 =.173 ? -.158
L® -.383 -.%11 -.394% -.389 -.396 -.216 -.386
D1=1/L .067a .244 113 178 .196 -.093 . 134
D2=1/L" .696 .872 .T45 .816 .839 .269 « 791
N2/n2 . 365 544 . 437 .508 <517 106 <470
Lambda .136 ? .108 ? ? .138 ?
E <439 .629 .500 .535 .556 .106 .506
E” .663 .831 .T11 «T71 «.T97 .224 .T48
E°" .738  .871 .760  .799  .829 .268 .788
B -~ .837 .962 .875 .873 .883 . 343 .876
B® 546 .T49 .610 .650 .670 . 149 .620

Calls

542
.614
.552
<597
‘5“1

«5T7
.621
Osau
.525
.083

.250
?

478
241

.051%

.282
452
.501
.584
«355

= B and V will have identical correlations since they are linear

functions of one another.

|
|



of procedure and function calls. The primary measures of unique
operators nl and unique operands n2 correspond reasonably well
overall with n2 being stronger with source lines and n1 stronger
with the cyclomatic complexities. In the next section, an
analysis attempts to determine the relationship that these param-

eters really have with the quantities that they theoretically

.describe.

V. External Validation of the Software Science and Related Metrics

The purpose of this section is to determine how well the
Software Science metrices and various complexity measures relate
to actual effort and errors encountered during the development of
software in a commercial environment. These objective product
metrics are compared against more primitive volume metries, such
as 1lines of source code. The reservoir of development data
includes the monitoring of several projects and the analysis
examines several projects at once, individual projects and indi-
vidual programmers across projects. To remove the dependency of
the distribution of the correlation coefficient on the actual
measures of effort and errors, the nonparametric¢c Spearman rank
order correlation coefficients are examined in this section [22].
(The ability of a few data points to artificially inflate or
deflate the Pearson product-moment correlation coefficient is
well recognized.) The analysis first examines how well these
measures correspond to the total effort spent in the development

of software.



A. Metrics”® Relation to Actual Effort

Initially, a correlation across seven projects of the
Software Science E metric vs. actual effort, on a module by
module basis using only those that are newly developed, produces
the results in Table 5. The table also displays the correlations
of some of the more standard volume metrics with actual effort.
These disappointingly low correlations create a fear that there

Table 5. Spearman rank order correlations Rs with effort for
all modules (731) from all projects.

Keys ? not significant at .05 level
* significant at .05 level
a significant at .01 level

otherwise significant at .001 level

g '3”5
E® 445
E*" . 488
Cyclo_cmplx .463
Cyclo_cmplx_2 L8467
Calls <U1Y
Calls_&_Jumps <494
D1=1/L .126
p2=1/L" <417
Source_Lines .522
Execut_Stmts 456
Source~-Cmmts .460
v .u48
N .434
etal . 485
eta2 <461
B .448
B® . 345
Revisions .531
Changes .469
Weighted_Chg .468
Errors «220
Weighted Err .226
4-26




may be some modules with poor effort reporting skewing the
analysis. Since there is partial redundancy built into the effort
data collection process, there exists hope of validating the

effort data.

Validation of effort data The partial redundancy in the

development monitoring process is that both managers and program-
mers submit effort data. Individual programmers record time spent
on each module, partitioned by design, code, test and support
phases, on a weekly basis with a Component Status Report (CSR).
Managers record the amount of time every programmer spends work-
ing each week on the project they are supervising with a Resource
Summary Form (RSF). Since the latter form possesses the enforce-
ment associated with the_distribution of financial resources, it
is considered more accurate [24]. However, the Resource Summary
Form does not break effort down by module, and thus a combination

of the two forms has to be used.

Three different possible effort reporting validity checks
are proposed. All employ the idea of selecting programmers that
tend to be good effort reporters, and then using just the modules
that only they worked on in the metric analysis. The three pro-

posed effort reporting validity checks are:

numbeb of weekly CSR’s submitted by programmer

ae. vm = P L L X T P T . L L L L L R R R R - an e o

number of weeks programmer appears on RSF’s




sum of all man-hours reported by programmer on all CSR’s

b. vt = - o w - - - - w - - - D P D D D WD D WP D D D WP D S WS T AR UD D A D D D W D W W S D W

sum of all man-hours reported for programmer on all RSF’s

number of weeks programmer’s CSR effort > RSF

Ce Vi =2 1 «a cececccccccccccscccesecscsscccocccnoo=- cnmeeme=

effort

total number of weeks programmer active in project

The first validity proposal attempts to capture the frequency of
the programmer’s effort reporting. It checks for missing data by
ranking the programmers according to the ratio Vm of the number
of Component Status Reports submitted over the number of weeks
that the programmer appears on Resource Summary Forms. The second
validity proposal attempts to capture the total percentage of
effort reported by the programmer. This proposal ranks the pro-
grammers according to the ratio Vt formed by the sum of all the
man-hours reported on Component Status Reports over the sum of

all hours delegated to him on Resource Summary Foras.

Note that for a given week, the amount of time reported on a
Component Status Report should be always less than or equal to
the amount of time reported on the corresponding Resource Summary
Form. This 1is got because the programmer fails to "cover" him-
self, but a consequence of the management s encouragement for
programmers to realisticly allocate their time rather than to
guess in an ad hoc manner. This observation defines a third vali-
dity - proposal to attempt to capture the frequency of a

programmer ‘s reporting of inflated effort. This data check ranks




the programmers according to the quantity Vi equal to one minus
the ratio of the number of weeks that CSR effort reported
exceeded RSF effort over the total number of weeks that the pro-

grammer is active in the project.

Metrics® relation to validated effort data Of the given

proposals, the systems development head of the institution where
the software is being developed suggests that the first proposal,
the missing data check, would be a good initial attempt to select
moduies with accurate effort reporting [24]. The missing data
ratios Vm are defined for programmers on a project by project
basis. Table 6 displays the effort correlations of the newly
developed modules worked on by only programmers with Vm >= 90%
from all projects, those with Vm >= 80% and for all newly
developed modules. Most of the correlations of the modules
included in the Vm >z 90% level seem to show improvement over
those at the Vm >z 80% level. Although this is the desired effect
and several of the Vm >= 90% correlations increase over the ori-
ginal values, a majority of the correlations with modules at the
Vm >= 80% level are actually lower than their original coeffi-
cients. Since the effect of the ratio’s screening of the data is
inconsistent and the overall magnitudes of the correlations are
low, the analysis now examines modules from different projects

separately.

|

4-29




Table 6. Spearman rank order correlations Rs with effort for modules
across seven projects with various validity levels.

Key: ? not significant at .05 lavel
¢ significant at .05 level
a significant at .01 level

otherwise significant at .001 level

Validity ratio Vm (#mods)
al11(731) 80%(398) 90%(215)

E . 345 .307 «357
e” . 445 .B22 <467
E"" .488 . 480 .513
Cyclo_cmplx .463 U457 <479
Cyclo_cmplx_2 <867 .454 .506
Calls 413 «360 .802
Calls_&_Jumps 494 . 875 <479
D1=1/L . 126 .088¢ ?

D2=1/L" <417 «371 <421
Source_Lines 522 .519 .501
Execut_Stmts .856 .429 475
Source-Cmmts .360 . 420 . 439
v 448 438 <875
N -434 416 . 460
etal . 485 <462 .493
eta2 461 467 .503
B .hu8 434 475
B* .345 .307 357
Revisions .531 .580 .565
Changes L8469 . 495 .385
Weighted_Chg .468 .521 .h62
Errors .220 .381 .205
Weighted_Err .226 .382 247

The Spearman correlations of the various metrics with effort

for three of the individual projects appear in Table 7.

g . .



Table 7. Spearman rank order correlations Rs with effort for
various validity rankings of modules from individual

projects S1, S3 and S87.

Key: ? not significant at .05 level
b significant at .05 level
a significant at .01 level
otherwise significant at .001 level
z unavailable data
Project
S1 S3- S7~~
Validity ratio
Vm all 80% 90% 80% 90% all 80%
#modules 79 29 20 132 81 127 49
E .613 .64T .T726 JU469 U419 .285 .409a
E® .665 .T13 .T46 .602 .585 .389 .569
E~" .700 .747 .798 .638 .640 .430 .567
Cyclo_cmplx .T57 .T78 .792 .583 .608 463 .523
Cyclo_cmplx_2 .764 .785 .787 .609 .664 491 .523
Calls .681 .698 .818 L4482 L1492 .40u4 .48s5
Calls_&_Jumps .776 .813 .822 .594 .619 .488 .569
D1=1/L .262a ? ? .156% ? ? ?
D2=1/L" .625 .681 .745 .507 .u42 «377 .499
Source_Lines .686 .672 .T29 .TH3  .T734 .486 .499
Execut_Stmts .688 .709 .781 .609 .594 .408 .515
Source-Cmmts .670 .T10 .778 .671 .654 <416 .47
v .657 .692 .7TT4 .627 .637 «377 .M497
N .653 .680 .755 .613 .619 .360 .48%4
etal .683 .740 .848 «553 .533 .439 .431
eta2 667 .TO1 .TUT .643 .698 .365 .445
B .657 .692 .TT4 .627 .637 <377 .497
B® .613 .643 .T726 .469 .419 .285 .409a
Revisions 677 .T1T .804 .655 .632 .449 .510
Changes .687 .645 .760 .672 .639 .238a .380a
Weighted_Chg .685 .629 .Tu9 .673 .649 .238a .256%
Errors z z z .644 611 .253a .438
Weighted_Err z z z .615 .605 .245a .276%

® All modules in project S3 were developed by programmers
with vm >= 80%.

~~ There exist fewer than a significant number of modules developed
by programmers with Vm >= 90%.



Although the correlation coefficients vary considerably between
and among the pfojects, the overall improvement in projects S1
and S3 is - apparent. Almost every metric’s correlation with
development effort increases with the more reliable data in pro-
jects~s1 and S7. When comparing the strongest cqrrelations from
the. seven individual projects, neither Software Science'sbs
metrics, cyclomatic complexity nor source lines of code relates
convincingly better with effort than the others. Note that the

estimators of the Software Science E metric, E” and E®", appear

to show a stronger relationship to actual effort than E.

The validity scréening process substantially 4improves the
correlations for some projects, but not all. This observation
points toward the existence of project dependent factors and
interactions. In an attempt to minimize these intraproject
effects, the analysis focuses on 1individual programmers across
projects. Note that Basili and Hutchens [2] also suggest that
programmer differences have a large effect on the results when

many individuals contribute to a project.

The use of modules developed solely by individual progranm-
mers significantly reduces the number of #vailable data points
because of the team nature of commercial work. Fortunately, how-
ever, there are five programmers who totally developed at least
fifteen modules each. The correlations for all modules developed
by .them and their values of the three proposed validity ratios
are given in Table 8. The order of increasing correlation coef-

ficients for a particular metric can be related to the order of

4-32

s
; .



Table 8. Spearman rank order correlations Rs with effort for modules
totally developed by five individual programmers.

Key: 2 not significant at .05 level
b significant at .05 level
a significant at .01 level

otherwise significant at .001 level

Programmer (#mods)

P1(31) P2(17) P3(21) P4(24) P5(15)

E «593 ? ? .561a ?
E® .718 .526% «375% «555a .507¢
B~* .789 .570a ? «539a .511¢
Cyclo_cmplx .592 J469% .521a .565a ?
Cyclo_cmplx_2 .684 .583a .481¢# .546a ?
Calls .622 . 787 ? .669 ?
Calls_&_Jumps .701 .604a 451 .579a ?
D1=1/L «3148 ? ? ? ?
D231/LA 0713 .uSO' ? .n97a .u67'
Source_Lines .863 .682 .605a .624 ?
Execut_Stmts <T47 .540¢® .436¢ .631 .53u4%
Source-~Cmmts .826 .576a .530a .612 .509¢%
v .T18 .540¢ JU453% «579%a L451%
N .676 .526% L4618 .556a J4T1
etal .811 .575a S { .536a ?
eta2 «T65 .701 .527a +597 ?
B - .T18 .540¢® L4538 .579%a Lu4518
B* «593 ? ? .561a ?
Revisions .675 .523% <TT7 .u468¢ ?
Changes <4128 .468¢ .600a ? ?
Weighted_Chg .428a .527% .502a ? ?
Errors .386% ? .668 ? .596a
" Weighted Err <3420 ? .624 ? .545¢%

VALIDITY RATIOS (%)

Vm 92.5 96.0 87.7 83.9 74,1

vt 97.9 91.8 98.8 82.1 741

Vi 78.6 69.5 77.6 80.0 87.5

Ave. Vm,Vt 95.2 93.9 93.25 . 83.0 4.1

Ave. Vm,Vi 85.5 82.75 82.65 81.95 80.8
4-33




increasing values for a given validity ratio using the Spearman
rank order correlation. The significance levels of these rank
order correlations for several of the metrics appear in Table 9.
The statistically significant correspondence between the program-
mers’ validity ratios Vm and the correlation coefficients Justi-
fies the use of the ratio Vm in the earlier analysis; possible
improvement is suggested if Vm were combined with either of the

other two ratios.

Table 9. Significance levels for the Spearman rank order correlation

between the programmer’s validity ratios and the correlati

coefficients for several of the metrics.

Ratio

Metric Va vt Vi Ave(Vm,Vt) Ave(Vm,Vi)
B** .09 .09
Cyclo_cmplx

Cyelo_cmplx_2 .05 .02 .02
Calls_&_Jumps .05 .02 .02
Source_Lines .05 A .02 .02
Source-Cmmts .09 .09
v (B) .09 .09
eta2 . .05 .02 .02
Revisions .001 .09° .09 .09

~ Negative correlation.

In summary, the strongest sets of correlations occur between
the metrics and actual effort for certain validated projects and
for modules totally developed by individual programmers. While
relationships across all projects using both all modules and only
validated modules produce only fair coefficients, the validation

process shows patterns of improvement. Applying the validity

KN
)

34

Ave(Vt

.05




_ B Al aE e I..| .'.[ ‘..l ‘... oy B T e ' & L 4 L] 'i.' o !..l

ratio screening to individual projects seems to filter out some
of the project specific interactions while not affecting others,
with the correlations improving accordingly. Two averages of the
validity ratios (Vm yith Vt and Vm with Vi) impose a ranking on
the individual programmers thaf statistically agrees with an ord-
ering of the 1mprovem§nt of several of the correlations. 1In all
sectors of the analyqis, the inclusion of L® in the Software Séi-

ence E " metric in its estimators E~ and E°~ seems to improve the

‘metric correlations with actual effort. The analysis now attempts

to see how well these metrics relate to the number of errors

encountered during the development of software.

B. Metric’s Relation to Errors

This section attempts to determine the correspondence of the
Software Science and related metrics both to the number of
development errors and to the weightéd sum of effort required ¢to
isolate and fix the errors. A correlation across all projects of
the Software Science bugs metric B and some of the standard
volume and complexity metrics with errors and weighted errors,
using only newly developed modules, produces the results in Table.
10. Most of the correlations are very weak, with the exception
of system changes. These disappointingly low correlations attri-
bute to the discrete nature of error reporting and that 340 of
the 652 modules (52%) have zero reported errors. Even though
these correlations show little or no correspondence, the follow=-

ing observations indicate potential improvement.

4-35



Table 10. Spearman rank order correlations Rs with errors and
weighted-errors for all modules (652) from six projects.

Key: ? not significant at .05 level
2 significant at .05 level
a significant at .01 level

otherwise significant at .001 level

Errors Weighted_err-

E .083% .101a
E® <151 171
E®" 163 .186

Cyclo_cmplx .196 .205
Cyclo_cmplx_2 .189 .200

Calls .220 .236
Calls_&_Jumps .235 .248
D1=1/L ? ?

p2=1/L" .124 .140

Source_Lines .255 .265
Execut_Stmts .177 .198
Source-Cmmts .288 .298

v .168 .186
N .162 .180
etal .102a .132
eta2 .181 .199
B .168 .186
B* .083% ,101a
Revisions «37% .375
Changes .677 .636

Weighted_Chg .627 .677

Design_Eff .219 .185
Code_Eff .285 .316
Test_Eff ~.189  .1648
Tot_Effort .324 .332

~ Project S1 has no data to distinguish errors from changes.

Weiss (4], [5) conducted an extensive error analysis that
involved three of the projects and employed enforcement of error

reporting through programmer interviews and hand-checks. For two




of the more recent projects, independent validation and verifica-
tion was performed. In addition, the on-site systems development
head asserts that due to the maturity of the collection environ-

ment, the accuracy of the error reporting is more reliable for

the more recent projects [24]. These developmental differences

provide the motivation for an examination of the relationships on

an individual project basis.

Table 11 displays the attributes of the projects and the
correlations of all the metrics vs. errors and weighted errors
for three of the individual projects. The correlations in S7, a
project involved in the Weiss study, are fair but better than
those of project S5 (not shown) that was developed at about the
same time. Project S4 and S6 (also not sQown) have very poor
oyerall correlations and unreasonably low relationships of revi-
sions with errors, which point to the effect of being early pro-
jJects in the collection effort. The trend that the attributes
produce 1is not very apparent, although chronology and error
reporting enforcement do seem to have some effect. In another
attempt to improve the correlations, the analysis applies the

Table 11. Spearman rank order correlations Rs with errors and
weighted-errors for modules from three individual

projects.
Key: ? not significant at .05 level
* significant at .05 level
a significant at .01 level
otherwise significant at .001 level
Err errors
W_err weighted-errors



Project (#mods)

S$3(132) S4(35) s$7(127)

Err W_err Err W_err Err W_err
E -401 .378 ? ? «397 .391
E® .536 .u482 ? ? .507 .503
E*" «579 .522 ? ? .492 .505
Cyclo_cmplx 542 .481 ? ? 393 .368
Cyclo_emplx_2 .553 .489 ? ? .405 .400
Calls .45 432 .300% ,.316% <423 .419
Calls_&_ Jumps .566 .518 ? ? L8432 L4112
D1=1/L _ ? ? ? ? .168% ,178%#
pD2=1/L" <491 .426 ? ? .563 .559
Source_Lines .648 .622 .339% ? 490 .u487
Execut_Stmts .538 .505 ? ? .478 .U65
Source-Cmmts .599 .568 ? ? .501 .u483
v .541 .895 ? ? .461 .456
N .526 .480 ? ? .U457 .H4u9
etal .550 .500 ? ? .488 .522
eta2 .541 .500 ? ? .348 .367
B 541 ,495 ? ? 461 .456
B* U401 .378 ? ? «396 .390
Revisions .784 .694 .686 .630 .567 .500
Changes .939 .864 .770 - .761 .727 .670
Weighted_Chg .840 .885 .661 .757 .624 .714
Design_Eff ? ? ? ? ? ?
Code_Eff .620 .632 .413a .398a .274  .264
Test_Eff 473 .u81 .312% ? ? ?
Tot_Effort .6u4 .615 .455a .447a .253a .245a
PROJECT ATTRIBUTES
Weiss study X X
IV &V X
Chronology recent early middle

previous section’s hypothesis of focusing on individual program-
mers. Table 12 gives the correlations of the metrics with errors
and weighted errors for modules that two of the individual pro-

grammers totally developed. Even though it is encouraging to see

4-38




T

able 12. Spearman rank order correlations Rs with errors and

weighted-errors for modules totally developed by two
individual programmers.

Key: *? not significant at .05 level
bd significant at .05 level
a significant at .01 level
otherwise significant at .001 level
Err errors
W_err weighted-errors

Programmer (#mods)

P2(17) P3(21)
Err W_err Err W_err
E .S148 447 .368¢ ?
E" «527% ,493¢# .600a .563a
E*" +515% 4738 .666 .649

Cyclo_cmplx .575a .558a .463% ,428%
Cyeclo_cmplx_2 .661a .616a .484% _hugw

Calls ? .498¢# .506a .469%
Calls_& Jumps .545% .560a .598a .557a
D1=1/L ? ? ? ?
D2=1/L. 05583 0526. .n59. .}"29.
Source_Lines ? 7 .662 .6u46

Execut_Stmts .624a .577a  .579a .533a
Source-Cmnmts ? .436% .635 .594a

v L491%  u728 .679 .655
N Lol 4798 .641 .610a
etal .497% ,448e .611a .589a
eta2 ? ? TS .T17
B JU91% 4728 .679 .655
B® 514%  4y7e .368% ?
Revisions ? ? .830 .811
Changes .T7T16 .662a .855 .828
Weighted_Chg ? .510% .863 .861
Design_Eff ? ? .460% ,392¢
Code_Eff ? +450% .699 .667
Test_Eff ? ? .668 .644
Tot_Effort ? ? .668 .624
4-39




the correspondences of the metrics B, E*" and etazlwith errors as
among the best for programmer P3, the same metrics do not relate

as well for other programmers.

In summary, partitioning an error analysis by individual
project or programmer shows improved correlations with the vari-
ous metrics. Strong relationships seem to depend on the 1indivi-
dual programmer, while few high correlations show up on a project
wide basis. The correlations for the projects reflect the posi-
tive effects of reporting enforcement and collection process
maturity. Overall, the correlations with total errors are
slightly higher than those with weighted errors, while the number

of revisions appears to relate the best.

vI. COnclugions

In the Software Engineering Laboratory, the Software Science
metrics, cyclomatic complexity and various traditional program
measures have been analyzed for their relation to effort,
development errors and one another. The ma jor results of this
investigation are the following: 1) None of the metrics examined
seem to manifest a ‘satistactory explanation of effort spent
developing software or the errors incurred during that process;
2) neither Software Science’s E metric, cyclomatic complexity nor
source lines of code relates convincingly better with effort than
the others; 3) the strongest effort correlations are derived when
modules obtained from individual programmers or certain validated

projects are considered; 4) the majority of the effort correla-

an Ty Bl s Ny G W -



E A WD N D O Ty YW AN T B @ B Oy AT a an D am

tions increase with the more reliable data; 5) the number of
revisions appears to correlate with development errors better
than either Software Science’s B metric, E metric, cyclomatic
complexity or source lines of code; and 6) although some of the
Software Science metrics have size dependent properties with
their estimators, the metric family seems to possess reasonable
internal consistency. These and the other results of this study
contribute to the validation of software metrics proposed in the
literature. The validation process pust continue bdefore metrics
can be effectively used in the characterization and evaluation of

software and in the prediction of its attributes.

Acknowledgment

The authors are grateful to F. McGarry and B. Curtis for
their valuable comments on this analysis. We would also like to
thank B. Decker, W. Taylor and E. Edwards for their assistance

with the SAP program and the S.E.L. database.

Bibliography

[1] V. R. Basili, Tutorial on Models and Metrics for Software
Management and Engineering, IEEE Comput. Society, IEEE Cata-
log No. EHO-167-7, 1980.

[2] V. R. Basili and D. H. Hutchens, "Analyzing a Syntactic Fam-
ily of Complexity Metries,"” Dept. Comput. Seci., Univ. of
Maryland, College Park, MD 20742, Tech. Rep. TR-1053, Dec.
1981 (to appear in T.S.E.).

{3] V. R. Basili and T. Phillips, "Evaluating and Comparing the
Software Metrics in the Software Engineering Laboratory,"
ACM Sigmetrics (1981 ACM Workshop/Symp. Measurement and
Evgluation of Software Quality), Vol. 10, pp. 95-106, Mar.
1981.

>
|

41




£4)

£5]

(6]

(71

(8]

(91

[10]

(111

(12]

131

[14]

[15]

V. R. Basili and D. M. Weiss, "A Methodology for Collecting
Valid Software Engineering Data®*," Dept. Comput. Seci., Univ.
of Maryland, College Park, MD 20742, Tech. Rep. TR-1235,
Dec. 1982.

V. R. Basili and D. M. Weiss, "Evaluating Software Develop-
ment by Analysis of Changes: The Data from the Software
Engineering Laboratory®*," Dept. Comput. Sci., Univ. of Mary-
land, College Park, MD 20742, Tech. Rep. TR-1236, Dec. 1982.

V. R. Basili and M. V. Zelkowitz, "Analyzing Medium Scale
Software Developments," Proc. 3rd Int. Conf. Software Eng.,
Atlanta, GA, May 1978, pp. 116-123.

V. R. Basili and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment,"™ Com-
puters and Structures, Vol. 10, pp. 39-43, 1979.

V. R. Basili, M. V. Zelkowitz, F. E. McGarry, R. W. Reiter,
Jr., W. F. Truszkowski and D. L. Weiss, "The Software
Engineering Laboratory," Software Eng. Lab., NASA/Goddard
Space Flight Center, Greenbelt, MD 20771, Rep. SEL-77-001,
May 1977.

Bulut, Necdet and M. H. Halstead, "Impurities Found in Algo-
rithm Implementations,”™ ACM SIGPLAN Notices, Vol. 9, Mar.
1974.

D. N. Card, F. E. McGarry, J. Page, S. Eslinger and V. R.
Basili, "The Software Engineering Laboratory," Software Eng.
Lab., NASA/Goddard Space Flight Center, Greenbelt, MD 20771,
Rep. SEL-81-104, Feb. 1982.

E. T. Chen, "Program Complexity and Programmer Produc-
tivity," IEEE Trans. Software Eng., Vol. SE-4, pp. 187-194,
May 1978.

K. Christensen, G. P. Fitsos and C. P. Smith, "A Perspec-
tive on Software Science," IBM Syst. J., Vol. 20, pp. 372-
387, 1981.

B. Curtis, S. B. Sheppard and P, M. Milliman, "Third Time
Charm: Stronger Replication of the Ability of Software Com-
plexity Metrics to Predict Programmer Performance," Proc.
4th Int. Conf. Software Eng., Sept 1979, pp. 356-360.

W. J. Decker and W. A. Taylor, "FORTRAN Static Source Code
Analyzer Program (SAP) User s Guide (Revision 1)," Software
Eng. Lab., NASA/Goddard Space Flight Center, Greenbelt, MD
20771, Rep. SEL-?8-102, May 1982.

A. R. Feuer and E. B. Fowlkes, "Some Results from an Empiri-
cal Study of Computer Software," Proc. A4th Int. Conf.

4-42




- G v B a0 i Gy NP R w

(16]

(171

.£18]

(191

[20]

[21]

[22]

(23]

[24]

(251

[26]

[27]

Software Eng., Sept. 1979, pp. 351-35S5.

G. P. Fitsos, "Vocabulary Effects in Software Science," IBM

Santa Teresa Lab., San Jose, CA 95150, Tech. Rep. TR 03.082,
Jan. 1980. )

J. E, Gaffney and G. L. Heller, "Macro Variable Software
Models for Application to 1Improved Software Development
Management," Proc. of Workshop on Quantitative Software
Models for Reliability, Complexity and Cost, IEEE Comput.
Society, 1980.

S. A. Gloss-Soler, The DACS Glossary: A Bibliography of
Software Engineering Terms, Data & Analysis Center for
Software, Griffiss Air Force Base, NY 13441, Rep. GLOS-1,
Oct. 1979.

M. H. Halstead, Elements o

f Software Science, Elsevier
North« Holland, New York, 1977.

R. V. Hogg and E. A. Tanis, Probability and Statistical
Inference, MacMillian, New York, 1977, pp. 265-271.

IEEE Standard Glossary of Software Engineering Terminologx,
IEEE, 342 E. G47th St., New York, Rep. IEEE-STD-729-1983,

1983.

M. Kendall and A. Stuart, The Advanced Theory of Statistics,
Vol. 2, uth Edo, Macuillian, New !Ol‘k, 1979’ ppt ‘503-5080

T. J. McCabe, "A Complexity Measure," IEEE Trans. Software
Eng., Vol. SE-2, pp. 308-320, Dec. 1976.

F. E. McGarry, Systems Developrment Head, Code 582.1, NASA/
Goddard Space Flight Center, Greenbelt, MD 20771, personal
consultation, Jan.=-July 1982.

E. M. O°Neill, S. R. Waligora and C. E. Goorevich, ~"FORTRAN
Static Source Code Analyzer (SAP) User’s Guide,"™ Software
Eng. Lab., NASA/Goddard Space Flight Center, Greenbelt, MD
20771, Rep. SEL-78-002, Feb. 1978.

V. Y. Shen and H. E. Dunsmore, "A Software Science -Analysis
of COBOL Programs,"” Dept. Comput. Sci., Purdue Univ., West
Lafayette, IN 47907, Tech. Rep. CSD-TR-348, August 1980.

C. P. Smith, "A Software Science Analysis of IBM Programming
Products,"™ IBM Santa Teresa Lab., San Jose, CA 95150, Tech.
Rep. TR 03.081, Jan. 1980.



I

Monitoring Software Development

through Dynamic Variables N 87 - 249 O 1

ABSTRACT

This paper describes research conducted by the Software
Engineering Laboratory (SEL) on the use of dynamic variables as a
tool to monitor software development. The intent of the project
is to identify project independent measures which may be used in
a management tool for monitoring software development. This
study examines several FORTRAN projects with similar profiles.
The staff was experienced in developing these types of projects.
The projects developed serve similar functions. Because these
projects are similar we believe some underlying relationships
exist that are invariant between the projects. These relation-
ships, once well defined, may be used to compare the development
of different projects to determine whether they are evolving the

same way previous projects in this environment evolved.

v "7(? éf

Authors:

‘.("1 f 7
Carl W. Doerflinger ah !
University of Maryland 1J§

Dept. of Computer Science
College Park, MD 20742
(301) 454.4251

Vietor R. Basilti
University of Maryland
Dept. of Computer Science
College Park, MD 20742
(301) 4s54-2002

KEYWORDS

management tool, metric, measurement, predictive model

4-45 o ;:2':3%*3 ? 1{5'35 QLQNK f;&? :; i

ERECE o W .
RECEDING PAGE BLANK NOT FiLmeD BA“"L/—LL/.WENHONALL: BLANK



Monitoring Software Development
through Dynamic Variables

by
Carl W. Doerflinger

and
Vietor R. Basili

I. Overview

The Software Engineering Laboratory (SEL) is a joint effort
between the National Aeronautics and Space Administration (NASA),
the Computer Sciences Corporation (CSC), and the University of
Maryland established to study the software development process.
To this end, data has been collected for the last six years. The
data was from attitude determination and control software
developed by CSC, in FORTRAN, for NASA. Additional information
on the SEL, the data collection effort, and some of the studies
that have been made may be found in papers from the Software

Engineering Laboratory Series published by the SEL (Card82],

{Church82], [SEL82].

The 1interest in the software development process is
motivated by a desire to predict costs and quality of projects
being planned and developed. For several years, studies have
examined the relationships between variables such as effort,
size, lines of code, and documentation ([Walston77], [Basili81].
These studies, for the most part, used data collected at the end
of past projects to predict the behavibr of similar projects in

the future. In 1981 the SEL concluded that many of these factors




were too dependent on the environment to be useful for the models
that had been developed [Bailey81]. Any model which attempts to
trace these relationships should therefore be calibrated to the
environment being examined. The meta-model proposed by the SEL

is designed for such flexibility [Bailey81].

Another way to isolate out the environment dependent factors
is by comparing two internal factors of a project, thus ignoring
all outside influences. One appr;ach that is wused to monitor
software development examines the time gap between the initial
report of software problems and the complete resolution of the
problem [Manley82]. Comparing two variables is useful because it
also accentuates problem areas as they develop, providing rela-
tive information rather than absolute infprmation. Relative
information is useful to the project manager because ié accentu-
ates trends as the project develops. If project environments are
similar, then similar values should be expected. Because the
project environments in the SEL are similar, it was felt that
this approach could be further extended to provide managers with
information about how a set of variables over the course of a
project diffeéed from the same set of variables on other projects
(baselines). The managers could be alerted to potential problems
and use other variable data and project knowledge to determine

whether the project was in trouble.

This methodology is flexible enough to respond to changing
needs. Every time a project is completed the measures collected

during its development may be added in to calculate a new




baseline. 1In this way, the baselines may adapt to any changes in

the environment, as they occur.

Baselines might also be developed to reflect different
attributes. For 1instance, several projects which had good pro-
ductivity might be grouped to form a productivity baseline. Once
baselines are established, projects in progress may be compared
against them. All measures falling outside the predetermined

tolerance range are interpreted by the manager.

II. Methodology

The implementation of this methodology is dependent on two
factors. The first factor is the availability of measures that
are project independent and can also be collected throughout a
project’s development. Variables 1like programmer hours and
number of computer runs are project dependent. By comparing
these variables against each other a set of relative measures may
be generated which is project independent. For instance, the
number of software changes may vary from project to project. The
project dependent features shared by each variable will cancel
out when the ratio of software changes per computer run is taken.

The resulting relative measure is project independent.

The second factor is the need for fixed time intervals com-
mon to all projects. To normalize for time, project milestones
were used. The time into a project might be twenty percent into

coding instead of ten weeks into the project, for instance.




When computing the baselines one other factor was con-
Sidered. At any given interval during @evelopment a variable may
measure either the total number of events that have occurred from
the beginning of development (cumulative) or the number of of
events that have occurred since the 1last measured interval
(discrete). Since these approaches may convey different informa-

tion it was felt that they both should be used.

For simplicity, the baseline for each relative measure was
defined as the average and sténdard deviation computed for the
measure at predetermined intervals. A project’s progress may now
be charted by the software manager. At each interval in a pro-
Jects development the relative measures are compared with their
respective baseline. Any measures outside a standard deviation
are flagged. These measures are then interpreted by the project
manager to determine how the project is progressing. A flagged
measure may indicate a project is developing exceptionally well

or it may indicate a problem has been encountered.

The interpretation of a set of flagged measures is a three
step process. First, the manager must determine the possible
interpretations for each flagged relative measure using lists of
possible interpretations developed and verified based on past

projects.

Second, the union of the lists of possible interpretations
of each flagged measure must be taken. The list formed by this

union contains all the possible interpretations ordered using the



number of times each interpretation is repeated in the different
lists. The larger the number of overlaps a possible interpreta-
tion has, the greater the probability it is the correct interpre-

tation.

Third, the manager must analyze the combined list and deter-
mine if a problem exists. Interpretations with an equal number
of overlaps all have an equal probability of being the correct
interpretation. If none of the possible interpretations for a
given relative measure overlap then the relative measure should

be considered separately.

When analyzing the interpretations, three pieces of informa-
tion must be considered; the measurements, the point in develop=-
ment, and the managers knowledge of the project. A relative
measure, m#y indicate different things dep;nding on the stage of
development. For instance, a large amount of computer time per
computer run early in the project may indicate not enough unit
testing is being done. Personal knowledge may also give valuable

insight.

A fundamental assumption for using this methodology is that
similar type projects evolve similarly. If a different type of
project was compared to this database, the manager would have to
decide whether the baselines were applicable. Depending on the

type of differences, the established baselines may or may not be

of any value,




EXAMPLE 1:

Forty percent into coding a software manager finds that the
lines of source code per software change is higher than normal.
A list previously developed is examined to determine what the
relative measure might indicate. The possible interpretations
for a large number of lines of source code per software change
might be:

- good code

- easily developed code

- influx of transported code

- near build or milestone date

- computer problems

- poor testing approach
If this were the only flagged measure the manager would then
investigate each of the possibilities. If the value for the

measure is close to the norm less concern is needed than if the

value is further away.

If in addition to lines of source code per software change
the number of computer runs per software change was higher than
normal, the manager would also examine this measure. The possi-
ble interpretations for a large number of computer runs per
software change might be:

- good code

- lots of testing

- change backlog

- poor testing approach
The union of the possible interpretations of these two measures
indicates that the strongest possible interpretations are 1) good

code and 2) a poor testing approach. The number of possibilities

to 1investigate 1is smaller because these are the only measures

4-51



which overlap. The manager must now examine the testing plan and

decide whether either of these interpretations reflect what is'

actually occurring 1in the project. If these ¢two possible
interpretations do not reflect what is happening on the project,

the manager would then examine the other interpretations.

III. Baseline Development

To develop a baseline one must first have variables whose

measurements were taken weekly for several projects. Five vari-

ables in the SEL database were used. The lines of source code,’

number of software changes, and number of computer runs were col-
lected on the growth history form. The amount of computer time
and programmer hours were collected on the resource summary form.
Measurement of these variables started near the beginning of cod-
ing. In this study, nine separate projects were examined whose
development was documented, with sufficient data, in the SEL
database. The projects ranged in size from 51-112K lines of
source code with an average of 75K. No examination was done for

the requirements or design phases.

Once the variables were chosen the average and standard
deviation was <computed for each baseline. Some baselines suf-
fered from limited data points during the beginning of the coding
phase. A couple of the projects, in which problems were known to
have existed, were flagged as soon as data on these projects
appeared, but this was fifty percent of the way into céding. It

is not known how much earlier they would have appeared, if data

4-52




baseline: computer time per run

Sample Baseline

o
oos*

el

Joses

o
Luote

ok ot
%o pENg

Loossssnsennesas,

Q;:;1.E):’:CJ§?

o,

-u._“‘— L\\‘

/T

TIME

o L o7
\)Q‘\ <>

b‘»

aShye®
°°

method of measurement: discrete
1.4

1.0

.

OOZADHEE ~HEMH AEAs =D =

3
2%,
%3 6"‘\%
O




existed at the early intervals.

IV. Interpretation of Relative Measures

Once a set of baselines are established new projects may be
compared to them and potential problems flagged. To interpret
these flagged relative measures a list should be developed with
each measures possible interpretations. Each list must consider
the possible interpretations of the relative measure when it 1is
either above normal or below normal. What each component vari-

able actually measures should also be considered when the dif-

ferent lists are developed.

A list was developed with possible interpretations for each
relative measure being examined in the <context of the SEL
environment. In another environment the interpretation of these
measures might be different. These lists are subdivided into two
categories; above and below normal. The above normal category
contains possible interpretations for the relative measure when
it is outside one standard deviation from the average in the
positive direction. The below normal category refers to
interpretations when the measure is outside one standard devia-

tion from the mean in the negative direction.

One of the reasons this methodology works is because of the
implicit interdependencies between different relative measures.
To show these interdependencies more explicitly a cross reference

chart has also been provided for each interpretation to indicate




swo(qodd Jo3ndmoo-~ |

Kyyxetdmoo mof~ |

Soinowq eBueyo- !

weaBouad Bujrcey vood- |

opod poof- |

®3¥p QUOICOTIW JO PIINQ JEOU- ]
opoo pejaodeundy Jo xnijui- I

. temaou |

Moteq |
!

|

|

1

|

|

|

|

(- X}
0 O o

(poysodecuvay do Suyqeey)
poAowed fuyeq opoo~
suoyjeojyioede peq-

opoo euoud J0sJ0~ -
Buzycey poos-

tewaou

oAoqe
temaou | temasou { | |
noteq | eaAoqw | uogrvjeadaojuy | edky
o0UNI0IOI £CO0J0 | { |

hz
h 2
9 s

QD ¥ e -~

|
|
!
]
]
l
|
|
|
}
|
{
!
|
{
|
l
|
|
|

®poy soanog JO euy] J40d ceSuwyn eaem3jog I1f I€y]

cwoy1qoud Je3Indwoo~
pedoieaep Bujeq

OpoOD ©[QEINOOX® OTIITTI~
suop Buyeq

W0UBINJOS €EOJO ) | |

! |
| |
| I
| | |
] 2l Suyicey ouyy uo ®13F1- |
I 68 4 € 21 9| ®3ep euojceIi® JO PITNQ JeeU~ {
| n € 21 opoo pejsodcuvay JO xnyyuy~ |
I | temaou |
| I noteq |
 Rdadeiebehdeiet e il hebbebdd bbbt bbbttt Lt bbb A L L s |
| | n € 2 cuoy3voyIJjTo0dt puq~ |
] 1 1 (pejsodsuray Jo Buyqcey) |
| | yw € 2| 9poo JO TWAOWOJI~ |
| L 9l 2! Butsseq Jo eiog- |
| I 68 L 2 kytxerdmoo ydyy- I
| { h 2l K3tATyonpoad moy- |
| | | temasou |
| i i enoqy |
“ Tewaou | yewaou | i |
i noteq | oaoqe | uoyjvioadaequg | odAq |
}

SpoD soJunog Jo euj Jaed suny Jejndmo) 1| Iy

L Y Y L L N N R e e e

} uel11jJum Bujeq

o0USJOJeJ €BOUD | i |

! |
“ 1 | #poo o1qEINOEX 61I3IT(- t
| 69 Ll 96y €] ouodd J0JJ0 RpPOO- |
| | | suop Bujeq |
| L | fuyaces oujyl uo e13IIFY- |
I 68w €t} 9] ©1¢p oUOICOTIW JO PIING Jdeou- |
| W€ | epoo pejusodcuva) Jo xnijujy- |
! | [ temaou |
| i | noyeq |
|mrommmeoss|emmesnen] iateddeeddebiain b ebaheinteieteb b £
| | | (pojuodouray 4o Bujjces) |
| | W€ poAowes Bujeq opoo- |
| S| gl ouop Bujerq Buyzcey JTun~ |
| L 9l L fujiceq Jo €307~ ]
| | W €1 cuojqvo}jjoede pug- !
| | Wil £31AT30npoad Mot~ )
| 1 68 L w1t A3yxeydmoo uByy-~ |
! | ] 1emaou |
l | | oAoqe |
| temsou | yewasou ] | I
| noteq | oAoqw | uoyyeyeadaequy | odky |
i

epoH e0dNOE JO ougq] Jsed emyl Joyndmo) 12 ¢y

efuwyy ouawmnljog Jed cunoj Jemmedsfoagd = § Ity
oBusy) euamvn3jos Jod emyl seIndwo) - g 3I1€Y1

uny Jeindwon aed ctuanoj JewwvaFouad - [ 171

uny Je3Indwon vod seBuey) ©IEMIJOE - § IETT

uny Jejindwo) J4od ewyl Jeindwo) - G 1€§7

opo) o0J4n0g JO oUY] Jed cunoy usemwesRouag - § ICT]
POy 004NOE JO OUT] ueod taBuvy) eJeMIJOE ~ £ 26T
epo) eo0Junog JO ouy Jed ewyl J03INdWOY - 2 €T
opo) 00dNOg JO vujy] J4od cuny geiIndwo) - | IS

1pouTEEX] COJNEBOH OAFIVIOY

55



O = T = e > - e 4 S B T T S e P R e e = e e S T P P T T S e R P e e e

| 9| z U fuyicey Jo s30(- ]
| 6 9 2| 9 6 & EI epoo ououd Joudao- |
| 6 S| | poxt) Bujeq ca04ue LAcue- }
| _ _ Tewaou |
| | | Hotleq |
R i b ettt
| | 6w ojew o3 paey sefueyo- |
| | 6 8 nl eqe10E] 09 pJaey stofueyo- |
| | | eopoo pojsodsuway Ayjucoed '
| 61! | ©03 epew Bujeq suoyjwoyjypow- |
| | 6@ hn 2Ll £yixotdmoo yByy- 1
| | I Tewaou |
| ! | oaoqe |
| Ttessou | Yemaou | | |
i noleq | oAo0qQe i uotqureadaojuy | odLq |
| o0URLOJOL EEOJD | | |

uny Jejndmo) Jod sJanol JsowweaBouagd 1l 35T

| 6 L) 1 punoJ Pujeq sJa0J49 LcvO-
] | 8 2! uo Sujol® Suyyeey Fjun~
| | | 1vwJou
I I | noteq
R R il bttt eiateteiet et
[ pe3co] Suteq
9l suyjyjso8te punoq e®qandwoo-
9 8 €I opoo euodd J0430~
| K1ave pejuaess .
9| Buyicey uorywadequy 3 wojchs-
| 1ewaou
i [ eAOQE

{swaou | Temaou ! | |

HoY0q | ©eaAoQqe 1 uoyrqeqeadanquy | edkq |
90URJOJOJ EEOJO } i {

o o e e Y e D e e e e T e S S e D e e Gn i B0 e b e e e B e S e e

uny Jojndwo) Jed smyl Je3ndwon 1§ 3§

P T L L L T T P T T DR R el

i | £l fornouvq vHuvyo~ {
| | 6 g €} wwaBoud Bujyisey Jood- |
| L) 2t fuyjcey Jo £301- )
| | 6 9 €I oepoo pooB-~- |
| | | tsmJgou |
| | | Hoteq |
R R L il RLD DDttt bt dbiitiehihdeb ettt |
| 6 8 hi | |
| £ 2t | ®3wp euojseITw JO pIINQ JEQU- |
| 6 ¢ L 2l S h g opoo ououad JosJdo- ]
| | | Alawe pojuaese |
| | G| 8ugaysey uotjeaBejuy y mejcke- 1
| 6 gl £l fuyqcey pool- |
| | | Tewdou |
| | | onoqe |
} temaou | Tewsou | 1 |
) noteq | oeaAoqe | uoyjwieuadaoquy | odky |
| eO0UDJIOJOJ BEOJD | - | |

uny Jejndwo) J4od seBuvy) OJWAIJOE 19 36T

e - - = = . D e o= o e e e W G W e e e e e G w w

£l i Kkyixeydwoo Mol~-
6 8¢tz 9| ®38p SUOIEOTIW 4O pPLING JEPU~
€2t | epoo pejJodsusa] Jo xnyjui-
i { Tvwaou
A } | noieq
! _“ K11AT30npoad moy-
L oxem 09 pJuy sofueyo-
L 93ejos] 01 paey sefuwyo-
| (pejaodeuvay Jo Buyycey)
8 poAaomea 3Fujeq opoo~
[ suofrsofjjoede peq-
m_ ovooeconahonhon
-_
_

o

6 8 L 2

=g MY
NN N8N @ v

A1Txo1dwoo yBjy-

tewaou |

| P oA0qQ® |
Tewmaou | tewaou | | |
noteq | eAoOqQ® | votjezoddaequy | edXy |
P0USIRJOU ECOJD | | |

R L L L L R e T L T R L TR R T

°po) °0JNOE JO eul] Jed sanoj JeuwmwaSoad iy 9671

1
1
|
1
f
|
|
|
|
|
|

4-56




L)

- s
M

-~
e

ORIGINAL P

OF POOR QUALITY

\ e L 2 964 €| opod suoad Joude- i
| | 1 PeTJTpOE 1
| { L) Fuyeq epoo poquodruvuag-~ {
| L 6| | sofurvyo Acve- ]
18 n €2t 9| ®3®p ouoaceTi® 4o pPIINQ JwOU~ |
| el 9 €l fuyive3 poos- |
| | | Temaou |
| | | noteq |
el el Rttt e R b
] | L wl o)ew 09 puawy tefueyo-~ |
} 1 8 L ni ®jetoe] 03 paey cefuwys~ |
1 9l g €l wgafousd Jugysey Jood- -
| 9l 8 Ef epoo poof- }
| | I temsou |
I I | eaoqe |
| tewmsou | teamaou | | |
i noyeq | weaoqe ] uorivjeadasaug | odky |}
| o0UGIDJRI EEOJD | | |

s8usy) esawnyJog Jed eanoy JewmwaSouq 16 LA &

| 6 L 2 96 ¢} opoo ouoJdd JOouJIO-
| 61 9 €I fUT1c0q pooS-
| 6 v € 2 9| ©3¥p PUOJICOITW JO PIINQ JuOU~
tendou
noyoeq

|

|

|

| |
| |
1 |
| poicey fuyoq |
| swyjJoBie punoq oj3ndwoo- |
| Fuyieey Jjun- |
| ej3eI0C} ©03 puaey sofuwyo- ]
} Kyixoydwoo ySyy- |
| oveaB8oad Bujjycey aood- |
I epoo poof- |
) temaou |
{ | ' eAoqe |

temdou | y(BwJsou ] | I
noieq | oeaAoqe | uotjyejeaduojuyg | odky |
eoUBIO )OS TEOJD ] | |

eBuvy) ouenyjog Jed owyl Joandmo) g 3ICT]

Daloaladt JEy BT

AN~

|
|
|
|
|
!
|
|
|
|
|
|
|
|
|

57



other relative measures that can have the same interpretation. A
number in the cross reference section indicates the list number
of a relative measure that can have the same interpretation. The
position of the 1list number in the 4-quadrant cross reference
section indicates whether both 1interpretations are found with
above normal values, both with below normal values, or one with

above and the other with below normal values.

With these lists a set of flagged relative measures may be
evaluated. When a relati?e measure is flagged, its associated
list is examined for possible interpretations. Overlaps of this
list with the lists of other flagged relative measures form the
new list of what these relative measures together might indicate.
The more overlaps a particular interpretation has, the greater
the -chance it is the correct interpretation. Interpretations
with the same number of overlaps mugt be considered equally. The
more relative measures flagged the more serious the problem may

be. It 4is up to the manager to determine whether the deviation

is good or bad.

V. Monitoring a Software Project’g Development

Once the baselines have been developed and the lists of pos-
sible interpretations have been put together a software manager
may monitor the actual development of a project. Example 1
demonstrated how a single interval may be interpreted. The fol-
lowing discussion will trace the development of an actual pro-

Ject. During the actual use of this methodology, influence would

4-58




be exerted to correct problems as soon as they are identified.
With this study, we must be content to study a projects evolu-

tion, without hindrance, and see at what points problems could of

been detected.

Project twenty® was chosen for this examination because data
existed throughout the projects development. In most respects
project twenty was an average project. The project did have a
lower than normal productivity rate. The lower rate may be par-
tially explained by the fact the management was less experienced
when compared to other projects. The project also suffered from
some delayed staffing. Changes in staffing will be noted when

the different time intervals are discussed.

The tables on the following page show which relative meas-
ures were flagged when project twenty was compared to the base-
lines for each stage of Qevelopment. The numerical values
represent how many standard deviations each flagged relative
measure was from the baseline. The baseline for each relative

measure was calculated using all nine projects.

Start of Coding:

At the start of coding only one relative measure is flagged.
The smaller than normal number of software changes per line of

Source code using the discrete approach reflects work done during

* The numbering convention used is an extension of the one
first used by Bailey and Basili [Bailey81].



It e e e it Lk Ly R P Sy S R S,

| 23ueyo/auwyy J9jndwod Qg (< ) 2°1 . |

ittt it dakad e R it A e Ly T T G A SR SN
| und/sanoy Jgoemwmeadoad gs 1> | ) c°1 |
st et R R el R L T Lk por iU I (U S
| ©0.4no6 Jjo seuj(/ewyy Jajndwoo (5 (< | 0°2 12 L*v £t 2t |
| ®0Jn0E Jo €aUTT/E8BUBYD (0§ 1< | K'2 0°2 0°2 t°1 (S | _
| e04anos jJo couji/eefurvyo qs 1> | Lt |
| 924N0E JO EAUTT/SUNS (S (< i Lt gt g°l ¢t ]
| 904n0E Jo sdug(/sanoy JoemmeaSouad (g | ¢ | §*2 o0°2 Gt g't 1L o0°1 |
[t e it et T Y gy U P U S
| i 3dooe A5 c4Ac 2podO IPOD 9poOO IPOD OPOD 8poo|
| £04NERAW DAJIEV[OL | pue jue36 05 JJIEIE $0g8 P09 $0S $0h %02 3I4eIE)

— —l‘llllllll'lllllll'llllllllllllllllllllllllllll"l_

i ( WJI0U WOJJ EUOTIBIAGP puaepUER]E JO Jaqunu |

'|l'I|'lll"lll"-'l-"'lll-"lll.'l"""--l-'l'l"'-'nlll"nl-l-l|'L.I-lllu|'ll.l"l|--|.ll.l"lll."l"'ll"l

4-60

9318408 |p tjuUGWOUNEROW JO poyjow

Illlllllllllllllllllllllllllllll!llIIIII!III#IIII#IIIl+|lll§llll¢llll¢llll+ll|lbllll+llll¥lll

| una/eanoy aouwwedafoud ds 1> | Lt L't 2t 1t |

llllIlllllll|llllllIlllll|llll|l||lllll||lll¢lll|+l|ll+lll!+Illl+llll+llll+Illlbllll&lllt*lll

_ 8ouan0Og Jo caugi/omgy LOu’QEOO as 1< _ P A § G*1 g1 _
| 904n0E JO Seuff/euna gs t¢ | 1t |
| eoanoe jo ssuji/eanoy Jgewmeafouad gg ¢ | E°t |

e e = e = - - - - e e e e e il el T upr G AP U PR,
{ } 1dooe €46 6AE QpOD 9pPOD IPOD IPOD 2poODd 9poOD|
| seanceom 9AyIRIOM | pus 1J4e3s 306 34E3IE 0§ %09 $0S $0h Y02 IJeAS|

_ _ll(l.ll.lll.lllltlllllllllllllllilllllllllllllllllltl_

| | WJIOU WOJJ BUOTIV[AOGP PJEPUEIE JO Jdequnu | .

llllllll'llilllllllll||||l|l|||Ill.llll|||IIllllll'lllllllilllllllllllll‘llllllllllll

®AjIEINEND :juUdWOINERIW JO poyjem

02 :199foud




the design phase. The lists designed in the previous section
were directed towards code production and testing and do not
apply to this time interval when using the discrete approach.
This measure may 1indicate good specifications or lots of PDL
being generated. The manager might want to examihe this measure
later if it constantly repeated. Since it is the only meaéure

flagged at this time it will be ignored.

20% Coding:

The flagged relative measures found using the discrete
approach at this point represent the work done from the start of
coding until twenty percent of the way through coding. The 1list
of possible interpretations for the flagged relative measures,
generated from the 1lists made previously for the individual rela-
tive measure, would look like:

# overlaps interpretation

bad specifications
code removed
low productivity
high complexity
- error prone code
lots of testing
good testing
changes hard to isolate
changes hard to make
unit testing being done
easy errors being found

- MM NDWW

The strongest interpretations are bad specifications and code
being removed. If the actual history is examined one finds that
during this period there were a 1lot of specifications being

changed. This resulted in code which was to be modified being

4-61



discarded and new code being written. During the early period
lots of PDL was being produced but very little new executable
code. The list of possible interpretations does show that 1low

productivity is also a strong possibility.

404 Coding:

The flagged relative measures which appear using the cumula-
t;ve approach, from this time period on, are stronger indicators
than the ones used in the first couple of intervals because the
average is computed using more data points. The use of the
discrete approach for the interval of twenty to forty percent 1is
still dependent on three data points. The list of possible
interpretations for this time period is:

# overlaps interpretation

low productivity

high complexity

error prone code

bad specifications

code being removed
changes hard to isolate
changes hard to make
lots of testing

unit testing being done
good testing

easy errors

— ad ad od D

The number of possibilities is larger with this set of posgible
interpretations. Five interpretations are slightly stronger than
the others. During the actual development, the first release of
the project was made. The amount of code actually written was
also lower than normal during this period. The wuse of the

discrete approach gives a stronger feeling that code is not being

4-62




written. Transported code tends to be installed in large blocks

which can be isolated using the discrete approach.

50% Coding:

The relative measures flagged during this period are the
same as the ones flagged at the twenty percent coding interval.
The deviation from the norm for this interval is larger. The
larger deviation may indicate a more serious problem. The prob-
lem may of been just as serious earlier but without the extra
data points, that are now available, it could not be determined.
The possible interpretations may be taken from the list developed
earlier. Bad specifications and code removal were not factors
during this period. The next three highest priority interpreta-
tions were; high complexity, error prone code, and low produc-
tivity. 1In addition to this the manager should be concerned with
the continued appearance of the relative measure, programmer
hours per computer run, as seen using the cumulative approach.
This may indicate a lot of testing going on. This in conjunetion
with error prone code as a possible interpretation may indicate
trouble. During actual develqpment this period was spent
developing code for the second release. The project manager felt
that code was still not being developed quickly enough during

this period.

60% Coding:

>
|

63



Only one relative measure is shown at this interval. The
number of programmer hours per computer run using the cumulative
approach is lower than normal for the third consecutive time.

This should concern the manager because when examining the list

for this measure one finds:

error prone code

lots of testing

easy errors being fixed
Since the occurrence of this measure is persistent it may indi-
cate that the problem was corrected but not enough effort was
expended to completely compensate for the past problems. It
might also indicate the problem still exists. During the actual
project it was found that while a lot of code was written, it had
not been throughly tested. Release two was made during this
period which could explain a heavy test 1load. Two additional
staff members were added to the project during this phase to aid

in coding and testing.

80% Coding:

The eighty percent coding interval does not show any meas-
ures outside the normal bounds. The addition of two staff
members during the sixty percent coding phase, as well as the
addition of a senior staff member during this phase, appears to
have adjusted the project back along the lines of normal develop-
ment. ~To fully compensate for the earlier problems one might

expect some of the measures to swing in the other direction away




from the average. The fact this over correction did not occur

might explain the problems encountered in the next section.

Start of System and Integration Testing:

The flagged relative measures at this time period reflect
the build up of effort for the third and final release. The list
of possible interpretations for the collective set of flagged
measures looks like:

# overlaps interpretation

high complexity

bad specifications

code being removed

error prone code

low productivity

lots of testing

changes hard to isolate

unit testing being done

good code

poor testing

changes hard to make

good testing

compute bound algorithms
being run

easy errors being fixed

— ad md - NN W W

Since the code did have a past history of poor testing an unusu-
ally large build up of testing should be exﬁected. The two
interpretations that apply most to this situation are 1lots of

testing and error prone code.

50% System and Integration Testing:

Only one relative measure is flagged at this interval. This
measure was flagged using the cumulative approach. An examina-

tion of the measure at the previous interval shows a very high

4-65




value. A slow drop off from this high measure is to be expected
when using the cumulative approach. An examination of possible

interpretations that would apply for this period of development

include:

high complexity

lots of testing

unit testing being done
testing code being removed

A lot of testing is certainly indicated by past history.

Start Acceptance Testing:

The relative measures flagged at this interval reflects the
build up in testing before the start of acceptance testing. The
list of possible interpretations looks like:

# overlaps interpretation

bad specifications

code being removed

high complexity

low productivity

error prone code

lots of testing

changes hard to isolate
changes hard to make
unit testing being done
good testing

—_ N NDW W

Since little code was being developed during the testing period,
a large amount of testing with errors being found is the most
reasonable interpretation of these flagged measures. The early
history of poor testing may be seen here with errors being

uncovered late.




End Acceptance Testing:

The two flagged relative measures at the end of acceptance
testing reflect the clean up effort being made on the code. An
average amount of computer time and an average number of computer
runs indicates that the acceptance testing is going well. The
project was behind schedule due to the eariier probléms encoun-
tered. Clean up was done during the acceptance testing phase in

an attempt to get the project out the door as soon as possible.

As seen in this example, the problems that occur during a
projects development are reflected in the values calculated for
the relative measures. The methodology preposed can be used to
monitor projects. The number of possible interpretations
inereases with each new flagged relative measure. The ordering
of the measures by the number of overlaps provides an easy method
of sorting the possible interpretations by priority. Another
method of sorting the possible interpretations could include a
factor that considers both the number of overlaps and the proba-
bility of a given 1interpretation being the cause at a given
interval. The weighting of interpretations for a given interval
could be <calculated using the pattern of occurrence of the dif-
ferent interpretations which have appeared during the same inter-

val in past projects.

VI. An Alternate Approach




Flagged relative measures might also be interpreted using a
decision support system. The data for the various relative meas-
ures would be stored in a knowledge base along with a set of pro-
duction rules. To evaluate a project the values for each rela-
tive measure would be entered into the systen. The knowledge
base would compare the relative measures to their respective
baselines, determine which relative measures were outside the
norm, and interpret these relative measures using the production
rules. A list of possible interpretations ordered by probability

would be generated as a result.

The difference between a decision support system and the

approach presented in this paper is the method of interpreting

the flagged relative measures. Each production rule in the deci-
sion support-system is the logical disjunction of several flagged
measures which yields a given interpretation. Each production
rule 1is assigned a confidence rating which is then used to rate
the possible interpretations. The lists for the relative. meas-
ures provided earlier in the paper may be easily converted to
production rules using the cross reference section. To develop
the production rules for an interpretation one must generate the
various combinations of relative measures which might reasonably
imply the interpretation. Some relative measures may not imply a
particular interpretation unless they are found in conjunction
with another relative measure. Once the production rules are
known and a knowledge base constructed a decision support system

may be Dbuilt. For an example of a domain independent decision




support system see Reggia and Perricone [Reggia82].

VII. Summary

The methodology presented in this paper showed that 4invari-
ant relationships exist for similar projects. New projects may
be compared to the baselines of these invariant relationships to

determine when projects are getting off track.

The ability of the manager to interpret the measures that
fall outside the norm is dependent on the amount of information
the underlying variables convey. The manager must decidg what
attributes are to be measured (e.g. productivity) and pick vari-
ables that are closely related to them and are also measurable
throughout the project. As an example, a variable like lines of
code may be too general when measuring productivity. Measuring
the newly developed code, either source code or executable code,
would be more informative since these variables are more directly
related to effort. How applicable an interpretation is for the
period currently being examined should also be considered when
ordering the list. The variables the manager finally decides on

are then combined to form relative measures.

One method of interpreting a relative measure is by associ-
ating lists of possible interpretations with it. When a relative
measure appears outside the norm, the list of possible interpre-
tations is considered. If more than one relative measure is out-

side the norm the lists are combined. The more times a possible



interpretation is repeated in the lists, the greater the proba-
bility it is the cause. How applicable an interpretation is for
the period being examined should also be considered when ordering
the list. The manager must investigate the suggested causes to

determine the real one.

VIII. Conclusion

The ability to monitor a projects development and detect
problems as they develop may be feasible. The methodology pro-

posed showed favorable results when examining a past case.

The use of baselines and lists of interpretations for con-
paring projects provides an easy method for monitoring software
development. Both the baselines and the lists of interpretations
may be updated as new projects are developed. As more knowledge
is gleaned the accuracy of this system should improve and provide

a valuable tool for the manager.




Bibliography

[Bailey81] .
Bailey, John W. and Vietor R. Basili, A Meta-Model for
Software Development Resource Expenditures, Proceedings,
Fifth International Conference on Software Engineering, Sep-
tember 1981.

[Basili81]
Basili, Victor R. and Karl Freburger, Programming Measure-
ment and Estimation in the Software Engineering Laboratory,
Journal of Systems and Software, 1981.

[Card82]
Card, David, Frank McGarry, Jerry Page, Suellen Eslinger,
and Victor Basili, The Software Engineering Laboratory,
SEL-81-104, Software Engineering Laboratory Series, Goddard
Space Flight Center, February 1982.

[Church82]
Church, Victor, David Card, Frank McGarry, Jerry Page, and
Vietor Basili, Guide To Data Collection, SEL-81-101,

Software Engineering Laboratory Series, Goddard Space Flight
Center, August 1982.

[Manley82]
The Role of Measurements in Programming Technology, Lecture
presented at University of Maryland, November 15, 1982.

[(Minsky75]
Minsky, M. L., A Framework for the Representation of
Knowledge, The Psychology of Computer Vision, pp. 211-280,
McGraw Hill, New York, 1975.

[Reggia82] )
Reggia, James and Barry Perricone, KMS Manual, TR-1136,
Department of Mathematics, University of Maryland Baltimore
County, January 1982.

[SEL82)] ‘
SEL,, Collected Software Engineering Papers: Volume 1, SEL-
82-004, Software Engineering Laboratory Series, Goddard
Space Flight Center, July 1982.

[Walston77]
Walston, C. E. and C. P. Felix, A Method of Programming
Measurement and Estimation, IBM Systems Journal, January
1977.




1\)—7 -6 r,f

N87-24902

Technical Report TR-1195 August 1982
NSG-5123

SOFTWARE ERRORS AND COMPLEXITY: ‘
AN EMPIRICAL INVESTIGATION* ‘ &?

Victor R. Basili and Barry T. Perricone /3 h

*Research supported in part by National Aeromautics and Space Administra-
tion grant NSG-5123 to the University of Maryland.. Computer time supported
in part through the facilities of the Computer Science Center of the
University of Maryland.

LIDWG PACE BLANK NOT FLMED

Viim e B



SOFTWARE ERRORS AND.COMPLEXITY:

AN EMPIRICAL INVESTIGATION

Victor R. Basili and Barry T. Perricone
Department of Computer Science
University of Maryland
College Park, Md.

1982

ABSTRACT

The distributions and relationships derived from the change
data collected during the development of a medium scale
satellite software project shows that meaningful results can
be obtained which allow an insight into software traits and
the environment in which it is developed. Modified and new
modules were shown to behave similarly. An abstract classif-
jication scheme for errors which allows a better understand-
ing of the overall traits of a software project is also
shown. Finally, various size and complexity metrics are
examined with respect to errors detected within the software.
yielding some interesting results.




1.0 INTRODUCTION

The discovery and validation of fundamental relation-
ships between the development of computer software, the
environment in which the software is developed, and the fre-
quency and distribution of errors associated with the
software are topics of primary concern to investigators in
the field of software engineering. Knowledge of such rela-
tionships can be used to provide an insight into the charac-
teristics of computer software and the effects that a pro-
gramming environment can have on the software Cioduct. In
addition, it can provide a means to improve the understand-
ing of the terms reliability and quality with respect to
computer software. In an effort to acquire a knowledge of
these basic relationships, change data for a medium scale
software project was analyzed (e.g., change data is any
documentation which reports an alteration made to the
software for a particular reason).

In general, the overall objectives of this paper are
threefold : first, to report the results of the analyses;
second, tqQ review the results in the context of those
reported by other researchers; and third, to draw some con-
clusions based on the aforementioned. The analyses
presented in this paper encompass various types of distribu-
tions based on the collected chahge data. The most impor-
tant of which are the error distributions observed within
the software project.

In order for the reader to view the results reported in
this paper properly, it is important that the terms used
throughout this paper and the environment in which the data
was collected are clearly defined. This is pertinent since
many of the terms used within this paper have appeared in
the general literature often to denote different concepts.
Understanding the environment will allow the partitioning of
the results into two classes: those which are dependent on
and those which are independent of a particular programming
environment.

1.1 DESCRIPTION OF THE ENVIRONMENT

The software analyzed within this paper is one of a
large set of projects being analyzed in the Software
Engineering Laboratory (SEL). The particular project
analyzed in this paper 1is a general purpose program for
satellite planning studies. These studies include among
others: mission maneuver planning; mission lifetime; mission
launch; and mission control. The overall size of the
software project was approximately 90,0C0 source lines of
code. The majority of the software project was coded in FOR-
TRAN. The system was developed and executes on an IBM 360.

4-75



_The developers of the analyzed software had extensive
experience with ground support software for satellites. The
analyzed system represents a new application for the
development group, although it shares many similar algo-
rithms with the system studied here.

It is also true that the requirements for the system
analyzed kept growing and changing, much more so than for
the typical ground support software normally built. Due to
the commonality of algorithms from existing systems, the
developers re-used the design and code for many algorithms
needed in the new system. Hence a large number of re-used
(modified)
modules became part of the new system analyzed here.

An approximation of the analyzed software’s life cycle
is displayed in Figure 1 . This figure only illustrates the
approximate duration in time of the various phases of the
software’s life cycle. The information relating the amount
of manpower involved with each of the phases shown was not
specific enough to yield meaningful results, so it was not
included.

>
|

76




LIFE CYCLE OF ANALYZED SOFTWARE

1 CHANGE FORMS

MAINTENANCE

1
v

i ACCEPTANCE '

. TESTING }
} |

|__CODING
T t

DESIGN —_

: 1 I i 2
JAN. 1976 1977 1978 1979 1980
1975

Figure 1

1.2 TERMS

This section presents the definitions and associated
contexts for the terms used within this paper. A discussion
of the concepts involved with these terms is also given when
appropriate.

Module: A module is defined as a named subfunction, subrou-
tine, or the main program of the software system. This
definition is used since only segments written in FORTRAN
which . contained executable code were used for the analyses.
Change data from the segments which constituted the data
blocks, assembly segments, common segments, or utility rou-
tines were not included. However, a general overview of the
data available on these types of segments is presented in
Section 4.0 for completeness.

There are two types of modules referred to within this
paper. The first type is denoted as modified. These are

4-77

4
1981




modules which were developed for previous software projects
and then modified to meet the requirements of the new pro-
ject. The second type is referred to as new. These are
modules which were developed specifically for the software
project under analyses.

The entire software project contained a total of 517
code segments. This quantity is comprised of 36 assembly
segments, 370 FORTRAN segments, and 111 segments that were
either common modules, block data, or utility routines. The
number of code segments which met the adopted module defini-
tion was 370 out of 517 which is 72% of the total modules
and constitutes the majority of the software project. of
the modules found to contain errors 49% were categorized as
modified and 51% as new modules.

Number of Source and Executable Lines: The number of source
lines within a module refers to the number of lines of exe-
cutable code and comment lines contained within it. The
number of executable 1lines within a module refers to the
number of executable statements, comment lines are not
included.

Some of the relationships presented in this paper are
based on a grouping of modules by module size in increments
of 50 lines. This means that a module containing 50 1lines
of code or less was placed in the module size of 50; modules
between 51 and 100 lines of code into the module size of
100, etec. The number of modules which were contained in
each module size is given in Table 1 for all modules and for
modules which contained errors (i.e., a subset of all
modules) with respect to source and executable 1lines of
code.




Number modules

All Modules Modules with Errors
Number

of Lines Source Exececutable Source Executable
0-50 53 258 3 49
51-100 107 70 16 25
101-150 ‘ 80 26 20 13
151-200 56 13 19 7
201-250 34 1 12 1
251-300 14 1 9 0]
301-350 ' 7 1 4 1
351-400 9 0 7 0
>400 10 0 6 0
Total 370 370 96 96

Table 1

Error: Something detected within the executable code which
caused the module in which it occurred to perform
incorrectly (i.e., contrary to its expected function ).

Errors were quantified from two view points in this
paper, depending upon the goals of the analysis of the error
data. The first quantification was based on a textual rather
than a conceptual viewpoint. This type of error quantifica-
tion is best illustrated by an example. If a "#" yas
incorrectly wused in place of a "+" then all occurrences of
the "#" yill be considered an error. This is the situation
even if the "#"’°s appear on the same line of code or within
multiple modules. The total number of errors detected in
the 370 sof'tware modules analyzed was 215 contained within a
total of 96 modules, implying 26% of the modules analyzed
contained errors.

The second type of quantification was used to measure
the effect of an error across modules, textual errors asso-
ciated with the same conceptual problem were combined to
yield one conceptual error. Thus in the example above, all
incorrectly used *°s replaced by +’s in the same formula
were combined and the total number of modules effected by
that error are listed. This is done only for the errors
reported in Figure 2. There are a total of 155 conceptual
errors. All other studies in this paper are based upoon the

4-79



first type of quantification described.

Statistical Terms and Methods: All linear regressions of the
data presented within this paper employed as a criterion of
goodness the least squares principle (i.e., "choose as the
‘best fitting® 1line that one which minimizes the sum of
squares of the deviations of the observed values of y from
those predicted" [1]).

Pearson’s product moment coefficient of correlation was
used as an index of the strength of the linear relationship
independent of the respective scales of measurement for vy
and x. This index is denoted by the symbol r within this
paper. The measure for the amount of variability in vy
accounted for by 1linear regression on x is denoted as r2
within this paper.

All of the equations and explanations for these statis-
tics can be found in [1]. It should be noted that other
types of curve fits were conducted on the data. The results
of these fits will be mentioned later in the paper.

Now that the software’s environment and the key terms
used within the paper have been defined and outlined, a dis-
cussion of the basic quantification of the data collected,
the relationships and distributions derived from this quan-
tification, and the resulting conclusions are presented.

2.0 BASIC DATA

The change data analyzed was collected over a period of
33 months, August 1977 through May 1980. These dates
correspond in time to the software phases of coding, test-
ing, acceptance, and maintenance (Figure 1) . The data col-
lected for the analyses is not complete since changes are
still being made to the software analyzed. However, it is
felt that enough data was viewed in order to make the con-
clusions drawn from the data significant.

The change data was entered on detailed report .sheets
which were completed by the programmer responsible for
implementing the change. A sample of the change report form
is given in the Appendix. In general, the form required
that several short questions be answered by the programmer
implementing the change. These queries allowed a means to
document the cause of a change in addition to other charac-
teristics and effects attributed to the change. The major-
ity of this information was found useful in the analyses.
The key information used in the study from the form was: the
data of the change or error discovery, the description of

4-30




the change or error, the number of components changed, the
type of change or error, and the effort needed to correct
the error.

It should be mentioned that the particular change
report form shown in the Appendix was the most current form
but was not uniformly used over the entire period of this
study. In actuality there were three different versions of
the change report form, not all of which required the same
set of questions to be answered. Therefore , for the data
that was not present on one type of form but could be
inferred, the inferred value was used. An example of such
an inference would be that of determining the error type.
Since the error description was given on all of the forms
the error type could be inferred with a reasonable degree of
reliability. Data not incorporated into a particular data
set used for an analysis was that data for which this infer-
ence was deemed unreliable. Therefore, the reader should be
alert to the cardinality of the data set used as a basis for
some of the relationships presented in this paper. There
was a total of 231 change report forms examined for the pur-
pose of this paper.

The consistency and partial validity of the forms was
checked in the following manner. First, the supervisor of
the project looked over the change report forms and verified
them (denoted by his or her signature and the date).
Second, when the data was being reduced for analysis it was
closely examined for contradictions. It should be noted
that interviews with the individuals who filled out the
change forms were not conducted. This was the major differ-
ence between this work and other error studies performed by
the Software Engineering Laboratory, where interviews were
held with the programmers to help clarify questionable data
(8). :

The review of the change data as described above
yielded an interesting result. The errors due to previous
miscorrections showed to be three times as common after the
form review process was performed, i.e. before the review
process they accounted for 2% of the errors and after the
review process they accounted for 6% of the errors. These
recording errors are probably attributable to the fact that
the corrector of an error did not know the cause was due to
a previous fix because the fix occurred several months ear-
lier or was made by a different programmer, etc.

3.0 RELATIONSHIPS DERIVED FROM DATA

This section presents and discusses relationships derived
from the change data.




3.1 CHANGE DISTRIBUTION BY TYPE

Types of changes to the software can be categorized as
error corrections or modifications (specification changes,
planned enhancements, clarity and optimization improve-
ments). For this project, error corrections accounted for
62% of the changes and modifications 38%. In studies of
other SEL projects, errors corrections ranged from 40% to
64% of the changes.

3.2 ERROR DISTRIBUTION BY MODULES

Figure 2 shows the effects of an error in terms of the
number of modules that had to be changed. (Note that these
errors here are counted as conceptual errors.) It was found
that 89% of the errors could be corrected by changing only
one module. This is a good argument for the modularity of
the software. It also shows that there is not a large
amount of interdependence among the modules with respect to
an error.

NUMBER OF MODULES AFFECTED BY AN ERROR (data set: 211 textual errors)
174 conceptual errrors)

#ERRORS #MODULES AFFECTED
155 (89%) 1.
9 2
3 3
6 y
1 5
i ) o Figure 5 ------------------------------

Figure 3 shows the number of errors found per module.
The type of module is shown in addition to the overall total
number of modules found to contain errors.




NUMBER OF ERRORS PER MODULE (data set: 215 errors)

#MODULES NEW MODIFIED #ERRORS/MODULE

36 17 19 1

26 13 13 2

16 10 6 3

13 7 6 Y

y 1% 3% 5

1 188 7
- Figure 3

The largest number of errors found were 7 (located in a
single new module) and 5 (located in 3 different modified
modules and 1 new module). The remainder of the errors were
distributed almost -equally among the two types of modules.

The effort associated with correcting an error is
specified on the form as being (1) 1 hour or less, (2) 1
hour to 1 day, (3) 1 day to 3.days, (4) more than 3 days.
These categories were chosen because it was too difficult to
collect effort data to a finer granularity. To estimate the
effort for any particular error correction, an average time
was used for each category, i.e. assuming an 8 hour day, an
error correction in category (1) was assumed to take .5
hours, an error correction in category (2) was assumed to
take 4.5 hours, category (3) 16 hours, and category (i) 32
hours.

The types of errors found in the three most error prone
modified modules (* in Figure 3) and the effort needed to
correct them is shown in Table 2. If any type contained
error corrections from more than one error correction
category, the associated effort for them was averaged. The
fact that the majority of the errors detected in a module
was between one and three shows that the total number of
errors that occurred per module was on the average very
small.

4-83




The twelve errors contained in the two most error prone
new modules (** in Figure 3) are shown in Table 3 along with
the effort needed to correct them.

NUMBER OF ERRORS AVERAGE EFFORT(
(15 total) TO CORRECT
misunderstood
or incorrect
specifications 8 24 hours

incorrect design

or implementation

of a module )

component 5 * 16 hours

clerical error 2 4.5 hours

EFFORT TO CORRECT ERRORS IN THREE MOST ERROR PRONE
MODIFIED MODULES

Table 2
NUMBER OF ERRORS AVERAGE EFFORT

(12 total) TO CORRECT
misunderstood
or incorrect
requirements 8

32 hours

incorrect design
or implementation
of a module 3 0.5 hours
¢clerical error 1 0.5 hours

- - > = - = - - . - = P D P P D W - T L D D D D S S

EFFORT TO CORRECT ERRORS IN THE TWO MOST ERROR PRONE
NEW MODULES
Table 3

N
|
oo
S




3.3 ERROR DISTRIBUTION BY TYPE

In Figure 4 the distribution of errors are shown by type. It
can be seen that 48% of the errors were attributed to
incorrect or misinterpreted functional specifications or
requirements.

The classification for error used throughout ‘the
Software Engineering Laboratory is given below. The person
identifying the error indicates the class for each error.

Requirements incorrect or misinterpreted
Functional specification incorrect or misinterpreted
Design error invloving several components
1. mistaken assumption about value or structure of
data
2. mistake in control logic or computation of an
expression
D: Error in design or implementation of single component
1. mistaken assumption about value or structure of
data
2. mistake in control logic or computation of an
expression ’
E: Misunderstanding of external environment
F: Error in the use of programming language/compiler
G: Clerical error
H: Error due to previous miscorrection of an error

QW
.. .e ee

The distribution of these errors by source is plotted
in Figure 4 with the appropriate subdistribution of new and
modified errors displayed. This distribution shows the
majority of errors were the result of the functional specif-
ication being incorrect or misinterpreted . Within this
category, the majority of the errors (24%) involved modified
modules This is most likely due to the fact that the modules
reused were taken from another system with a different
application. Thus, even though the basic algorithms were the
same, the specification was not well enough defined or
appropriately defined for the modules to be used under
slightly different circumstances.



% ERRORS OBSERVED

- - - - - - - - - - - - - - D D > - - - - - - D D D D D S D U S

MODIFIED MODULES

O?

40 4
362 NEW MODULES
30 - §
26%
20 4
2= N 12%
127 \ 8
10-\$'\ ‘\§Q
AN N\ 6% 7
6% N 6%
8% 127 ]
N\ 2 » 22
2% 27 o 8z 62 72
4
wz_ o 9~ 2 .57 4
A B c.1  C.2 D.1  D.2 E F [ H A.C.1  A,B D

SOURCES OF ERRORS

Figure 4

- = = - - = - Y - - - - . . - P D D W D D W S WD P M W D D M A D S - - -

86




80

72
70

A Mmoo

60 4

se

- O

3

30 4

20 &

10
10 §

VEP O OLDZE

Req Fnl Design Design Lang Env Other

Spec Multi- Single
Comp Comp

Type of Error

- - - - -

SOURCES OF ERROR ON QOTHER PROJECTS
Figure 5

The distribution in Figure 4 should be compared with
the distribution of another system developed by the same
organization shown in Figure 5. Figure 5 represents a typi-
cal ground support software system and was rather typical of
the error distributions for these systems. It is different
from the distribution for the system we are discussing in
this paper however, in that the majority of the errors were
involved in the design of a single component. The reason
for the difference is that in ground support systems, the
design is well understood, the developers have had a reason-
able amount of experience with the application. Any re-used
design or code comes from similar systems, and the require-
ments tend to be more stable. An analysis of the two distri-

butions makes the differences in the development environ-
ments clear in a quantitative way.




The percent of requirements and specification errors is
consistent with the work of Endres’[1]. Endres found that
46% of the errors he viewed involved the misunderstanding of
the functional specifications of a module. Our results are
similar even though Endres’ analysis was based on data
derived from a different software project and programming
environment. The software project used in Endres’ analysis
contained considerably more 1lines of code per module, was
written in assembly code, and was within the problem area of
operating systems. However, both of the software systems
Endres analyzed did contain new and modified modules.

Of the errérs due to the misunderstanding of a module’s
specifications or requirements (48%), 20% involved new
modules while 28% involved modified modules.

Although the existence of modified modules can shrink
the cost of coding, the amount of effort needed to correct
errors in modified modules might outweigh the savings. The
effort graph (Figure 6) supports this viewpoint: 50% of the
total effort required for error correction occurred in modi-
fied modules; errors requiring one day to more than three
days to correct accounted for 45% of the total effort with
279 of this effort attributable to modified modules within
these greater effort classes. Thus, errors ocecurring in new
modules required less effort to correct than those occurring
in modified medules.




EFFORT

N 271

¥ REPORTS
////”/,/
A
J/

200 4 192 122

\ \Ksz
w01 L AN
112 \ 15%

1 -1 hr. or less
2 -1 hr. to 1 day
AN 3 -1 day to 3 days
\,
NN

4 - more than 3 days

362
- MODIFIED MODULES
. \\\
\
\\\ (/\ NEW MODULES
\
307 L. N

EFFORT GRAPH
Figure 6

The similarity between Endres® results and those
reported here tend to support the statement that independent
of the environment and possibly the module size, the major-
ity of errors detected within software is due to an inade-
quate form or interpretation of the specifications. This
seems especially true when the software contains modified
modules.

In general, these observations tend to indicate that
there are disadvantages in modifying a large number of
already existing modules to meet new specifications. The
alternative of developing a new module might be better in
some cases if there does not exist good specifications for
the existing modules.

3.4 OVERALL NUMBER OF ERRORS OBSERVED

Figure 7 displays the number of errors observed in both

new and modified modules. The curve representing total

4-89



modules (new and modified) is basically bell-shaped. One
interpretation is that up to some point errors are detected
at a relatively steady rate. At this point at least half of
the total "detected-undetected" errors have been observed
and the rate of discovery thereafter decreases. It may also
imply the maintainers are not adding too many new errors as
the system evolves.

It 2an be seen, however, that errors occurring in
modified modules are detected earlier and at a slightly
higher rate than those of new modules. One hypothesis for
this is that the majority of the errors observed in modified
modules are due to the misinterpretation of the functional
specifications as was mentioned earlier in the paper.
Errors of this type would certainly be more obvious since
they are more blatant than those of other types and there-
fore, would be detected both earlier and more readily.(See
next section.) :




T B N =B s

ORICINAL PRAGE IS
OF POGR QUALITY

—,

== NEW AND MODIFIED MODGLES
-
\
\ -
. /=< =, NEW MODULES
Vo ' ~ //
\
70 | Y
- \ . =
\ esees- MODIFIED MODULES
\ \\—
\
» Vb 3
g 50 N
g N
179
. \
s .
= N
w \
£ 30 | \
3 | \
; NN
¢y
, \
0 | { . SN
1977 1978 1579 1980
NEW 10 54 40 9
MOD 10 67 1 14
coMp 20 121 51 23

NUMBER OF ERRORS OCCURRING IN MODULES
Figure 7

3.5 ABSTRACT ERROR TYPES

An abstract classification of errors was adopted by the
authors which classified errors into one of five categories
with respect to a module: (1) initialization; (2) control
structure; (3) interface; (4) data; and (5) computation.
This was done in order to see if there existed recurring
classes of errors present in all modules independent of
size. These error classes are only roughly defined so exam-
ples of these abstract error types are presented below. It
should be noted that even though the authors were consistant
with the categorization for this project, another error

4-91




analyst may have interpreted the categories differently.

Failure to initialize or re-initialize a data structure
properly upon a module’s entry/exit would be considered an
initialization error. Errors which caused an "incorrect-
path" in a module to be taken were considered control
errors. Such a control error might be a conditional state-
ment causing control to be passed to an incorrect path.
Interface errors were those which were associated with
structures existing outside the module’s local environment
but which the module used. For example, the incorrect
declaration of a COMMON segment or an incorrect subroutine
call would be an interface error. An error in the declara-
tion of the COMMON segment was considered an interface error
and not an initialization error since the COMMON segment was
used by the module but was not part of its’ local environ-
ment. Data error would be those errors which are a result
of the incorrect use of a data structure. Examples of data
errors would be the use of incorrect subscripts for an
array, the use of the wrong variable in an equation, or the
inclusion of an incorrect declaration of a variable local to
the module. Computation errors were those which caused a
computation to erroneously evaluate a variable’s value.
These errors could be equations which were incorrect not by
virtue of the incorrect use of a data structure within the
statement but rather by miscalculations. An example of this
error might be the statement A = B + 1. when the statement
really needed was A = B/C + 1.

These five abstract categories basically represent all
activities present in any module. The five categories were
further partitioned into errors of commission and omission.
Errors of commission were those errors present as a result
of an incorrect executable statement. For example, a com-
missioned computational error would be A = B % C where the
‘%’ should have been' ‘+°. In other words, the operator was
present but was incorrect. Errors of omission were those
errors which were a result of forgetting to 1include some
entity within a module. For example, a computational omis-
sion error might be A = B when the statement should have
read A = B + C. A parameter required for a subroutine call
but not included in the actual call would be an example of
an interface omission error. 1In both of the above examples
some aspect needed for the correct execution of a module was
forgotten.

The results of this abstract classification scheme as
discussed above is given in Figure 8. Since there were
approximately an equal amount of new (U49) and modified (47)
modules viewed in the analysis, the results do not need to
be normalized. Some errors and thereby modules were counted
more than once since it was not possible to associate some
errors with a single abstract error type based on the error

4-92




description given on the change report form.

commission omission
new modified new modified
initialization 2 9 5 9
control 12 2 16 6
interface 23 31 27 6
data 10 17 1 3
computation 16 21 3 3
28¢% 36% 23% 12%
RRBRARRBRRIERRRD SRBERERRERERRRR RN
64% 35%
total
new modified
initialization 7 18 == 25 (11%)
control 28 8 ~— 36 (16%)
interface 50 37 === 87 (39%)
data 11 20 —== 31 (14%)
computation 19 24 ——c 43 (19%)
115 107

ABSTRACT CLASSIFICATION OF ERRORS
Figure 8

According to Figure 8, interfaces appear to be the
ma jor problem regardless of the module type. Control is more
of a problem in new modules than in modified modules. This
is probably because the algorithms in the old modules had
more test and debug time. On the other hand, initialization
and data are more of a problem in modified modules. These.
facts, coupled with the small number of errors of omission
in the modified modules might imply that the basic algo-
rithms for the modified modules were correct but needed some
adjustment with respect to data values and initialization
for the application of that algorithm to the new environ-
ment.

3.6 MODULE SIZE AND ERROR OCCURRENCE




Scatter plots for executable lines per module versus
the number of errors found in the module were plotted. It
was difficult to see any trend within these plots so the
number of errors/1000 executable lines within a module size
was calculated (Table U4).

Module Size Errors/1000 lines
50 16.0
100 12.6
150 12.4
200 7.6
>200 6.4

ERRORS/1000 EXECUTABLE LINES (INCLUDES ALL MODULES)
' Table 4

The number of errors was normalized over 1000 executable
lines of code in order to determine if the number of
detected errors within a module was dependent on module
size. A1l modules within the software were included, even
those with no errors detected. If the number of errors/1000
exececutable lines was found to be constant over module size
this would show independence. An unexpected trend was
observed: Table 4 implies that there is a higher error rate
within smaller sized modules. Since only the executable
lines of code were considered the larger modules were not
COMMON data files. Also the larger modules will be shown to
be more complex than smaller modules in the next section.
Then how could this type of result occur?

The most plausable explanation seems to be -that since
there are a large number of interface errors, these are
spread equally across all modules and so there are a larger
number of errors/1000 executable statements for smaller
modules. Some tentative explanations for this behavior are:
the majority of the modules examined were small (Table 1)
causing a biased result; larger modules were coded with more
care than smaller modules because of their size; errors in
smaller modules are more apparent and there may indeed still
be numerous undetected errors present within the larger
modules since all the "paths" within the larger modules may
not yet have been fully exercised.

3.7 MODULE COMPLEXITY

Cyclomatic complexity [5] (number of decisions + 1) was
correlated with module size. This was done in order to

4-94

- e Ex am -



determine whether or not larger modules were less dense or
complex than smaller modules c¢ontaining errors. Scatter
plots for executable statments per module versus the
cyclomatic complexity were plotted and again, since it was
difficult to see any trend in the plots, modules were
grouped according to size. The complexity points were
obtained by calculating an average complexity measure for
each module size class. For example, all the modules which
had 50 executable lines of code or less had an average com-
plexity of 6.0. Table 5 gives the average cyclomatic com-
Plexity for all modules within each of the size categories.
The complexity relationships for executable lines of code
within a module is shown in Figure 9. As can be seen from
the table the larger modules were more complex than smaller
modules.

Module size Average Cyclomatic Complexity
50 6.0
100 17.9
150 28.1
200 52.7
>200 _ 60.0

AVERAGE CYCLOMATIC COMPLEXITY FOR ALL MODULES
Table 5




COMPLEXITY VS. WODULE SI1ZE

904
o~

80+ ————  gxecutable lines
10
60 |
504

404

304

McCABE'S MFASURE OF COMPLEXITY (AVG.)

1 A 1 A A 1
50 100 150 200 250 300 350 00 >400

MODULE SI1ZE

Figure 9

- - - - - > TP D - D - - D - - - - -

For only those modules containing errors, Table 6 gives
the number of errors/1000 executable statements and the
average cyclomatic complexity. When this data 1is compared
with Table 5 , one can see that the average complexity of
the error prone modules was no greater than the average com-
plexity of the full set of modules.




Module Size Average Cyclomatic Errors/1000
Complexity executable lines
50 6.2 65.0
100 , 19.6 33.3
150 27.5 24,6
200 56.7 13.4
>200 77.5 9.7

COMPLEXITI AND ERROR RATE FOR ERRORED MODULES
Table 6

4.0 DATA NOT EXPLICITLY INCLUDED IN ANALYSES

The 147 modules not included in this study (i.e.,
assembly segments, common segments, utility routines) con-
tained a total of six errors. These six errors were
detected within three different segments. One error
occurred in a modified assembly module and was due to the
misunderstanding or incorrect statement of the functional
specifications for the module. The effort needed to correct
this error was minimal (1 hour or less).

The other five errors occurred in two separate new data
segments with the major cause of the errors also being
related to their specifications. The effort needed to
correct these errors was on the average from 1 hour to 1 day
(1 day representing 8 hours).

5.0 CONCLUSIONS

The data contained in this paper helps explain and
characterize the environment in which the software was
developed. It is clear from the data that this was a new
application domain in an application with changing require-
ments.

Modified and new modules were shown to behave similarly
except in the types of errors prevalent in each and the
amount of effort required to correct an error. Both had a
high percentage of interface errors, however, new modules
had an equal number of errors of omission and commission and
a higher percentage of control errors. Modified modules had
a high percentage of errors of commission and a small per-
centage of errors of omission with a higher percentage of

4-97



data and initialization errors. Another difference was that
modified modules appeared to be more susceptible to errors

~due to the misunderstanding of the  specifications.

Misunderstanding of a module’s specifications or require-
ments constituted the majority of errors detected. This
duplicates an earlier result of Endres which implies that
more work needs to be done on the form and content of the
specifications and requirements in order to enable them to
be used across applications more effectively.

There were shown to be some disadvantages to modifying
an existing module for use instead of creating a new module.
Modifying an existing module to meet a similar but different
set of specifications reduces the developmental costs of
that module. However, the disadvantage to this is that
there e}ists hidden costs. Errors contained in modified
modules were found to require more effort to correct than
those in new modules, although the two classes contained
approximately the same number of errors. The majority of
these errors was due to incorrect or misinterpreted specifi-
cations for a module. Therefore, there is a tradeoff
between minimizing development time and time spent to align
a module to new specifications. However, if better specifi-
cations could be developed it might reduce the more expen-
sive errors contained within modified modules. In this
case, the reuse of "old" modules could be more beneficial in
terms of cost and effort since the hidden costs would have
been reduced.

One surprising result was that module size did not
account for error proneness. In fact, it was quite the con-
trary, the larger the module the less error prone it was.
This was true even though the larger modules were more com-
plex. Additionally, the error prone modules were no more
complex across size grouping than the error free modules.

In general, investigations of the type presented 1in
this paper relating error and other change data to the
software in which they have occurred is important and
relevant. It is the only method by which our knowledge of
these types of relationships will ever increase and evolve.




Acknowledgments

The authors would like to thank F. McGarry, NASA Goddard,
for his cooperation in supplying the information needed for
this study and his helpful suggestions on earlier drafts of
this paper.

References

(1) Mendenhall,W. and Ramey,M., Statistics for Psychology,
Duxbury Press, North Scituate, Mass., 1973, pp. 280-315.

(2) Endres,A.,"An Analysis of Errors and their Causes in
System Programs", Proceedings of the International Confer-
ence on Software Engineering, April, 1975, pp. 327-336.

(3) Belady,L.A. and Lehman,M.M., "A Model of Large Program
Development", IBM Systems Journal, Vol.15, 1976, pp.225-251.

(4) Weiss,D.M., "Evaluating Software Development by Error
Analysis : The Data from the Architecture Research Facil-
ity", The Journal of Systems and Software, Vol.1, 1979, pp.
57-70.

(5) Schneidewind,N.F., "An Experiment in Software Error
Data Collection and Analysis", IEEE Transactions on Software
Engineering , Vol. SE-5, No.3, May 1979, pp.276-286.

(6) McCabe, T.J., "A Complexity Measure™, IEEE Transactions
on Software Engineering, Vol. SE-2, No. 4, Dec. 1976,
pp.308-320.

(7) Basili,V. and Freburger,K., "Programming Measurement
and Estimation in the Software Engineering Laboratory", The
Journal of Systems and Software, Vol.2, 1981, pp.47-57.

(8) Weiss, D.M.," Evaluating Software Development by
Analysis of Change Data", University of Maryland Technical
Report TR-1120, November 1981.

APPENDIX




—c it Y X 73
Fanid dne Pn’ﬁ:E £J

OF POOR QUALITY.

APPENDIX NUMBER
CHANGE REPOAT FORM

PROJECT NAME CURRENT OATE

SECTION A - IDENTIFICATION

REASON: Wity was the change mede?

OESCRIPTION: What change was made?.

EFFECT: What for ) we d? ()
EFFORT: What sadi lor } were ined in whet changs was a2
(Month  Dey  Year)
Nead for change determined on
Cunppewrmdon ............
What was 0w effort in person time #ed 0 - the 7

e} NOUT OF lom, ] TOUF tO 1 duy, ——] d8y ™ J dave. ——TOT® than 3 deve

SECTION 8 - TYPE OF CHANGE (Mow is this change best cherscurized?)

O Evor correction 3 inesrtion/deietion of detnsg code

O Pewed enhancamenx O Opumization of time/spece/scourscy
a jon of requi chenge O Adepustion to erwironment chernye
3 improverment of clarity, maimtainability, or O Other {(Expisin in B

0 Improvement of user serviass
Was mare than one ffectad by the ¢ Ym No

POR ERROR CORRECTIONS ONLY
SECTION C - TYPE OF ERROR (How is this error best characwrized?)

O Regui i or misi O Mieur of i oot
[l ifications i oF Misireerps O Error in uee of progr 9 langue

Oasign error, iwolving severst ) O Clericsl error

Error in the design or ion of & single QO Other (Expisin in &)

FOR DESIGN OR IMPLEMENTATION ERRORS ONLY
1f the error was in design of iMpiementation:

The ervor was 3 MSTAKEN MANTOTION IDOUL the velue of of dats

The ervor wes 3 mvistais in control logic or aton of an expr

Change Report Form

- - - - - - - - - - - - - - - - -anon o

4-100




on 2 " BB Nn R g Gn AR gn ab o O By G i aw

ORIGINAL PAZE IS
OF POOR QUALITY

FOR ERROR CORRECTIONS ONLY
SECTION D - VALIDATION AND AEPAIR

What actvites were used to validew the program, demct the emmor, and find its cause?

Usd for Succaeriul Tried to Sucosmtul
Progrem - in Dewecting Find in Finding
Validstion Ervor Symproms Caum Caue

Pre-acceotance test runs

Acteptancs wsung

Post-scceotance us

Inspection of output

Code reeding by programmer

Code reading by other person

Talks with ather programmerns

Specisl debug code

Syswm ercor menages

Propct wecific error memags

Resding documentation

Trace

Oumg

Crom-reference/atniouts list

Proot technique

QOther (Explain in E)

What was the ume used 10 isolaw e caum?

e ON® NOUP OF 1958, e ONG NOUT 10 ONe day, ___ MoOre then ONe dBY, ...neve found
If never found. was o used? Yes No {Expiein in E)

Was this error reiated to a previous changs?

Yes (Change Repart #/Date ) —No ___Can't tell

Vinen Cid the error snmr the system?

#

[ Je— i oecs __desgn ____codingsnd Mt ___other __cen’t tei

SECTION € - ADDITIONAL INFORMATION

Plapse give snv information that mey be heloful in CREgONTING the emoe or change, and understanding it cause and its
ramifications.

Change Report Form

4-101




SECTION 5 — DATA COLLECTION




SECTION 5 - DATA COLLECTION

The technical papers included in this section were origi-

nally prepared as indicated below.

Basili, V. R., and D. M. Weiss, "A Methodology for
Collecting Valid Software Engineering Data,"
University of Maryland, Technical Report TR-1235,
December 1982 (reprinted by permission of the
authors)

Zelkowitz, M. V., "Data Collection and Evaluation
for Experimental Computer Science Research,"
University of Maryland, Technical Memorandum,
November 1982 (reprinted by permission of the
author)

A version of this paper also appears in Empirical
Foundations for Computer and Information Science

(Proceedings), November 1982.



Do o)

N87-249¢3

Technical Report TR-1235 December 1982
: NSG-5123

A METHODOLOGY FOR COLLECTING VALID
SOFTWARE ENGINEERING DATA*

Victor R. Basili
University of Maryland

David M. Weiss
Naval Research Laboratory

*Research supported in part by the National Aeronautics and Space
Administration Grant NSG-5123. Computer support provided in part by
the facilities of NASA/Goddard Space Flight Center and the Computer
Science Center at the University of Maryland.

5-3

e

“REZCEDING PAGE CLANIK NOT FILMZO 2AGE 5 - 2 |NAENTIONALLY BLANK




ABSTRACT

An effective data collection method for evaluating software development
methodologies and for studying the software development process is
described. The method uses goal-directed data collection to evaluate
methodologies with respect to the claims made for them. Such claims
are used as a basis for defining the goals of the data collection,
establishing a list of questions of interest to be answered by data
analysis, defining a set of data categorization schemes, and designing
a data collection form.

The data to be collected are based on the changes made to the software
during development, and are obtained when the changes are made. To
insure accuracy of the data, validation is performed concurrently with
software development and data collection. Validation is based on
interviews with those people supplying the data. Results from using
the methodology show that data validation is a necessary part of change
data collection. Without it, as much as 50% of the data may be
erroneous.

Feasibility of the data collection methodology was demonstrated by
applying it to five different projects in two different environments.

The application showed that the methodology was both feasible and useful.




A Methodology For Collecting Valid Software
Engineering Data
Wictor R. Basili
University of Maryland

David M. Weiss
Naval Research Laboratory

1. Introduction

According to the mythology of computer science, the first computer pro-
gram ever written contained an error. Error detection and error correction are
now considered to be the major cost factors in software development (1,2,8].

. Much current and recent research is devoted to finding ways of preventing

software errors. This research includes areas such as requirements definition
(4], automatic and semi-automatic program generation [5,8]. functional
specification [7], abstract specification [B.9,10,11], procedural specification
[12], code specification [13, 14, 15], verification [16,17,18], coding techniques
tlQ. 20,21,22,23, 24], error detection [25], testing [26, 27], ‘and language design
'16.28,29,30,31].

One result of this research is that techniques claimed to be effective for
preventing errors are in abundance. Unfortunately, there have been few
attempts at experimental verification of such claims. The purpose of this paper
is to show how to obtain valid data that may be used both to learn more about
the software development process and to evaluate software development metho-
dologies in a production environment. Previous [15] and companion papers [32]
present the data and evaluation results. The methodology described in this
paper was developed as part of studies conducted by the Naval Research Labora-
tory and by NASA's Software Engineering Laboratory [33].

Software Engineering Experimentation

The course of action in most sciences when faced with a question of opinion
1s to obtain experimental verification. Software engineering disputes are not
usually settled that way. Data from experiments exist, but rarely apply to the
question to be settled. There are a number of reasons for this state of affairs.
Probably the two most important are the number of potential confounding fac-
tors involved in software studies and the expense of attempting to do controlled
studies in an industrial environment involving medium or large scale systems.

Rather than attempting controlled studies, we have devised a method for
conducting accurate causal analyses in production environments. Causal ana-
lyses are efforts to discover the causes of errors and the reasons that changes
are made to software. Such analyses are designed to provide some insight into
the software development and maintenance processes, help confirm or reject
claims made for different methodologies, and lead to better techniques for
prevention, detection, and correction of errors. Relatively few examples of this
kind of study exist in the literature; some examples are. 34,35, 4, 15, 36]

To provide useful data, a data collection methodology must display certain
attributes. Since much of the data of interest for real projects are-collected

5-5




during the test phase, complete analysis of the data must await project comple-
tion. Although it is important that data collection and validation proceed con-
currently with development, the final analysis must be done from a historical
viewpoint, after the project ends.

Developers can provide data as they make changes during development. In
a reasonably well-controlled software development environment, documentation
and code are placed under some form of configuration control before being
released for use by others than the author. Changes are defined as alterations
to baselined design, code or documentation.

A key factor in the data gathering process is validation of the data as they
become available. Such validity checks result in corrections to the data that
cannot be captured at later times owing to the nature of human memory. [37]
Timeliness of both data collection and data validation is quite important to the
accuracy of the analysis.

Careful validation means that the data to be collected must be carefully
specified, so that those supplying data, those validating data, and those perform-
ing the analyses will have a consistent view of the data collected. This is espe-
cially important for the purposes of those wishing to repeat studies in both the
same and different environments.

Careful specification of the data requires the data collectors to have a clear
idea of the goals of the study. Specifying goals is itself an important issue,
since, without goals, one runs the risk of collecting unrelated, meaningless data.

To obtain insight into the software development process, the data collectors
need to know the kinds of errors committed and the kinds of changes made. To
identity troublesome issues, the effort needed to make each change is neces-
sary. For greatest usefulness, one would like to study projects from software
production environments involving teams of programmers.

We may surnmarize the preceding as the following six criteria:

1. the data must contain information permitting identification of the
types of errors and changes made,

2. the data must include the cost of making changes and correcting
errors,

3. data to be collected must be defined as a result of clear specification
of the goals of the study,

4. data should include studies of projects from production environments,
involving teams of programmers,

5. data analysis should be historical, but data must be collected and vali-
dated concurrently with development

8. data classification schemes to be used must be carefully specified for

the sake of repeatability of the study in the same and different
environments.




II. Schema For The Investigative Methodology

Our data collection methodology is goal oriented. It starts with a set of
goals to be satisfled, uses these to generate a set of questions to be answered,
and then proceeds step-by-step through the design and implementation of a
data collection and validation mechanism. Analysis of the data yields answers to
the questions of interest, and may also yield a new set of questions. The pro-
cedure relies heavily on an interactive data validation process; those supplying
the data are interviewed for validation purposes concurrently with the software
development process. The methodology has been used in two different environ-
ments to study five software projects developed by groups with different back-
grounds using very different software development methodologies. In both
environments it yielded answers to most questions of interest and some insight
into the development methodologies used.

The projects studied vary widely with respect to factors such as application,
size, development team, methodology, hardware, and support software.
Nonetheless, the same basic data collection methodology was applicable every-
where. The schema used has six basic steps, listed in the following, with consid-
erable feedback and iteration occurring at several different places.

1. Establish the goals of the data collection
We divide goals into two categories: those that may be used to evaluate a

particular software development methodology relative to the claims made for it
and those that are common to all methodologies to be studied.
As an example, a goal of a particular methodology, such as information hid-
ing [38]. might be to develop software that is easy to change. The corresponding
data collection goal is to evaluate the success of the developers in meeting this
goal, i.e. evaluate the ease with which the software can be changed. Goals in this
category may be of more interest to those who are involved in developing or
testing a particular methodology, and must be defined cooperatively with them.

A goal that is of interest regardless of the methodology being used is to
characterize changes in ways that permit comparisons across projects and
environments. Such goals may interest software engineers, programmers,
managers, and others more than goals that are specific to the success or failure
of a particular methodoiogy.

Consequences of Omitting Goals

Without goals, one is likely to obtain data in which either incomplete pat-
terns or no patterns are discernible. As an example, one goal of an early study
(15] was to characterize errors. During data analysis, it became desirable to
discover the fraction of errors that were the result of changes made to the
software for some reason other than to correct an error. Unfortunately, none of
the goals of the study were related to this type of change, and there were no
such data available.

2. Develop alist of questions of interest

Once the goals of the study have been established, they may be used to
develop a list' of questions to be answered by the study. Questions of interest
define data parameters and categorizations that permit quantitative analysis of
the data. In general, each goal will result in the generation of several different
questions of interest. As an example, if the goal is to characterize changes,.
some corresponding questions of interest are: "What is the distribution of
changes according to the reason for the change?”, "What is the distribution of

5-7 g
CRICINAL PAZE 15

OF POOR QUALITY



changes across system components?’, 'What is the distribution of effort to
design changes?"’

As a second example, if the goal is to evaluate the ease with which software
can be changed, we may identify questions of interest such as: "Is it clear where
a change has to be made in the software?’, "Are changes confined to single
modules?”’, “"What was the average effort involved in making a change?’

Questions of interest form a bridge between subjectively-determined goals
of the study and the quantitative measures to be used in the study. They permit
the investigators to determine the quantities that need to be measured and the
aspects of the goals that can be measured. As an example, if one is attempting
to discover how a design document is being used, one might collect data that
show how the document was being used when the need for a change to it was
discovered. This may be the only aspect of the document's use that is measur-
able.

Goals for which questions of interest cannot be formulated and goals that
cannot be satisfied because adequate measures cannot be defined may be dis-
carded. Once formulated, questions can be evaluated to determine if they com-
pletely cover their associated goals and if they define quantitative measures.
Finally, questions of interest have the desirable property of forcing the investi-
gators to consider the data analyses to be performed before any data are col-
lected.

Consequences of Omitting Questions Of Interest

Without questions of interest, there may be no quantitative basis for satisfy-
ing the goals of the study. Data distributions that are needed for evaluation pur-
poses, such as the distribution of effort involved in making changes, may have to
be constructed in an ad hoc way, and be incomplete or inaccurate.

3. Establish data categories

Once the questions of interest have been established, categorization
schemes for the changes and errors to be examined may be constructed. Each
question generally induces a categorization scheme. If one question is, "What
was the distribution of changes according to the reason for the change?", one
will want to classify changes according to the reason they are made. A simple
categorization scheme of this sort is error corrections vs. non-error corrections
(hereafter called modifications).

Each of these categories may be further subcategorized according to rea-
son. As an example, modifications could be subdivided into those modifications
resulting from requirements changes, those resulting from a change in the
development support environment (e.g. compiler change), planned enhance-
ments, optimizations, and others.

Such a categorization permits characterization of the changes with respect
to the stability of the development environment, with respect to different kinds
of development activities, etc. When matched with another categorization such
as the difficulty of making changes, this scheme also reveals which changes are
the most difficult to make.

Each categorization scheme should be complete and consistent, i.e. every
change should fit exactly one of the subcategories of the scheme. To insure
completeness, the category "Other” is usually added as a subcategory. Where
some changes are not suited to the scheme, the subcategory "Not Applicable”
may be used As an example, if the scheme includes subcategories for different
levels of effort in isolating error causes, then errors for which the cause need

5-8




not be isolated (e.g. clerical errors noticed when reading code) belong in the
"Not Applicable” subcategory.

Consequences Of Not Defining Data Categories Before Collecting Data

Omitting the data categorization schemes may result in data that cannot
later be identified as fitting any particular categorization. Each change then
tends to define its own category, and the result is an overwhelming multiplicity
of data categories, with little data in each category.

4. Design and test data collection form

To provide a permanent copy of the data and to reinforce the program-
mers' memories, a data collection form is used. Form design was one of the
trickiest parts of the studies conducted, primarily because forms represent a
comprormise among conflicting objectives. Typical conflicts are the desire to
collect a complete, detailed set of data that may be used to answer a wide range
of questions of interest, and the need to minimize the time and effort involved in
supplying the data. Satisfying the former leads to large, detailed forms that
require much time to fill out. The latter requires a short form organized so that
the person supplying the data need only check off boxes.

Including the data suppliers in the form design process is quite beneficial.

Complaints by those who must use the form are resolved early (i.e. before data
collection begins), the form may be tailored to the needs of the data suppliers

asaS g,y e wiaaalis L WAlC LITCTUSD pPiel s

(e.g. tor use as in configuration management), and the data suppliers feel they
are a useful part of the data collection process.

The forms mu:t be constructed so that the data they contain can be used to
answer the questions of interest. Several design iterations and test periods are
generally needed before a satisfactory design is found.

Our principal goals in form design were to produce a form that:

1. fit on one piece of paper, -

2. could be used in several different programming environments, and

3. permitted the programmer some flexibility in describing the
change.

Figure 1 shows the last version of the form used for the SEL studies. (An
earlier version of the form was significantly modified as a result of experience
gained in the data collection and analysis processes.) The first sections of the
form request textual descriptions of the change and the reason it was made.
Following sections contain questions and check-off tables that reflect various
categorization schemes.

As an example, a categorization of time to design changes is requested in
the first question following the description of the change. The completer of the
form is given the choice of 4 categories (one hour or less, one hour to one day,
one day to three days, and more than three days) that cover all possibilities for
design time.

Consequences Of Not Using A Data Collection Form

Without a data collection form, it is necessary to rely on the developer's
memoriles and on perusal of early versions of design documentation and code to
identify and categorize the changes made. This approach leads to incomplete,
inaccurate data. i




NUMBER
CHANGE REPORT FORM
PROJECT NAME CURRENT DATE

SECTION A - IDENTIFICATION

RéASDN: Why was the change made?

DESCRIPTION: \Vhat change was mads?

EFFECT: What [ ts or d o) are changed? (Inciude version)

EFFORT: What additionai ponents {or d Yents) were examined in demermining what change was nesded?

{Month  Day Year)

Need for change determinedon .. ..

Changestarted 00 . ....cceecee

What was the effort in person time required to understand and implement the change?

) hour or less, 1 hour o 1 day, 1 day to 3 days, —_mare than

3 days

SECTION B - TYPE OF CHANGE (How is this change best characterized?)

QO Error correction O insertion/deietion of debug code

O Ptanned enhancement . . O Optimization of time/space/accuracy
- O Imptementation of requirements changs O Adaptation to enviranment change

O improvement of clarity. maintainability, or documentation O Other (Explain in E)

C Improvement of user services

Was more than one component affected by the change? Yes No

FOR ERROR CORRECTIONS ONLY
SECTION C - TYPE OF ERROR (How is this error best characterized?}

O Requirements incorect or misinterpreted

FOR DESIGN OR IMPLEMENTATION ERRORS ONLY
it the error was in design or implementation:

The error was a mustaken assumption shout the value or structure of data

O Misunderstanding of extemal environment, except language

O Funcrional specifications incorrect or misinterpreted O Error in use of programming language/compiler
Design error, invaiving several components O Clerical error
Error in the design or implementation of a single comgponent O Other {Explain in E)

The error was a mistake in control logic or computation of an expression

$80-2 (6/78)

Figure 1 SEL Change Report Form (front )

5-10

ORIGHIAL PAGE i

e

OF POOR QUALITY




OF

ORIGINAL PAGE IS
POOR QUALITY

FOR ERROR CORRECTIONS ONLY
SECTION O - VALIDATION AND REPAIR

What activities were used to validate tre program, detect the error, and find its cause?

Activities Activities Activities
Usad for Successful Tried to
Program in Detecting Find
Validstion Error Symptoms Cause

Activities

Succassful

in Finding
Cause

Pre-acceptance test rung

Acceptince testing

Postacceptance use

Inspection of outdut

Code reading by program.ner

Cads resding by other person

Talks with other programmers

Special debug code

Systam error messages

Project specitic error messages

Reading documentation

Trace

Oumo

Cross-ref2rence/attnibute list

P-0a! ehnique

COther {Explain in E}

What was the tiine used to isolate the cause?

it never found, vsas 3 work d used? Yes No {Explain in E}

L¥as this areor related to 2 previous change?

No Can't teil

Yes (Change Report #/Date

Whea did the error enter the system?

—_requirements __functional spees ___design __coding and test ——oother

one hour or less, —__. one hour to one day, .__more than one day, ___..never found

——can’t tefl

SECTION £ - ADOITIONAL INFORMATION

Plngse give any information that may be heiptul in categorizing the error of cnange, and understanding its cause and its

ramaficetions.

Jedii€ Authorized:

Date:

Figure 1 SEL Change Report Form (back)

5-11




5. Collect and validate data

Data are collected by requiring those people who are making software
changes to complete a change report form for each change made, as soon as the
the change is completed. Validation consists of checking the forms for correct-

ness, consistency, and completeness. As part of the validation process, in cases

where such checks reveal problems the people who fllled out the forms are
interviewed. Both collection and validation are concurrent with software
development; the shorter the lag between programmers completing forms and
being interviewed concerning those forms, the more accurate the data.

Perhaps the most significant problem during data collection and validation
is insuring that the data are complete, i.e. that every change has been described
on a form. The better controlled the development process, the easier this is to
do. At each stage of the process where configuration control is imposed, change
data may be collected. Where projects that we have studied use formal
configuration control, we have integrated the configuration control procedures
and the data collection procedures, using the same forms for both, and taking
advantage of configuration control procedures for validation purposes. Since all
changes must be reviewed by a configuration control board in such cases, we are
guaranteed capture of all changes, i.e. that our data are complete. Further-
more, the data collection overhead is absorbed into the configuration control
overhead, and is not visible as a separate source of irritation to the developers.

Consequences Of Omitting Validation

One result of concurrent development, data collection, and data validation
is that the accuracy of the collection process may be quantified. Accuracy may
be calculated by observing the number of mistakes made in completing data col-
lection forms. One may then compare, for any data category, pre-validation dis-
tributions with post-validation distributions. We call such an analysis a valida-
tion analysis. The validation analysis of the SEL data shows that it is possibie for
inaccuracies on the order of 50% to be introduced by omitting validation. To
emphasize the consequences of omitting the validation procedures, we present
some of the results of the validation analysis of the SEL data in'section Il

8. Analyze Data

- Data are analyzed by calculating the parameters and distributions needed
to answer the questions of interest. As an example, to answer the question
"What was the distribution of changes according to the reason for the change?”,
a distribution such as that shown in figure 2 might be computed from the data.

Application of the Schema

Applying the schema requires iterating among the steps several times.
Defining the goals and establishing the questions of interest are tightly coupled,
as are establishing the questions of interest, designing and testing the form(s),
and collecting and validating the data. Many of the considerations involved in
implementing and integrating the steps of the schema have been omitted here
so that the reader may have an overview of the process. The complete set of
goals, questions of interest, and data categorizations for the SEL projects are
shown in a companion paper [32].




€13s

SHOT1¥I1 41A0W 40 S30AN0S ¢ Janoly edfy oBusy)
' .
[ETE T d avy 8nqag wBicaq bay
L <. T TR Al . —i T == e st - [ ]
: C
T
L I L T N T TR L YT R R B AT ET TR Y Unsgig o1
sunypudg)rede k1
[N FURRST TN € eaMiuny An pasnw s whn I NIy o o o Aw
SIUcmo U povur | 2 ke %3 b
ot H
)
€ ™ o &
oot oR nqaq L “
b1
w v [\ m
Ly wanang oy ey 4
Lo 4 o
R [\
9
Q
Q. o™
w —
O 2135 1135 rr

adfy abuey)

adh; sfuey)

e 31

\ _oouBrsan _ Bey v 3d. v Baqag __ uB1t20 o
: . [ I N —— R
. : ¢ 2 €
L1l of
el et
. 5
02 1 02 A
v . 02 1}
e e B
i
o , o
!
. 1
o 05 “ O3
on
ee




Support Procedures and Facilities

In addition to the activities directly involved in the data collection effort,
there are a number of support activities and facilities required. Included as
support activities are testing the forms, collection, and validation procedures,
training the programmers, selecting a data base system to permit easy analysis
of the data, encoding and entering data into the data base, and developing
analysis programs.

I Details Of SEL Data Collection And Validation

In the SEL environment, program libraries were used to support and control
software development. There was a full-time librarian assigned to support SEL
projects. All project library changes were routed through the librarian. In gen-
eral, we define a change to be an alteration to baselined design, code, or docu-
mentation. For SEL purposes, only changes to code, and documentation con-
tained in the code, were studied. The program libraries provxded a convenient
mechanism for identifying changes.

Each time a programmer caused a hbrary change, he was requlred to com-
plete a change report form (figure 1). The data presented here are drawn from
studies of three different SEL projects, denoted SEL1, SEL2, and SEL3. The pro-
" cessing procedures were as follows.

1. Programmers were required to complete change report forms for all
changes made to library routines.

2. Programs were kept in the project library during the entire test phase.

3. After a change was made a completed change report form describing
the change was submitted. The form was first informally reviewed by
the project leader. It was then sent to the SEL library staff to be
logged and a unique identifier assigned to it.

4. The change analyst reviewed the form and noted any inconsistencies,
omissions, or possible miscategorizations. Any questions the analyst
had were resolved in an interview with the programmer. (Occasionally
the project leader or system designer was consulted rather than the
individual programmer.)

5. The change analyst revised the form as indicated by the results of the
programmer interview, and returned it to the library staff for further
processing. Revisions often involved cases where several changes were
reported on one form. In these cases, the analyst insured that there
was only one change reported per form; this often involved filling out
new forms. Forms created in this way are known as generated forms.

(Changes were considered to be different if they were made for
different reasons, if they were the result of different events, or if they
were made at substantially different times (e.g. several weeks apart).
As an example, two different requirements amendments would result in
two different change reports, even if the changes were made at the
same time in the same subroutine.)

. W T E U & W G o O aE Eb G S B aa 2 4 W



l

Occasionally, one change was reported on several diflerent forms. The
forms were then merged into one form, again to insure one and only
one change per form. Forms created in this way are known as com-
bined forms.

8. The library stafl encoded the form for entry into the (automated) SEL
data base. A preliminary, automated check of the form was made via a
set of data base support programs. This check, mostly syntactic,
ensured that the proper kinds of values were encoded into the proper
flelds, e.g. that an alphabetic character was not entered where an
integer was required.

7. The encoded data were entered into the SEL data base.

8. The data were analyzed by a set of programs that computed the neces-
" sary distributions to answer the questions of interest.

Many of the reported SEL changes were error corrections. We define an
error to be a discrepancy between a specification and its implementation.
Although it was not always possible to identify the exact location of an error, it
was always possible to identify exactly each error correction. As a result, we
generally use the term error to mean error correction.

For data validation purposes, the most important parts of the data coilec-
tion procedure are the review by the change analyst, and the associated pro-
grammer interview to resolve uncertainties about the data.

The SEL validation procedures afforded a good chance to discover whether
validation was really necessary; it was possible to count the number of mis-
categorizations of changes and associated misinformation. These counts were
obtained by counting the number of times each question on the form was
incorrectly answered.

An example is misclassifications of errors as clerical errors. (Clerical errors
were defined as errors that occur in the mechanical translation of an item from
one format to another, e.g. from one coding sheet to another, or from one
medium to another, e.g. coding sheets to cards.) For one of the SEL projects, 46
errors originally classified as clerical were actually errors of other types. (One
of these consisted of the programmer forgetting to include several lines of code
in a subroutine. Rather than clerical, this was classified as an error in the
design or implementation of a single component of the system.) Initially, this
project reported 238 changes, so we may say that about 197% of the original
reports were misclassified as clerical errors.

The SEL validation process was not good for verflying the completeness of
the reported data. We cannot tell from the validation studies how many changes
were never reported. This weakness can be eliminated by integrating the data
collection with stronger configuration control procedures.

Validation Differences Among SEL Projects

As experience was gained in collecting, validating, and analyzing data for
the SEL projects, the quality of the data improved significantly, and the valida-
tion” procedures changed slightly. For SEL1 and SEL2, completed forms were
exarmined and programmers interviewed by a change analyst within a few weeks
{typtcally 3 to 8 weeks) of the time the forms were completed. For project SEL2,
the task leader (lead programmer for the project) examined each form before
the change analysts saw it.




Project SEL3 was not monitored as closely as SEL1 and SEL2. The task
leader, who was the same as for SEL2, by then understood the data categoriza-
tion schemes quite well and again examined the forms before sending them to
the SEL. The forms themseives were redesigned to be simpler but still capture
nearly all the same data. Finally, several of the programmers were the same as
on project SEL2 and were experienced in completing the forms.

Estimating Inaccuracies In The Data

Although there is no completely objective way to quantify the inaccuracy in
the validated data, we believe it to be no more than 5% for SEL! and SEL 2. By
this we mean that no more than 5% of the changes and errors are misclassified
in any of the data collection categories. For the major categories, such as
whether a change is an error or modification, the type of change, and the type of
error, the inaccuracy is probably no more than 3%.

For SEL3, we attempted to quantify the results of the validation procedures
more carefully. After validation, forms were categorized according to our
confidence in their accuracy. We used four categories:

(1) Those forms for which we had no doubt concerning the accuracy of
the data. Forms in this cateogry were estimated to have no more
than a 17 chance of inaccuracy.

(2) Those forms for which there was little doubt about the accuracy of
the data. Forms in this category were estimated to have at most a
10% chance of an inaccuracy.

(3) Those forms for which there was some uncertaincy about the accura-
cy, with an estimated inaccuracy rate of no more than 307%.

(4) Those forms for which there was considerable uncertaincy about the
accuracy, with an estimated inaccuracy rate of about 507%.

Applying the inaccuracy rates to the number of forms in each category gave us
an estimated inaccuracy of at most 3% in the validated forms for SELS.

Prevalent Mistakes In Completing Forms

Clear patterns of mistakes and misclassifications in completing forms
became evident during validation. As an example, programmers on projects
SEL1 and SEL2 frequently included more than on~? change on one form. Often
this was a result of the programmers sending the changes to the library as a
group.

Comparative Validation Results

Figure 3 provides an overview of the results of the validation process for the
3 SEL projects. The percentage of original forms that had to be corrected as a
result of the validation process is shown. As an example, 32% of the originally
completed change report forms for SEL3 were corrected as a result of valida-
tion. The percentages are based on the number of original forms reported
(since some forms were generated, and some combined. the number of changes
reported after validation is different than the number reported before valida-
tion). Figure 4 shows the fraction of generated forms expressed as a percentage
of total validated forms.

Figure 3 shows that pre-validation SEL3 forms were significantly more accu-
rate than the pre-validation SEL1 or SEL2 forms. When the generated and com-
bined forms are also considered, the pre-validation SEL3 data appear to be con-
siderably better then the pre-validation data for either of the other projects. We

5-16




believe the reasons for this are the improved design of the form, and the fami-
liarity of the task leader and programmers with the data collection process.
(Generated forms are shown in figure 4. Combined forms for all of the projects
represented a very small fraction of the total validated forms.)

These (overall) results show that careful validation, including programmer
interviews, is essential to the accuracy of any study involving change data.
Furthermore, it appears that with well-designed forms, and programmer train-
ing, there is improvement with time in the accuracy of the data one can obtain.
We do not believe that it will ever be possible to dispense entirely with program-
mer interviews, however.

Erroneous Classifications

Table 1 shows misclassifications of error as modifications and modifications
as errors. As an example, for SEL1, 14% of the original forms were classified as
modifications, but were actually errors. Without the validation process, consid-
erable inaccuracy would have been introduced into the initial categorization of
changes as modifications or errors.

Table 2 is a sampling of other kinds of classification errors that could con-
tribute significantly to inaccuracy in the data. All involve classification of an
error into the wrong subcategory. The first row shows errors that were classified
by the programmer as clerical, but were later reclassified as a result of the vali-
dation process into another category. For SEL1, significant inaccuracy (19%)
wouid be introduced by omitting the validation process.

Table 3 is similar to table 2, but shows misclassifications. involving
modifications. The first row shows modifications that were classified by the pro-
grammer as requirements or specifications changes, but were reclassified as a
result of validation.

Variation In Misclassification

Data on misclassifications of change and error type subcategories, such as
shown in table 2, tends to vary considerably among both projects and sub-
categories. (Misclasssification of clerical errors as shown in table 2 is a good
example.) This is most likely because the misclassifications represent biases in
the judgements of the programmers. It became clear during the validation pro-
cess that certain programmers tended toward particular misclassifications.

The consistency between projects SEL2 and SEL3 in table 2 probably occurs
because both projects had the same task leader, who screened all forms before
sending them to the SEL for validation.




- 00

=0 2T U 0
-

"o

w3ivom rzx

EIMO UMY

o

VNIDOM OMADO—~~DC

50°

49

39

29

19

40

39

29

19

55
51
32
SECT ' SEL2 SELS
PROJECT
FIGURE 3 CCIRECTED FORMS
s
17
1€
SELT SELS SELS
FROJECT
FIGURE 4. QINE3aTED fa3ms
5-18




L SEL1 _SEL2 SEL3
Modifications classified as errors 1% YA less than 1%
Errors classified as modifications 147 YA 2%

Table 1 Erroneous Modification and Error Classifications
(Percent of Original Forms)

Original Classification SEL1 | SEL2 SEL3
Clerical Error 197 7% 67
(Use of) Programming Language 0% 5% 3%
Incorrect or Misinterpreted Requirements 0% less than 1%

Design Frror

BZ

1Z

{Percent of Ori

ginal Forms)

Table 2 Typical Error Type Misclassifications

SEL1 SEL3
Requirements or specification change 1% less than 1%
Design change B8Z 17
Optimization 8% less than 1%
Other 3% less than 17%

Table 3 Erronecus Modification Classifications
(Percent of Original Forms)




Conclusions Concerning Validation

The preceding sections have shown that the validation process, particularly
the programmer interviews, are a necessary part of the data collection metho-
dology. Inaccuracies on the order of 50% may be introduced without this form of
validation. Furthermore, it appears that with appropriate form design and pro-
grammer experience in completing forms, the inaccuracy rate may be substan-
tially reduced, although it is doubtful that it can be reduced to the level where
programmer interviews may be omitted from the validation procedures.

A second significant conclusion is that the analysis performed as part of the
validation process may be used to guide the data collection project; the analysis
results show what data can be reliably and practically collected, and what data
cannot be. Data collection goals, questions of interest, and data collection forms
may have to be revised accordingly.

IV. Recommendations For Data Collectors

We believe we now have sufficient experience with change data collection to
be able to apply it successfully in a wide variety of environments. Although we
have been able to make comparisons between the data collected in the two
environments we have studied, we would like to make comparisons with a wider
variety of environments. Such comparisons will only be possible if more data
become available. To encourage the establishment of more data collction pro-
jects, we feel it is important to describe a successful data collection methodol-
ogy. as we have done in the preceding sections, to point out the pitfalls involved,
and to suggest ways of avoiding those pitfalls.

Procedural Lessons Learned

Problems encountered in various procedural aspects of the studies were
the most difficult to overcome. Perhaps the most important are the following.

1. Clearly understanding the working environment and specifying the
data collection procedures were a key part of conducting the investiga-
tion. Misunderstanding by the programmer of the circumstances that
require him/her to file a change report form will prejudice the entire
effort. Prevention of such misunderstandings can partly be accom-
plished by training procedures and good forms design, but feedback to
the development staff, i.e. those filling out the data collection forms,
must not be omitted.

2. Similarly, misunderstanding by the change analyst of the cir-
cumstances that required a change to be made will result in
misclassifications and erroneous analyses. Our SEL data collection was
helped by the use of a change analyst who had previously worked in the
NASA environment and understood the application and the develop-
ment procedures used.

3. Timely data validation through interviews with those responsible for
reporting errors and changes was vital, especially during the first few
projects to use the forms. Without such validation procedures, data
will be severely biased, and the developers will not get the feedback to
correct the procedures they are using for reporting data.

Minimizing the overhead imposed on the people who were required to
complete change reports was an important factor in obtaining com-
plete and accurate data. Increased overhead brought increased reluc-
tance to supply and discuss data. In projects where data collection has
been integrated with configuration control, the visible data collection

o

5-20




and validation overhead is significantly decreased, and is no longer an
important factor in obtaining complete data. Because configuration
control procedures for the SEL environment were informal, we believe
we did not capture all SEL changes.

In cases where an automated data base is used, data consistency and
accuracy checks at or immediately prior to analysis are vital. Errors in
encoding data for entry into the data base will otherwise bias the data.

Nonprocedural Lessons Learned

In addition to the procedural problems involved in desinging and imple-
menting a data collection study, we found several other pitfalls that could have
strongly affected our results and their interpretation. They are listed in the fol-

lowing.

1

Perhaps the most significant of these pitfalls was the danger of inter-
preting the results without attemnpting to understand factors in the
environment that might affect the data. As an example, we found a
surprisingly small percentage of interface errors on all of the SEL pro-
jects. This result was surprising since interfaces are an often-cited
source of errors. There was also other evidence in the data that the
software was quite amenable to change. In trying to understand these
results, we discussed them with the principal designer of the SEL pro-
jects (all of which had the same application). it was ciear {rom the dis-
cussion that as a result of their experience with the application, the
designers had learned what changes to expect to their systems, organ-
ized the design so that the expected changes would be easy to make,
and then re-used the design from one project to the next. Rather than
misinterpreting the data to mean that interfaces were not a significant
software problem, we were led to a better undetst.andmg of the
environment we were studying.

A second pitfall was underestimating the resources needed to validate
and analyze the data. Understanding the change reports well-enough
to conduct meaningful, eflicient programmer interviews for validation
purposes initially consumed considerable amounts of the change
analysts’ time. Verifying that the data base was internally consistent,
complete, and consistent with the paper copies of reports was a con-
tinuing source of frustration and sink for time and effort.

A third potential pitfall in data collection is the sensitivity of the data.
Programmers and designers sometimes need to be convinced that
error data will not be used against them. This did not seem to be a
significant problem on the projects studied for a variety of reasons,
including management support, processing of the error data by people
independent of the project, identifying error reports in the analysis
process by number rather than name, informing newly hired project
personnel that completion of error reports was considered part of
their job, and high project morale. Furthermore, project management
did not need error data to evaluate performance.

One problem for which there is no simple solution is the Hawthorne {or
observer) effect [39]. When project personnel become aware that an
aspect of their behavior is being monitored, their behavior will change.
If error monitoring is a continuous, long-term activity that is part of
the normal scheme of software development, not associated with
evaluation of programmer performance, this eflect may become
insignificant. We believe this was the case with the projects studied.

5-21




5. The sensitivity of error data is enhanced in an environment where
development is done on contract. Contractors may feel that such data
are proprietary. Rules for data collection may have to be contractually
specified.

Avoiding Data Collection Pitfalls

In the foregoing sections a number of potential pitfalls in the data collec-
tion process have been described. The following list includes suggestions that
help avoid some of these pitfalls.

1. Select change analysts who are familiar with the environment, applica-
tion, project, and development team.

2. Establish the goals of the data collection methodology and define the
questions of interest before attempting any data collection. Establish-
ing goals and defining questions should be an iterative process per-
formed in concert with the developers. The developers’ interests are
then served as well as the data collector's.

3. For initial data collection efforts, keep the set of data collection goals
small. Both the volume of data and the time consumied in gathering,
validating, and analyzing it will be unexpectedly large.

4. Design the data collection form so that it may be used for configuration
control, so that it is tailored to the project(s) being studied, so that the
data may be used for comparison purposes, and so that those filling
out the forms understand the terminology used. Conduct training ses-
sions in filling out forms for newcomers.

S. Integrate data collection and validation procedures into the
configuration control process. Data completeness and accuracy are
thereby improved, data collection is unobtrusive, and collection and
validation become a part of the normal development procedures. In
cases where configuration control is not used or is informal, allocate
considerable time to programmer interviews, and, if possible, docu-
mentation search and code reading.

6. Automate as much of the data analysis process as possible.
Limitations

It has been previously noted that the main limitation of using a goal-
directed data collection approach in a production software environment is the
inability to isolate the effects of single factors. For a variety of reasons, con-
troiled experiments that may be used to test hypotheses concerning the effects

of single factors do not seem practical. Neither can one expect to use the
change data from goal-directed data collection to test such hypotheses.

A second major limitation is that lost data cannot be accurately recap-
tured. The data collected as a result of these studies represent five years of
data collection. During that time there was considerable and continuing con-
sideration given to the appropriate goals and questions of interest. Nonetheless,
as data were analyzed, it became clear that there was information that was
never requested but that would have been useful. An example is the length of
time each error remained in the system. Programmers correcting their own
errors, which was the usual case, can supply this data easily at the time they
correct the error. Our attempts to discover error entry and removal times after
the end of development were fruitless. (Error entry times were particularly
difficult to discover.) Given such data, one could isolate errors that were not
easlly susceptible to detection. This type of example underscores the need for

5-22




careful planning prior to the start of data collection.

Recommendations That May Be Provided To the Software Developer

The nature of the data collection methodology and the environments in
which it can be used do not generally permit isolation of the eflects of particular
factors on the software development process. The results cannot be used to
suggest that controlling a particular factor in the development process will
reduce the quantity or cost of particular kinds of errors. We have found that the
patterns found in the data do suggest that certain approaches, when applied in
the environment studied, will improve the development process.

As an example, in the SEL environment neither external problems, such as
requirements changes, nor global problems, such as interface design and
specification, were significant. Furthermore, the development environment was
quite stable. Most problems were associated with the individual programmer.
The data show that in the SEL environment it would clearly pay to impose more
control on the process of composing individual routines. Since ‘detecting and
correcting most errors was apparently quite easy in the overwhelming majority
of cases, more attention should be paid to preventing errors from entering the
code initially.

Conclusions Concerning‘ Data Collection For Methodology Evaluation Purposes

The data collection schema presented has been applied to five different p
jects in two different environments. We have been able to draw the following
conclusions as a result of designing and implementing the data collection

processes.

1. In all cases, it has been possible to collect data concurrently with the
software development process in a software production environment.

2. Data collection may be used to evaluate the application of a particular
software development methodology, or simply to learn more about the
software development process. In the former case, the better defined
the methodology, the more precisely the goals of the data collection
may be stated.

3. The better controlled the development process, the more accurate and
complete the data.

4. For all projects studied, it has been necessary to validate the data, -
including interviews with the project developers. '

5. As patterns are discerned in the data collected, new questions of
interest emerge. These questions may not be answerable with the
available data, and may require establishing new goals and questions of
interest.

e
14

Motivations For Conducting Similar Studies

The difficulties involved in conducting large scale controlled software
engineering experiments have as yet prevented evaluations of software develop-
ment methodologies in the environments where they are often claimed to work
best. As a result, software engineers must depend on less formal techniques
that can be used in real working environments to establish long-term trends. We
view change analysis as one such technique and feel that more techniques, and
many more results obtained by applying such techniques, are needed.




Acknowledgments

The authors thank the many people at NASA/GSFC and Compuler Sciences
Corporation who filled out forms and submitted to inlerviews, especially Jean
Grondalski and Dr. Gerald Page, and the librarians, especially Sam DePriest.

We thank Dr. John Gannon, Dr. Richard Meltzer, Frank McGarry, Dr. Gerald
Page, Dr. David Parnas, Dr. John Shore, and Dr. Marvin Zelkowitz for their many
helpful suggestions. -

Deserving of special mention is Frank McGarry, who had sufficient foresight
and confldence to sponsor much of this work and to offer his projects for study.

References

1. B. Boehm and Others, /nformation processing/Data Automation Implica-
tions Of Air Force Command and Control Requirements in the 1980's
(CCIP-85) , Space and Missile Systems Organization, Los Angeles (February
1972). Technology Trends: Software

2. B. Boehm, "Software and Its Impact: A Quantitative Assessment,” Datama-
tion 19(5) pp. 48-59 (May 1973).

3. R. Wolverton, "The Cost Of Developing Large Scale Software,”” JEEE Trans.
Computers 23(6)(1974).

4. T. Bell, D. Bixler, and M. Dyer, "'An Extendable Approach to Computer-Aided
Software Requirments Engineering,”” /EEE Trans. Software Engineering
SE-3(1) pp. 49-60 (January 1977).

5. A Ambler, D. Good, J. Browne, and et. al., "GYPSY: A Language for
Specification and Implementation of Verifiable Programs.’” Proc. of The ACM
Conference on Language Design for Reliable Software, pp. 1-10 (March
1977).

6. Z. Manna and R. Waldinger, ''Synthesis: Dreams => Programs.," [EEE Trans.
Software Engineering SE-5(4) pp. 294-329 (July 1979).

7. K. Heninger, ""Specifying Requirements for Complex Systems: New Tech-
niques and Their Application,” /[EEE Trans. Software Fngineering SE-6 pp.
2-13 (January 1980).

8. D L Parnas, "A Technique For Software Module Specxﬁcatlon With Exam-
ples,”” Comm. ACM 15(5) pp. 330-336 (May 1972).

9. J. Guttag, "The Specification and Application to Programming of Abstract
Data Types,” CSRG-59, University of Toronto Dept. of Computer Science
Computer Systems Research Group (19795).

:0. J. Guttag, "Abstract data types and the development of data structures,”
Comm. ACM 20 pp. 396-404 (June 1976).

11, B. Liskov and S. Zilles, "'Specification Techniques for Data Abstractlon
IEEE Trans. Software Engineering SE-1{1) pp. 7-19 (March 1975).

:2. H. Mills, R Linger, and B. Witt, Structured Programming Theory and Prac-
tice, Addison-Wesley, Reading (1979).

:3. S. Caine and E. Gordon, "PDL - A tool for software design,”’ Proc. Nat. Com-
puter Conf., pp. 271-276 (1975).




15.

16.

17.

18.

18.

20.

21.

22.

23.

24.

25.

28.

27.

28.

29.

30.

31.

32.

33.

34

H. Elovitz, "An Experiment In Software Engineering: The Architecture
Research Facility As A Case Study,” Proc. Fourth ntntl Conf. Software
Engineering, pp. 145-152 (1979).

D. Weiss, "Evaluating Software Development by Error Analysis: The Data
from the Architecture Research Facility,” J. Systems and Software 1 pp.
57-70 (1979).

E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood ClifIs
(19786).

R. W. Floyd, ''Assigning Meanings to Programs,’’ Proc. Symposium in Applied
Mathematics XIX pp. 19-32 American Mathematical Society, (1967).

C. A. R Hoare, '‘An Axiomatic Basis for Computer Programming,”” Comm.
ACM 12(10) pp. 576-580 (October 1969).

F. Baker, "Chief Programmmer Team Management of Production Program-
ming,”' /BM Systems Journal 11(1) pp. 56-73 (1972).

E. W. Dijkstra, "Notes on Structured Programming.'” in Structured Pro-
gramming, Academic Press, London (1972).

D. E. Knuth, "'Structured Programming With Go To Statements,’’ Computing
Surveys 6(4) pp. 261-301 (December 1974).

H. Mills, ''Chief Programmer Teams: Principles and Procedures,’”” FSC 71-
5108, IBM Federal Systems Division (1971).

H. Mills, ""Mathematical Foundations for Structured Programmmg. FSC 72-
6012, IBM Federal Systems Division (1972). :

N. VWirth, “"Program Development by Stepwise Refinement,”” Comm. ACM
14(4) pp. 221-227 (April 1971).

E. Satterthwaite, "‘Debugging Tools for High-Level Languages,” Software -
Practice and Ezperience 2(3) pp. 197-217 (July-September 1972).

W Howden, ''Theoretical and Empirical Studies of Program Testing,' Proc.
Third ntntl. Conf. Software Engineering, pp. 305-310 (May 1978).

J. Goodenough and S. Gerhart, "Toward a theory of test data selection,”
Proc. Intntl. Conf. Reliable Software, pp. 493-510 (1975).

J. Gannon, ""Language Design to Enhance Programming Reliability,” CSRG-
47, University of Toronto Dept. of Computer Science Computer Systems
Research Group (1975).

J Gannon and J. Horning, ''Language Design for Programming Reliability,"
IEEE Trans. Software Fng. SE-1(2)(June 1975).

C. A. R Hoare and N. Wirth, "An Axiomatic Definition of the Programming
Language Pascal,'" Acta Informatica 2 pp. 335-355 (1973).

K. Jensen and N. Wirth, Pascal User Manual and Report Second FEdition,
Springer-Verlag, New York (1974).

V. Basili and D. Weiss, ''Evaluating Software Development By Analysis of
Changes: The Data From The Software Engineering Laboratory,” , ().

V. Basili, M. Zelkowitz, F. McGarry, and others, "The Software Engineering
Laboratory,”” Report TR-535, University of Maryland (May 1977).

B. Boehm, "An Experiment in Small-Scale Application Software Engineer-
ing.”” Report TRW-SS-80-01, TRW {1980)



35.

36.

37.

38.

39.

A. Endres, "Analysis and Causes of Errors in Systems Programs,” Proc.
Intntl. Conf Reliable Software, pp. 327-336 (1975).

V. Basili and D. Weiss, ''Evaluation of a Software Requirements Document By
Analysis of Change Data,” Proc. Fifth ntntl. Conf. Software Engineering,
pp. 314-323 (March 1981).

G. Miller, "The Magical Number Seven, Plus or Minus Two: Some Limits On
Our Capacity For Processing Information,”” The Psychological Review
83(2) pp. 81-97 (March 1956).

D. L. Parnas, "On the criteria to be used in decomposing systems into
modules,” Comm. ACH 15(12) pp. 1053-1058 (December 1972).

J. Brown, The Social Psychology of Industry, Penguin Books, Baltimore
(1954).




| Da-6l
N87-24904
DATA COLLECTION AND EVALUATION FOR

EXPERIMENTAL COMPUTER SCIENCE RESEARCH
Marvin V. Zelkowitz
Department of Computer Science
University of Maryland
College Park, Maryland 20742
Abstract
The Software Engineering Laboratory has been monitoring software development at
NASA Goddard Space Flight Center since 1976. This report describes the data collec-
tion activities of the Laboratory and some of the difficulties of obtaining reliable data.

In addition, the application of this data collection process to a current prototyping

experiment is reviewed.

I. INTRODUCTION

There is a significant need to collect reliable data on software development projects in order
to provide an empirical basis for making conclusions about software development methodologies,
models and tools. However, such data is usually hard to collect and even harder to evaluate.
Software is a multibillion dollar industry where 100% cost overruns are common, and mainte-
nance activities can take up to 70% of the total cost of the system [11]. The availability of reli-

able data to evaluate competing software development techniques is crucial.

As Lord kelvin stated, "I often say that when you can measure what you are speaking
about, and express it in numbers, you can know something about it, but when you cannot express
it in numbers, your knowledge is of a meager and unsatisfactory kind.” The lack of adequate

measures is certainly a problem in the software industry today.

Many of the recent analyses of the software development process are based on data that is
obtained from university experiments. Students often program special problems whose results are
subjected to analysis. This gives the researcher the 10 to 100 data points necessary for statistical
validity of the results. However, by virtue of being part of an academic program, such experi-

ments are necessarily small and usually involve inexperienced programmers. There is a need to

5-27



extend the scope of these experiments to a level appropriate to the multibillion dollar industry.

Most software development data in industry has been collected after the fact. That is, a
project is built and then a pile of documents are handed to a research group for evaluation.
Often, critical information is missing and the results are not what one would expect. Rather than
following the model of archeology - the study of dead software projects, software evaluation must
model sociology - the study of living software societies. Data must be collected from ongoing pro-
jects, but the software sociologists must not impact the objects of their study. Given the need to
finish projects on time and within budgets - a goal too often missed - it is difficult to justify

spending money on data collection and evaluation activities.

Specifically to address these problems, the Software Engineering Laboratory (SEL) was set
up within NASA Goddard Space Flight Center in 1976. The goal was to study software develop-
ment activities within NASA and report on experiences that will improve the process. This report

describes the SEL and its experiences over the last six years.

II. THE SOFTWARE ENGINEERING LABORATORY

In 1976 the SEL was arganized to study software development within the NASA environ-
ment. More specifically, its primary charter was to monitor the development of ground support
software for unmanned spacecraft. Each such system was typically 30,000 to 50,000 source lines of
Fortran and took from 8 to 10 programmers up to two years to build. While this environment is
not representative of all software development environments, SEL experiences are generalizable in

some respects:

a) Ground support software includes several program types such as data base functions, real
time processing, scientific calculations and control language functions. The software is largely

implemented in Fortran.

b) By looking at a relatively narrow environment, dzta collected from many projects can be
compared. Thus we get some of the benefits of a carefully controlled experiment without the

expense of duplicating large developments. We do not have the problem of looking at a variety of




projects, like compilers, COBOL programs, ground support software, MIS programs and then try-

ing to say something consistent about all of these.

To date, 46 projects have been studied, containing over 1.8 million lines of code. Over 150
programmers participated in these projects, and §he data base contains over 40 million bytes of
data. The general SEL strategy is t carefully monitor a project and regularly collect data during
its development. The data is then entered in the SEL data base for analysis. The purpose of this
report is not to dwell on specific research results based on this data (See, for example, [8] for a
collection of published papers about the SEL) but is concerned with the problems of collecting

data, and what we have learned from this process.
M. DATA COLLECTION

I1.1 MODEL GENERATION

In order to fully take advantage of the available data, it must be known what information is
desired. The models and measures that are to be investigated must be defined. A random data
collection activity will usually miss relevant data, and then it will be too late to try and recover

that information.

In the SEL, two classes of measures were identified for study, and the data collection activi-

ties were oricuted around those areas. The initial activities included:

a) Process Measures. Evaluating personnel and computer resources over time was a clear
need. Ope activity was to try and validate models that others have identife {e.g., the Putnam
Norden Rayleigh curve [1]) while another activity was to try and build new models to fit the
empirical data (e.g., the Parr curve [7]). Once models were identified, their predictive nature was

studied as a means of resource scheduling.

The generation and correction of errors is another activity that has important economic
consequences. However, few models are available to build upon, so there was a need to develop

new models of errors and investigate their effects upon performance.




b) Product Measures. The size, structure, and complexity of software are other important
economic factors to consider. The evaluation of measures such as the software science measures
of Halstead [5], the cyclomatic complexity of McCabe [6] and other measures developed within the

SEL was another early goal.

Reliability is a critical activity in most environments. In our particular environment, the
software that was previously developed was highly reliable (typically under 10 errors in an opera-
tional system), so that reliability, while important, was not a primary driving force in organizing

the SEL.

III.2 FORMS GENERATION

The first process in evaluating empirical data is the data collection activity. Ideally, you
would like the brocess to be automated and transparent to the programmer. However, this was
not possible in this situation. We were interested in the human activities of software develop-
ment. Thus we needed detailed information about how programmers spend their time. Because of
this, a decision made early in the life of the SEL was that some data would be manually collected

using a series of forms.

There is a significant tradeofl consideration at this point. If we tried to collect too much
information, programmers would object to the interierence of the data collection activity on their

work. If too little information was asked, then there would be little point in collecting it.

We first developed an initial set of reporting forms. These have been revised several times
since then. Each time certain fields were clarified and the amount of information sought decreased
somewhat. At the present time, the effort required to fill out the forms is not significant. Initially

seven forms were developed. However, only three are used heavily. These seven forms are:

a) Resource Summary. This form lists the number of hours per week spent by all personnel
on the project. This information is obtained mostly from the weekly time cards supplied by the
contractor. It is easy to obtain this data, and causes little overhead to a project. However, it is

very useful for monitoring global resource expenditures, especially in conjunction with the follow-




ing Component Status Report.

b) Component Status Report. This form is submitted weekly by each programmer. It lists
for each component of the system (e.g., Fortran subroutine) the number of hours spent on each of
nine categories (e.g., design, code, test, review, etc.). The detail required by this form initially
caused some concern; however, in looking over past forms the average programmer worked on
only 5 to 10 components per week and only 2 or 3 activities per component. Thus the overhead
was not excessive. While the data is only approximate to the nearest hour, we believe that it is

more accurate than many other data collection procedures.

For example, many research papers give percentages for design, code, and test on a project.
However, these are usually taken from resource summary data and calendar date milestones. If a
design review occurs on a Friday, then all activities up until that date are design, with all activi-
ties the next week being code. In the SEL environment, there was approximately a 25 percent
error in using calendar dates for percent effort [4]. On four projects, approximately 25 percent of
the design occurred during the coding phase, while almost half of the testing occurred prior to the
testing phase (Figure 1).The Component Status Report is critical for a proper view of develop-

ment activities.

c) Change Report Form. This form is completed after each change to a component is com-
pleted and tested. Due to the number of changes that a component undergoes during early
development, there was no attempt to capture this data before the component was ”complete”
(i.e., through unit test). Note that we are capturing “changes” and not simply “errors.” All

modifications, due to errors or other considerations such as enhancements, are tracked.

Besides identifying the type of change, this form also identifies the cause of the change -
they are not always the same, although programmers have difficulty separating the two. The form
also asks for information on the time to find and correct an error, and what tools and techniques

were used in the process.

In some environments, the introduction of this form might cause programmers to object;

however, this was not the case in our environment. A standard change monitoring procedure was

ul
1

31



in place, so we simply changed the form that this branch of NASA GSFC was using before the

SEL was created.

These three forms provide the most important data collected by the SEL. Four other forms

have been created and used with limited success. These are:

d) Component Summary. This form identifies the characteristics of each component in a
- system. It gives the size, complexity and interfaces. The goal was to have this form filled out at
least twice - once when the component was first identified during design, and again when it was
completed. Our experience was that the initial form was filled out before much relevant informa-
tion was known, and the data on the final form could be extracted automatically from the source

code data base.

e) Computer Run Analysis. An entry on this form is filled out for each computer run giviag
characteristics of the run {execution time, purpose of run, components processed) as well as
whether the run met its objectives. This is one form that could be automated. However, the
usual range of operating system "Completion Codes” is inadequate for many purposes. For exam-
ple, a debugging run that was expected to fail at a certain statement, but ran to a successful exit,
would have a satisfactory completion code, yet it was a failure as a run since the desired error did

not occur.

An interactiv job submittal system could help. Before any run, the system could prompt for
some of this information. After the run, the system could ask what happened. Since the current
NASA environment consists primarily of interactive editing with batch processing, such an online

process would have been difficult to ixhplement.

f) Programmer Analyst Survey. This form attempts to characterize the experiences of the
programmers on the project in order to get a general profile of the project tea However, we
immediately ran into confidentiality problems concerning personnel records. We never got the
detailed information that we desired, but have obtained general comments on each programmer -
although the goalis NOT to rate programmers. If there is any hint of any of this data being used

for any sort of personnel action, then compliance drops sharply and the value of the data becomes




open to question.

g) General Project Summary. This is a form that provides a high-level description of a pro-
ject. Since the software is developed by NASA and contractor personnel, the form is somewhat

superfluous and the information is entered directly into the data base.

An important consideration in forms development is consistency in collecting data. Along
with each form a detailed instruction sheet was developed, as well as a glossary of relevant terms
like "component,” ”line of code,” and ”life cycle phase.” For example, we chose the name "com-
ponent” rather than "subroutine” or “module” simply because those terms were well known (with
aiternative meanings) and we did not want to evoke any preconceived but wrong image in the
minds of the participants. Even so, there was a great deal of confusion about the meanings of the
various terms. During the early days of the SEL, many meetings were held to explain the process
to programmers. since each programmer worked about one year on a project, after six years there

is a large core of personnel experienced in filling out our reporting forms..

' IIL3 DATA PROCESSING

After being filled out, each form is entered into a data base on a PDP 11/70 computer. In
addition to the forms previously described, analyzers were run over the source programs to extract
additional information, including lines of code and other measures such as the Halstead software

science measures.

Another step in forms processing is data validation. Someone must review the forms as they
are submitted. This is expensive, but necessary. It is a quick was to catch and correct errors. In
addition, the data entry program should check for data consistency and value ranges. For exam-
ple, if the program is to read in input in the format MMDDYY, then a month input that is not a
number in the range from 01 to 12 must be rejected. A field requiring an input of A, B, or C
should reject any other value. Even though we manually check each form, a validation program

was more effective for catching errors.

(83
|

33



All forms, especially the change report form, need to be reviewed by SEL personnel. Two
commbn errors in the Change report form are to turn in one change report form which actually
represented several errors, and the submission of multiple forms for the same error. From earlier
work over half of the change report forms were modified following a careful study of each form.
This is an expensive process, but needs to be done in order to have accurate data about your

environment.

Redundancy of data is another important consideration. Collecting the same or similar data
on muitiple forms allows for cross validation. There should be a reasonable correlation between
the collected values. The resource summary and component status reports have been the easiest
to validate. The Computer Run Analysis form is important for validating some of the change
report data; however, limited availability of this form has handicapped some of this validation
work. Because of that, it is important to manually check each change report form for selected
projects.

-

IV RESEARCH ACTIVITIES

IV.1 PREVIOUS RESEARCH

Research in the SEL has centered on resource and error models and on predicting software
productivity. ({8] is a collection of relevant papers published over the last few years.) Perhaps the
most important conclusion - although obvious in hindsight - which is relevant to this current dis-

cussion is that there is no typical software development environment.

All models include parameters - factors which represent variables in that environment (Fig-
ure 2 represents a list of factors from the SEL as well as two other studies [10] [3].) When models
based on other environments are applied to the NASA environment, they invariably fail. Does
that mean that NASA is different? unique? much better or much worse than other environments?
For example, SEL programmers show much higher productivity in lines of code per week than in

other organizatioas. Does that mean that other organizations should pirate away NASA’s staff?

w
|

34




Perhaps, but another explanation becomes apparent when NASA’s environment is studied in
detail. In the SEL, most of the projects are similar ground support software systems. Thus the top
level design for these projects are similar. Programmers are experts at this particular problem -
thus high productivity. Many factors affecting requirements and design do not apply here. On the
other hand, a contractor that bids on a variety of projects - an operating system, a compiler, a
data base management system, an attitude orbit determination program, etc. does not build an
institutional knowledge about any one particular environment. Requirements and design factors

now become significant in this environment and productivity drops.

All companies operate in a different manner. Company policy as to working conditions, com-
puter usage (batch or interactive), leave policy and salaries, management, support tools, etc. all
affect productivity. Thus each organization (probably even separate divisions within a single

organization) has a different structure and a different set of parameters.

For this reason, one must first calibrate any model to be applied. First develop a quantita-
tive relationship using many factors. Chose those factors relevant to your environment. Calibrate
the equations based upon previous projects, and then use the calibrated model for prediction [2].

It is this important calibration step that is missing from most models.

For example, if a baseline equation is given by:
Effort = a * size+ b
then one can fit a and b from historical data; and the units of size can be determined from those
relevant to your environment - such as lines of code, lines of source (including comments), number
of modules, number of output statements, etc. Thus instead of a single model, there is a class of

models t;a.ilored to each environment.

IV.2 PROTOTYPES

Over the past few years various methodologies have been studied by the SEL. A current
SEL activity is the development of software prototypes. Currently software is designed, built and

delivered. Rarely is the product evaluated in advance. However, the use of engineering prototypes




in a preliminary evaluation is starting to be discussed by software engineering professionals [9].

While the term is appearing with increasing frequency, what does it really mean? Is it a
quick and dirty throw-a-way implementation or a carefully designed subset of a final implementa-
tion? What are the cost and reliability parameters for a prototype compared to a full implementa-

tion.

Currently data on the subject is meagre and usually based on small projects [12]. The SEL
is now investigating a larger implementation with some techniques as applied to previous SEL

projects.

Briefly, the target implementation is an integrated support system for flight dymamics
research. Currently, experimenters (NASA scientists), in trying a new spacecraft model (e.g., a
new orbit calculation) must understand the structure of the existing system, access the Fortran
source modules, modify them, rebuild the operating program, test it, and then run the experiment
- a complex and costly process. The new system is expected to “understand” several flight dynam-
ics systems and to provide a higher level command language that guides the experimenter through
the process of building a new version of a system, even if the experimenter is not thoroughly fami-
liar with the existing system. This system is basically a command language interpreter with a

complex data dictionary describing the underlying flight dynamics subsystems.

This program is quite different from existing software produced by NASA, so the plan is to

prototype it first. Two classes of data will be obtained from the prototype:

a) Characteristics of the process. The Computer Science world has little information avail-
able about prototyping, thus this data will add to the general know!edge about this process. What
does the life cycle of a prototype look like? How much time is spent in design? code? test? Are
errors crucial or can they be side-stepped in the prototype somewhat by Teliminating” the

offending feature in the requirements?

Similarly, how does prototyping eflect the later full implementation? Will design be easier?
Will productivity be higher? Will the overall cost of the system plus prototype be less than the

cost of just the full system? Will reliability be higher or the interface more "user friendly?”

5-36




b) Predictive nature of the prototype. Once a prototype is built, is it successful? How does
one measure success? Will the full system be successful based upon an evaluation of the proto-

type? A set of measures will be built into the prototype to provide some of these answers.

A baseline study will be made of how experiments are conducted - the cost of machine and
people resources will be measured. Some of these experiments will be repeated with the prototype
to derive a cost. These will be used to predict the cost of using the full system. If acceptable, then
that design will be used for the full implementation, if not, then the design will be modified to

correct the problem in the full implementation.

In addition, data will be collected on how often features are used in the prototype, and also
how often the prototype is being circumvented in order to provide features that currently do not

exist but are needed by the users.

Once the final system is built, the predictive model can be validated in order to aid in

developing a theory of software prototypes.

V. CONCLUSIONS

The Software Engineering Laboratory has been in existence for six years and has studied

almost 40 projects. The empirical data that has been collected supports several conclusions:

(1) Data collection is hard and expensive. It must be dynamically' collected during the

development of a project and not after completion.

(2) Data must be validated. Error rates on manually filled out forms are high. A lack of
standardized nomenclature for the field hurts consistency. Much effort must go in training person-

nel to understand the data collection methodology.

(3) Each software development environment is unique. Baseline equations must first be cali-

brated with past projects before a model can be used in the future.

(4) Little is known, but much is being said, about software prototypes. The SEL is

currently studying this issue as part of its ongoing activities.



VL. ACKNOWLEDGEMENTS

This paper was supported by NASA grant NSG-5123 to the University of Maryland. The
SEL is under the direction of Frank McGarry of NASA GSFC. Dr. Victor Basili directs the
University of Maryland activities of the SEL, and Jerry Page is the coordinator for Computer Sci-
ences Corporation. The results described in this report were developed by the author, the above
mentioned persons, as well as several graduate students at the University of Maryland and
researchers at CSC. The author is indebted to David Card of CSC for his detailed comments on

an earlier draft of this paper.

VII. BIBLIOGRAPHY
[1] Basili V. R. and M. V. Zelkowitz, Analyzing medium scale software developments, Third Inter-
national Conference on Software Engineering, Atlanta GA, May 1978.

[2] Basili V. R., Models and metrics for software management and engineering, ASME Advances
in Computer Technology 1, January, 1980.

[3] Boehm B., Software Engineering Economics, Prentice Hall, 1981.

[4] Chen E. and Zelkowitz M. V., Use of cluster analysis to evaluate software engineering metho-
dologies, Fifth International Conference on Software Engineering, San Diego CA, March, 1981.

[5] Halstead M., Elements of Software Science, American Elsevier, 1977.
[6] McCabe T., A complexity measure, I[EEE Transactions on Software Engineering 2, 1976.

[7] Parr F., An alternative to the Rayleigh Curve model for software development, IEEE Transac-
tions on software engineering 6, 1980.

[8] Collected Software Engineering Papers: Volume 1, SEL-82-G04, Code 582.1, NASA GSFC,
July, 1982.

[9] ACM SIGSOFT Software Engineering Symposium: Workshop on Rapid Prototyping, Colum-
bia, MD, April, 1982.

[10] Walston C. and C. Felix, A method of programming measurement and estimation, [BAM Sys-
tems Journal 16, No. 1, 1977.

[11] Zelkowitz M. V., A. C. Shaw and J. D. Gannon, Principles of Software Engineering and
Design, Prentice Hall, 1979.

[12] Zelkowitz M. V., A case study in rapid prototyping Software Practice and Ezperience 10,
1037-1042, 1980.



BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in
this bibliography are organized into two groups. The first
group is composed of documents issued by the Software Engi-
neering Laboratory (SEL) during its research and development
activities. The second group includes materials that were
published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engi-
neering Workshop, August 1976

SEL-77~-001, The Software Engineering Laboratory,

V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1977

SEL-77-002, Proceedings From the Second Summer Software En-
gineering Workshop, September 1977 '

SEL-77-003, Structured FORTRAN Preprocessor (SFORT), B. Chu
and D. S. Wilson, September 1977

SEL-77-004, GSFC NAVPAK Design Specifications Languages
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analyzer (SAP) Design
and Module Descriptions, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

lSEL—78-002, FORTRAN Static Source Code Analyzer (SAP)
User's Guide, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

SEL-78-102, FORTRAN Static Source Code Analyzer Program
(SAP) User's Guide (Revision 1), W. J. Decker and
W. A. Taylor, September 1982

SEL-78-003, Evaluation of Draper NAVPAK Software Design,
K. Tasaki and F. E. McGarry, June 1978

SEL-78-004, Structured FORTRAN Preprocessor (SFORT)
PDP-11/70 User's Guide, D. S. Wilson and B. Chu, September
1978




SEL-78-005, Proceedings From the Third Summer Software Engi-
neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratory: Relation-
ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System
Description and User's Guide, C. E. Goorevich, A. L. Green,
and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-
gram Design Language (PDL) in the Goddard Space Flight Cen-
ter (GSFC) Code 580 Software Design Environment,

C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

SEL-79-005, Proceedings From the Fourth Summer Software En-
gineering Workshop, November 1979

SEL-80-001, Functional Requirements/Specifications for
Code 580 Configuration Analysis Tool (CAT), F. K. Banks,
A. L. Green, and C. E. Goorevich, February 1980

SEL-80-002, Multi-Level Expression Design Language-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker
and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support
Software System (MMS/GSSS) State-of-the-Art Computer Systems/

Compatibility Study, T. Welden, M. McClellan, and
P. Liebertz, May 1980

lsgr.-80-004, System Description and User's Guide for Code
580 Configuration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G. Garrahan, et al., October 1980

SEL-80-104, Configuration Analysis Tool (CAT) System De-
scription and User's Guide (Revision 1), W. Decker and
W. Taylor, December 1982

SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

B-2




SEL-80-006, Proceedings From the Fifth Annual Software Engi-
neering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-
tion Models for Software Systems, J. F. Cook and

F. E. McGarry, December 1980

1sEL-81-001, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

1sEL-81-002, Software Engineering Laboratory (SEL) Data
Base Organization and User's Guide, D. C. Wyckoff, G. Page,
and F. E. McGarry, September 1981

SEL-81-102, Software Engineering Laboratory (SEL) Data Base
Organization and User's Guide Revision 1, P. Lo and
D. Wyckoff, July 1983

lSEL-81-003, Data Base Maintenance System (DBAM) User's
Guide and System Description, D. N. Card, D. C. Wyckoff, and

G. Page, September 1981

SEL-81-103, Software Engineering Laboratory (SEL) Data Base
Maintenance System (DBAM) User's Guide and System Descrip-
tion, P. Lo and D. Card, July 1983

lSEL-81-004, The Software Engineering Laboratory,
D. N. Card, F. E. McGarry, G. Page, et al., September 1981

SEL-81-104, The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

lSEL-81-005, Standard Approach to Software Development,
V. E. Church, F. E. McGarry, G. Page, et al., September 1981

lSEL-—81-105, Recommended Approach to Software Development,
S. Eslinger, F. E. McGarry, and G. Page, May 1982

SEL-81-205, Recommended Approach to Software Development,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-81-006, Software Engineering Laboratory (SEL) Document
Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, December 1981

1sEL-81-007, Software Engineering Laboratory (SEL) Com-
pendium of Tools, W. J. Decker, E. J. Smith, A. L. Green,
et al., February 1981

B-3




SEL-81-107, Software Engineering Laboratory (SEL) Compendium

of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,
February 1982

SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Work-

bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981

1sEL-81-010, Performance and Evaluation of an Independent
Software Verification and Integration Process, G. Page and
F. E. McGarry, May 1981

SEL-81-110, Evaluation of an Independent Verification and
Validation (IV&V) Methodology for Flight Dynamics, G. Page
and F. McGarry, December 1983

SEL-81-011, Evaluating Software Development by Analysis of
Change Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve As a Model for Effort Distri-

bution Over the Life of Medium Scale Software Systems, G. O.
Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engi-
neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-82-001, Evaluation of Management Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-002, FORTRAN Static Source Code Analyzer Program
(SAP) System Description, W. A. Taylor and W. J. Decker,
August 1982

SEL-82-003, Software Engineering Laboratory (SEL) Data Base
Reporting Software User's Guide and System Description,
P. Lo, September 1982

SEL-82-004, Collected Software Engineering Papers: Vol-
ume 1, July 1982

lsEL-82-005, Glossary of Software Engineering Laboratory
Terms, M. G. Rohleder, December 1982

B-4




SEL-82-105, Glossary of Software Engineering Laboratory
Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

1SEL-82-006, Annotated Bibliography of Software Engineer-
ing Laboratory (SEL) Literature, D. N. Card, November 1982

SEL-82-106, Annotated Bibliography of Software Engineering
Laboratory Literature, D. N. Card, T. A. Babst, and
F. E. McGarry, November 1983

SEL-82-007, Proceedings From the Seventh Annual Software
Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of
Changes: The Data From the Software Engineering Laboratory,
V. R. Basili and D. M. Welss, December 1982

SEL-83-001, Software Cost Estimation Experiences,
F. E. McGarry, G. Page, D. N. Card, et al., November 1983

SEL-83-002, Measures and Metrics for Software Development,
D. N. Card, F. E. McGarry, G. Page, et al., November 1983

SEL-83-003, Collected Software Engineering Papers: Vol-
ume II, November 1983

SEL-83-004, SEL Data Base Retrieval System (DARES) User's
Guide, T. A. Babst and W. J. Decker, November 1983

SEL-83-005, SEL Data Base Retrieval System (DARES) System
Description, P. Lo and W. J. Decker, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic
Variables, C. W. Doerflinger, November 1983

SEL-83-007, Proceedings From the Eighth Annual Software En-
gineering Workshop, November 1983 .

SEL-RELATED LITERATURE

2pgresti, W. W. , F. E. McGarry, D. N. Card, et al.,
"Measuring Software Technology,” Program Transformation and
Programming Environments. New York: Springer-Verlag, 1984

3Bailey, J. W., and V., R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," Proceedings of the

Fifth International Conference on Software Engineering.
New York: Computer Societies Press, 1981

B-5



Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
1980

3Basili, V. R., "Models and Metrics for Software Manage-
ment and Engineering," ASME Advances in Computer Technology,
January 1980, vol. 1

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical Mem-
orandum, October 1979

Basili, V. R., Tutorial on Models and Metrics for Software
Management and Engineering. New York: Computer Societies
Press, 1980 (also designated SEL-80-008)

3Basili, V. R., and J. Beane, "Can the Parr Curve Help
With Manpower Distribution and Resource Estimation Prob-
lems?", Journal of Systems and Software, February 1981,
vol. 2, no. 1l

3Basili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"

Journal of Systems and Software, February 1981, vol. 2, no. 1

2Basili, V. R., and B. T. Perricone, Software Errors and
Complexity: An Empirical Investigation, University of
Maryland, Technical Report TR-1195, August 1982

3Basili, V. R., and T. Phillips, "Evaluating and Com-
paring Software Metrics in the Software Engineering Labora-
" tory," Proceedings of the ACM SIGMETRICS Sympos ium/
Workshop: Quality Metrics, March 1981

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric
Analysis and Data Validation Across FORTRAN Projects,” IEEE
Transactions on Software Engineering, November 1983

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity
and Cost, October 1979

‘2Basili, V.R., and D. M. Weiss, A Methodology for Col-
lecting Valid Software Engineering Data, University of
Maryland, Technical Report TR-1235, December 1982

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

B-6




3Basili, V. R., and M. V. Zelkowitz, "Operation of the
Software Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978

3Basili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment,"
Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York: Com-
puter Societies Press, 1978

3Basili, V. R., and M. V. Zelkowitz, "The Software Engi-
neering Laboratory: Objectives," Proceedings of the
Fifteenth Annual Conference on Computer Personnel Research,
August 1977

2card, D. N., "Early Estimation of Resource Expenditures
and Program Size,"™ <omputer Sciences Corporation, Tech-
nical Memorandum, June 1982

2 . . - , .
#Card, D. N., “"Comparison of Regression Modeling Tech-
niques for Resource Estimation," Computer Sciences Cor-
poration, Technical Memorandum, November 1982

Card, D. N., and V. E. Church, "Analysis Software Require-
ments for the Data Retrieval System," Computer Sciences
Corporation Technical Memorandum, March 1983

Card, D. N., and V. E. Church, "A Plan of Analysis for
Software Engineering Laboratory Data," Computer Sciences
Corporation Technical Memorandum, March 1983

Card, D. N., and M. G. Rohleder, "Report of Data Expansion
Efforts," Computer Sciences Corporation, Technical Memoran-
dum, September 1982

3Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis
To Evaluate Software Engineering Methodologies," Proceed-
ings of the Fifth International Conference on Software
Engineering. New York: Computer Societies Press, 1981

2Doerflinger, C. W., and V. R. Basili, "Monitoring Soft-
ware Development Through Dynamic Variables," Proceedings of
the Seventh International Computer Software and Applications
Conference. New York: Computer Societies Press, 1983

Freburger, K., "A Model of the Software Life Cycle" (paper
prepared for the University of Maryland, December 1978)



Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-
pared for the University of Maryland, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"

(paper prepared for the University of Maryland, December
1978)

McGarry, F. E., G. Page, and R. D. Werking, Software Devel-
opment History of the Dynamics Explorer (DE) Attitude Ground

Support System (AGSS), June 1983

Miller, A. M., "A Survey of Several Reliability Models"

(paper prepared for the University of Maryland, December
1978)

National Aeronautics and Space Administration (NASA), NASA
Software Research Technology Workshop (proceedings), March
1980

Page, G., "Software Engineering Course Evaluation," Computer
Sciences Corporation, Technical Memorandum, December 1977

pParr, F., and D. Weiss, "Concepts Used in the Change Report

Form," NASA, Goddard Space Flight Center, Technical Memoran-
dum, May 1978

Reiter, R. W., "The Nature, Organization, Measurement, and
Management of Software Complexity” (paper prepared for the
University of Maryland, December 1976)

Scheffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher
Order Languages Study: Addendum," Martin Marietta Corpora-
tion, Technical Memorandum, September 1977

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL
Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

Weiss, D. M., "Error and Change Analysis," Naval Research
Laboratory, Technical Memorandum, December 1977

Wwilliamson, I. M., "Resource Model Testing and Information,"
Naval Research Laboratory, Tethnical Memorandum, July 1979

B-8




. . .- N
- - )

3zelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer Science.

New York: Computer Societies Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Ex-
perimental Computer Science Research, " Empirical Foundations
for Computer and Information Science (proceedings),

November 1982

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility," Proceedings of the Soft-
ware Life Cycle Management Workshop, September 1977

lThis document superseded by revised document.

2Phis article also appears in SEL-83-003, Collected Soft-
ware Engineering Papers: Volume II, November 1983.




