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ABSTRACT

A new robust identification method is developed for use in an adaptive control system. The
new type of estimator is called the robust estimator, since it is robust to the effects of both
unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator
was motivated by a need to provide guarantees in the identification part of an adaptive controller.
To enable the design of a robust control system, a nominal model as well as a frequency-domain
bounding function on the modeling uncertainty associated with this nominal model must be
provided. The results of this thesis provide this information.

Two estimation methods are presented for finding parameter estimates and, hence, a nominal
model. One of these methods is based on the well developed field of time-domain parameter
estimation. In a second method of finding parameter estimates, a type of weighted least-squares
fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown
to perform better, in general, than the time-domain parameter estimator. In addition, a new
methodology for finding a frequency-domain bounding function on the modeling uncertainty is
presented. A frequency-domain bounding function on the disturbance is used to compute a
frequency-domain bounding function on the additive modeling error due to the effects of the
disturbance and the use of finite-length data.

The performance of the robust estimator in both open-loop and closed-loop situations is
examined through the use of simulations. The excitation conditions for the robust estimator, and
the issues concerning the introduction of a probing signal in a closed-loop context, are also
analyzed in the thesis.
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Thesis Co-Supervisor: Dr. Lena Valavani
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GLOSSARY

Denominator polynomial of the discrete-time nominal model structure
Numerator polynomial of the discrete-time nominal model structure
Compensator gain, see Eqn. (7.3.4) or (9.6.1)

Target closed-loop compensator gain, see Eqn. (7.4.10)
Disturbance signal
Maximum magnitude of d[n]

DFT of N points of d[m] ending with n
Magnitude bound on DN“((ok) for n > N-1

Prediction error, see Eqn. (4.5.3)
Equation error signal due to both the unmodeled dynamics and the disturbance

Equation error signal due to the unmodeled dynamics alone

Equation error signal due to the disturbance alone

Tracking error

Cumulative frequency-domain bounding function, see Eqn. (5.3.3)
Magnitude bound on Ecumf,Nn(“‘k)’ see Eqn. (5.3.1)

Estimation error due to the use of finite-length data, see Eqn. (5.2.2)
Magnitude bound on EN™(®, ), see Eqn. (5.2.4)

Frequency-domain estimation error, see Eqn. (5.2.12)

Frequency-domain bounding function on IEf’Nn((ok)l, see Eqn. (5.2.14)

Worst-case frequency-domain bounding function, see Eqn. (8.3.7)

Remainder term, see Eqn. (5.2.5)

Filter for time-domain parameter estimator

Impulse response of the nominal discrete-time plant

Impulse response of the true continuous-time plant
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Impulse response of the true discrete-time plant
True continuous-time plant

Nominal continuous-time plant

Nominal discrete-time plant

Cumulative frequency-domain estimate, see Eqn. (5.3.2)

True discrete-time plant ‘
Impulse response from the disturbance signal to the equation error e4[n]
Magnitude bound on h[n,0], see Eqn. (4.3.7)

Impulse response from the input signal to the equation error € [n]

Magnitude bound on h;[n,0], see Eqn. (4.4.17)
Impulse response of the additive plant error G(z,6) 5(z), see Eqn. (4.4.7)
Magnitude bound on hga[n,e]

Transfer function from the disturbance signal to the equation error €,[n]

Transfer function from the input signal to the equation error €, [n]

Discrete-time compensator
Memory length

Discrete time index

General symbol for the DFT length

DFT length used in the frequency-domain parameter estimator

DFT length used in the time-domain parameter estimator

Projection matrix in the time-domain parameter estimator, see Eqn. (4.5.8)
Target discrete-time pole of the nominal closed-loop system

Closed-loop reference signal
Continuous time

- Sampling period

Plant input control signal
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Filtered version of u[n], see Eqn. (4.2.11)

Maximum magnitude of u[n]

DFT of N points of u[m] ending with n
Probing signal
DFT of the probing signal v[n]

Plant output signal
Filtered version of y[n], see Eqn. (4.2.12)

DFT of N points of y[m] ending with n

Continuous-time unstructured uncertainty (unmodeled dynamics)

Magnitude bound on continuous-time unstructured uncertainty
Continuous-time smoothness condition, a magnitude bound on dﬁcu(jm) /dw
Discrete-time unstructured uncertainty (unmodeled dynamics)

Impulse response of the uﬂstructured uncertainty 8u(z)

Magnitude bound on the discrete-time unstructured uncertainty

Discrete-time smoothness condition, a magnitude bound on d8u(ej‘°T) /dw

Discrete-time structured uncertainty, see Eqn. (5.6.3)

Total discrete-time uncertainty including the effects of both structured and
unstructured uncertainty
el (oT, 8)

Uncertainty bounding function, a magnitude bound on g, (

Asun(ej“)kT, 6) Uncertainty bounding function at time index n, see Eqn. (5.5.6)

Asun(ejka, é) Robust uncertainty bounding function at time index n, see Eqn. (5.6.12)

Ksun(ej ka, ) Smoothed uncertainty bounding function at time index n, see Eqn. (5.7.37)
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Xsun(ej“)kT, ) Uncertainty bounding function including safety factor, see Eqn. (5.8.3)

Vsu,wc
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(ejmT) Worst-case bounding function on |d85u(ej‘°T, 8) / dol, see Eqgn. (5.7.11)

Bounding function on Idd ej(”T, 6) / dwl at time index n, see Eqn. (5.7.18)

sul
Signal regression vector, see Eqn. (4.2.7)

Filtered signal regression vector, see Eqn. (4.2.16)

Denotes the condition number of a matrix

True continuous-time parameter vector

Bounded set that contains the continuous-time parameter vector OCO

True discrete-time parameter vector

Bounded set that contains the discrete-time parameter vector 6,
Estimate of the discrete-time parameter vector

Error of the discrete-time parameter vector estimate, g[n] = é[n] - 60
Projected estimate of the discrete-time parameter vector

Error of the projected parameter vector estimate, ’é*[n] = 9*[n] - 60

Denotes the maximum singular value of a matrix

Denotes the minimum singular value of a matrix

Dead-zone signal in time-domain parameter estimator, see Eqn. (4.5.9)

Discrete frequency spacing, @;,.=®¢/N
General notation for a discrete frequency point, @, = (k/N) &g
Sampling frequency

Target closed-loop bandwidth
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CHAPTER 1.
INTRODUCTION

1.1 Overview
1.1.1 Motivation

The use of feedback control in systems having large amounts of uncertainty requires the use
of algorithms that learn or adapt in an on-line situation. A control system that is designed using
only a priori knowledge results in a relatively low bandwidth closed-loop system so as to guarantee
stable operation in the face of large uncertainty. An adaptive control algorithm, which can identify
the plant on-line, thereby decreasing the amount of plant uncertainty, can yield a closed-loop
system that has a reduced sensitivity function, higher bandwidth and thus better performance than a
non-adaptive algorithm. There are many problems with the adaptive control algorithms that have
been developed, to date. In particular, most adaptive control algorithms available are not robust to
unmodeled dynamics and unmeasurable disturbances, particularly in the absence of a
persistently-exciting input signal. _

In this thesis, we develop and test a set of plant identification algorithms which can be used
with confidence in an adaptive control setting. We attempt to improve performance, while
providing ironclad guarantees that the closed-loop system remains stable in the presence of
high-frequency modeling errors and disturbances. As we shall see, such stability guararitees have a
price; extensive real-time calculations in the frequency-domain are required.

In this subsection, we will motivate the robust estimation problem by first discussing the
adaptive control problem, in general, and then presenting a perspective on the robust adaptive
control problem. Further, we justify the choice of an infrequent adaptation strategy before
discussing the main focus of the thesis, the development of a robust estimator.

The Adaptive Control Problem

The adaptive control problem has reccived‘considcrable attention during the past thirty years.
However, while many different algorithms and analysis methods have been developed, a pragmatic
adaptive control design methodology has not, as yet, been developed. The primary difficulty with
current adaptive control algorithms is that they make restrictive (non-practical) assumptions about
the plant. In addition, these algorithms often assume that the system operates in an ideal
environment. Recent research efforts have focused both on reducing the restrictiveness of the plant
assumptions, as well as the issue of robustness to unmodeled dynamics and unmeasurable
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disturbances. However, an algorithm that requires reasonable a priori information about the plant,
and that can provide guarantees of global stability in the absence of persistent excitation and in the
face of reasonable classes of unmodeled dynamics and unmeasurable disturbances, is still an
unreached goal. Although many researchers have suggested "safety nets" for specific applications,
a general "safety net" methodology is not available. This thesis represents a contribution in that
direction. '

Stability of Adaptive Control Algorithms

The use of current adaptive control algorithms yields systems that are nonlinear and possibly
time-varying. Thus, the closed-loop stability of these systems depends on the inputs and
disturbances, as well as the plant (including any unmodeled dynamics) and the compensator.
However, the stability properties of a linear time-invariant (LTI) feedback system depend only on
the plant and compensator, not the inputs and disturbances. Because of this fact, we take the point
of view that it is desirable to make the system "as LTI as possible”. Of course, our motivation for
using adaptive control is to achieve a performance improvement (increased bandwidth) over the
best non-adaptive LTI compensator. So, there is the ever present tradeoff between performance -
and robustness.

The preceding argument can be used to justify an infrequent control-law update strategy. It
is envisioned that a discrete-time estimator (identifier) will be used to continually update the
estimates of the plant as long as there is useful information in the input/output data of the plant.
The continuous-time plant is in a closed-loop that is controlled by a fixed-structure, discrete-time
compensator whose parameters are updated infrequently. It can be shown that, if the compensator
parameters are updated sufficiently infrequently, then the LTI stability of the frozen-time system at
every point in time guarantees the exponential stability of the time-varying system. In this way, the
control system looks nearly LTI and consequently is more robust to disturbances, than a highly
nonlinear adaptive controller. It is emphasized here that a robust adaptive controller that slowly
learns and produces successively better LTI compensators is the end product envisioned in this
thesis. The work presented in this thesis aims to develop only the estimation part of this robust
adaptive controller. On the other end of the adaptive control spectrum are algorithms that quickly
adapt to a changing system. However, these systems have poor robustness properties in that they
are highly sensitive to unmodeled dynamics and unmeasurable disturbances, particularly in the
absence of persistent excitation.
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A Perspective on the Robust Adaptive Control Problem

With the solution of the adaptive control problem for the ideal case, that is, when there are no
unmodeled dynamics nor unmeasurable disturbances, the problem of robustness has become a
focus of current research. Recently, a new perspective on the robust adaptive control problem has
appeared in the literature [1]. Briefly, a "robust" adaptive controller is viewed as a combination of
a "robust" parameter estimator and a "robust" control law. Indeed, researchers have coined the
term "adaptive robust control" to emphasize this new perspective. This is an appealing point of
view. For example, if the robust parameter estimator is not getting any useful information and,
consequently, is not able to improve on the current knowledge of the plant parameters, then the
adaptation aspect of the algorithm can be disabled and the adaptive controller reduces to a robust
control law. That is, in a situation where the adaptive algorithm is not learning, the adaptive
controller becomes simply the best robust LTI control law that one could design based only on a
priori information and any additional information learned since the algorithm began. As an aside
‘we mention the fact that currently the control field doesn't provide a method for designing the
best-performing, robustly-stable, LTI control law in the face of uncertainty. A second benefit of
the new adaptive control perspective is that it, like all indirect adaptive control approaches, enables
us to view the adaptive control problem as having two parts, the parameter estimator and the control
law. Alternatively, the direct adaptive control approaches combine the estimation and control-law
design aspects of the problem. That is, in the direct approach the control law parameters are
estimated directly instead of first estimating the plant and then computing the new control law
parameters as is done in the indirect approach. Since we use the indirect approach in this thesis, we
will able to use previous results in the fields of parameter estimation and robust control. The field
of LTI control is well established for questions of stability robustness and offers several possible
robust control algorithms for use in an adaptive controller. However, the problem of robust
estimation (identification) has received less attention by researchers. This area of robust
identification is where the thesis makes its main contribution.

Brief Statement of the Robust Estimation Problem

The main focus of this thesis is the development of a robust estimator for use in an adaptive
control system. In non-adaptive robust control, the designer must perform two identification steps;
he must obtain both a nominal model and some measure of its goodness. A useful measure of
goodness is a frequency-domain bounding function on the modeling errors as this permits the use
of frequency-domain stability robustness tests. Now, since non-adaptive robust control requires
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both of the above steps, the same steps must implicitly, or explicitly, be present in a robust adaptive
control scheme, the difference being that the steps are carried out on-line rather than off-line. Thus,
we assume that our robust estimator must supply:

1) a nominal plant model,

2) a bounding function on the magnitude of the modeling error vs. frequency of this nominal

model with respect to the true plant. '
So, given an a priori assumed model structure, the robust estimator must provide an estimate of the
parameters of the plant, as well as a frequency-domain error bounding function corresponding to
this estimate. That is, we define a robust estimator as one that generates a model of the plant along
with guarantees about how good the model is. Given this information, several robust control-law
design methodologies could be used. This adaptive control scenario is shown in Figure 1.1.

In this thesis, we present two methodologies for estimating the parameters of the nominal
model, one based on time-domain methods and one based on frequency-domain methods. In
addition, we will present one method for computing a frequency-domain bounding function on the
modeling uncertainty. It will be shown in the simulations that the specific time-domain parameter
estimator that is described in this thesis has some weaknesses. Thus, frequency-domain methods
will be used to provide both parameter estimates and the aforementioned frequency-domain
bounding function on the modeling uncertainty. The frequency-domain calculations of these
methods require significant real-time computations.
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Figure 1.1: Robust Adaptive Control System.
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The goal of the robust estimator is to enable improved closed-loop performance through the
reduction of the modeling uncertainty. The modeling error or uncertainty has two components: 1)
an unstructured component due to the modeling mismatch error between the finite-dimensional
plant model and the plant, and 2) a structured component due to errors in the parameters of the
nominal model. The function of the robust estimator is to eliminate the structured uncertainty of the
plant model. That is, the robust estimator seeks to yield a better performing closed-loop system by
reducing the structured uncertainty. The robust estimator will be of most use in situations where
there is significant structured uncertainty. We do not require the robust estimator to eliminate the
inherent unstructured uncertainty due to high-frequency unmodeled dynamics. The role of the
robust estimator is illustrated in Figure 1.2.

Prior Plant Model
Finite-dimensional with Large
Model Mismatch Error Structured Uncertainty
(Unstructured
Uncertainty)
4
Plant Model Plant Model
with Robust with
Unstructured Uncertainty » Estimator . Unstructured Uncertainty
and Large and Small
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Parameters Parameters
Conservative : Improved
Performance Performance

Figure 1.2: The Role of the Robust Estimator.
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1,1.2 Contributions of the Thesis

The results of this thesis represent a major step toward a more complete understanding of the
robust adaptive control problem. The primary technical contributions are in the area of robust
estimation (identification), however, the thesis provides insight as to the future of robust adaptive
control. We now discuss the novel features of the robust estimator and then summarize some of
the contributions of the thesis.

The robust estimator is the first of its kind in that it provides frequency-domain guarantees
concerning the accuracy of the nominal plant model. The author is not aware of any other
algorithm that provides these frequency-domain guarantees. As was mentioned earlier, we use a
frequency-domain bound on the modeling errors since this allows us to use existing stability
robustness results. We emphasize that the identification part of an adaptive controller must provide
some kind of guarantee concerning the nominal model, or else the resulting control-law cannot
guarantee the stability of the closed-loop system. We will use a deterministic framework
throughout the thesis since guarantees of stability are sought.

The key technical contribution of the thesis is the development of new signal processing
theorems that enable the explicit bounding of frequency-domain estimation errors due to the use of
finite-length data. These theorems are essential for the on-line computation of guaranteed bounds
on the modeling uncertainty. The robust estimator uses discrete Fourier transforms (DFTs) to
compute a frequency-domain estimate of the plant and then uses these signal processing theorems
to compute the required frequency-domain bounding function.

In contrast to some current adaptive control algorithms, the robust estimator uses pragmatic
assumptions concerning the a priori known information about the plant. Specifically, in practice,
engineers are generally able to determine the following:

a) the structure of the (low-frequency) nominal model,
b) an approximate idea of the parameters of the nominal model,
¢) a frequency-domain bounding function on the size of the unmodeled dynamics, (i.e. a
magnitude bounding function on the Fourier transform),
d) an approximate idea of how smooth the unmodeled dynamics are in the frequency-domain,
e) a frequency-domain bounding function on the magnitude of the Fourier transform of the
unmeasurable disturbance (i.e. where the disturbance has its energy), and
f) a coarse bounding function on the impulse response of the plant, and coarse time-domain
magnitude bounds on both the unmeasurable disturbance and the input signal.
The development of the robust estimator assumes that the plant is stable, so the impulse response of
f) above is bounded. The robust estimator uses the above information and blends it with the
information gleaned on-line from the input/output data. It is the first such estimator to use a priori
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frequency-domain information about the unmodeled dynamics. The above continuous-time
assumptions are translated to an analogous set of discrete-time assumptions. The robust estimation
problem is then stated and solved in discrete-time. All on-line frequency-domain calculations are
computed using DFTs.

The development of the robust estimator entailed the study of techniques for robust
time-domain parameter estimation. Some time-domain bounding results are developed in the thesis
so that we can robustify a time-domain parameter estimator. This is done through the use of a
time-varying dead-zone. It will later be shown that this type of robust time-domain parameter
estimator performs unsatisfactorily. This poor performance motivates our development of a
frequency-domain parameter estimator which is found to perform much better than the time-varying
dead-zone approach.

Further contributions of this thesis are the insights gained concerning the closed-loop
operation of an adaptive system that uses the robust estimator. A simple adaptive control system
that uses the robust estimator is developed for a limited class of plants. The simulation of this
simple adaptive control system allows us to assess the potential of the robust estimator. In
addition, in this thesis we consider the introduction of probing signals into the closed-loop system.
The robust adaptive control system that is shown in Figure 1.1, is essentially a passive system in
that it only learns and, hence, updates the compensator parameters when there is useful information
available to it, in the form of a rich control input signal. If it is essential that the robust adaptive
controller improve on its a priori information and the control input signal is not rich, in the sense
that the robust estimator cannot improve its estimate, then an external probing signal must be
introduced at the plant input to enhance identification. That is, in some closed-loop situations it will
be necessary to add a probing signal so that identification can occur. We analyze the excitation
conditions that are required by a robust adaptive control system that uses the robust estimator. This
enables us to devise a probing signal strategy that can be used to attain a target closed-loop
bandwidth.

The simulation results of this thesis suggest that the robust estimator (using the
frequency-domain parameter estimator) can provide performance improving information to the
control-law under reasonable excitation conditions. The cost of this improved closed-loop
performance with stability-robustness guarantees is the extensive real-time calculations of the
robust estimator.

1.1.3 Organization of the Thesis

The thesis is organized into ten chapters and several appendices. Figure 1.3 illustrates the
logical interdependence of the various chapters with the exception of the introductory and
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concluding chapters. In Chapter 2 we present the notation that will be used throughout the thesis.
In addition, this chapter contains derivations of several new signal processing theorems that will be
used in the later parts of the thesis. The statement of the robust estimation problem is presented in
Chapter 3 where the assumptions of the robust estimator are first stated in continuous-time and then
used to form an analogous set of discrete-time assumptions. Chapter 4 presents a robust
time-domain parameter estimator while Chapter 5 presents a frequency-domain based method of
finding parameter estimates as well as a frequency-domain method for bounding modeling
uncertainty. Chapter 6 addresses the many design issues of the robust estimator in the context of
closed-loop adaptive control. In addition, Chapter 6 investigates how the assumption of a
frequency-domain bounding function can or cannot be satisfied by various disturbance models.
Computational issues are also discussed in Chapter 6. Chapter 7 ties together the results of the
previous chapters by presenting a robust adaptive control system, which uses the robust estimator,
and that can be applied to a restricted class of plants. Chapters 8 and 9 provide a two part
presentation of several illustrative simulation examples. In particular, we provide a closed-loop
simulation example that demonstrates the potential of adaptive controllers that use the robust
estimator. Finally, Chapter 10 presents conclusions and directions for future research. The
appendices contain useful results that are referenced, as needed, in the main body of the thesis
itself.
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Figure 1.3: Logical Interdependence of Thesis Chapters.
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1.2 Previous Work and Related Literature
1.2.1 Robust Adaptive Control

During the late 1970s, global stability results for Model Reference Adaptive Controllers
(MRACQ), in the absence of unmodeled dynamics and unmeasurable disturbances, were derived by
Narendra and Valavani [3], Narendra, Lin and Valavani [4], and Feuer and Morse [5]. These
results made several restrictive assumptions concerning the plant. It was assumed that the SISO
plant was: 1) minimum phase, 2) of known relative degree, 3) of known sign on high-frequency
gain, 4) of known maximum order, and 5) of known upper bound on the high-frequency gain.
These assumptions were necessary in order to prove global asymptotic stability of the
continuous-time adaptive control algorithms. A different adaptive control approach, the
Self-Tuning Regulator (STR) was developed by Astrom et al. [6,7] for discrete-time systems.
Stability results were not developed for the STR algorithms as they were derived in a stochastic
framework; rather, convergence properties were later shown to be true. A third approach was
pursued by Goodwin, Ramadge and Caines [8] who presented an algorithm and stability proof of a
projection-type adaptive controller for discrete-time systems. As in the MRAC case, unmodeled
dynamics and unmeasurable disturbances were not considered. In addition, the STR and
projection-type algorithms both make restrictive assumptions about the plant as in the MRAC case.

In the early '80s it became apparent with the work of Rohrs et al. [9,10] that there were
robustness problems with all of the previously developed adaptive control algorithms. These
problems stemmed from the nonlinear nature of the adaptive control problem and were different
than the stabilty-robustness problems encountered in the design of LTI compensators. Rohrs et al.
[9,10] showed that the presence of unmodeled dynamics and unmeasurable disturbances would
cause the current adaptive algorithms to become unstable when a persistently-exciting input signal
was absent. This realization initiated investigations into the development of robust adaptive control
algorithms.

In recent years, several different approaches to the robust adaptive control problem have been
pursued. In 1982, Ioannou and Kokotovic [11] introduced the use of an exponential forgetting
factor to achieve a measure of robustness in adaptive control systems. At about the same time,
Peterson and Narendra [12] incorporated a fixed dead-zone mechanism into a continuous-time
MRAC and proved that the system was globally stable in the presence of a bounded, unmeasurable
disturbance. When the output error of Peterson and Narendra's algorithm was less than the error
that might be due to the bounded disturbance, the adaptation mechanism was disabled. They did
not consider the effects of unmodeled dynamics. This fixed dead-zone mechanism for intermittent
adaptation has also been used in discrete-time systems [13]. While a fixed dead-zone is useful for
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obtdining robustness with respect to a bounded disturbance, it cannot be used to provide robustness
to unmodeled dynamics. This is because the output error due to the unmodeled dynamics cannot be
absolutely bounded but, rather, depends on the size of the states of the plant. Thus, a time-varying
deadzone which depends on the plant states (or alternatively the plant inputs and outputs) must be
included in the system to provide robustness to both unmodeled dynamics and unmeasurable
disturbances.

In 1984, Orlicki et al. [14,15] incorporated a time-varying dead-zone into a continuous-time
MRAC and proved that the system was simultaneously robust to both unmodeled dynamics and
certain classes of disturbances, including bounded disturbances. Orlicki's algorithm implicitly
assumed that the plant was open-loop stable. He used on-line spectral calculations of the plant
input and output to determine when useful information was available for the adaptation algorithm.
Recently, Kreisselmeier and Anderson [16] introduced what they call a "relative dead-zone" to
provide robustness to unmodeled dynamics in discrete-time MRACs. The system is permitted to
adapt unless the error due to the unmodeled dynamics is larger than the current output error. They
bound the output error due to unmodeled dynamics using a stable difference equation driven by a
weighted sum of the current plant input and ohtput. Goodwin et al. [17,18] have extended this
work to include the treatment of both unmodeled dynamics and bounded disturbances, by adding a
fixed component to the dead-zone of Kreisselmeier and Anderson to account for a bounded
disturbance. In addition, this new type of time-varying dead-zone is used by Goodwin et al.
[17,18] in a modified least-squares algorithm. This new modified least-squares algorithm will be
used in this thesis. However, we will use on-line spectral calculations to bound the output error
due to unmodeled dynamics, rather than Kreisselmeier and Anderson's bounding mechanism.

A different approach to the robust adaptive control problem advocates the use of the basic
ideal-case adaptive control algorithms in combination with a supervisory level, which is added to
the algorithm. Such a supervisory level provides a type of "safety net" that can detect the
conditions under which an adaptive control algorithm has problems, such as lack of excitation.
When these conditions are detected the adaptive algorithm is temporarily disabled so as to avoid
degradation of the parameter estimates and, hence, possibly unstable behavior. Both Astrom [19],
and Isermann and Lachmann [20] have suggested this kind of approach. These supervisory type
algorithms are ad-hoc and have not been shown to provide "safety nets" that guarantee stability. In
a sense, the results of this thesis represent a kind of "safety net" in that the robust estimator based
adaptive controller of this thesis seeks to achieve the same type of goals. That is, the robust
estimator doesn't update the plant parameters and, hence, the control-law doesn't change when
there is not any useful information in the input/output data.

A last result from the robust adaptive control area that will be used in the thesis is the recent
work of Rohrs et al. [21,22]. In 1985, Rohrs et al. showed an approximate relationship between
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the unmodeled dynamics of a continuous-time plant and the unmodeled dynamics of a discrete-time
model of the plant. This relationship gives insight as to how to choose the sampling period in a
sampled-data adaptive control system so as to avoid the deleterious effects of the high-frequency
unmodeled dynamics. This result is used in the thesis to translate the continuous-time assumptions
of the robust estimator to an analogous set of discrete-time assumptions.

1.2.2 Parameter Estimation

The thesis will use several results from the field of parameter estimation. Young [23]
provides a thorough survey of this field up to 1980. As has already been mentioned in the
preceding subsection, time-domain parameter estimators such as the least-squares algorithm will be
used. Goodwin and Sin [13] provide a good summary of projection and least-squares type
parameter estimators. In addition to time-domain estimation techniques, we will be using
frequency-domain estimation techniques. Ljung and Glover [24] discuss the complementary nature
of time and frequency-domain estimation techniques. In Ljung [25,26] the "empirical transfer
function estimate” (ETFE) is introduced. This ETFE is computed using the Fourier transforms of
finite-length input/output data of the plant. In [25], Ljung finds bounds on the effects of using
finite-length data to compute the ETFE, for strictly stable plants. The extensive work of Ljung
provides the background for the development of the frequency-domain estimation techniques of this
thesis. The area of closed-loop identification is surveyed in the 1977 paper by Gustavsson, Ljung
and Soderstrom [27].

1.2.3 Signal Processing and Sampled-data Control

To implement the various spectral calculations involved in our robust estimator, we will have
to make use of some results from the signal processing field. Most of the needed results are
well-known and are contained in the books by Oppenheim and Schafer [28], and Rabiner and Gold
[29]. We will also make use of many results from the area of sampled-data control. In particular,

the books by Franklin and Powell [30], Astrom and Wittenmark [31], and Ackermann [32] will be
used. '
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CHAPTER 2.
MATHEMATICAL PRELIMINARIES

In this chapter, we will present the notation and definitions that will be used in the thesis as
well as some results and theorems that will be useful later on. Specifically, we will present
theorems that will enable us to bound the error due to using finite-length data in our computation of
frequency-domain estimates.

2.1 Preliminaries and Notation
2.1.1 Notation

In this subsection, we present some definitions. The following notation will be used to
represent various transforms of the signal x. We denote a continuous-time signal by x(t). The

Laplace and Fourier transforms of x(t) are denoted by X®(s) and X (jw), respectively, where the
superscript 'c’ denotes the fact that they are transforms of a continuous-time signal. We denote the
timc-sampied version of the continuous-time signal x(t) by the discrete-time signal x[n] where n is
an integer and x[n]=x(nT) where T is the sampling period. The z-transform of the discrete-time
signal x[n] is defined by

o0

X(z) = z x[n] z ! =.Z{ x[n] }. ' (2.1.1)

Nn=-co

The z-transform of x[n] on. the unit circle is called the discrete-time Fourier transform (DTFT) and
is defined as follows

o0

X@E®Ty = Y x[n]ed(@Dn, 2.1.2)
n=-co
We define WN=e'j(2n/N) where N is a positive integer. (2.1.3)

This allows us to define the N-point discrete Fourier transform (DFT) of x[n], at the N frequency
points, '

O)k=(k/N) o, fork=0,...,N-1, 2.1.49)

where w =27/T is the sampling frequency. We denote the N-point DFT by
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Xn(oy) = Fl xin] ) ’ where k is an integer and
k= N/wg
N-1
XN@Y = 2 x[n] Wikn fork =0,...,N-1. 2.1.5)
n=0

Further, we define the inverse N-point discrete Fourier transform of Xp(ay ) as follows,

x[n] = F-In{ Xn(@y) } where

N-1

xin] =1 2 Xn(@p Wy'kn for n=0,...,N-1 (2.1.6)
N k=0

Since we will not always be working with N-point sequences that begin at 0, we define the
following version of the DFT and inverse DFT for a sequence of N points ending with time index
n.

n

XMy = FB(xml) | = XY x[m] W@ 2.1.7)
k=mkN/0)S m=n-N+1
fork=0,...,N-1

N-1
xim] = F- LM XM o} = 1 2 XyNayp) Wik (2.1.8)
N k=0

form=n-N+1,...,n.

A useful recursive equation for computing XNn((ok) from XN“'I((ok) can be derived from the

above definitions and is given as follows
XN @) = XNl + (x[n] - x[n-N]) WpKD, fork=0,...,N-1. (2.1.9)

We will now derive a simpler version of Eqn. (2.1.9) to yield a recursion that doesn't have WNkn

as a multiplier. Define the spectrum of N-points of x[n] by
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n

KN = X xlm] Wkmn) = x iy wygkn (2.1.10)

m=n-N+1

fork=0,...,N-1.
Thus, the spectrum of x[n] and its DFT, as defined in Eqn. (2.1.7), have the same magnitude.
Now, using Eqn. (2.1.9) we can show that

XNy = XN L) WK + (x[n]-x[n-N]), fork=0,...,N-1. 2.1.11)
See Rabiner and Gold [29, p.387] for more details.

2.1.2 Sampling of Continuous-time Signals

In this subsection, we show the relationships between: 1) the Fourier transform of a
continuous-time signal x(t); 2) the DTFT of the corresponding discrete-time signal x[n] resulting
from the sampling of x(t); and 3) the DFT of x[n]. Further, we note some special cases of these
relationships.

The DTFT of x[n] can be.found from the Fourier transform of x(t) as follows

x@®T) = 1 X XSG +jray), 2.1.12)
r=-c0

1
T
where r is an integer and again @, is the sampling frequency. If we assume that X%(jo) is
bandlimited to the range -(msl2) <®< (mSIZ), then

x@°Ty = (/1) X°(jw). (2.1.13)

If x[n] is of finite duration, for example if x[n]#0 only for n=0, . ., N-1, then the N-point

DFT of x[n] and the DTFT of x[n] are equal at Wy,
Xn(ep) =X(EeloT) fork=0,..,N-1. (2.1.14)

=0y ,
However, consider the infinite-length signal y[n] and the finite-length signal yf1[n] defined as

yglnl = 1 yln], forn=0, .., N-1 (2.1.15)

0, otherwise




Chapter 2 Page 35

We can write

yaln]l = win] y[n] (2.1.16)
where

w[n] = 1, forn=0,..,N-1 2.1.17)

0, otherwise.

It can be shown that the DTFT of w[n] is

wEI?Ty = e JOTN-1/2) Gn(wTN/2) / sin(wT/2). (2.1.18)
The well-known relationship between the DTFTs of yg[n]and y[n] follows. See Oppenheim and
Schafer [28, p.239] for details.
/T
Ya©®T) = (12r) | Y(EPT) wEe@)T) gu. (2.1.19)
-1/T

Finally, since the DTFT and the N-point DFT of yg[n] are equal at ey, we find that

/T
YN = @2m) | YERT) wel@cO)T) gu, fork=0,..,N-1. (2.1.20)
/T
 In summary, we have shown how to compute the DFT of a sampled signal given the Fourier
transform of the infinite-length, continuous-time signal from which the sampled signal was
derived. First, Eqn. (2.1.12) is used to compute the DTFT of the sampled signal from the Fourier
transform, and then Eqn. (2.1.20) is used to compute the DFT from the DTFT.

2.2 Signal Processing Theorems

In this section, we will develop new results that can be used to bound the effects of using
finite-length data to compute frequency-domain quantities. Later, in Section 5.2, the

frequency-domain estimate of a stable, causal, transfer function H(ejmT) will be computed based
on the N-point DFTs of the transfer function input and output signals. We will now derive a new
theorem that can be used to bound the error in the frequency domain between this DFT derived
frequency-domain estimate and the true transfer function.
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Theorem 2.1: Let y[m] = h{m]su[m], where h[m] is an infinite-length, causal, impulse response

with all its poles in the open unit disk. We denote the DTFT of h[m] by H(ejmT); and the DFTs of

the N-points of u[m] and y[m] ending with time index n, by UN—“(mk) and YNn((ok), respectively.

- Then,

YN@p) = HE®%T) Uy(o) + Ex(@), fork=0,..,N-1, 2.2.1)

where the discrete function Ex(co, ) is given by

EN™ep) = 2 hip] WP (U Play) - UnN™ay) ), fork=0,..,N-1, (2.2.2)
p=1

where Wy is defined in Eqn. (2.1.3).

Remark 1: The function EN"((ok) is the error in the frequency domain, at time index n, due to the

use of finite-length data. That is, if the DTFTs (based on infinite-length data) of u[m] and y[m]
were used in Eqn. (2.2.1) instead of the DFTs (based on finite-length data), then there would be no

error term En"(oy ). Note that the function EN"(ey) / UN™(w,) is the error in the frequency

domain between the DFT derived frequency-domain estimate of H(ej ka) and the true transfer

function H(eJ¥kT),
Proof: We know that
YEI%T) = HE%T) UE%T), fork=0,.. N-1, (2.2.3)

where U(ej (’)kT) and Y(ej(’)kT) are the DTFTs of u[n] and y[n], respectively. Since
n-N

YEOKT) = 2 ym] Wikt + Yiw) + D, ylm] WK, (2.2.4)
m=-co m=n+1
fork=0,..,N-1,

and a similar expression holds for U(ej C')kT), we can write
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n-N oo
Ypay) = HEIOKT) [ X ufm] WK™ + UnP(o + 2 ulm] WD ]
m=-o0 m=n+1

n-N oo
S0 X ymlWNKT + X y[m] Wk ] 22.5)

m=-oo m=n+1

fork=0,..,N-1.
It can be shown that

n-N n-N
Y, ylm] WK™ = h{0] { 2, ufm] WK )
ms=-oo m=-co
oo n-N n-N
+ X hpIWNKP (X um]WnK® - X ufm] W™ ) (2.2.6)
p=1 m=-oo : m=n-N-p+1
fork=0,..,N-1.
So, we can show that
A n-N n-N
HEOkT) D, ulm] Wpk® - 2, ym] Wak® =
m=-oo m=-co :
oo n-N
+ 2 hPIWN®P { X ulm] WK ) 22.7)
p=1 m=n-N-p+1

fork=0,..,N-1.
Similarly, it can be shown that

HEOT) 2, um] WD - D, yim] WK =

m=n+1 m=n+1
0o n
- 2 hPIWN®P {2 ulm] Wpkm ) (2.2.8)
p=1 m=n-p+1

fork=0,..,N-1.
Using Eqns. (2.2.1), (2.2.5) and (2.2.7-8) we find that

oo n‘N n
EN'@p = 2 hpl WP {2, um]WrK™ - X um] WK™ ) (22.9)
p=1 m=n-N-p+1 m=n-p+1

fork=0,..,N-1.
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Eqn. (2.2.2) now follows using the definition of Eqn. (2.1.7).
Q.E.D.

Later, in Section 5.2, it will be useful to be able to find a magnitude bound on EN“((ok).

The following theorem provides such a bounding function by using only a finite summation and
therefore can be implemented in practice.

Theorem 2.2: Under the assumptions of Theorem 2.1 we find that given some finite integer M, the

magnitude of ENn(cok) is bounded for each k as follows,
M-1
ExN™ el < 2. h{pl UNPP(ay) - Upa)! +
p=1

(2.2.10)
2umax 2 phipll, fork=0,..,N-1,
p=M
where up,. = sup lu[m]l.
m
Proof: Using the triangle inequality and Eqns. (2.2.2) and (2.2.9) we find,
M-1
Bl < X hp]l Up"P(wy) - UnPa)! +
p=1
oo n-N n
+ 2 hpll Y uml WKMo Y u[m] wykm | (2.2.11)
p=M m=n-N-p+1 m=n-p+1
fork=0,..,N-1.
Since,
n-N n
2 umWNKT . X ufml Wk <
m=n-N-p+1 =n-p+1
n-N n
2 hmll + X lhmll < 2ug, p 2.2.12)
m=n-N-p+1 m=n-p+1

we conclude that Eqn. (2.2.10) is true.
Q.E.D.
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Corollary 2.1: Under the assumptions of Theorem 2.2,
Ex™@p)! < 2Umax 2 phipll, fork=0,..,N-1. (22.13)
p=1

Proof: Choose M=1 in Theorem 2.2. This corollary is closely related to Theorem 2.1 in Ljung
[26].

For later reference, we rewrite Eqn. (2.2.10) in terms of the spectrum of u[n] as defined in
Eqgn. (2.1.10).

M-1
ExM ! < 2 hipll TN Pey) Wi kP - Tap)l +
p=1
2up, X plhipll, fork=0,..,N-1. (2.2.14)
p=M

Note that the above bounding function also bounds the magnitude of the error between ?N“(a)k)

and HeI%T) T, for k=0, . ., N-1.

Later, in Sections 4.3 and 4.4, we will be interested in computing the maximum output
signal of a transfer function for which we have a magnitude bounding function in the frequency
domain. The following theorem will be useful in this respect.

Theorem 2.3: Let y[m] = h[m]su[m], where h[m] is an infinite-length, causal, impulse response
with all its poles in the open unit disk. We denote the DTFT of h[m] by H(ejwkT), and the DFT of

the N-points of u[m] ending with time index n, by UNn(mk). Then,

N-1
yiol =1 2, HEkT) Upney) Wr'kD + efnl, | (2.2.15)
N k=0
where
e[n] = 2, hip] (uln-p] - uln-(p modulo N)] ). (2.2.16)

p=N
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Remark 2: The signal e[n] is the error due to the fact that the impulse response h[n] is of infinite

length. We note from Eqn. (2.2.16) that if h[p]=0 for p = N, then e[n]=0, Vn.

Proof: From the definition of Eqn. (2.1.8) we find that
N-1
yInl = 1 X Yo Wk, 2.2.17)
N k=0
Using Eqn. (2.2.1) from Theorem 2.1, we find that
N-1 N-1

yil = 1 X HET) Uyop Wk + 1 X Eniay) Wyke 22.18)
N k=0 N k=0

Thus, the second term of the above equation is equal to e[n]. This will allow us to use Eqn.
(2.2.9) from Theorem 2.1 to find e[n]. However, first we will find an alternate form of Eqn.
(2.2.9). We observe that :

n-N n ' n
2 umWim - Y um W™ = Y (u[meN] - ufm]) Wykm
m=n-N-p+1 m=n-p+1 m=n-p+1
fork=0,..,N-1, (2.2.19)

since Wy XN= 1 for integer k. Then, using Eqns. (2.2.9) and (2.2.19) and the inverse DFT of
N & : g Eq

Eqn. (2.1.8), we can exprcss ¢[n] as follows.

eln] = 2 2. hp] WnkP Z (ufm-N] -u[m])kam Wk (2220
N k=0 p=1 m=n-p+1
Rearranging the summations yields
- n
eln] = X hlp] 2 (ulm-N]-u[m]) 1 Z wgk(m-n+p), (2.2.21)
p=1 m=n-p+1 N k=0
Noting that
N-1
1 ZWNk(m‘n"‘P) =11, form=n-p+iN
N k=0

0, otherwise (2.2.22)

where 'i' is an integer, we find




Chapter 2 Page 41

n N-1
Y (ulmN]-ufm]) 1 X wyk@n+p)
m=n-p+1 N k=0

(2.2.23)
=10, forp=1,..,N-1

u[n-p] - u[n-(p modulo N)], forp>N.

Eqn. (2.2.16) follows from Eqns. (2.2.21) and (2.2.23).
Q.E.D.

We want to be able to find a magnitude bounding function on y[n]. The following theorem
provides such a bounding function by using the inverse DFT and the results of Theorem 2.3.

Theorem 2.4: Under the assumptions of Theorem 2.3 we find that, for a real-valued impulse
response h[n] and a real-valued signal u[n], the magnitude of y[n] is bounded at each n as follows,
(N/2)-1
iyl < 1 (HEODI UM et + 2 20 HEOKD! U@y
N k=1

+ HEN2 D U o) ) +2Umax 2 lhipl), (2.2.24)
p=N

where up,4 = sup lu[m]l, and where we have assumed that N is even. An alternate form of the
m

theorem can easily be proven for the case of an odd value of N.

Proof: By applying the triangle inequality to Egn. (2.2.15) and noting that IWN'an=1 we find,
N-1

iyl < 1 2, HEKDI U @)! + lefnll. (2.2.25)
N k=0

From Eqn. (2.2.16) we obtain a bound on le[n]l,
le[n]l < Z th[p]! I u[n-p] - u[n-(p modulo N)] )| < 2 upax 2 Ih[p]l. (2.2.26)
p::N p=N

To complete the proof, we observe that since h[n] and u[n] are real-valued sequences, then
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HET) = HECN-KT), 2.2.27)
IUNn(mk)l = IUNn(m(N_k))I, (2.2.28)
respectively, for k=1, .., (N/2)-1. Eqn. (2.2.24) follows from Eqns. (2.2.25-8).
Q.E.D.

In this chapter, we have derived several new signal processing results which will be used in
the later parts of this thesis. Specifically, we will use the time-domain bounding results of
Theorems 2.3 and 2.4 in Chapter 4 where we develop a robustified time-domain parameter
estimator. In addition, the frequency-domain bounding results of Theorems 2.1 and 2.2 will be
used in our development of the frequency-domain bounding method in Chapter 5.
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CHAPTER 3.
ROBUST ESTIMATION PROBLEM STATEMENT

3.1 Introduction

The purpose of this chapter is to define the robust estimation problem. First, we will
describe the adaptive control scenario in which we plan to use the robust estimator. Then, in
Section 3.2, we list the assumptions concerning the continuous-time plant and the disturbance.

In Section 3.3, we will develop a discrete-time model of the continuous-time plant. Discrete-time
impulse response bounds for the plant and disturbance DFT bounds are derived in Sections 3.4 and
3.5, respectively. The results of these sections will enable us, in Section 3.6, to form a list of
assumptions concemning the discrete-time plant model and the disturbance. These assumptions can
be derived from the assumptions of Section 3.2 concerning the continuous-time plant and the
disturbance or, alternatively, they can serve as a starting point for the statement of the robust
estimation problem entirely in discrete-time. In Section 3.7, we present the technical details of the
robust estimation problem statement and provide an overview of the solution.

Problem Scenario: Sampled-data Adaptive Control

It is assumed in this thesis that a continuous-time plant is being controlled by a discrete-time
controller, as is shown in Figure 3.1. The continuous-time, single-input single-output (SISO)

plant Gctrue(s) is controlled by a discrete-time compensator K(z). Gctme(s) has unmodeled

dynamics and an additive output disturbance d(t). The sensor noise T(t) has most of its energy at

high frequencies. In this thesis, we will assume that the sensor noise 1(t) can be effectively
eliminated by the low-pass, anti-aliasing filter F,(s) or by the low-pass nature of the plant itself.

Consequently, for the remainder of the thesis, we will ignore the effects of sensor noise. Since the
plant is preceded by a zero-order hold, we can use a discrete-time model to represent the transfer

function from u[n] to y[n] as is shown in Figure 3.2. Finally, we can represent the closed-loop
control system, ignoring the sensor noise and the filter F,(s), by the discrete-time system that is

shown in Figure 3.3. In this figure, the discrete-time signals r[n], d[n] and y[n] are the sampled
versions of r(t), d(t) and y(t), respectively.
One of the goals of this thesis is the development of a discrete-time robust estimator which

can be used to identify Gy, (2) in a closed-loop and provide this information to an on-line
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control-law update algorithm. Specifically, the plant is controlled by a fixed-structure,
discrete-time compensator whose parameters are updated infrequently using information from the
robust estimator. This adaptive control scheme is illustrated in Figure 3.4. In order to develop a
discrete-time model of the partially known plant, we must make some assumptions about the
continuous-time plant. In the following section, we list these assumptions as well as assumptions
concerning the disturbance and the input signal.
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Disturbance
Anti-aliasing Compensator Continuous-time d(t)
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r(t) uln] ST
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Hold nt)
+ Sensor
noise
Figure 3.1: Discrete-time Control of a Sampled-data System.
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Figure 3.2: Discrete-time Model of the Continuous-time Plant.



Chapter 3 Page 46

Disturbance
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Figure 3.3: Discrete-time Closed-loop System.
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Figure 3.4: Discrete-time Adaptive Control System.
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Disturbance
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Figure 3.5: Continuous-time Plant and Disturbance.
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Figure 3.6: Discrete-time Plant and Disturbance.
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3.2 Continuous-time Assumptions on the Plant and Disturbance

Consider the system of Figure 3.5 where the continuous-time plant Gctme(s), which we are

trying to identify, has input u(t), output y(t), and an additive output disturbance d(t). We make the
following assumptions, which we label for later reference with the letters 'AC' referring to the fact
that they are assumptions concerning the continuous-time plant, disturbance and input. In the
remaining sections of this chapter we will develop a set of discrete-time assumptions from the
following list of continuous-time assumptions. When the discrete-time assumptions are
enumerated in Section 3.6 we will discuss why each assumption is needed.

AC1) Plant Assumptions. We assume a structure for the nominal model of Gctme(s) anda

magnitude bounding function on the unstructured uncertainty. That is, we assume that

GCrye(s) = G(s,6%) [1 + 8°(s)] (3.2.1)

where Gc(s,eco) is a nominal model, Scu(s) denotes the unstructured uncertainty of the plant, Gco

is a vector of plant parameters and we assume,

ACL.1) G%s,6%) =BS(s) / A%(s), (32.2)
where the polynomials B(s) and AC(s) for the continuous-time system are,
BC(s) = bSos™C1 + b€, s@C1-1) 4 +C 0, (3:2.3)
AS(s) = s1°1 - 2% stne-1) 4 . €., ncy >mcy, (3.2.4)

and where the parameter vector of the continuous-time plant is,

8% =[ac,...a%¢; b b ... bomcy 1T, (3.2.5)

AC1.2) 6%, ©F, where ©C is a known bounded set. (3.2.6)
This assumptions means that we have some coarse prior idea of what the parameters are.
ACL3) 18, (o)l < AS,(w), Va. (32.7)
This assumption is our characterization of the high-frequency unmodeled dynamics. While
other characterizations are possible, this frequency-domain approach has been shown to have
pragmatic utility [34].

ACL4) 1d5° (jw)dal < VO, (o), Vo. (3.2.8)

This assumption tells us how smooth the unmodeled dynamics are. This assumption is
required since we will be using DFTs to perform our frequency-domain calculations and will
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need to compute the maximum variation of the plant in between the discrete frequency points.
ACL.5) G®s,8%) and 8°(s) and, hence, G%(s,8%)) &,(s) have all their poles in the open

left-half plane for all Gcoe ©F. Thus, we assume that the true plant is asymptotically stable.

AC1.6) A bounding function on the magnitude of the impulse response of the true plant,
denoted by g,e(t), is known such that

(]
lgrue®! < %, byt eC3i), fort>0 (3.2.9)
i=1

where r; is a positive integer, and b; > 0, a; > 0 (i.e. poles in the open left-half plane) and I

are known for i=1, .., I;C. g, ..(t) is assumed to be causal. This assumption is saying that

| we know some coarse bounding function on the impulse response of the partially known
‘ plant. If we know that the system has no double pole, then a simple decaying exponential

j beatof appropriate time constant and gain satisfies this assumption. If the system is known
| to have a double pole, then we must use a bounding function of the form bt e &, Eqn.
‘ (3.2.9) is a general expression allowing summations of impulse response bounds, for
b
example by €210 + b, t e(20),
ACL.7) A bounding function on the magnitude of the impulse response of the additive plant
error, that is, we assume we know a bounding function of the same form as Eqn. (3.2.9) on
lgrue® - 8(1,9,9)|, for all Gcoe ©°, where 8(t,8,,°) is the impulse response of Gc(s,eco).

This assumption means that we know some coarse bounding function on the impulse
response of the additive plant error that is due to the unmodeled dynamics.
AC1.8) zero initial conditions.

Thus, our a priori assumptions are that we know mc, and nc,, the degrees of BC(s) and

AC(s), respectively, and the bounding functions Acu(ico) and ch(ico). Further, we assume that the

parameter vector eco is in some known bounded set ® ¢, which is only a coarse and, hence, large a

priori estimate of the parameter space.
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AC2) Disturbance Assumptions. We assume that the unmeasurable disturbance d(t) satisfies:
AC2.1) ld(®)l < dpaxs V1, and (3.2.10)
AC2.2) IDC(w)l < DS(jw), V. (32.11)

where the constant d ;5 and the function DES(jw) are known a priori.

AC3) Input and Qutput Signal Assumptions. We assume that both the input signal u(t) and the
output signal y(t) are measurable and that u(t) is bounded.

AC3.1) lu@®)! < upay, Vt, where up,y is known a priori. (3.2.12)

Remark 1; Assumption AC1.7 will only be used in the development of the time-domain parameter
estimator of Chapter 4.

Remark 2;: Assumptions AC1.2-1.4 and AC1.6-1.7 are quite different from the classical MRAC
assumptions, which are listed in Subsection 1.2.1. We do assume knowledge of the structure of
the "nominal" plant model, and hence its relative degree and its maximum order. However, we do
not assume that the plant is minimum phase nor do we make non-pragmatic assumptions about the
plant, such as knowledge of: 1) the sign of the high-frequency gain and 2) an upper bound on the
high-frequency gain.

3.3 Development of a Discrete-time Plant Model

In this section, we will show how the assumptions of the previous section, concerning the
continuous-time plant and the disturbance, can be used to find their discrete-time counterpart,
which is very similar. In Subsections 3.3.1-3, we will assume that the continuous-time nominal
model of the plant is known along with magnitude bounding functions on the continuous-time
unstructured uncertainty and the derivative of the continuous-time unstructured uncertainty as
assumed in AC1.3-4. In Subsection 3.3.4, we will discuss the issues that arise due to the fact that
we do not know the parameters of the nominal model; rather, we only know that they lie in some
known bounded set.
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3.3.1 Development of a Discrete-time Nominal Plant Model

In this subsection, we consider the continuous-time plant G rue(s) whose input is generated

by a zero-order hold. We will use the zero-order hold equivalent of the continuous-time plant to
find a discrete-time model of the plant. The anti-aliasing filter, in Figure 3.1, could be considered
as part of the plant. However, for simplicity, we will ignore the effects of the anti-aliasing filter in
this development. The true discrete-time plant, using a zero-order hold equivalence is given by,

Girue@ = (1-z71) Z{ (1/5) GCyrye(s) ). (3.3.1)

Similarly, given a continuous-time nominal model GS(s), the discrete-time nominal model G(z) can
be found as follows,

G@) = (1-z1HZ{ (1/s) Gs) ). (332)
See Franklin and Powell [30, p.62] for details. :

3.3.2 Development of a Bounding Function on the Magnitude of the Discrete-time Unstructured

Uncertainty

We seek a bounding function on the magnitude of the discrete-time unstructured uncertainty.
To find this, we must first make several definitions. The transfer function of a zero-order hold is
given by,

Hyon(s) = (1-eT) /s, (33.3)
which allows us to define the transfer function of the true plant and the zero-order hold,

GCtrue,zoh(®) = Hyon(S) GCprye(s)- (3.3.4)
Since there will always be some unstructured uncertainty in the continuous-time system, we write

GCryue(s) = GS(s) [1 +8°(s)] (3.3.5)

where G(s) is a nominal model and 8°u(s) is the unstructured uncertainty. We assume a
magnitude bounding function on the continuous-time unstructured uncertainty, that is,

B, Go)l < AC (), Vo, (3.3.6)
as was assumed in AC1.3. For later use, we define

Gczoh(s) = H,oh(s) GS(s). (3.3.7)



Chapter 3 Page 52

We develop a similar kind of plant description in discrete time. The discrete-time model of
the plant that results from sampling the continuous-time transfer function of the plant and the
zero-order hold is,

Girge@®T) =1 X GCuryerzoneriray), (33.8)
T r=-o00
where @ is the sampling frequency and T is the sampling period. Using Eqns. (3.3.4-5) and
(3.3.7-8) yields

Girge @9 =1 2 GCygpo+irag) [1 + 8y (wray)]. (3.3.9)
T r=-00
We define the desired form of the true discrete-time plant,

Grye(@ = G@) [1+3,(2)] (3:3.10)

where the discrete-time nominal model G(z) is defined by Eqn. (3.3.2). It can be shown, using
Theorem 4.1 of Astrom and Wittenmark [31], that

Ge9T) = (1-e39Ty Z{ (1/s) GS(s) } (3.3.11)
z=elOT
=1 2 G, onjar+jrag). (3.3.12)
T r=-00

It was shown by Rohrs et al. [21] that, with reference to the nominal model of Eqn. (3.3.12),
which we have shown is the same as the nominal model of Eqn. (3.3.2),

5,E9T) = (1 2, G, piorrag) 8, Gatirag) ) / GE9T), Vo. (3.3.13)
T r=-e0

Eqn. (3.3.13) follows from Eqns. (3.3.9-12). Then, using the triangle inequality and Eqn. (3.3.6)
yields,

5,197 < A @D, Vo (33.14)

where

M8

AE9T) = { IGE oG+t AS Ga+ray) } / 1GECT), Vo. (3:3.15)

=
[

-00
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Recalling the definition of G€,,,(j) and observing that

1 - e (HTOIT) _ (1.¢d0Ty v (3.3.16)
we can factor this term out of the numerator of Eqn. (3.3.15) to yield

A (€I0T) =

-edoTi 1 Y, IGE(jorjrar) / Garkiragl AS (a+irag) } /1GEICT), Vo,  (3.3.17)
T r=-c0
In practice, the sums in Eqns. (3.3.12), and (3.3.13) will usually be dominated by the r=0 terms.
When the r=0 terms dominate the sums, Eqn. (3.3.13) yields the approximate equality,

8,@°T) = & (), for-o2<w<a2. (3.3.18)

Similarly, it can be shown that

A, @%T) = A° o), for-0g2 <o <ay?, (3.3.19)
when the r=0 terms dominate the sums.

In summary, in this subsection we have shown how to find a magnitude bounding function
on the discrete-time unstructured uncertainty. To find this bounding function, we needed a
continuous-time nominal model from which we found a discrete-time nominal model; in addition, -
we needed a magnitude bounding function on the continuous-time unstructured uncertainty. Later,
in Section 9.2, it will be shown ﬁlrough an example that Eqn. (3.3.19) will be a good
approximation for many problems. Thus, for many problems it will not be necessary to compute
Eqn. (3.3.17). Appendix A contains several useful results that can aid in the computation of Eqn.
(3.3.17) should the need arise.

3.3.3 Development of a Bounding Function on the Magnitude of the Derivative of the Discrete-time

Unstructured Uncertainty

We seek a bounding function on the magnitude of the derivative of the discrete-time
unstructured uncertainty. This derivative bounding function is a description of how smooth the
discrete-time unstructured uncertainty is. Taking the derivative of Eqn. (3.3.13) yields
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d8,(eIT) / do =

(GEOT)[1 D, ((dGC,0n/dw) 8 + GCpop (5%, /dw))]
T r=-co. (3.3.20)

L1 X G 8% 1dGE9T)/ dw) }/GEI®TY, Vo,

T r=-e0

where we have omitted the arguments of the summands for clarity. From Eqn. (3.3.12) we find
that

dGE®Ty /dw = 1 X, (dGC,pGv) /dv) |. (3.3.21)
T r=-co V=0+HT W
Combining Eqns. (3.3.13), and (3.3.20-1) yields

d8,@9T) /do = ( 1 X [(8yGetjray) - 8,@9T) ) (G on(v) / dv)

T r=-e0 V=0+T00g

+ GC o (or+irmg) (d8C,Gv) / dv) | 1 1/G(E9T), Vo (3.3.22)
V=0+HWg
We note that if the r=0 terms dominate the sums in Eqns. (3.3.12-13) and (3.3.22), then Eqn.
(3.3.18) is true and

d5,(e19T) / do = 8% () / do, for -0y2 < < @ 2. (3.3.23)

We can now find a magnitude bounding function on d8u(ej‘°T)/dco by using the triangle inequality,
assumptions AC1.3-4, and Eqn. (3.3.22). Thus,

13,(9T) / dal < V9T, Vo (3.3.24)
where
V9T =( 1 X [(AS,Gotirwg) +AyE®T) ) 1dGE,op () / dsl
T r=-c0 $=jWH+rog
+ IGC,p (j@+rol VE, (jo+irag) 1) /1G6(EPT), Vo. (3.3.25)

and where




Chapter 3 Page 55

IGConGartiragl = 11-e39T11G arirag) / fotirag, Vo (3.3.26)

and

IdGC, () / dsl | = 11-e 39T 1a(GE(s)/s) / dsl
S=jOHrOg s=jartjrag

+ T IGS(jw+Hragl / jo+jrag, Yo. (3.3.27)

In Eqn. (3.3.25) we have been forced to use a very conservative magnitude bound for the term

(8cu(jm+jrcos) - 8u(ej(°T)) since we do not have any phase information about Scu and Su. It may

be possible to derive other, less conservative, bounding functions on the magnitude of the
derivative of the discrete-time unstructured uncertainty. That is, from Eqn. (3.18) we expect

considerable cancellation in the term (8°u(i(o+jr(os) - Su(ejmT)) so that a new bounding function

using this cancellation could be significantly tighter than Eqn. (3.3.25).

In summary, in this subsection we have shown how to find a magnitude bounding function
on the derivative of the discrete-time unstructured uncertainty. To find this boundin g function, we
needed a continuous-time nominal model from which we found a discrete-time nominal model; in
addition, we needed magnitude bounding functions on the continuous-time unstructured uncertainty
and the derivative of the continuous-time unstructured uncertainty. Later, in Section 9.2, it will be
shown through an example that Eqn. (3.3.23) is a good approximation for many problems. Thus,
for many problems it will not be necessary to compute Eqn. (3.3.25). Appendix A contains several
useful results that can aided in the computation of Eqn. (3.3.25) should the need arise.

3.3.4 Treatment of the Case of Nominal Models with Structured Uncertainty

In this subsection, we will discuss the modifications in the results of Subsections 3.3.1-3
that are necessary when the continuous-time nominal model has structured uncertainty. That is, it
was assumed in these subsections that we knew the continuous-time nominal model from which we
could find the discrete-time nominal model. In fact, with reference to assumptions AC1.1-2, while
we know the structure of the continuous-time nominal model, we do not know its parameters. We

only know that the nominal model parameters lie in some bounded set ©°.

Using Eqn. (3.3.2), we can find the structure of the discrete-time nominal model from
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AC1.1. In addition, using Eqn. (3.3.2) and given assumption AC1.2, that is, §°e ©°, we can find

a set © such that the parameter vector 8 of the discrete-time nominal model satisfies 8 ©. That s,

Eqn. (3.3.2) implicitly defines a map from the bounded parameter space @€ to the parameter space

©. We denote this map by f(¢). Ackermann [32, p.95] summarizes the relationship between the
continuous-time and discrete-time parameters using a state-space representation of these systems.
In this thesis, we view the map f(+) as an explicit map that can be found for any given example
using the methods in Franklin and Powell [30]. This methodology will later be illustrated by an
example, in Section 9.2.

In summary, from AC1.1-2 and the application of Eqn. (3.3.2), we have the following
continuous-time and corresponding discrete-time nominal model structures,

G%(s,8%), with 8¢ € ©F, and (3.3.28)

G(z,9), with8 =£f(0% e O, (3:3.29)
where the set © is defined as follows,

© = {0816=1(6%,for6€ec ©°}. (3.3.30)

We can now find modified forms of the results of Subsections 3.3.2-3. The new magnitude
bounding functions will be formed by maximizing the expressions of Eqn. (3.3.17) and Eqn.

(3.3.25) over the parameter space ©C. Thus, from Eqn. (3.3.17), the new bounding function on
the discrete-time unstructured uncertainty is given by

Ay €I9Ty = 130T .

18

sup [ {1 (IGC(0+jrag,8°) / (jo + jragl A (o+jreg) ) }/ IGEI®T £6%)1 1, Vo.
gCc@C T r=-ee

i

(3.3.31)
Further, from Eqn. (3.3.25), the new bounding function on the derivative of the discrete-time
unstructured uncertainty is given by
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Vu(ei OJT) =

sip [{(1 2 ((ACyGoHrog) + Ay@el®T) 1dGE, 1 (s.8°) / dsl
0Cc@¢ T r=-

s=jrHjrag
+ IGopGe+rog8%) Vo Go+irag) ) } /1IGELT (0% 1, Vo  (33.32)
where
G onGertirag 89 = 11-e90TI G w+jra 89 / lin+irag, Ve, and (3.3.33)
1dGC,on(s:86) /dsl | = 11-e39T] 1d(GS(s,6Ys) / dsl
S=jo+Hrog S=j+Hrog
+ TIGE(jarrag0) / io+rag , V. (3.3.34)

The bounding function of Eqn. (3.3.31) can be used for Au(ejmT) in Eqn. (3.3.32). Alternatively,

one could substitute the expression of Eqn. (3.3.31) into Eqn. (3.3.32) and compute the supremum
for this expression, however, it would make the computation of this expression quite complex.

3.4 Discrete-time Impulse Response Bounding

In this section, we will show how the magnitude of the discrete-time impulse response of a
system formed using the zero-order hold equivalence, can be bounded by using a magnitude
bounding function on the impulse response of the corresponding continuous-time plant. We will
use these results to derive a discrete-time impulse response bounding function from the
continuous-time bounding function of assumption AC1.6. From Franklin and Powell [30, p.62]
we find that if the zero-order hold equivalence is used, then the discrete-time impulse response

Etrueln] is related to the continuous-time impulse response Ztrue(®) as follows.

nT

Srueln] = | guye®dt, Vn. (3.4.1)
(@-1)T

If grye(D satisfies the magnitude bounding function of assumption AC1.6 of Section 3.2, then we
find
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nT g nT
el € | lggue®ldt < X by [ t@eCab), forn > 1. (3.4.2)
(n-1)T i=1  (@-1T

For the case of r=0, corresponding to a bounding function that is a simple exponential decay b e 2t
it is easily seen that )

nT
b | edtdr = (b/a)(1-e2T)eaT® D), forn>1. (3.4.3)
(n-1)T

Next, we consider the case of r=1, which corresponds to the bounding function b t e 3t This
bounding function is the impulse response of a double pole system, that is, a system with two
identical real poles. In Appendix B, it is shown that for this case,

nT
b | tedtdt = (ba) ([ (/a)(1-eqT)-T1+[nT(1-e2T)]})eT@D), forn>1.

-T
(o-1) (3.4.4)
A general method for the treatment of larger values of r is also presented in Appendix B. For

example, in Appendix B we treat the case of r=2, which corresponds to the impulse response of a
triple pole system. However, most practical situations will not require more than the case of r=1,
which corresponds to a system with a double pole.

3.5 Bounding the DFT of the Disturbance

3.5.1 The Basic Technique

In this section, we consider the problem of finding a magnitude bounding function on the
DFT of the time-sampled disturbance d[n], given a magnitude bounding function on the Fourier
transform of d(t). Thus, as in assumption AC2.2 of Section 3.2, we assume that we know a

magnitude bounding function Bc(j ®) on the Fourier transform of d(t), F{d(t)}, which we denote

by DC(j). That is,

IF{d®}! = IDS(jw)! < DGw), Vo. (3.5.1)
From Eqn. (2.1.12) we find that the magnitude of the DTFT of d[n], which we denote by D(ej(’)T),
is bounded by the function B(e)'(oT) as follows
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DE®T) < DTy =1 X Do +jmy), Vo (3.5.2)
T r=-c0
Using Eqns. (2.1.18) and (2.1.20) it can be shown that
=/T
DNl < (T2m) | D(ePT) Isin((-0)TN/2) / sin((a-v)T/2)! dv
-T/T
fork=0,..,N-1. (3.5.3)

It is a property of the DTFT that if the DTFT of w[m] is W(ejmT), then the DTFT of w[m-n] is

e'janW(eij). Thus, a shift in time doesn't change the magnitude of the DTFT. This fact
allows us to conclude that

/T
DNl < (T/2m) | D(eiPT) sin((@-0)TN/2) / sin((ay-0) T/2)l dv
-n/T
fork=0,..,N-1. (3.5.4)

for all n, where DN“(cok) is defined as in Eqn. (2.1.7).

3.5.2 Treatment of the Start-up Situation

In this subsection, we consider the effects of the disturbance on the robust estimator. Weé
must consider the situation that occurs when the estimator starts up. That is, from the viewpoint of
the estimator, the disturbance d[n] is zero forn < 0. Thus, we define the disturbance,

d*[n] =< d[n], for n=0,1,..

(3.5.5
0, forn<0.

The N-point DFT of d*[m] for the last N points ending with 'n’ is defined, as in Eqn. (2.1.7) by

n .
DN ey) = ZN 1d+[m] WnK®m,  fork=0,...,N-1. (3.5.6)
=n-N+

We are really concerned with the properties of DN*™(e, ), rather than DN™(ey), since DN (o, )

appears in all of our algorithms. However, we note that
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n

DNy = 2_0 d*[m] WK™, forn=0,1,..,N-2,

(3.5.7)
DN™(y), for n>N-1,

fork=0,...,N-1.

Thus, we need only be concerned with the differences between the DFT of DN‘*'“(cok) and

DN™(wy) for n=0, . ., N-2, that is, during start-up. To treat this start-up situation, we first define
the signal,

d*[m] = w"{m] d[m] (3.5.8)
where the window wi[m] is given by,

wl[m] = 1, for m=0,..,n
(3.5.9)
0, otherwise.
From Eqn. (2.1.18) we know that the DTFT of wl[m] is given by
wiel®Ty = e J0TW2) gn(@T(n+1)/2) / sin(@T/2). (3.5.10)

Thus, the DTFT of E"’[n] is given by the convolution,

wi(el0Tyxpe®T), (3.5.11)
which, from the discussion of Section 2.1, we know is equal to the N-point DFT of d*[m] for the

last N points ending with time index n, for @=w,.. Using this information, it can be shown that,

D@ < D@, (3.5.12)
where
BN+n(wk) =
T
@rn) | DEPT) isin((ae-v)Ta+1)/2) / sin(@-v) T/2)l dv,
| -n/T forn=0,..,N-2,
— (3.5.13)
Dp(oy), forn>N-1,

fork=0,..,N-1,
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and wheré wé know from Eqns. (3.5.4) and (3.5.7) that
/T
Dn(wp) = (T2m) | D(eiT) Isin((@-0)TN/2) / sin((-0)T/2)! dv
-n/T
fork=0,..,N-1. (3.5.14)

In summary, we have shown how to compute a magnitude bounding function on the DFT of
the time-sampled disturbance given a magnitude bounding function on the Fourier transform of the
infinite-length, continuous-time disturbance from which the sampled signal was derived. The
expressions that were derived in this section are rather complex. Thus, in practice, we will work
directly with the DFT of some disturbance for which we have some sort of time-domain model.
However, it is important to note that the kind of bounding functions that we have derived in this
section can all be found in terms of the magnitude bounding function on the Fourier transform of
the continuous-time disturbance. The bounding functions of Eqns. (3.5.13-14) will eventually be
used to compute a bound on the error associated with the frequency-domain estimate of the plant.

3.6 Restatement of Assumptions in Discrete-time

In this séction, we list assumptions about the discrete-time plant in preparation for the
statement of the robust estimation problem in Section 3.7. In addition, using the results of Sections
3.2-5, we show that the information assumed in this section about the discrete-time plant and the
disturbance can be obtained from the assumptions about the continuous-time plant and the
disturbance that were listed in Section 3.2.

Consider the system of Figure 3.6 where the discrete-time plant Girye(@)s is the zero-order
hold equivalent of the continuous-time plant of Section 3.2. Girye(2) has input ufn], output y[n],

and an additive output disturbance d[n]. We make the following assumptions, which we label for
later reference with the letters 'AD' referring to the fact that they are assumptions concerning the
discrete-time plant, disturbance and input.

AD1) Plant Assumptions. We assume a structure for the nominal model of Girye(?) and a

magnitude bounding function on the unstructured uncertainty. That is, we assume that

Girye(@) = G(z.8y) [1 +8,(2)] (3.6.1)

where G(z,eo) is a nominal model, 8u(z) denotes the unstructured uncertainty of the plant, 90 isa
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vector of plant parameters and we assume,

AD1.1) G(z8y) =B(z) / A(2), (3.6.2)
where the polynomials B(z) and A(z) for the discrete-time system are,

B(2) = by Z(M1-0D) + by 2@-0-D o+ 4+ by, 2™, (3.6.3)

A@=1-ayz1+. . -ay;z™, n;>m,, (3.6.4)
and where the parameter vector of the discrete-time plant is,

0g=[a1---2n; by by... by 1T, (3.6.5)
AD1.2) 90 € ©, where © is a known bounded set. (3.6.6)

This assumptions means that we have some coarse prior idea of what the discrete-time

parameters are. The bounded set © will be used to compute various a priori bounds in
Chapters 5 and 6.

AD13) 18,E9T) < A,°T), Vo - (3.6.7)

This assumption is our characterization of the discrete-time unmodeled dynamics. In Section
4.4, we use this assumption to find a time-domain bound on the effects of unstructured
uncertainty. In addition, it is used in Section 5.6 to make the frequency-domain estimation
method robust.

AD1.4) 1d8 (e®Dydal < V @°T), Vo (3.6.8)

This assumption tells us how smooth the discrete-time unmodeled dynamics are. In Sections
5.7 and 5.8, we use this assumption to smooth out our bound on the uncertainty and to
bound the inter-sample variations of the uncertainty between the discrete frequency samples
of our bounding function.

ADL5) Gyye(2) and G(z,eo) have all their poles in the open unit disk for all 6, o.

Thus, we assume that the true discrete-time plant is asymptotically stable. This assumption
is required by the frequency-domain estimation method. The relaxation of this assumption is
discussed in Section 10.2.

AD1.6) A bounding function on the magnitude of the impulse response of the true plant,
denoted by g,e[n], is known such that

lgeruelnll < % g; nm) p;n, (3.6.9)
i=1
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where 1 is a positive integer, and g; >0, 0 < p; < 1 (i.e. all the poles of gi,.[n] are in the
open unit disk) and r; are known fori=1, . ., Iy 8tryelnl is assumed to be causal. This

assumption is saying that we know some coarse bounding function on the impulse response
of the partially known discrete-time plant. In Section 5.2, this assumption is used to
compute a frequency-domain bounding function on the estimation error.

AD1.7) A bounding function on the magnitude of the impulse response of the additive plant
error, that is, we assume we know a bounding function of the same form as Eqn. (3.6.9) on

g rueln] - g[n,eo]l, for all Boe 0, where g[n,eo] is the impulse response of G(z,OO).

This assumption means that we know some coarse bounding function on the impulse
response of the additive plant error that is due to the unmodeled dynamics. In Section 4.4,

this assumption is used to make the time-domain parameter estimator robust to the effects of
the unstructured uncertainty.

AD1.8) zero initial conditions.
Thus, our a priori assumptions are that we know m, and n,, the degrees of B(z) and A(z),

respectively, and the bounding functions Au(ej mT) and Vu(ej(’)'T). Further, we assume that the

parameter vector 60 is in some known bounded set ©, which is only a coarse and, hence, large a

priori estimate of the parameter space. We do not assume that the plant is minimum phase as is
done in the classical MRAC approach.

AD?2) Disturbance Assumptions. We assume that the unmeasurable disturbance d[n] satisfies:

AD2.1) ld[n]l < dmax» Vn, and (3.6.10)
AD2.2) the N-point DFT of the signal d*[n), defined as in Eqn. (3.5.5), satisfies

DNyl < { DN ™M@y, for n=0,1,.., N-2

— (3.6.11)
Dy(wy), forn>N-1,

for k=0,..,N-1,
where the constant dmax is known and the time function BN+"(cok) and the constant ﬁN(cok) are

known, for each @y
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AD3) Input and Qutput Signal Assumptions. We assume that both the input signal u[n]} and the
output signal y[n] are measurable and that u[n] is bounded.

AD3.1) lu[n]l < v .y, Vn, where uy,, is known a priori. ‘(3.6.12)

Remark 1; We note that the assumption of a stable plant (AD1.5) and a bounded plant input
(AD3.1) implies the boundness of the plant output. Thus, even in a closed-loop situation the plant
output is bounded. However, such a closed-loop system could exhibit wild oscillations with u[n]

oscillating between +u,, and -up,... We emphasize that this is not the kind of stability that we

are looking for. Instead, we seek a closed-loop system that has all its poles in the open unit disk.

In this case, if the plant control input never saturates, that is, lu[n]l remains less than up,,, then we

have an exponentially stable closed-loop system.

Remark 2: The parameter vector 6, can be thought of as a specific value. However, based on

input/output measurements alone we cannot determine a specific 90 for the nominal model because

of the unstructured uncertainty. That is, if we assume the structure of AD1.1 above and assume
only that
5,2 e S where S = { 8(2) | 18T < 4,E“T), Vo), (3.6.13)

then we can define a smallest set
©* = {01Gye(2) =G(z8) [1 +8,(2)] and d(2) € S) (3.6.14)
in which 6 lies. Thus, 6, ©*CO where only © is known a priori. Note that, in general, ©*

will be a point only when Au(ejmT)=O for all .

Remark 3: As has already been noted, assumptions AD1-3 above can be satisfied using the
information of assumptions AC1-3 of Section 3.2. Specifically,
1) AD1.1-2 follow from AC1.1-2 and the results of Subsections 3.3.1 and 3.3.4.
2) AD1.3 follows from AC1.3 plus AC1.1-2 and the results of Subsections 3.3.2 and 3.3.4.
3) AD1.4 follows from AC1.4 plus AC1.1-3 and the results of Subsections 3.3.3 and 3.3.4.
4) AD1.5 follows from ACL1.5.
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5) AD1.6 and AD1.7 follow from AC1.6 and AC1.7, respectively, and the results of Section
34.

7) AD1.8 follows from AC1.8 and the assumption that the zero-order hold has zero initial
conditions.

8) AD2.1 and 3.1 follow from AC2.1 and 3.1, respectively.

9) AD2.2 follows from AC2.2 and the results of Section 3.5.

3.7 Discrete-time Statement of the Robust Estimation Problem and Solution
Summary

In this section, we will state the robust estimation problem and then outline the problem
solution which will be developed in the following chapters of this thesis.

3.7.1 Robust Estimation Problem Statement

Since complex adaptive control algorithms will ultimately be implemented on a digital
computer, we focus on the development of discrete-time estimation methods. We can use a
discrete-time estimator to identify the zero-order hold equivalent of a continuous-time plant. It was
shown in Sections 3.3-3.5, how the continuous-time assumptions AC1-3 of Section 3.2 could be
used to satisfy the discrete-time assumptions AD1-3 of Section 3.6. Thus, we will use these
discrete-time assumptions as a starting point for our problem statement.

We rewrite the true discrete-time plant of Eqn. (3.6.1), formed via the zero-order hold
equivalence of the continuous-time plant, as

Girue(@ = G(z,0) [1+5,,(z,0)], 8 © (3.7.1)
where again G(z, é) is the nominal model using an estimate 6 of the true parameter vector 6, in the
structure of assumption AD1.1, and Ssu(z, é) denotes the modeling error due to both structured
and unstructured uncertainty. That is, since a priori we only know that 6 € ©, where 6 is not

necessarily in ©%, there is structured uncertainty associated with this choice of 8 as well as the ever
present unstructured uncertainty.
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Problem Statement: The robust estimator must provide:

1) a parameter estimate 8 and, hence, a nominal model G(z, é),

2) a corresponding bounding function, Asun(ejmT, é), such that

joT § joT §
18, @, 0) < A, M9, 0), Vo (3.7.2)

That is, at a given sample time n we want to generate a new nominal model G(z, é), and a

corresponding bounding function Asun(e:j °°T, 8) in the frequency domain indicating how good the

current nominal model is. The robust estimator need only provide the above information at the
times that a control-law update is computed.

The goal of the robust estimator is to find a 6 in ©* and have Asun(ejmT, 6) approach
Au(ejmT). The viewpoint taken here is that the unstructured uncertainty Au(e'i (’)T) is the best we

can do given the structure of our nominal model. If the bound Au(ejmT) is chosen to be larger than

the actual unmodeled dynamics, then parameters can be found for the finite-dimensional nominal

model that yield a smaller uncertainty bound than Au(ejmT). Thus, the robust estimator can yield a
total unccrtairi& bound Asun(ejO)T’ é) that is even smaller than Au(ejmT). In the robust estimator,
we will not let Asu“(ejmT, é) become smaller than our a priori assumed bound Au(ejmT), when
computing control-law updates. We view the function Au(ejmT) as the desirable lower bound of

the function Asun(ejmT, 8).

The problem that we have described in this subsection will be referred to as the robust
estimation problem. An algorithm which satisfies this problem will be referred to as a robust
estimator since it provides a nominal model of the plant as well as a guaranteed frequency-domain
bounding function on the accuracy of this nominal model.
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1.2 Qutline of Problem Solution

In the following two chapters of this thesis, we will develop a solution to the robust
estimation problem stated in the previous subsection.’ First, in Chapter 4, we will describe a robust
time-domain parameter estimator for plants with unstructured uncertainty and an unmeasurable
disturbance. Then, in Chapter 5, we will describe a frequency-domain parameter estimation
method. Thus, we will present two methods of generating a parameter estimate and, hence, the
nominal model, one being a time-domain method and the other being a frequency-domain method.
Later, in the simulations, we will reveal some weaknesses of the specific algorithm employed in the
time-domain parameter estimation method of Chapter 4, so we will choose to use the
frequency-domain parameter estimator over the time-domain parameter estimator. In Chapter 5 we
will also develop a frequency-domain bounding methodology that will yield a set of points versus

frequency which upper bound the magnitude of the function Ssu(ejmT, 6) at those frequency

points. We will see that the frequency-domain methods of Chapter 5 will require extensive
real-time computations.




Chapter 4 Page 68

CHAPTER 4.
ROBUST TIME-DOMAIN PARAMETER ESTIMATION

4.1 Introduction

In this chapter, we will develop a new type of deterministic, discrete-time parameter
estimator. First, we will motivate the use of a robust time-domain parameter estimator. Then, in
Sections 4.2-4, we will develop a mechanism to bound, in the time-domain, the effects of both
unmodeled dynamics and an unmeasurable disturbance. Lastly, in Section 4.5 this bounding
mechanism will be used together with a time-varying dead-zone to make a least- squares parameter
estimator robust.

Most current parameter estimation techniques provide unreliable estimates in the presence of
unmodeled dynamics and an unmeasurable disturbance. For example, assume that a large,
persistently exciting, sufficiently rich signal was present for a long time so that the algbrithm’s
parameter estimates were good. Then, assume that the input signal suddenly became zero but the
disturbance continued to excite the system. In this case, the parameter estimates would diverge
from their previously good values. As another example, consider what happens when the plant
input signal excites the high-frequency unmodeled dynamics, that is, the dynamics we constrain
with the unstructured uncertainty bound. In this case, the plant output signal is greatly affected by
the high-frequency unmodeled dynamics so that the parameter estimates yielded by standard
estimation techniques will have very little to do with the actual parameters of the low-frequency
nominal model. We need an algorithm which will adjust the parameter estimates when there is
good information about the parameters in the input/output data but we want the algorithm to stop
updating the estimates when there is no useful information available.

It is the goal of this chapter to develop an algorithm that can be used with confidence in the
presence of unmodeled dynamics and an unmeasurable disturbance. The resultant time-domain
parameter estimator is actually a combination of the bounding mechanism that we develop in
Sections 4.2-4 and a modified least-squares algorithm that was developed by Goodwin et al.
[17,18]. This modified least-squares algorithm is made robust through the use of a time-varying
dead-zone. The new contribution of this chapter is the development of the time-domain boundin g
mechanism of Sections 4.2-4. This mechanism uses the assumptions of the robust estimator, for
example the assumption of a frequency-domain bound on the unstructured uncertainty. Goodwin
et al. [17,18] use a different bounding mechanism in their development of a robust parameter
estimator. Their bounding mechanism requires different types of assumptions than those used in
development of the robust estimator.
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4.2 Development of the Linear Regression Form of the Plant

4.2.1 Development of DARMA Form

Before presenting the time-domain parameter estimation algorithm, we will give some
definitions that allow us to represent our previous discrete-time transfer function of the nominal
model in a deterministic autoregressive moving-average (DARMA) form. We again consider the
discrete-time system of Figure 3.6 where

y[n] = giryelnl * uln] + d[n]. (4.2.1)

and where '*' denotes convolution. We can use the forward shift operator q in the polynomials of
assumption AD1 of Section 3.6, to write

yIn] = [Ggye(@] uln] +din] (4.2.2)
=[(B(@/A@)[1+3,(@]]uln] +dln]. (4.2.3)

So,

y[n] = [B(@) / A(@)] u[n] + [B(Q) 5,(q) / A(q)] u[n] + d[n]. ) (4.2.4)
Multiplying both sides by the operator [A(q)] yields

{A@)] yIn] = [B(@] uln] + [B(q) 8,(q)] uln] + [A(q)] d[n]. (4.2.5)
Rewriting yields,

y[n] = [1-A(q)] y[n] + [B(@)] u[n] + [B(q) 8,(q)] uln] + [A(Q)] d[n]. (4.2.6)

We define the signal regression vector,

¢[n-11=[y[n-1] y[n-2] ... y[n-n;] u[n-n;+m,] u[n-n;+m;-1] ... u[n-n;] ]T. 4.2.7)
Now, Eqn. (4.2.5) can be rewritten as,

yln] = ¢[n-11T6, + egln], 4.2.8)

where
eolnl = [B(q) 3,(@)] u[n] + [A(Q)] d[n], 4.2.9)

and where 60 is the true parameter vector of the nominal model, as defined in AD1. Goodwin et al.
[17] observe that Eqn. (4.2.8) will, in general, be unsuitable for parameter estimation since the
error eg[n] involves "near differentiation” of the input and the disturbance. As suggested in [17],

we will prefilter both the input and the output signals, u[n] and y[n], to avoid this problem. We
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define the filter in the forward shift operator,
F(g) = (1) / W(q) (4.2.10)
where the polynomial W(q) has order n, or greater and has all its zeros in the open unit disk.
Now, we define the filtered versions of the input and output signals,
ug{n] = [F(@)] u[n], . (4.2.11)
yln] = [F(q)] y[n]. (4.2.12)
Multiplying both sides of Eqn. (4.2.5) by the operator [F(q)] yields

[A(®) F(@)] yin] = [B(q) F(@)] u[n] + [B(q) F() 8, (@] uln] + [A(q) F(@)]d[n]  (4.2:13)

or

[A@] ygn] = [B(@)] ugln] + [B(q) F(q) 8,(q)] u[n] + [A(q) F(g)] d[n]. (4.2.14)
Rearranging yields,

yein] = [1-A(@)] y¢ln] + [B(Q)] ugn] + [B(q) F(q) 8 ,(q)] uln] + [A(q) F(@)] d[n]. (4.2.15)
We define the signal regression vector containing the filtered signals,

¢fn-1]1 =[ ydn-1] ygdn-2] ... ygn-n;] udn-n;+m,] uf[n-n1+rhl-1] ... ugn-n] ]T.

4.2.16)
Now, we see that Eqn. (4.2.15) can be written as,
yelnl = 0dn-11T0, + e;[n], (4.2.17)
where
e,[n] = [B(q) F(@) 8,(q)] uln] + [A(q) F(q)] d[n]. (4.2.18)

In summary, we have developed a DARMA mode! for the discrete-time plant of Chapter 3.
Further, we have used filtering to avoid "near differentiation" of the signals, u[n] and d[n].

4.2.2 Decomposition of the Error Signal

In this subsection, we will introduce several definitions so that we can decompose the error

signal e;[n] defined in Eqn. (4.2.18). First, we define the transfer functions

H,,(z) =B(z) F(z) Su(z), (4.2.19)
Hy(2) = A(z) F(2). (4.2.20)
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As can be seen from Eqn. (4.2.18), H(2) is the transfer function from the plant input to the

equation error e;[n]. This transfer function describes the effect of the additive plant error, which is
due to the unmodeled dynamics, on the equation error. As can also be seen from Eqn. (4.2.18),
H4(2) is the transfer function from the disturbance to the equation error ¢,[n]. We can rewrite Eqn.
(4.2.18) as

€;[n] =hy[n] * u[n] + hg[n] * d[n]. (4.2.21)
where the impulse responses of H;;(z) and H(z) are denoted by hyj[n] and hy[n], respectively. We

decompose Eqn. (4.2.21) by defining

e,(n] =e,[n] +e3[n], (4.2.22)
where

€,[n] =h,[n] * u[n] (4.2.23)

es[n] =hgy[n] * d[n] (4.2.24)

The signal e,[n] is the part of the equation error e, [n] that is due only to the unmodeled dynamics.
- The signal e3[n] is the part of the equation error ¢, [n] that is due only to the disturbance. To bound
e,[n] at each time index n, we will find a time-varying magnitude bound on e,[n] and e;[n]
individually. That is,

le;[n]l < ley[n]l + leg[n]l. (4.2.25)

4.2.3 Qutline of the Time-domain Error Bounding Technique

In the following two sections we will develop magnitude bounding functions on the

component parts, €,[n] and e;[n], of the equation error ¢,[n] using the results of Theorem 2.4 of
Chapter 2. It will be advantageous to first find a bounding function on e3[n] since the results found

in this process will be useful in trying to find a bounding function on e,[n]. Given such a bound,
we will later be able to robustify the standard least-squares algorithm to the effects of unstructured
uncertainty and an unmeasurable disturbance.

Since the following two chapters are rather involved in their derivations of these bounds, it is
important to keep a perspective on what the important parts of the development are. As can be seen
from Theorem 2.4, we will be using essentially a frequency-domain methodology to find the

required time-domain bounding functions for e,[n] and e5[n]. However, we must also consider the

effect of the remainder terms due to the infinite-length of the impulse responses. To bound this
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effect, we must use a complicated, conservative scheme in the case of e,[n], since we chose to use

only the assumptions listed in Section 3.6. We are forced to take this approach since we want
guaranteed bounds. It is stressed that, although the development is lengthy, the bounding of the
remainder terms due to the infinite-length of the impulse responses, is only a relatively minor part
of our development. We want to provide rigorous bounds, however, the chief contribution to our
time-domain bounds will be due to the frequency-domain summations, not the generally smaller
remainder terms.

4.3 Time-domain Error Bounding of Disturbance Effects

4.3.1 Different Bounding Methodologies

In this section, we will find a magnitude bounding function on e;[n]. This signal is the
effect of the disturbance on the equation error. We note that Hq(2), which is the transfer function

from the disturbance to the equation error, must have all its poles in the open unit disk since F(z)
has all its poles in the open unit disk. This means that the frequency-domain methods that were

developed in Section 2.2 can be applied. The signal €,[n] can be bounded using one of three
methods, each of which we outline below:

Method 1: 'We compute a magnitude bounding function on the DTFT of d[n] using assumption

AC2.2 and Eqn. (2.1.12). Then, we find a magnitude bounding function on Hd(ej(’)T). These
two magnitude bounding functions are used, along with the equation for the inverse DTFT to

compute a magnitude bound on e;[n], in a way similarly to that used for the inverse DFT in
Theorem 2.4.

Method 2; We compute a magnitude bounding function on hd[n], which will be of the same form

as the bounding function of assumption AD1.6,

i=1

% g; n@) p;n, (4.3.1)

Then, the summation formulas in Appendix C can be used to compute the constant bounding
function,
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lea[nll < dpay { 2 Thglnll }, 4.3.2)
n=0

where d,,, is known from assumption AD2.1.

Method 3: We compute a magnitude bounding function on Hd(ej"’kT) for each k, and a magnitude
bounding function on hg[n] which again, will be of the form of Eqn. (4.3.1). Then we use

assumption AD2.1-2 and Theorem 2.4 to find a magnitude bounding function on e3[n].

Discussion:;

We choose to use method 3 from above since it uses assumptions AD2.1-2 rather than
AC2.2, as does method 1. Later, we will concentrate on the investigation of the properties of the
DFTs of different disturbance models. It would complicate matters if we were instead to work with
the Fourier transform of the disturbance and then have to perform the frequency-domain folding of
Eqn. (2.1.12). In addition, later in the frequency-domain bounding methodology of Chapter 5, we
will also be using a magnitude bounding function on the DFT of the disturbance, that is, the
function of assumption AD2.2. Thus, we choose to work entirely with the DFT of d[n].

However, we do note that method 1 does not require knowledge of a magnitude bound on d[n], as

do both methods 2 and 3. This is because our ultimate goal here is to bound the error signal e;[n],

not the disturbance itself.

Method 2 is not used since it will, in general, be more conservative than method 3. This
statement of relative conservativeness actually depends on how good the different bounds of AD2.1
and AD2.2 are relative to one another. For example, if a tight bound on the magnitude of the DFT
of the disturbance is known and only a coarse bound on |d[n]! is known, then method 3 will yield a

tighter bounding function on le;[n]! than method 2. However, if only a coarse bound on the
magnitude of the DFT of the disturbance is known and a tight bound on |d[n]l is known, then
method 2 could yield a tighter bound on le;[n]I.

As a final note, we point out that method 3 actually contains elements of both methods 1 and
2. That is, method 1 is essentially a purely frequency-domain methodology, and method 2 is a

purely time-domain methodology, while method 3 uses both frequency-domain and time-domain
bounding methodologies, as is evident from Theorem 2.4.
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4.3.2 Development of a Bounding Function using Method

First, we find a magnitude bounding function on Hd(ei“)kT), for k=0, . ., (IN/2), where we

assume that N is even. Recall that @y is defined in Eqn. (2.1.4). At this point in our development,

we must include the fact that the transfer function Hy(z) is actually a function of the parameter

vector 6, which is only coarsely known . That is, using Eqn. (4.2.20), and assumptions AD1.1-2,

Hy(z,0) = A(z0) F(z) , where 6 € ©. (4.3.3)
Thus, we find that,

Hy@%T,0) < Hy@%T), fork=0,..,NR), (43.4)
where

Hye9T) = S { 1Ak T 0) } IFEI9kT), fork =0, .., (N/2). (4.3.5)

The above bounding function is computed off-line as part of the deéign procedure.

To find a magnitude bounding function on the impulse response of hg4[n] we must include its
0 dependence. The structure of H(z,8) is known, as is apparent from Eqn. (4.3.3), so we can

find an expression for h4[n,0] in terms of the parameter vector 8. Thus, assumptions AD1.1-2

have allowed us to define the following bounding function,

lhgn,6]! < hyln], Vn, : (4.3.6)
where
hgln] = sup { lhy[n,6]l}, forn=0,1,.. 4.3.7)
0e®

Since the transfer function F(z) has all its poles in the open unit disk, the bound of Eqn. (4.3.7)
will be of the form,

_l;d[n] = % g n(ri) pin’ 4.3.8)

i=1

where 0 < p; < 1, Vi, and the largest p; corresponds to the slowest pole of F(z). For simplicity, we

assume here that

hy[n] =g, p/8, forn=0,1,.. (4.3.9)
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Given Eqgns. (4.3.4-5), the bounding function id[n], plus dp,,, and BN"'n(ejka) from
AD2.1, we can use Theorem 2.4 to find,
leg[n]l < esln], (4.3.10)

where
L /7S
ol = 1 { Hy@®D) Dy ag +2 2 Hy@ekD) D+
N k=1

+ Hy@2m2)T) DM+ 2 dmax ZN hglpl, (4.3.11)
p:
forn=0,..,N-2,
and where using Eqn. (4.3.9) and Eqn. (C.4) of Appendix C, we find
ZN halp) = g1 PN/ (1 -py). 4.3.12)
p= A

For n > N-1, €3[n] equals ;3, a constant. Thus, with reference to assumption AD2.2,

N)-1 -
% = 1 (Bg@0T) Dy +2 kZ_ll Hy(ekT) D)

+ Hy@®mN/2)h) Do)+ 2 dmax ZN hglpl- (4.3.13)
p=
In summary, we have computed a time-varying bound on the magnitude of e3[n], which is
the component of the equation error that is due to the disturbance. For n > N-1, the bounding
function becomes a constant. A method for bounding the remainder term due to the fact that h[n]
has an infinite-length rather than finite-length impulse response has been developed. This method
has been illustrated through the use of a simple first-order bounding function. The bounding

function of Eqn. (4.3.11) and the bound of Eqn. (4.3.13) are computed off-line as part of the
design procedure.
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4.4 Time-domain Error Bounding of the Effects of Unstructured Uncertainty

In this section, we will find a magnitude bounding function on e,[n]. This signal represents

the effect of the unstructured uncertainty on the equation error. We note that H,,(z) must have all its

poles in the open unit disk since we know that both F(z) and B(z)8(z), via assumption AD1.5, have
all their poles in the open unit disk. Thus, we can apply the frequency-domain methods developed
in Section 2.2. While it is possible to use any of the three methods listed in Subsection 4.3.1, we
will be using method 3, since we will be able to find a good frequency-domain bounding function

on |Hu(ej°’kT)l, but will only be able to find a very conservative bounding function on lhy,[n]l. A
magnitude bounding function on the DFT of the input signal will be computed on-line and used in

combination with a precomputed bounding function on IHu(ejka)l to compute, on-line, a

time-varying bound on le,[n]l.
4.4.1 Computation of a Magnitude Bounding Function on H,,(e/®kT)

First, we find a magnitude bounding function on Hu(ej"’kT), for k=0, . ., (N/2), where we
assume that N is even. Again, recall that O is defined in Eqn. (2.1.4). Now, we must include the

fact that the transfer function H,,(2) is actually a function of the parameter vector 8, which is only

coarsely known . That is, using Eqn. (4.2.19), and assumptions AD1.1-2,

H,,(z,8) = B(z,0) F(z) Bu(z), where 0 € ©. (4.4.1)
Using AD1.1-3, we find
Hy@%%T,0) < Hy@T), fork=0,.., N/2), (4.4.2)
where
H el%T) = sup { BEi®T,0)l } IFEiOkTy A, (€9%T), (4.4.3)
0e® '

fork=0,.., (N/2).
The above bounding function is computed off-line as part of the design procedure.
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4.4.2 Computation of a Magnitude Bounding Function on h,[n]

The magnitude bounding function on h[n] is difficult to compute. Recall that hy[n] is the

impulse response of the transfer function from the plant input to the equation error. The required
bounding function will be found using assumptions AD1.1-2 and AD1.7; however, the resulting
bounding function will be conservative. Consider the model for the true plant which was
introduced in AD1,

Girye(@ = G(z.9) [1 + 8, (2)]. (4.4.4)

Then the impulse response of G, () can be written as,
Zirueln] = g[n.0] + g[n,6] * 3 [n] (4.4.5)

where the impulse responses of G(z,0) and 8u(z) are denoted by g[n,08] and 'gu[n], respectively.
Now, we find that '

lg[n,0] * gu[n]l = lgirueln] - &[n,0]L. _ (4.4.6)

In order to simplify our notation, we define the impulse response

hgs[n,6] = gln,8] * & [n]. L (44.7)
From assumption AD1.7 and Eqns. (4.4.6-7), we know a bounding function Ega[n] such that .
Ihgs[n,6]l < hgslnl, Vn, 4.4.8)

where Fgg[n] is of the form of assumption AD1.6, that is,

I
hygln] = ﬁl g; nm) p;1. (4.4.9)
1=

Note that the largest p; of Eqn. (4.4.9) corresponds to the slowest pole of Gyp,e(z). At this point,

we will assume for simplicity that Ihgs[n,e]l can be bounded by a simple first-order system, that is,

we assume that

h—gﬁ[n] =g, poll, forn= 0,1,.. (4.4.10)

Thus, we have not explicitly bounded Igu[n]l, but have instead bounded Ig[n,0] * gu[n]l. We will
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be able to use this bounding function on Ihga[n,e]l to find a bounding function on le,[n]I.

First, we observe that the transfer function corresponding to the impulse response hgs[n,e]

is given by

G(z,9) 6,(2) = B(z,0) 5,(2) / A(z.9). (44.11)
We find from Eqns. (4.2.19-20) and (4.4.11) that,

H,(z,0) = Hj(z.8) G(z.0) Su(z), where 0 € ©. (4.4.12)

The magnitude of the impulse response of H4(z,0) has already been bounded by the function of
Eqn. (4.3.7). From Eqn. (4.4.12) we find that

by[n,6] = hyln,6] * hygln,6). (4.4.13)
or
oo n
hy(n.6]= 2. hglm] hogln-me]= X hyim.6) hygln-m,6] (4.4.14)
m=-oo m=0

since h[n,0] and hga[n,B] are causal impulse responses. Now, we find that

n

thy[0,0] < Z lh4(m,6]I Ihgg[n-m,e]l. (44.15)
. m=0

So, using Eqns. (4.3.6) and (4.4.8) yields

Ih,[n,8]l < hy[n], Vn, (4.4.16)
where
n
hylnl = 2, hglm] hyg[n-m]. (4.4.17)
m=0
We now can use the assumed forms of Eqns. (4.3.9) and (4.4.10) in Eqn. (4.4.17) to find
n
hyln] = 2, g1 P gy p ™ (4.4.18)
m=0

Manipulation yields
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n
E-u[ﬂ] ={g18& Z (P1/p)™ ) P (4.4.19)
m=0

We consider two possibilities in Eqn. (4.4.19). The following results are from Appendix D.
Case 1. (p; #p, ) In this case,

hyln] = g; g, [(pAF] -0+ /(py - 1. (4.4.20)

Case2. (p;=py)In this case,
hyln] = { g; g (n+1) } py™. (4.4.21)

More complex forms of the bounding functions .h_d[n] and ng[n] are also considered in Appendix
D.

Given Eqn. (4.4.2), the bounding function -lTu[n], Umax from assumption AD3.1, and the
on-line computed values of IUN“(ej"’kT)I we can use Theorem 2.4 to find,

le,[n]l < e,[nl, ' (4.4.22)
where
| N/2)-1
oln] = 1 { Hy@®T) upPogl+2 2 Hy@ %) (o)
N _ k=1 (4.4.23)

+ Hy@ON/2)T) U @qq2)! ) +2 Uax 2 Bylp), forn=0,1,..
p=N
Further, for the two illustrative cases of Eqns. (4.4.20-21), we find bounds on the infinite sum.

Case 1. (p, # P, ) In this case, using Eqn. (C.4) from Appendix C we find that

2 hylpl = [8; 8/ @p- P [P,N1/(1-py -0 N*1/(1-pp)] (4.4.24)
p:N .

Case 2. (p; =P, ) In this case, using Eqn. (C.4) and (C.10) we find

> o) = g, 5pN(N(-pp+1)/(1-pp? . 4.4.25)
p=N
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In summary, we have computed a time-varying bound on the magnitude of e,[n], which is
the component of the equation error that is due to the unstructured uncertainty. A method for
bounding the remainder term due to the fact that hy,[n] has an infinite-length rather than finite-length

impulse response has been developed. This method has been illustrated using simple first-order
bounding functions. More complex forms of the various bounding functions are considered in
Appendix D. The bounding function of Eqn. (4.4.23) is based on a priori calculations and the
on-line computation of the DFT of the input signal.

4.5 Robustified Least-squares Parameter Estimation with Regularization

In this section, we will present a robust form of the standard least-squares parameter
estimator. This algorithm was developed by Goodwin et al. [17,18]. However, Goodwin et al.
use a different mechanism to find a time-varying bound on the equation error in reference [17] than
that used in this thesis. We utilize the assumed frequency-domain bounding function on the
unstructured uncertainty, as was discussed in Section 4.4, whereas, Goodwin et al. use a
time-domain method to compute their time-varying bound.

4.5.1 Completion of Equation Error Boundin

In this subsection, we will combine the results of Sections 4.2-4 and complete our
development of the bounding of the equation error signal e;[n], which is the error due to the effects

of unstructured uncertainty and the disturbance as is defined by Eqn. (4.2.18). Using Eqns.
(4.2.25), (4.3.10) and (4.4.22) we find that

ley[n]l < e[n], Vn. 4.5.1)

where
€,[n] = eyln] + e;[n], (4.5.2)

and ?2[n] and —e_3[n] are given by Eqns. (4.4.23) and (4.3.11), respectively.

4.5.2 Goodwin et al.'s Robustified Least-squares Algorithm

In this subsection, we will present a modified least-squares algorithm that was developed by
Goodwin et al. [17,18]. This algorithm includes a time-varying dead-zone in a least squares
parameter estimator. This time-varying dead-zone is a robustifying mechanism that seeks to sort
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out good and bad information using a type of thresholding in the time-domain. Recently, this
method has appeared in the literature in efforts to achieve robustness in adaptive controllers. As

was discussed earlier, we will be using a different mechanism to bound le,[n]! than that used by

Goodwin et al. in [17]. Before we present the algorithm, we must first make several definitions.
With reference to Section 4.2, we define the prediction error

eln] = ygn] - ¢n-11T B[n-1] (4.5.3)
where ¢f[n-l] and yg[n] are given by Eqns. (4.2.16) and (4.2.17), respectively, and 8 denotes the

estimate of the parameter vector 6. Further, we define the parameter error vector as follows

8[n] = 6[n] - 6. (4.5.4)
Using Eqn. (4.2.17) in (4.5.3) yields

e[n] = - ¢dn-11T 8[n-1] + ey[n). ‘ (4.5.5)

Thus, the prediction error e[n] depends on both the parameter error vector and the error signal ¢4[n]
due to the unstructured uncertainty and the disturbance. Since we have a time-varying magnitude
bound on ¢;[n] given by Eqn. (4.5.2), we can make the least-squares algorithm robust. In

preparation for the definition of the parameter estimation algorithm, we define the dead-zone
function,

f(ge) = e-g ife>g
0, if lel<g (4.5.6)

e+g, ife<-g.

We now present the robustified least-squares algorithm. From [18],

6(n] = 6[n-1] + u[n] P[n-2] ¢gfn-11 __ efn]
1 + 0dn-1]T P[n-2] ¢¢n-1] ' (4.5.7)

P[n-1] = P[n-2] - v[n] P[n-2] ¢¢n-11 ¢n-1]T Pn-2]
1+ 6dn-11T P[n-2] ¢{n-1] (4.5.8)

with é[O] and P[-1] given where P[-1] = P[-l]T > (0, and where
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v[n] = a s[n] (4.5.9)
with

s(n] = 0, | if le[n]l < B e,[n]
~ (4.5.10)
f{ B e;[n], e[n] } / e[n], otherwise,

where we choose o € (0,1) and B is defined by
B= V1/(1-a). (4.5.11)

Figure 4.1 illustrates the relationship between e[n] and s[n].

/N s[n]
S 1 S
0 N
l l 7
-g'eylnl| geyln] eln]

Figure 4.1: Dead-zone Illustration.

Remark 1: From Eqns. (4.5.10-11) and the definition of v[n], we see that there is a trade-off
between the adaptation gain o, and the size of the dead-zone as controlled by the parameter B. If we
choose the gain o large, that is, near unity, then § will be much greater than unity so the dead-zone

will be very large and the algorithm will be turned-off most of the time.

We will now present a theorem that lists the properties of the robustified least-squares
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algorithm that has been described in this section. In the following theorem, we show that the
robustified least-squares algorithm has properties that are similar to the standard least-squares
algorithm. The first and third properties listed in the following theorem are the same as the
properties of the standard "least-squares" algorithm that are proven in [13]. The second property
listed below is similar to an analogous result for the standard "least-squares" algorithm except that
in the result for the standard least-squares algorithm the error signal e[n)? appears instead of

(B ;1 [n], e[n] }2. The proof of Theorem 4.1 has been outlined in the literature [17,18].

Theorem 4.1: If Eqn. (4.5.1) holds, then the preceding algorithm has the following properties:

1) || 81|l < Vx{P{-11} |8[01]l, n>1 (4.5.12)

where k{P[-1]} denotes the condition number of P[-1].

2) lim £( B ¢,[nl. e[n] }? = 0.
1> 1 4 ¢¢ln-11T P[n-2] ¢¢n-1] 4.5.13)
3)lim || 6[n] - 6(n-11|| =0. (4.5.14)
n—oe

Proof: See Appendix E.
Remark 2: It can also be shown, see Appendix E, that

I181]| < V«(Pn-21} |6Mn-11], n>1. (4.5.15)

Thus, if the condition number of P is unity we see that the norm of the parameter error vector is
non-increasing. Later, in the simulations, we will see that the algorithm generally performs better
than the guaranteed properties of Eqns. (4.5.12) and (4.5.15).

Remark 3: If the signal vector ¢¢[n-1] and the matrix P[n-2] are bounded, that is, both || Ogln-1] I

and ||P[n-2]| are finite, then property 2 of Theorem 4.1 implies that the error signal e[n] will
eventually be in the dead-zone. A further property of the above algorithm, which is proven in
Appendix E, is that

IPn-11]] < |PL-1])| <0, n> 1. (4.5.16)
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Thus, for bounded signals we conclude that the error signal eventually ends up in the dead-zone.
4.5.3 The Regulariz nstant Trace Modification to th -squares Algorithm

As is discussed in Goodwin et al. [17;18], the update given by Eqn. (4.5.8) causes P to be

non-increasing and, in practice, the algorithm essentially turns itself off as n—oe. The problem is
the same as that encountered in the standard least-squares algorithm as is discussed in Goodwin
and Sin [13]. In practice, assuming that the input is rich, the basic robustified least-squares
algorithm has a very fast initial convergence rate, but the algorithm gain reduces dramatically when
the P matrix becomes small. To prevent this from happening, the robustified least-squares
algorithm can be modified. This will help maintain an overall fast convergence rate. We choose to
use the "regularized constant trace" modification that was introduced in [1]. This modification
yields a P matrix that has a constant trace. Thus, it keeps P from becoming small. The robustified,
regularized least-squares algorithm is described by using the same equations as in Subsection
4.5.2, except that instead of using Eqn. (4.5.8) to compute P, we use the following algorithm.

Regularized Constant Trace Algorithm;

Let ¢y and ¢, denote two positive constants, ¢; > ¢y Further, let m denote the number of

parameters and define
t = trace{ P[n-1]}. (4.5.17)
The algorithm is as follows,

a) Set P[-1]1=(c;/m) L ‘ (4.5.18)

b) Compute

P(n-1] = P[n-2] - u[nl Pln-2] ¢¢ln-11 ¢fn-11T P[n-2] .
1+ ¢¢n-11T P[n-2] ¢¢n-1] (4.5.19)
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c)Let

P[n-1] = { P[n-1]1+((c;-1)/m) L, if T3¢
— : (4.5.20)
(cg/T) P[n-1] + ((cy -cp) /m) 1, if T<cy,.

We will now present a theorem that lists the properties of the robustified least-squares
algorithm with the "regularized constant trace" modification. Ideally, we would like to be able to
prove the same properties as those listed in Theorem 4.1. In fact, we are able to prove the second
and third properties of Theorem 4.1 for our modified algorithm; however, we are forced to relax
the first property of Theorem 4.1 as we see below. Most of the proof of Theorem 4.2 has appeared
in the literature [1].

Theorem 4.2; If Eqn. (4.5.1) holds, then the modified algorithm defined by the use of Eqns.
(4.5.17-20) has the following properties:

1) |8l € VOmax (P11} / Oin (Pl-11} 801 < v [8[01], n21  (45.21)

where Gmax{-} and Gmin{o} dpnotc the maximum and minimum singular values of a matrix,

respectively.
2)lim __f{Benlen}®2  =0.
N 1 + ¢dn-11T P[n-2] ¢¢n-1] (4.5.22)
3)lim || 8[n]- 8[n-1]]| =0. (4.5.23)
n—oo

Proof: See Appendix E.

Remark 4: It can also be shown, see Appendix E, that

18001l < Vo max(PIn-11} / Oy (Pn-21) || B[n-11]}, n> 1. (4.5.24)

Since the trace of P is kept constant by the modified algorithm, we find that if the condition number
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of P is unity for times n-1 and n-2, then Eqn. (4.5.24) would imply that the norm of the parameter
error vector would be non-increasing.

Remark 5: A further property of the above modified algorithm is that
|Pln-1]]| < trace{P[n-11} =¢;, n> 1. ’ (4.5.25)

Thus, for bounded signals we can conclude, as in remark 3, that the error signal eventually ends up
in the dead-zone.

In this section, we have described what we call the "robustified least-squares" algorithm.
This algorithm, due to Goodwin et al. [17,18], uses a time-varying dead-zone to achieve
robustness. A theorem listing the properties of this algorithm was presented. In addition, we
introduced a modification to prevent this parameter estimation algorithm from "turnin g-off’. Ina
second theorem, we showed that the modified version of the robustified least-squares algorithm has
properties that are similar to the basic robustified least-squares algorithm.

4.6 Summary

In this chapter, we have developed a modified least-squares parameter estimator that is robust
to the effects of unstructured uncertainty and an unmeasurable disturbance. This robustified,
regularized algorithm uses only assumptions AD1-3 of Section 3.6. A flowchart illustrating the
development of this chapter is presented in Figure 4.2. First, we developed a bound on the part of

the equation error e;[n] that was due to the disturbance. The computation of this bound is an

off-line operation. We then set up a mechanism for computing a time-varying bound on the part of
the equation error that was due to the unstructured uncertainty. This time-varying bound is
computed on-line using the current DFT of the input signal. These component bounds are added to

form a bound on the equation error €;[n]. This equation error bound is used by the robustified,

regularized algorithm of Section 4.5 to control the time-varying dead-zone. Thus, we have
presented a complete methodology for robust time-domain parameter estimation.

Combining the parameter estimate of the algorithm of this chapter with the nominal model
structure of assumption AD1 yields a nominal model that can be used for the computation of
control-law updates. Later, in the simulations, we will show that the dead-zone based parameter
estimator of this chapter has some weaknesses. Specifically, the dead-zone mechanism tends to
disable the parameter estimator much of the time, so the resulting parameter estimates are poor. In
the following chapter, a second method for generating parameter estimates for the nominal model
will be described. This alternate method is frequency-domain based and does not suffer from the
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problems of the dead-zone based parameter estimator.
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Figure 4.2: Development of the Robust Time-domain Parameter Estimator.
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CHAPTER 5.
FREQUENCY-DOMAIN PARAMETER ESTIMATION AND UNCERTAINTY
BOUNDING

5.1 Introduction

In this chapter, we will present a frequency-domain bounding methodology that yields a
frequency-domain estimate of the true plant as well as a bounding function on the modeling error in
the frequency domain. Using this frequency-domain estimate, we will compute a parameter vector
estimate using a type of weighted least-squares fit in the frequency-domain. Given the parameter
vector estimate and, hence, a nominal model, we will compute a boundin g function on the
modeling error with respect to this nominal model. The methodology will yield a set of points

versus frequency which bound the magnitude of the function SSu(ej mT, 6) at those frequency

points. A smoothness condition is then used to compute a continuous bounding function on the

magnitude of SSu(ejmT, 6). To compute this continuous bounding function, we must bound the

variations of SSu(ejmT, é) between the discrete frequency samples. The chapter is organized as

follows.

First, in Section 5.2 we develop the basic frequency-domain bounding algorithm. Then, in
Section 5.3 we address the problem of combining frequency-domain information that has been
learned during different time intervals. Freqﬁency—domain parameter estimation is discussed in
Section 5.4 . In Section 5.5, the computation of the error bounding function with respect to the
nominal model is discussed. In Section 5.6, two different philosophies concerning the modeling of
the unstructured uncertainty are presented. A methodology for smoothing our uncertainty
bounding function is presented in Section 5.7. In Section 5.8 we show how to bound inter-sample

variations of lﬁsu(ej(’)T, o). Finally, in Section 5.9 we summarize our results. The key

_contribution of this chapter is the development of the frequency-domain bounding methodology.

This new methodology is the most important part of the robust estimator in that it provides the
bounds on the frequency-domain estimation errors.

5.2 Frequency-domain Estimation and Error Bounding

In this section, we will develop a methodology for finding a frequency-domain estimate of
the true plant and a corresponding error bounding function on the frequency-domain modeling
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€ITOr.

5.2.1 Development of the Basic Methodology

Consider the true discrete-time plant gi,,.[n], whose input is u[n] and whose

disturbance-corrupted output is y[n]. Assuming zero initial conditions, we know that

y[n] = gryelnl*uln] + d[n]. (5.2.1)
Then, using the notation of Section 2.1 and Theorem 2.1, we find that for some time index n,
YN(@) = Gerye @ PkT) Upey) + ENP@y) + DN(@)) (52.2)

fork=0,..,N-1,
where from Theorem 2.2 we know that for some integer M,

Ex™(@)! < ENM@y), fork=0,..,N-1 (5.2.3)
with
M-1
EnN ) = 2 lgeuelp)l UNTP(@) - UNYM@)! + Epepy, fork=0,..,N-1,  (52.4)
p=1

where the remainder term is defined as

o0

Eremn =2 Umax & P 'EeruelPlh (5.2.5)
p=M

and where we know u,, from assumption AD3.1. The integer M will be referred to as the

memory length. The choice of this important design parameter will be discussed later, in Section
6.6. Now, rewriting our assumptions for convenience, we know from AD1.6 that

8erueln]l < Eeruelnl, (5.2.6)
where
Strueln] = § g; nfi i (5.2.7)
i=1
and where r; is a positive integer, and g; > 0, 0 <p; < 1, and r; are known fori=1,.., I, Since

Etrue[n] is of the form of Eqn. (5.2.7), we can use the results of Appendix C to evaluate the

infinite summation term. For simplicity, we assume that
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Zirueln] = g, po1, forn=0, 1,.. (5.2.8)
In this case, we use Eqn. (C.10) to compute the bounding function,
M-1
EN@) = 2 g2p5 IUNM (@) - Unap) +
i=1 (5.2.9)
200y 8, P2 (M-Mpy+p,)/(1-py)2, fork=0,..,N-1.

The bounding function of Eqn. (5.2.9) can be computed on-line by using the current N-point DFT
of u[n] along with M-1 old N-point DFTs of u[n]. We note that the second line of the previous
equation can be made arbitrarily small by choosing M to be sufficiently large. However, as M is
increased so does the amount of the on-line calculations. This tradeoff will be discussed further in
Chapter 6.

Now, we define the frequency-domain estimate Gf,N“(mk) and the corresponding

frequency-domain error Eg,\"(coy ).

GeN™@y) = YN (@) / U@, (5.2.10)

EpNT(@) = GrN™@)) - Gyrye@kT), fork =0, .., N-1 (5.2.11)
From Eqn. (5.2.2), ‘

EpN"(@y) = (EN™@y) + DN™(@) ) / Un(@y) | (5.2.12)
and using the triangle inequality we find,

EsNM @)l < Epn™oy) (5.2.13)
where

EgeN™@y) = (EN™ey) + D@y )/ UN" (@)L, (5.2.14)

and where E\{(@, ) is given by Eqn. (5.2.4) and

IDN™(@)! < DM@y, fork=0,..,N-1. (5.2.15)

We will refer to Gf,Nn(OJk) as our frequency-domain estimate of the true plant at time index

n. Note that Gf,Nn((ok) is the set of N complex numbers computed using the N-point DFTs of
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u[n] and y[n], which are computed on-line. Further, we will refer to Ef,N“(cok) as the
frequency-domain error bounding function at time index n. In Eqn. (5.2.14), the bounding

function EN“(mk) and IUNn(cok)I are computed on-line at each time index n, while the function

BNn(mk) is known from assumption AD2.2. If we assume that n > N-1, that is, we assume that at

least N non-zero points of data have been collected so that, with reference to AD2.2,

DN, ) = Dy(oy) whenn > N-1, fork=0,..,N-1, (5.2.16)
then Eqn. (5.2.13) becomes
EeN™@)) = (EN™®,) + D(@y) ) / TUN (@), when n > N-1, (5.2.17)
fork=0,..,N-1.

We note that Eqn. (5.2.17) gives us an idea of how large the input signal must be to achieve some

error bounding function Ef,Nn(cok) given the disturbance DFT bounding function fN((ok). This

equation will be useful later, in Chapter 7, where we consider what kind of probing signal should
be introduced into the closed-loop adaptive system to enhance identification.

5.3 The Cumulative Frequency-domain Estimate and Error Bounding Function

In this section, we will discuss a straightforward technique for combining the
frequency-domain estimates and corresponding error bounding functions from different time
intervals. That is, we show how to combine all of the past frequency-domain information into a
cumulative estimate and cumulative error bounding function. The basic idea is that, at a given

frequency point ®,, we use the value of Gf,Nn(a)k) that has the smallest corresponding error
bounding function Ef’N“(cok), at that frequency. To formalize this we define the cumulative error

bounding function at ®,

EgumfN™ @) = min { EgnP(ay) ). (5.3.1)

p<n

and the cumulative frequency-domain estimate at s
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GeumfN™ (@) = { GeN(@) | EpNT(@)) = Ecumen™@y) ). (53.2)
The subscript "cumf” in Eqns. (5.3.1-2) denotes the fact that they are the "cumulative
frequency-domain" estimate and error bounding function. We define, for time index n,

Ecumf’Nn(mk) = C‘cumf’Nn(“’k) - Gu.ue(eika), fork=0,..,N-1. (5.3.3)
Then Eqn. (5.3.2) ensures that at time index n,

EcumtN™ @) < EcymeN@y), fork =0, .., N-1. (5.3.4)

In practice, the following simple recursive algorithm will be used to compute chmf’Nn(“)k) and

Ecumf’Nn(C‘)k) at a given frequency @,.

Algorithm:
If Ef,Nn(mk) < Ecumf’N'n-l(‘”k)’ then set
Ecuxnfqvn(c')k) = Ef,Nn(mk)a and

Geumft:N™ (@) = GN"(y). | (5.3.5)

else, set
Ecumf’Nn (o) = ECumf,Nn'l(wk), and

chmf’Nn(mk) = chmf,Nn- 1 (O)k).

For initial conditions, we use the a priori plant assumptions AD1. If the initial guess for the plant
corresponds to the parameter vector 91, then for n=0 we set the cumulative frequency-domain

estimate to the nominal model using 6, and set the cumulative error bounding function to the best

bounding function we can find using only a priori information. So, using our earlier notation, we
write
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Initi nditions: (n=
GeumeN (@) = GEkT,0)) (53.6)

EoymfN™(@p) = s {1G6EI9%T,0)) - Gk T 0)l + IGEIPKT,0)1 A,k T) }  (53.7)
€

fork=0,..,N-1.

The above supremum are computed off-line. An important property of the above algorithm is that it
only updates the cumulative frequency-domain estimate and the corresponding cumulative error
bounding function when useful information is learned, at a given frequency.

As a final note, we observe that, since we are working with real-valued time-domain signals,
the properties of the DFT's of real-valued signals can be used to show that

GeumtN"(@) = G* cumfN"(@ON-1)- (5.3.8)

EcumfN™(@p) = EcumtNM@N)» fork=1,.., (N/2)-1, (5.3.9)
where "* denotes complex conjugate and where we have assumed that N is even. This means that
the information for frequency points k=0, . . , N-1 is contained in the information for the frequency
points k=0, . ., N/2. We only need to estimate the plant for frequency points k=0, . . , N/2.

5.4 Frequency-domain Parameter Estimation

In this section, we will show how the cumulative frequency-domain estimate of the previous
section can be used to find parameter estimates for the nominal model. We use the structure of the
nominal model and a type of weighted least-squares fit to the frequency-domain estimate

GeymfN(@)- There are many ways that one could choose the nominal model parameters to fit

the cumulative frequency-domain estimate. The method that we present in this section is
computationally efficient, since it only requires the solution of linear equations.
The procedure is best illustrated by an example. Consider the nominal model,

G(z8,) = (bgz + by) / (22 - a1z - a,), where (5.4.1)

0,=[2a, a, by by IT. (5.4.2)

Using this nominal model structure we can write
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(22 - 2,z - 3) G(z.8) = byz + by, (5.4.3)
or
22 G(z,0)) =[2G(z8) G(z8y z 11[a, a, by by 1T (5.4.4)
=[z G(Z,OO) G(z,OO) z 1] 90. (5.4.5)
Since the parameters are assumed to be real-valued, we find
Re{z2 G(z,GO)} =[ Re{z G(z,eo)} Re{G(z,OO)} Re{z} 1] 90, (5.4.6)
Im{z2 G(z.8) =[Im{zG(z8y)} Im(G(z8y} Im(z} 018, (5.4.7)

Thus, if we know the complex value of G(z,eo) for some known z, we can find two linear

equations in the parameters. Our frequency-domain estimation method yields an estimate of the

plant at frequencies oy fork=0,..,N/2. So, letting z = ejka fork=0,..,N/2, we can

define a (N+2)x4 matrix A whose elements depend upon the complex values of some discrete

function of frequency. We write A( G(ejka,Bo) ) to denote the fact that the matrix A depends

upon the values of the specific frequency function G(ejka,BO). We now define the form of the

matrix. A and show how its elements depend on the values of the discrete frequency function that is
used as its argument.

A(GEeI%%T,0,)) =
Re{el%0TGEi®0T, 0]  Re(GEI®0T,0)}  Refel®0T} 1]
I

Re{ejm(le)TG(.ejm(N/Z)T,eo)} Re{GEON/2)T,0)) RefeloN/2)T)

Im{el®0TGEi®T,0))  Im(GEi®T,0p)) Im{ei®T} o
Lm0 TGEONT8) Im(GEONDT.89) In(e9N2T) 0
(5.4.8)

Similarly, we define the form of the (N+2) vector B and show how its elements depend on the
values of the discrete frequency function that is used as its argument.
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B(G(el®%T1,0,) ) =
Re{e2?0TG(ei®0T,0,))
Re(eZON2)TGEON2)T,0y)
Im{e2i20TG(ei®0T,8,))

Im{eZoN)TaEeN2T o) (5.49)
Using Eqns. (5.4.2) and (5.4.6-9) we can write,
A(G(eI”kT,8) ) 8,=B(GE kT8, ). (5.4.10)

This matrix equation is just a statement of Eqn. (5.4.3) at the frequency points z = eJ%T for
k=0,..,N/2.

In summary, we have shown how knowledge of the complex values of G(ejka,eo) at the
(N/2)+1 frequencies @, . ., ®N/2) can be used to write N+2 linear equations in the parameters.
In the ideal situation, where one could exactly find frequency values that correspond to a system

with the nominal structure G(ej(')kT,GO) for k=0, . ., (N/2), the matrix equation (5.4.10) will have a

solution. That is, since we assume that N is greater than the number of parameters, Eqn. (5.4.10)
will have more linear equations than the number of parameters. In this case, for Eqn. (5.4.10) to
have a solution, the frequency values that are used in the A and B matrices must correspond to a
system with the assumed structure of the nominal model. However, in practice we will only have

our cumulative frequency-domain estimate chmf’Nn(‘”k) with which to estimate the parameters. Ii

we use chmf’Nn(“’k) instead of G(ej(’)kT,GO) in Eqns. (5.4.8-9), then the equation

A(GeumtN™@)) 8 = B(GeymaN™(@y)) (5.4.11)

will not, in general, have a solution. In Eqn. (5.4.11) we denote the matrices A and B whose

elements depend on the discrete function of frequency Géumf’Nn(‘”k) by A( chmf’Nn(“‘k) ) and

B( Goymf:N" (@) ), respectively. The elements of A( GeumfN" (@) ) and B( chmf’Nn(wk)
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depend on the complex values of GeumfN"(@y) in the same way that A( G(ejka,Go) ) and
B(G(@“kT,0;) ) depend on G(e/®kT,8,) in Eqns. (5.4.8-9). We note that Eqn. (5.4.11) is in the
form of the standard least-squares problem that is discussed in Strang [33].

We will choose the parameter estimate 6 as the vector that minimizes the frequency weighted
norm of the error vector,

A(GeymeN™@) ) 8 - B( Geymen™@y) ). (5.4.12)
We define, with reference to Eqns. (5.4.8-9), the diagonal frequency weighting matrix,

where f() is the frequency weighting function. The parameter estimate that minimizes the norm of
the error vector

W (A(GeymeN™ @) 8 - B(GeymeN™@) ) (5.4.14)
is given by the well-known result,
6 = (ATwTwa)! ATwTwg (5.4.15)
where the A and B matrices in this equation depend on the values of the estimate chmf’Nn((')k)-

To gain insight as to what weighting function to choose, we examine Eqns. (5.4.3-5).

Consider the use of the above methodology using the estimate G(z). Then, we find that the error

26 - 126 G@ 2z 118, =2 -a;2-2,))G(z) - (byz +by) (5.4.16)
= (22 -22-2)) (6@ - Gz8y) (5.4.17)

So,
6@ - Gzl = 1225 -[26(2) G@) z 116y / 22-az-a,. (5.4.18)

From Eqn. (5.4.18) we see that, if we want our parameter estimation method to be a least-squares
fit in the frequency-domain, then we want to choose a weighting function that is one over the
magnitude of the denominator of the nominal model. That is, if we choose the frequency weighting
function

fi(@)=1/1e/20T .5 &JOT 4 (5.4.19)

then using z = elOT in Eqn. (5.4.18), we can write

C-oL




Chapter § Page 97

15@9T) - 69T 9y = £,(@) 161297 G(&OT) - [JOT G@OT) G@®T) T 1786

(5.4.20)
Thus, by using the weighting function of Eqn. (5.4.19), we actual find the parameter estimate that
corresponds to a least-squares fit, in the frequency-domain, between the estimate and the nominal

model. Of course, we do not know what the parameters a, and a, really are. We only have our

coarse a priori bound on the parameter space. So, one can only approximately choose the
frequency weighting function of Eqn. (5.4.19) using our coarse a priori knowledge of the

parameters a, and a,.

5.5 An Uncertainty Bounding Function for the Nominal Model

In this section, we discuss the computation of a discrete, frequency-domain error bounding

function for the nominal model G(ej T §). In addition, we will compute a magnitude bounding

function, Asun(ejka, 8), on the uncertainty Ssu(ejka