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ABSTRACT

An exponential finite difference algorithm, as first presented by
Bhattacharya for one-dimensional unsteady state, heat conduction in

Cartesian coordinates, has been extended. The finite difference
algorithm developed was used to solve the diffusion equation in
one-dimensional cylindrical coordinates and applied to two- and
three-dimensional problems in Cartesian coordinates. The method was
also used to solve nonlinear partial differential equations in one
(Burger's equation) and two (Boundary Layer equations) dimensional
Cartesian coordinates. Predicted results were compared to exact
solutions where available, or to results obtained by other numerical
methods. It was found that the exponential finite difference method
produced results that were more accurate than those obtained by other
numerical methods, especially during the initial transient portion of
the solution. Other applications made using the exponential finite
difference technique included unsteady one-dimensional heat transfer
with temperature varying thermal conductivity and the development of
the temperature field in a laminar Couette flow.
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NOMENCLATURE
Thomas algorithm variables
Biot number
material specific heat, J/kg - K (Btu/lbyp « °F)

convection heat transfer coefficient, W/M2 . °C
(Btu/ft2 « hr « °F)

nodal location in x,y, and z spatial coordinate directions
respectively

Bessel functions of zero and first order

thermal conductivity, W/M « °C (Btu/hr « °F « ft)

thermal conductivity at yth position, nth  time step,
W/M - °C (Btu/hr - °F » ft)

distance between plates, M (ft)

dimensionless drive number

number of sub-intervals

number of nodes in a spatial direction

time step position designation

heat flux, W/M2 (Btu/hr « ft2)

spatial coordinate; cylindrical coordinates, M (ft)
temperature, °C (°F)

time, sec

time between time steps n and n + 1

Couette flow velocity, M/s (ft/s)

spatial coordinates, Cartesian coordinates, M (ft)

distance between nodal positions in the x,y, and 2z spatial
directions

thermal diffusivity, M2/s (ft2/s)

rate of thermal conductivity variation

8t/pCp(8x)2; (WM + °C)=T ((Btu/hr « °F « £t2)-1)
v
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K constant

Kq constant used in exponential finite difference method with
temperature varying thermal conductivity

8y finite difference operator

b mth eigenvalue of Bessel function

k?,v? Thomas algorithm variables dependent on time step and spatial
location

amplification factor

v kinematic viscosity, M2/s (ft2/s)

p material density, kg/M3 (1bm/ft3)

9,¥,0 separation variables

Q —Q—Ag dimensionless time

(ax)

vi



I. INTRODUCTION

Partial differential equations have many important applications in
the fields of engineering and physics. Many exact solutions exist
depending on, the partial differential equation, the boundary
conditions, and the number of spatial dimensions under consideration
[1]. Coordinate systems other than Cartesian, more than one spatial
dimension, and the boundary conditions all can pose problems that are
either extremely difficult or impossible, to solve by analytical
methods. Numerical methods thusly become the only possible solution
method if the problem complexity is not to be compromised. Typically
the ability of a particular method to predict a field variable is
tested by numerically solving a problem for which a known exact
solution is available. The ability of the method to predict the exact
results is a measure of the confidence that can placed in a solution
where no exact solution exists or experimental test results are
unavailable.

The objective of the work to be presented is to extend, expand,
and compare an explicit exponential finite difference technique first
proposed by Bhattacharya [2]. To date the method has only been used
for one-dimensional unsteady-state, heat transfer problems in
Cartesian coordinates.

The method has been expanded, in this report, to allow application
to a variety of problems. The exponential method will be extended here

to the case of one-dimensional unsteady heat transfer in cylindrical
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coordinates. Also, it was used in two- and three-dimensional unsteady
heat condition. Other cases of interest that were solved using this
approach include temperature varying conductivity in one-dimensional
heat transfer and the development of the temperature field in laminar
Couette flow. Solutions of the above cases were either compared to
exact solutions or to results obtained by alternative numerical
techniques.

One final application of the exponential finite difference
algorithm was made for nonlinear partial differential equations.
Burger's equation along with the boundary layer equations are solved
using the exponential method. Thus, a demonstration of how to apply
the method to nonlinear problems is described.

The results of all the different cases considered in this study
indicated that the exponential technique produced results that were
more accurate than those found through other numerical techniques. A1l
exponential computer codes and those of the other competing numerical
analysis were run in double precision on either the IBM-3033 or the
Cray X-MP mainframes. The computer codes developed for the exponential
finite difference method and other numerical techniques used for

comparison are contained in the appendix of this report.




II. - ANALYSIS
The Exponential Finite Difference Algorithm

An explicit exponential finite difference algorithm as first
derived by Bhattacharya [2] will now be presented. The method can be
applied to many of the partial differential equations found in
engineering and physics. The diffusion equation as it applies to
conduction heat transfer will be used in the demonstration that
follows. 1In reference [2-3] the method was derived for one-dimensional
conduction heat transfer in Cartesian coordinates. To show how the
method can be extended, a derivation parallel to the one presented in
reference [2] will be made for unsteady state heat conduction in
two-dimensions. Equations of this type are typically solved
numerically by a variety of methods [4].

For two-dimensional heat transfer in Cartesian coordinates with
constant material properties, the appropriate partial differential

equation is [5]:
2 2
aT _ o <% T,371 (1)

To initiate the exponential method a product solution is assumed and is
written as:

T(x,y,t) = #(x)w(y)e(t) (2)
The initial conditions of the problem are assumed to be

T(x,y,0)

f(x,y)
0(0) = 1 (3)
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Now taking the appropriate deviatives of Eq. (2) with respect to the

independent variables,yields

2 2 2 2
aT 36 3 T 3¢ 'y
YR A T R S N (4)
at dt 2 e ay2 ay?

—

Substituting Eq. (4) into Eq. (1) produces:

2 2

e L Lo e o 0Te
at 2

ax ay

Dividing both sides of the above by ¢yo6 gives:

2
law(_
2+¢' 2}_ K (5)

2 {lﬁg
ay

|
L
o at ¢ oy
It can be seen that the variables have been separated. Consequently
both sides of Eq. (5) must equal a constant, say, «.

Now examining only the left hand side of Eqg. (5),

26
ag = = &

D |-

Multiplying the left-hand side of this equation by ¢w/¢y gives:

ou 20

oy at ~
which can be rewritten from Eq. (4) as:

1 T
T(x,y,t) at = =

Direct integration produces:

T =c,exp {— et}
Next, the initial consition is used to evaluate the integration constant
giving c2 = T(x,y,0); thus,

T(x,y,t) = T(x,y,0) exp {- «t} (6)

Returning to Eq. (5) only this time, the right-hand side is examined;
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a 2ty
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Multiply this by 22¥ and obtain

Oy
ov 3% , 0o 2%y
o6y , 2 " 6oy

(+V]
~nN
"
|
=

nN

or
2 2
o {WQA+9¢Lm}=_K

Oy ax2 ayz

Equations (2) and (4) are now used which results in:

2
${i%4wi%}=_x (7)
ax ay

The temperature appearing as a coefficient is replaced using its

initial vaiue so that,

2
a 3 T 9 T
T(x,y,0) {axz ¥ ¥ }= - (8)

The partial derivative terms can be written in central difference form

about a node (1,j) as [6]:

n n n
2’1 _ Tin,y t T, — 2Ty
ax2 (Ax)2
(9)
n n n
2’1 _ Tiger * T~ 2Ty
2 = 2
ay (ay)
Thus Eq. (8) becomes:
n n n n n n
a JhaatTag "My, Taa t T 2Nl «
T (8x)2 (ay)?

(10)



Now Eq. (10) is substituted to replace the constant « 1in the

exponential of Eq. (6). Making the appropriate substitutions results

in:
n n n
R ank b Merd F g o Ty
e T S (ax) 2
Vs
n n n
Tigaa YT~ 2T

2
(ay)
If the grid spacing is constant (Ax = Ay), then the above equation

can be written as:

n n n n n
n+1  -n aat [Ti+1.0 g " Ty P Tiga0 - Mg
Ty 5 =Ty g @20 )70 3 n
' ' (8%) Ty

(11)
Note the At that appears in the above is the time elapsed between

time steps n and n+1. The temperatures on the right-hand side are
the four nearest neighbors to the 1.jth node (see Fig. 1).

In keeping with the notation derived by Bhattacharya [2], the term

e (:::2 e

is called the dimensionless time step and

n n n n n
n Tyt * Mg Y Mg * Tygy - 4Ty
A (13)
1vj Tn
5

is called the dimensionless drive number. Thus, Eq. (11) can be
rewritten rather compactly as:

n n
T1,j = T1,j exp {Qﬁi,j} (14)

It was found [2] that an improvement in the solution at the n+l

time step at node (1,)) can be made if the time step 1s divided into



a number of equal length time sub-intervals. The method of time step
sub-intervals can be described as follows. Let us assume that the time
interval will be divided into three intervals including the one at the
end of the time step (Fig. 2). Now returning to Eq. (14), and

evaluating at the n+1/3 time step, results in:

n+1/3 n Q .Nn
1 e {5 ) (15)

Proceeding from the n+1/3 time step to the n+2/3 time step:

n+2/3 n+1/3 orn {Q n+1/3} (16)

T T3 5.

Finally, the temperature can be written at the n+1 time step:

Tn+1 n+2/3 exp {% n+2/3} (17)

1,3 = 11,3 fip
Now substituting Eq. (15) into Eq. (16) and substitution of Eq. (16)

into Eq. (17), produces:

n+1l Q N Q ,n+1/3 Q ,n+2/3
T = Thg eed "1.1} exw {3 M) pew{ s "3 } (8
or

n+l n Q | 4N n+1/3 n+2/3
T1’J . T1,j exp {3 [&1,3 + M1,j + M1'J ]} (19)

where the M's are then evaluated at the sub-time intervals and then
summed for calculation of "T" at the n+1 time step. Equation (19)
can be written more generally as:

m

n+l _ .n Q n+p/(m+1)
LRI P D i
p=0

In reference [2], it was shown that for heat transfer applications, the

time step can be subdivided as follows:




g I heat transfer coefficient » =
m = (21)
g +1 . .. finite heat transfer coefficient

with flanking nodes outside
calculation domain.

=z
l}

number of nodes in one of the coordinate directions.

The procedure necessary to determine the dimensionless drive
numbers will now be described. Since the method is an explicit
technique, all information is known from the previous time step or from
the previous time sub-interval. The effort is the centered around
calculation of the drive numbers at the requested number of time
sub-intervals for each of the spatial positions (nodes).

The calculation procedure is shown in Fig. (3). Because the drive
numbers are evaluated at sub-time intervals, the temperature (or any
other field variable) must also be known at these sub-time intervals.
Therefore, the temperature field is calculated at each sub-time
interval, and in turn is used to calculate the next drive number: The
drive numbers for each node are summed for all the sub-time interval
steps and then used to predict the field variable at the next complete
time step. This results in a computer storage requirement of 4(N),

where N 1is the number of nodes.

Extension To One-Dimensional Cylindrical Coordinates

In the previous section, the exponential finite difference
technique was extended to two-dimensions. Now the procedure will be
considered in another coordinate system. In particular the method will
next be applied to radial one-dimensional, unsteady heat transfer.

The goverrning unsteady diffusion equation for a material with

constant properties is:



(22)
at _ [o%1, 101
at = *.2 " roar
ar
Assume that the temperature can be written as the product:
T(r,t) = ¢(r)e(t) (23)
The initial conditions are
T(r,0) = f(r) ; ©(0) =1 (24)
Now taking the appropriate derivatives of Eq. (23); results in
aT 36 aT 3 2T gfg
TR T T I Lo o
ar ar
Substituting Eq. (25) into Eq. (23) yields:
20 %, 1, %
®at =% 9*F Y ar
ar
Dividing both sides by ¢6 brings:
1 20 1 8% 1 2
eat ~|o, 2 rgar |7 " Gieh

It can be seen that the variables have been separated. Thus, both
sides of Eg. (26) must equal a constant, «. Now using the time

dependent side of the above , i.e.,

and multiplying this by 6¢/64 produces:

I
T o

+

Integrating for a particular value of the radial position "r" gives:

T = Cy exp {- xt}
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Next the initial condition is used and the
T(r,t) = T(r,0) exp
Returning to Eq. (26) and using the radial

equation can be written as:
{- «t} (27)

side of the equation, we have

rewritten as:

2
1 9 1 9
el = === (28)
[T ar2 i ar]
Incorporating the initial condition,
2
a T 1 9
— 4+ == - (29)
T(r,0) [ar2 r o ]
Next the partial derivatives are replaced using central finite
differences [4]:
n n n
o1 Tiw * Ty - 2Ty
ar2 (Ar)2
(30)
n n
oT i~ T
ar 2 Ar
Substituting Eq. (30) into Eq. (29):
n n n n n
o (M *Tia-2h ) 1 <T1+1 - Tia > o )
T? (Ar)2 r,l 2 Ar

Equation (31) is used to replace the constant, - « in Eq. (27), 1.e.,

n n n
Mo e ot |f a1 * Tia - 2Ty
g by BRI 2 d
i (ar)

i

n n
1 [(T1a1 - Tia
r1 2 Ar
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Rearranging this brings:

n
n a At T1+1

= i
T?*] = T1 exp 5
(ar)

YT - B e fF Teaner Ti i

n 2r
p i 1

n
1
T

Equation (32) states that the temperature at the 1th radial

position at the (n+1) time step is found from the product of

th th

temperature at i position, n time step and the exponential

term that is composed of a dimensionless time step:

o = o] Atz (33)
(ar)

and a dimensionless drive number:

n
N

n n n
~ 20 Y e (M T Ty (34)

e 2r

e
-1

n
1-1
T
It should be noted that this drive number applies to the interior nodes
(r1 # 0). For the node at r = 0 the dimensionless drive number
becomes:

2(1 - 1)

n
M - ! (35)
T

Finally Eq. (32) can be written in a compact form as

n+l n

n
T1 = T1 exp{szi‘l1 } (36)

The sub-time interval evaluation for Eq. (36) is the same as that found

in the two-dimensional Cartesian form as shown earlier.

Stability of the Exponential Finite Difference Method

With few exceptions, explicit finite difference procedures for
solving partial differential equations are inherently unstable, unless

certain numerical conditons are satisfied. These conditions take the
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form of a grid size and/or time step requirement written in terms of
parameters of the given problem. If these stability conditions are not
met, the solution will diverge, often rather drastically. On the other
hand, the stability requirements can make explicit methods impractical
for a particular application by requiring an unrealistically small grid
or time step. Nonetheless, these conditions must be known prior to the
use of any explicit finite difference procedure.

There are a variety of methods that have been used to establish
the stability constraints of a finite difference procedure: some are
very elementary, some quite involved. 1In essence, the methods seek to
find an expression for the amplification factor which is the ratio of
the current solution result to that in the previous step. If the
absolute value of the ratio is less than one the method is stable.
Determination of the amplification factor for the exponential finite
difference method is particularly convenient, as has been shown in
[2]. For the one-dimensional cylindrical coordinate case, the

amplification factor % can be readily defined as

n+1 n n n n n
f. b epdeat |[Tia " T 7 2T ar (T = i
e S 2 n 2r n
T1 (ar) T1 i T1
(37)
or from Eq. (32) for an interior node:
DA
E = — = exp {QM } (38)
n i
Ty

So for stability to exist as At and Ar approach zero:
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1im €] <1 (39)
at » 0
ar » 0
To satisfy this requirement the exponent in the eponential of
Eq. (38) must obviously be less than or equal to zero. Since the
components that make up @ 1in that exponent are all positive, this
implies that the dimensionless drive number will dictate whether or not
the stability criteria is met. For the cylindrical coordinate case the
dimensionless drive number must satisfy:
n n n

n n

i + T - 2T T i
n 2r n
il i T
i i
n

Multiplying by T, this becomes:

i

n n n Ar_ [.n n
(T1+1 Ty - 2T1> " ar, <T1+1 % T1_1) <0

Define B = Ar/2ry and rearrange to get

(1 + BT, + (0 - BTy | <21

_ (41)
n_1 n n
Ty 2 > (1 + B)T1+1 + (1 - B)T1_]

Equation (41) needs to be satisfied otherwise an unstable
condition can exist. In Eq. (41) as Ar » 0, or equivalently B -» 0,

the stability condition becomes:

1 n n
> Ty * T i

|V

"
Also for one-dimensional cylindrical coordinate case, the node at
r =0 has a different stability criteria because the node at 1+1
does not exist. Since the radial derivative of the field variable must

equal zero at r = 0. In finite difference terms this can be realized
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by requiring that Th . = T° . at this node. Thus, at the
141 = T4

origin, Eq. (42) becomes

T, 2 T (43)

-3

n
i1

As stated by Bhattacharya [2], the dimensionless drive number is
the determining factor whether or not the stability criteria is met.
However, the dimensionless time, if made large enough, could cause the
solution to become unstable. Since time sub-interval division is used,
the total dimensionless time step @ could become quite large. From
[2] it was recommended that the dimensionless time step be chosen to
satisfy the following:

Q
m+ 1

< 0.5 (44)

where m 1is the number of time step sub-intervals involved in the
calculations. If @ = 5, for example, then m would have to be
greater than or equal to 9 i.e., nine sub-intervals would be required.
From Eq. (21) with infinite heat transfer coefficent, a minimum of 20

nodes would be needed.

Another useful comparison to be made is the one-node model as used
in Refs. [2] and [7] where the value of the dependent variable at the
surrounding nodes is set equal to zero. For the one-node model, as
stated in Ref. [7], the exponential finite difference and exact are the

same (Fig. 4). This figure indicates that the exponential solution

remains stable as  1is increased.
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Effect of Initial and Boundary Conditions on the Exponential
Finite Difference Method
In this section the effect of boundary conditions on the

exponential finite difference technique will be investigated. Boundary
conditions that are typical of heat transfer applications will be
considered. The conditions to be presented are: (1) finite heat
transfer coefficient (mixed condition), (2) infinite heat transfer
coefficient (Dirichlet condition), (3) constant heat flux (Neumann
condition), and (4) time varying. Initial conditions, where the field

variable is equal to zero, will also be discussed.

Finite Heat Transfer Coefficient

For this boundary condition, the method used in reference [2] will
be utilized. Numerical implementation of the boundary condition
requires that a node be placed outside the solid in the surrounding
medium. This external node will be used in the finite difference
equation at the solid surface. One-dimensional heat transfer in a
cylinder (T = T(r,t)) will be used to demonstrate the procedure.

Using the exponential finite difference method for T = (r,t), it

was found earlier (Eq. (36)) that

n+l n n
T =17 exp {mﬂ} (45)
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where the dimensionless time i1s given by

Q = a A;
(ar)
and the dimensionless drive number by: (46)
n n n
) (He t T T 2T e (T T T
1ja i 1 2r1 m
i i

The thermal condition at the surface is found by equating the

conductive and convective heat fluxes at the surface:

- h (TI . Tm> (a7)
r=R r=R

Using the node numbering as shown in Fig. 5 and a central difference to

at

- k ar

express the deverative, Eq. (47) becomes:
n Tg - Tg
h(T1 = Tw) =-k\—5 3 (48)
Solving for Tg, the temperature of the external node, yields

n n 2h Ar n
Toom Tg + SEAE (7 - T]) (49)
Let B = h Ar/k (Biot number [8]), thus Eq. (49) 1s written:

n n
0 2

Now that an expression for the temperature at the external node is

Tp = Ty + 2BT. - 2BT? (50)

known, it can be used in the expression for the temperature at the

surface node. This results in:
n+l n n
T1 = T] exp {Q M1}
where (51)

n n n n n n
55 - 210 ¥ 20T ® T - 28T B(10 - 17)

2 1 2

n

b 1
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and the drive number can be further simplified to:

n n
YT -a e BTm-L o [T
. n R n
b J L

M (52)

n
1
Infinite heat transfer coefficient

If the heat transfer coefficient in Eq. (47) 1s placed on the
left-hand side of the equation and then allowed to become infinite, it
1s seen that the surface temperature will equal the temperature of the
surroundings. Thus, the boundary condition in which h » « is
identical to that in which a boundary temperature is held constant. In
the calculation procedure, these isothermal boundary nodes are only
needed for calculation of the temperature field at the surrounding
nodes. For example in a two-dimensional square grid with a total of
121 nodes calculation would be reduced to a total of 81 nodes if the ;

temperature is specified for all four boundaries.

Constant Heat Flux
For a constant heat flux applied to the boundary surface, the same
procedure as was used in the finite heat transfer coefficient case will
be utilized. The condition at the surface for one-dimensional
cylindrical coordinates is given by:

aT

e (53)

q -k

r=R
An external node is placed outside the solid as was done earlier.

Equation (53) can then be written

n n
o (fo e o
Q= 2 Ar
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Solving for the external node temperature results fin:

n _ 29 _Ar n
T0 == 12 (55)

At the surface the exponential finite difference equation is:

n n n n n
Tn+1 T oy T0 ' T2 - 2T1 , Ar T0 - T2
L n 2R n
T T
1 1
and substituting 4in Eq. (55):
2Q Ar n n n 2q Ar n n
nsl  n k *To *TH-2T0 ofx *To-T
T] = T] exp| +
n 2R n
T1 T]
Rearranging this produces:
g Ar n n
2( +T—T) 2
T?+1 - T? exp | @ k - 2 1 N (Ar)n q (56)
T] RkT]

Time Varing Boundary Conditions

This condition is similar to the constant boundary temperature
condition except that the boundary temperature must be incremented as
the calculation marches in time. The boundary condition must reside in
the time step loop which is shown as the outer most loop in Fig. 3.
The temperatures on these boundaries are incremented and held constant
as the subtime interval calculations are made.

Dependent Variable Initially Equal to Zero

One last condition that can exist wherever there is initial zero
temperature (T(x,0) = 0) needs to be discussed. If this condition is
encountered, then the following substitution should be made or else the
exponential finite difference method will not work. This can be
readily seen by examing any of the numerical equations e.g., Eq. (56).

Since the initial temperature would appear in the denominator of the
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exponent in the exponential, problems would ensue. To circumvent this
difficulty define a new variable T, such that T(x,t) = 1.0 - T(x,t).
Now the exponential finite difference equations described above can be
utilized by simple replacement of the T variable with the T

variable.



III. NUMERICAL COMPARISON OF THE EXPONENTIAL FINITE DIFFERENCE
METHOD TO EXACT SOLUTIONS AND OTHER NUMERICAL TECHNIQUES
The final product of any numerical study is how well the given
method performs when compared to known exact solutions or to other
numerical techniques. The exponential finite difference method will
now be applied to the following cases to demonstrate the capability of
the method to solve the diffusion equation:

(1) One-dimensional heat conduction in cylindrical coordinates with an
infinite and a finite heat transfer coefficient at the surface,
unsteady state,

(11) Two-dimensional unsteady state heat conduction in Cartesian
coordinates,

(111) Solution of Laplaces equation, Cartesian coordinates,

(1v) One-dimensional heat conduction in Cartesian coordinates, unsteady
state with temperature varying thermal conductivity,

(v) Steady state Couette flow,

(vi) Three-dimensional heat conduction in Cartesian coordinates,

unsteady state.

One-Dimensional Heat Conduction in Cylindrical Coordinates
The one-dimensional cylindrical coordinate heat conduction case
with temperature as a function of time and radial position will be
investigated for infinite and finite heat transfer coefficient. The

exact results for both cases can be found in Ref. [9].

20
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For infinite heat transfer coefficient on the boundary surface the

exact result is given in [9] as:

& —ak%t
Hr,t) = 1_ e Jo(kmr)
—_—2_ 2 (57)
T~ Ta a1 (") (R
—th
where kﬁR is the m zero of
JO(XaR) =0 (58)

The results of both the exact analysis and the exponential finite
difference method are shown in Table I. As can be seen from the
tabulated resu'ts, exponential finite difference results approach the
exact solution as the number of nodes is increased or as the
dimensionless time step is decreased.

When the heat transfer coefficient has a finite value at the
surface, the exact solution from [9] is:

& —akgt

T(r,t) - T L XN
—————°°=2BZ I (59)

T 2
0 T C o [ aB )Jo(xmﬂ)

where B = hR/k (Biot number) and xﬁ (characteristics values) are

given by (for cooling):

(AR I; (NgR) - BIy(A=R) = 0 (60)

The results are shown in Table II for various values of the Biot
number. As would be expected the solution approaches the exact
solution as the number of nodes in increased. The size of the Biot |
number did not seem to effect the accuracy of the solution. As the

elapsed time of the solution proceeded, temperatures predicted by the
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exponential finite difference method approached the exact result. Also
the results indicated that reducing the size of the time sub-interval
increased the method's accuracy.

One last comparison will be made while investigating the
exponential finite difference technique in one-dimensional cylindrical
coordinates. The problem situation is shown in Fig. (6) and applies to
a cylindrical annulus with the following initial and boundary
conditions:

T(r,0) =0
T(Rz,t) = 1.0 (61)

3L (R,.t) = 0
In Ref. [4] this problem was solved numerically using a
characteristic-value solution. A comparison of results is shown in
Table III for the exponential method using the same grid spacing as in
[4] and for the case where grid spacing is halved. The results are
seen to compare quite well with the finer mesh being slightly closer to
the value from Ref. [4] especially during the first few time steps of

the solution.

Two-Dimensional Heat Conduction in Cartesian Coordinates
The exponential finite difference technique will now be applied to
the two-dimensional heat conduction problem in Cartesian coordinates
shown in Fig. (7). The exponential finite difference method will be
compared to the solution of this problem, as performed in Ref. [4],
using the alternating direction implicit technique (ADI). The results
of the two numerical techniques and the exact analysis are shown in

Table IV. The temperature indicated for comparison is that at the
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origin x =y = 0, shown in Fig. (7). As maybe seen, the ADI technique
does not predict the temperature as accurately as the exponential
finite difference method at the first time value shown in Table IV.
However, as the amount of elapsed time increases either method does a
very good job at predicting this temperature. When the number of grid
points was increased, by halving the spatial intervals, the exponential
finite difference method was found to be more accurate for all the time
steps.

Since the ADI method is one that requires simultaneous solution of
equations in the two coordinate directions, the time step size can be
made large. The exponential finite difference technique must have the
dimensionless time step kept below 0.25 to keep the solution stable.

So the required CPU time for the exponential method is higher for this

application.

Solution of Laplaces Equation

Since the exponential finite difference method has been used for
two-dimensional unsteady state conduction, a natural extension with
little additional effort would be to use this method to solve Laplace's
equation. This can be implemented in the exponential finite difference
method by just allowing the solution to march in time until no further
change in the field variable is indicated.

As an example, the problem as shown in Fig. (8) will be solved and
the results compared to those given in Ref. [4]. 1In the referenced
work, the solution was found by using a Gauss-Seidel iterative

technique.
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A comparison of results along a diagonal from the position (x = O,
y=1) to(x =1,y =0) is presented in Table V for two different grid
spacings. As can be seen, the solutions are nearly identical with the
exponential method requiring a smaller number of iterations (or time

step increments) to reach a similiar result.

One-Dimensional Unsteady State Conduction With Temperature

Varing Thermal Conductivity

The effect of temperature varing thermal conductivity will now be
investigated using three different numerical schemes: a pure explicit,
the exponential method and an implicit technique. The problem to be
solved is illustrated in Fig. (9a). The thermal conductivity as shown
in Fig. (9b) is assumed to be a linear function of temperature.

The exponential finite difference method will be applied first to

the given problem. The governing partial differential equation is [1]:

aT 3 aT
Pcp at ~ ax <k ax) (62)

From [1], Eq. (62) can be changed to a simpler form by using a new

variable © (the Kirchoff transformation) given by:

.
./. K(T)dT (63)
rJy

R

D
1}
FI—‘

where kR is the conductivity at temeprature TR’ and

0 _ kT aT _ *r 20
at ~ ky at of 3t Tk ot
(64)
3 _k_aT
ax kR ax

Substituting Eq. (64) into (62) gives:




or,

fg(ﬂ%_i@
x \at)= 2
ax (65)

Since 1t has been assumed that the thermal conductivity is a linear

function of temperature,
k(T) = kR(1 + BT) (66)

Now returning to Eq. (63) and substituting in Eq. (66), we have:

=
1
0 = ka (kR + BkRT)dT

TR
Direct integration yields:
o= (T-T {1+ 5(T+Tp} (67)
Equation (67) provides the relationship between the variable T and
the new variable 6.
Returning to Eq. (65),
2
g—%:,'j—C;:Tg (68)

Equation (68) is in a form now that the exponential finite
difference can be applied. The resulting equation in the variable can

be shown to be given by:

n+1l n At i
05 =9

(69)
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Evaluating Eq. (67) at node 1 brings
n_ /N B [N
o] - (T1 - TR> e (T1 + TR)g

- (-7 + ()7 ) (10

Substitution of Egq. (70) into Eq. (69) at the appropriate time steps

or

and nodal locations will give:

(15 =) 3 () w)- 8- w8 [)7 - )
[

n n n B n \2 n \2 n\2

o [t Ty - 21) + 3 05 + () - (1) ]

€50 Yk1 n B n\2 2 '
(7} - Te) * 3 [(T1) - TR]
(71)
where
y = At
N 2
pCp(AX)
If Tp = T, = 0.0, Eq. (71) becomes:
n#l B (n+1\2  (n B n)
R A LA RN LA
n n n @,[ n o\2 no\2 n 2]
il Wy = W05 ) 215 » 2:(T1+1> s (1) - 2(1)
exp §vky n . B/N\2
o)
(72)

The equation for T?+1 is a quadratic with the right-hand side of the
equation all being known at time step n, so define a variable Ky
such that

n B /.n\2 n
< [T1 +'3 (00 ]expiY"r

n n n\ B[{n \2 no\2 n 2]
(Tm + Ty, - 21) 2[(T1+1> + (T1-1> - 2(T1) o
™, B (Tn)Z
i 2 i
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Equation (72) then becomes:

n+1\2 = 2 _n+l 2
<T1 ) t 3 T1 o 0 (74)

Solving this and using the positive root results in:

T?”=‘§<-1+m> (75)
where
B >0

Equation (75) in conjunction with Eq. (74) are implemented in the
exponential finite difference solution sequence. 1In this case the
conductivity as well as the temperature field must be kept track of on
the sub-time interval level. The dimensionless time step, , and the
rate of conductivity change, B, must be both considered when choosing
the step size so the solution does not become unstable. For this
method, the term (Yk2/m+1) in the exponential was considered at
1ts maximum possible value and the time step was adjusted to retain
stability. This criteria was chosen so that

n
Yk1_
m+ 1

< 0.5

The next method to be investigated for the temperature varying
conductivity problem will be the pure explicit method. As stated
earlier the governing partial differential equation for one-dimensional

conduction is given by:

aT Q_.( ﬂ)
pcp at = ax \K ax (76)

Using the chain rule this equation can be put into a nonconservative

form.
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oT Xai

2
aT T , ak [aT
pcp at = K x2 Y aT <ax)

9

Assuming the same linear profile as before:

k(T) = kR + BkRT
then
ak
a1 = Bkg

Substituting Eq. (78) into (77) will give:

2
aT aT
pC. = = k(1 + BT)y —
p at R ax2
or
2
& a1+ 8T 27 BaR<
ax
where
%
R pCp

aT 2
X

aT\2
+ Bkp <ax>

(77)

(78)

(78)

Using central space differences and a forward time difference we may

write:
n n
P 3 Mt 1
IX 2AX%
n+l n
gl ey
at at
n n n
2’1 _ T * Tiy - 2Ty
ax’ (ax)2
Substituting Eq. (79) into (78) produces:
AL o j A L 1
i i (1 . BTn) 231 T 4. .
At = %R i R

(ax)°

n
i+1

- T
28X

n
i

=T’

(79)
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This may be simplified and written as:
n+l n n n n n B {.n AN\
. AR [(]*B1H ) <T1+1 Uyl 2T1) g (T1+1 . T1-1) ]
(80)

where
ap At

Q =
(AX)2

Equation (80) can be used to directly solve for the temperature
field at the next time step. Some additional care must be used to keep
the solution stable as the size of the dimensionless time step €,
and the rate of conductivity change, B both effect the solution.

The final method to be implemented for comparative purposes is the

implicit method. Starting with Eq. (78), we have:

2

2
aT _ aT aT
st - op (1+ BT) 2 + Bap (ax) (81)

To avoid a solution sequence that would require the solution of
nonlinear algerbraic equations, the following will be assumed;
(a) The term (1 + BT) can be replaced with (1 + BT?)

(b) The squared first derivative term can be replaced by

n n n+l n+1
aT\? (T~ T ) (e~ Tig
X B 24X 20X

This is a linearizing technique known as lagging the coefficients.

Substituting these into Eq. (81) will produce:

Tn+1 ¥ Tn Tn+1 N Tn+1 _ 2Tn+1
i b -t 1+ BT" i+] st i
at i i 2
(ax)

n n n+l n+1l
s on Tya1 = T} (e - Tio
R 240X 2AX

Further simplification gives:
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A S (1 + BT?) (T"” i 2T"”>

i i 141 i-1 i
s <Tr1\+1 - T?-]) (T?ﬂ - T?ﬂ) (82)
where
_ oAt
(an)?
Now define:

n B /.n n
A=y (Tm 2 T1—1>

(83)
n n
n1 = 1 + BT1
Substituting Eq. (83) into (82) yields:
n+l n n n+1 n+1 n+1l n )y n+l n+1
e oy = <“1 ng * Ty - 2 } " M ;Tm - Tm%)
Simplifying this results in:
n+l n n+1 n n n+l n n n
T1 (i + 29711 )— T1+] (Qn1 + QX1> - T1_1 (Qn1 - 9x1> = T1 (84)

The equation shown above is now in a form that can be used in the

Thomas Algorithm [4], i.e., Eq. (84), can be written as:

n+l n+l n+l n
a1T1_] + b1T1 + c1T1+] = T1
where
n n
a, = - Q(n1 . x1> (85)
n
b,,' = 1 + 29711

ol

Equation (85) can now be solved using a tri-diagonal matrix routine.

—e
l

The variables 2y, b1, and <y must be evaluated at each
position and time step as their values change as the field variable

changes.

T
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A comparison of results of the three methods can be found in
Fig. (10) and Table VI. Figure (10) shows the temperature field
through the slab cross-section. From this, it is evident that the
exponential and pure explicit methods give very similiar results. The
implicit method predicted higher temperatures closer to the slab
surface and lower temperature at the slab centerline then either of the
two explicit methods. In Table VI the results at the slab center are
shown for various elapsed times. As can be seen, all three methods

agreed with each other to within a few percent.

The Steady State Temperature Field of a Couette Flow
Another application of the exponential finite difference method
will now be presented. The problem to be investigated is the
developing temperature field in laminar Couette flow [7]. The problem
statement is illustrated in Fig. (11). Neglecting viscous effects, the
governing equation is given by [10]:
pCoU, % - k(a—zg + iZ—E) (86)
ax ay

Neglecting conduction in the x-direction or assuming that the

convection term is much greater than the conduction term, Eq. (86)

becomes:
aT 32T
Uy ax =% 2
ay
Lk (8
- pC
Pep

From Fig. (11) using the expression for the velocity in the

x-direction, UX = Uy/L, Eq. (87) becomes
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2

aT _ aT
y ay2

ax

£

(88)

(=

Equation (88) is now in a form where separation of variables can
be implemented. Following the same procedure as indicated earlier to
find the exponential finite difference equation, it can be shown that:

+ T; e 2T;
2 - (89)
u(ay) Yy TJ

T1
T;+1 i T; exp | —Axel (341
The procedure utilized here is that the solution marches in the
x-direction instead of time as was the case for the previous examples.
Information from the last x-position and y-direction are used to
determine the dependent variable at the next x-position.

Results of implementing this method are shown in Fig. (12). The
temperature field is shown for three x-locations for two different
values of L/U. The results indicate that as the upper plate velocity
U 14s increased, the propogation of the temperature change in the

y-direction is slowed down.
Unsteady State Heat Conduction in Three-Dimensional Coordinates

The final application of the exponential finite difference method
to the diffusion equation will be that of three-dimensional, unsteady
state heat conduction. The exponential method, a pure explicit method,
and an implicit method (method of Douglas, [11]) will be compared to
exact solution for the situation shown in Fig. (13).

The exact solution to the problem il1lustrated in Fig. 13 is given

in Ref. [10] as:
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T(x,y,z,t) - T, BEZE : (_1)MN+P
T0 + T'I (m + %)(n + %)(p + ]2->
m=0 n=0 p=0
2 2 2
1 1
m+ = n+* > P
B O (RS NS N 571 P
a b C

b et [(m & ;—X]cos[(n '3 g!]cos[(p ' ‘5)5] (90)

where a, b, and ¢ are the widths of the cube in the x, y, and z
directions respectively. Equation (90) will be used to determine how
well the numerical techniques predict the temperature distribution.

The exponential finite difference technique will be investigated
first. The sequence to be followed for determining the finite
difference equation i1s the same as presented for the earlier cases.
The procedure for this three-dimensional case consists of the following
stepped procedure:

(1) Linearize the partial differential equation

(2) Assume a product solution

(3) Separate time from spatial dependence

(4) Solve for time dependence

(5) Insert the appropriate spatial finite differences into

exponential term that results from step 3

Based on this procedure the three-dimensional exponential finite

difference equation can be shown to be:
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n n n
T + T - 2T
n+#l_ .n A PR S 1 I T Tl T
Wk ™ g PR o
1,d .k
n n n n n n
et Mgey e~ Pk ) (Tases * T - 200
™ m
1,3,k 1,3,k
(91)
Using the sub-time interval concept, Eq. (91)
becomes:
m
n+1 _ N Q n+p/(m+1)
T3k T Tk Py ms 12”1.“ (92)
p=0

where m 1is the number of subtime intervals, Q 1s the

dimensionless time step, and M? 3.k is the dimensionless drive number

given by.
n n n n n n

N AEYS I T SLE 1S U U SA V T3 Y  ES I SE TS Sl T N

U BLaE n n

T4,k 4,3,k

n n n

+ T - 21
ol * dker TPk (93}

4,3,k

Equation (92) will be used for all interior nodes in Fig. 13. This
equation, as well as those that result from the other analysis, will be
adjusted along the insulated boundaries to take into account the
boundary condition that exists there.

The next method to be applied to this three-dimensional case will
be the pure explicit method. The finite difference equation for this

method is given by [11]:

n+1 n n n n
Hlie® gt s (T1+1,J,k * T3kt T,k
n n n
*Tak T,y ke Y T1,j,k—1) (94)



35

a At
(ax)?
As shown in Ref. [11] the dimensionless time step  must be:

where Q = 2 AX = Ay = AZ

(95)

o | =

Q<

to ensure stability of the method.

The last numerical technique that will be applied is the Method of
Douglas [11]. This method is implicit, and the spatial directions are
considered sequentially in the x, y, and then 2z directions
respectively. The intermediate temperatures U (found from x-direct
sweep) and V (found from y-direction sweep) are used to calculate the
actual temperature field variable T (found from z-direction sweep).

The equations that are solved sequentially are presented as follows.

n . .
] -T ' f :
1.1k Lk 1.2 n n n
ek LA URNS T1.J.k> "oy (?1.3.5)* * (Tﬁ.a.k>
= - - , (96)
v T ‘
Lk~ ak 1,2 n 1,2 n )
okt = -2 % (“1.J,k ' T1.J.k> gk <v1.J.k K M
e/
v 8l (T1'J'k> (97)
T2t;’k N T?’j’k 1 62 ] £ TO ‘ + ! 62 ‘V A
o At T 8 s P g (P [ ¢ 2 "y\ 1,3,k 1,3,k
1 .2 /-n+] n
PR <T1,j,k ' T1,j,k) R
where the finite difference operator in the x-direction , for example,
would be:
n n n
2 T1+]njtk " T1_])jnk i 2T1)j:k
8 = > (99)
(ax)

Equations (96), (97), and (98) must be solved successively because the

variable U 1is used in equation (97) to find V and so on. Since the
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method operates on one spatial direction at a time, the Thomas
Algorithm can be utilized. 1In the case of finding the U variable,
the y and z nodal positions are held constant for all the
x-direction nodal positions (Fig. 14). This process is repeated until
all y and z nodal values for the x-direction variable U are
calculated. This procedure is then repeated in a similar way for the
V variable and then finally for the actual temperature field variable.

The results from the three different, three-dimensional solution
methods are shown in Table VII. The exponential finite difference
method described above outperformed the pure explicit and the method of
Douglas for all positions as shown in Table VII.

In Ref. [11] nine different methods to solve the diffusion
equation in three dimensions were investigated. The method of Douglas
was the preferred method because of its accurate results and low
computer CPU time. 1In that study the pure explicit method required the
lowest amount of CPU time with the method of Douglas requiring
approximately four times as much. In the present study all three
methods were run on two different mainframe computers to investigate
how well these three methods compared in CPU times. The results are
shown in Table VIII. A1l three methods were exercised for the same
number of time steps. As indicated, the exponential method was
approximately three times faster than the method of Douglas but still
slower than pure explicit method. From these results it could be
concluded that the exponential method would have been chosen as the
preferred method had it been used in competition with the nine

numerical methods as described in Ref. [11].



IV. - EXTENSION OF THE EXPONENTIAL FINITE DIFFERENCE METHOD
TO NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
The exponential finite difference method will now be applied to
two different nonlinear problems. The problems to be addressed will be
the viscous Burger's equation and the boundary layer equations (steady
state flow over a flat plate).

The viscous Burger's equation is given in Ref. [12] as:
=l ol B B (100)

To allow application of the exponential method to this equation, the
equation must be first linearized. So letting U = A = constant, for

the nonlinear, term and rearranging the equation, gives:

au au o U
'5?: - ax (]0])

Assuming a product solution of the form
U(x,t) = o(x)e(t)

and taking the appropriate derivatives, Eq. (101) becomes

¢g—$=—A9%$+v9§it
X
Division by ¢6 gives:
lde _Apd v 2% - - « = constant (102)
6 at ¢ 9X (o) ax2

It can be seen that the terms are now separated. As has been shown

earlier, the left-hand side of Eq. (102) can be written as:
37
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U(x,t) = U(x,0) exp {- «t} (103)

Now returning to Eq. (102) and examining the x-dependence, we have

_ A3 v % _
¢ X ¢ 27 -

Multiplying both sides by ¢© gives:

2
2] 2]
- he 5% + v0 ——% = - k0
X
This can be written in finite difference form as:

n n n n n
u - U ] + U - 2U
1 n _111____1:%>+ o | 2] 1-1 1] . (104)

—|-u
(Ax)2

I
|
=

U? i 2 AX

This is used to replace the exponent in Eq. (103), thus

n n

U + U - 2U
n+1 n Aty "X (oD n ( 141 1-1 i
U1 = U1 exp T (U1+] - U _]> + = (105)

(ax)
Equation (105) is the exponential finite difference equation for the
viscous Burger's equation. An example will now be used to demonstrate
the method.
An exact steady state solution to Burger's equation is available
for the following conditions
u(o,t) = U0

u(L,t) =0

The steady-state solution was given as [12]:

1 - exp (b R
U(x) = U, e(
1 + exp <U Re (

—Ix [—Ix
|

\_‘/

N
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where

Re, = —— (106)

and U, 1is the solution of the equation

1
u, -1
0o+ 1 "8 3' Uy Rey

The exponential finite difference method will be now used to

numerically solve the problem stated above. However, for the stated
conditions, a problem arises with the portion of the velocity field
initially at zero. To overcome this difficulty, the substitution
method described earlier will be used. A new variable will be defined

such that

and Burger's equation then becomes:

., 2l (107)

= (0 - u,) s
0/ ax ax2

|
||

with the following imposed conditions, if (U0 =1):
U(o,t) = 0
(108)
U(L,t) = U,
Using Eq. (107) the same method of separation of variables must be
performed on the U variable. The problem is now solved for the U

variable and the substitution shown above is then made to find the U

variable. The exponential finite difference equation for U can be

shown to be:




=n\(mn =N
g™ _ " Atv <—Ax> (] - U1)QH+] - U1_l)
- 2

exp +
=N n n
U + 0 - 20
( 141 n1-1 1) (109)
01

The results obtained by applying Eq. (109) and the conditions in
Eq. (108) are compared to the steady state exact results of Eq. (106)
and are shown in Fig. (15). The results from the exponential method
were nearly the same as the exact method. The exponential method was
allowed to march in time for quite a number of steps without special
treatment of the dimensionless group Atv/(Ax)2 which could have
been altered to allow convergence to the actual solution in less time
steps.

Another application of Burger's equation was made to investigate
the effect of the diffusion term. The results for the variation of v
over four orders of magnitude are shown in Fig. (16) for the same
instant in time. At the two lower v values, the total range of the
field variable takes place over a small number of nodal positions. A
better approximation could be made for these cases by using a finer
grid. Also included on Fig. (16) is the solution of Burger's equation
by a pure explicit technique. For the value of v chosen, the
solution oscillates around the predicted solution found from the
exponential method. The pure explicit solution was found using the
same number of nodes and the same dimensionless step size. When the
solution oscillates, as the pure explicit solution did, the resulting

velocity field can contain physically impossible values.
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The last application to be investigated will be for the
development of a laminar boundary layer on a flat plate (Fig. (17)).
In Ref. [10] the steady state formulation is given in terms of the
following three partial differential equations:

for continuity:

x tay” 0 | (110)
for momentum:
VI TR (111)
ax dy ay2
for energy:
2
U'g—}+V'g_;—a':y_£ (112)
with the boundary conditions:
U(x,0) =0 U(o,y) = Uo
V(x,0) = V(x,L) =0 (113)
T(x,0) = T(o,y) = T0

v and o« are the momentum and thermal diffusivities respectively.
Equations (111) and (112) can be solved by using the method
presented for the viscous Burger's equation. The only difference is
that the solution will march in the x-direction instead of time.
Keeping this procedure in mind, results of the seﬁarat1on of variables

for Eqs. (111) and (112) were found to be:

ey 1 1 1 1
19 ax | Vi (Ya - Y%a), e (Ye t Y
U = U, exp = + (114)
h| h| ol ol 2 By ol 2
3L Y j (ay)
™ i i i i i
Akl T1 ax |7V Tj+1 - Tj—1 o TJ+1 +TJ-1 — 2TJ
= exp {—% % (115)
J h| =R 2 Ay o} 2
i BNl 3 (ay)
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The continuity equation is written as [12]:

141 14 _ _Ay Telt 1+41 A
VJ = Vj 7 Ax (bj Uj + Uj-] UJ-]) (116)

Equations (114) and (115) are first solved using a spatial
sub-increment as was done for the cases when time was the marching
direction of the solution. After this, the continuity Eq. (116), is
then solved.

The results of this application are shown in Fig. (18) for a
Prandt1 number equal to 0.72. As can be seen the thermal boundary
layer was outside the velocity boundary layer as would be expected.
The results with the Prandt]l number equal to 0.72 were compared to the
exact solution as presented in Ref. [10]. A downstream position was
chosen and the results are compared in Table IX. The exponential

method results were in good agreement with the exact results.



CONCLUDING REMARKS

In conclusion, an exponential finite difference technique has been
extended to other coordinates systems and expanded to handle problems
in two and three dimensions. The method has direct application to
1inear partial differential equations such as the diffusion equation
and can be extended to solve nonlinear equations.

The method was applied to the following cases:

(1) One-dimensional, unsteady state heat transfer in cylindrical

coordinates, infinite and finite heat transfer coefficient.

(2) Two- and three-dimensional, unsteady state heat transfer in

Cartesian coordinates.

(3) One dimensional heat transfer, with temperature varying thermal

conductivity.

(4) Developing temperature field in laminar Couette flow.

(5) Nonlinear partial differential equations (Burger's equation

and boundary layer equations)

The exponential finite difference method predicted the field
variable with a higher degree of accuracy in those cases examined where
the exact solution was available. When extended to three dimensions,
the.accuracy was still higher for the exponential finite difference but
the computer CPU time was increased. When the exponential method was

compared to other numerical techniques, the results were found to be

very compariable.

43
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In conclusion, the results predicted for the exponential finite
difference algorithm for the cases presented in this study demonstrated
that:

(1) Field variable was predicted with a higher degree of accuracy

than other numerical techniques where exact solutions exist.

(2) The method can be applied to linear and nonlinear partial
differential equations with dependent variables that can be
separated.

(3) The stability of the method is the same as that of pure
explicit methods, where the sub-time interval step size

determines the stability.
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TABLE I. - COMPARISON OF RESULTS FOR DIFFERENT DIMENSIONLESS TIME STEP

FOR ONE-DIMENSIONAL HEAT TRANSFER IN CYLINDRICAL COORDINATES WITH
INFINITE HEAT TRANSFER COEFFICIENT AT THE SURFACE. INITIAL AND
BOUNDARY CONDITIONS ARE:

(h » o, T(r,0) = 1.0, T(R,t) = 0.0, @ = a 8t/(ar)2, « = 1.0 M2/s,
N = number of nodes, m = number of sub-time intervals.]

by, From surface N =11 N = 21 N = 21 N = 21 Exact
sec r-distance m=4 m=29 m = m=9 analysis
(M) Q=1.0 Q=1.0 Q=2.0 Q2 5.0 ref. [9]
0.1 0.1 0.127004 0.126768 0.126819 —————— 0.126669
1.0 .862431 .852204 .853083 | -------- .848368
.5 =1 .011959 .011671 .011680 .011715 .011582
5 1.0 .094334 .090309 .090379 .090652 .088895
D Total Total Total Total
50 steps 200 steps 100 steps 40 steps
Q _e g - . e
A1 02 |70 |gea=0-2 a7 0h
TABLE II. - FINITE HEAT TRANSFER COEFFICIENT
CYLINDRICAL COORDINATES WITH THE FOLLOWING
CONDITIONS: T(r,o) = 1.0,
T_=0, @=a at/(ar)?
Time [ h/k |R |Exact Exponential finite
ref, difference results
[9]
N =11 N = 21 N = 21
m=4 m=9 m=9
=10 =50[(Q =1.0
0.1 1 1 /0.6846 |0.7073 0.6978 -
0 .9768 .9814 9997 - |h=—=ars
S0 1 1 .5702 .5976 5857 A R
0 .8702 .8852 8780 || ===
.4 1 1 .4132 L4447 4303 —————
0 | .6420 .6698 S O (e
2 2 1 .5009 .5285 5199 | -:=-—=-
0 .9594 .9670 .9643 e
| 5 1 .2558 S+l &1 [ PR 0.2669
0 .9265 9385 | --==-- 9306
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TABLE III. - COMPARISON OF EXPONENTIAL
FINITE DIFFERENCE METHOD IN ONE-
DIMENSIONAL CYLINDRICAL COORDINATES
TO THE RESULTS OF REFERENCE [4].

[a = 1.0, ot = 1.0 sec, a At/ar2 = 1.0.

N = number of nodes, m = number of

sub-intervals

Time, [h/k | R, Reference [N = 10 N =19
sec in. [4] m=4 m=28
Q=10 [@=1.0
5 o (18 |[0.77220 0.773094 | 0.772922
10 .01449 .011353 .011951
10 o |18 .84661 .846719 .846811
10 .11595 oln2q2 .113523
30 o |18 .93546 .935278 .935521
10 51722 .575979 .578198
90 o (18 .99370 .993686 .993776
10 .95872 .958596 .959245
TABLE IV. - COMPARISON OF EXPONENTIAL FINITE DIFFERENCE

METHOD IN TWO-DIMENSIONAL CARTESIAN COORDINATES
TO THE ALTERNATING DIRECTION IMPLICIT METHOD [4].
[For comparison to results in ref. [4] at x =y = 0.]

Time, Exact ADI Q=1.0, N=11, Q=1.0, N = 21,
sec [4] At = 0.01, m=4 (At = 0.0025, m = 9
0.1 |0.09883 | 0.09333 0.09829 0.09924

2 .40354 .40354 .40256 .40354
3 .63179 .63224 .63080 .63166
.4 .17486 - 11532 .17403 .17472
L .86252 .86283 .86187 .86240
.6 .91607 .91624 .91559 .91597
o b .94871 .94886 .9484) .94869
el (Total of (Total of
70 steps) 280 steps)
Q Q
el " 0.2 o el " 0.1
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TABLE V. - STEADY STATE HEAT TRANSFER IN TWO-DIMENSIONS

Comparison of exponential finite difference technique to a Gauss-Seidel

technique for the solution of Laplace's equation.

X y 9 by 9 Grid 5 by 5 Grid
Gauss-Seidel Exponential Gauss-Seidel Exponential
88 iterations(a) finite 22 iterations(a) finite
difference difference
40 iterations 20 Yterations
0.000 | 1.000 0.0 0.0 0.0 0.0
125 .875 1.7413 1.7814 |  comemeae | emmeeee-
.250 .750 6.8946 6.8949 7.1428 7.1430
«375 .625 15.0330 15.0335 | = cemmmmee | ememeee-
.500 | .500 24.9999 25.0004 25.0000 25.0003
.625 <315 34.9667 34.9672 | @ —eemmeee | mmmmemee
<150 | <250 43.1052 43.1055 42.851 42.8573
.875 .125 48.2587 48.2588 | @ eeeemeem | mmmemmee
1.000 | 0.000 100.000 100.000 100.000 100.000

4From reference [4].

TABLE VI. - COMPARISON OF EXPONENTIAL, PURE-EXPLICIT, AND
IMPLICIT FINITE DIFFERENCE METHODS FOR ONE-DIMENSIONAL,

THERMAL CONDUCTIVITY AT THE CENTER OF THE SLAB
[K(T) = 1.0 + B(T); B = 0.01.]

UNSTEADY-STATE HEAT TRANSFER WITH TEMPERATURE VARYING

Time, Temperature, °C
sec
Exponential finite | Pure explicit, Implicit, £ = 1.0
difference, N = 11 [N = 11, @ = 0.25, At = 0.01 sec
m=4, Q@ =0.5, At = 0.0025 sec
at = 0.005 sec
0.01 98.15998 100.00000 94.35768
.02 88.871717 89.21321 85.90591
.05 61.30161 60.09306 61.31385
R 34.37147 33.41929 35.37178
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HEAT TRANSFER SOLUTIONS

TABLE VII. - COMPARISON OF THREE DIFFERENT, THREE-DIMENSIONAL UNSTEADY STATE

[T(X,y,Z,O) = ]-0; T(xlylL't) = T(X’L:Z,t) Lol T(L.Y-Z.t) & 0; aT/aX(O,y,Z,t) .

aT/ay(x,0,2z,t) = aT/az(x,y,0,t) = 0; N = number of nodes in x, y, and z
directions; @ = o At/(8x)2 and Ax = Ay = AzZ.]
Elapsed | Position from | Exact Exponential finite Pure explicit Method of Douglas
time, center along [analysis |difference results, | finite difference Douglas finite
sec diagonal result, =0 results, difference results,
X =Yy =2 A N=11, m= 4, 20 °C
Q =0.75 Q@ =0.15, N = 1 Q =0.15, N = 1
(a) (a) (a)
0.09 0.0 0.893490 | 0.892237 (0.14) 0.889437 (0.45) 0.886760 (0.75)
.5 .440712 .440650 ( .014) .435058 (1.28) .439665 ( .24)
.9 .006491 .006484 ( .11) .006319 (2.65) .006510 (-.29)
115 0.0 .645469 .645209 ( .04) .640025 ( .84) .641484 ( .62)
25 .253065 .253286 (-.09) .250102 (1.17) .252641 ( .17)
.9 .003015 .003022 (-.23) .002970 (1.49) .003023 (-.27)
dAccuracy percent.
TABLE VIII. - COMPARISON OF C.P.U. TIME ON TWO

DIFFERENT MAINFRAMES FOR THREE DIFFERENT
THREE-DIMENSIONAL FINITE DIFFERENCE METHODS
[One-hundred time steps for each method.]

Computer Expénentia]a Method of |Pure-explicit
method, Douglas, method,
sec sec sec
CRAY-XMP 0.2778 0.955 0.0627
1BM-3033 5.4 12.6 1.8

dBased on the number of sub-time intervals
equal to 100.
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TABLE IX. - COMPARISON OF EXPONENTIAL
FINITE DIFFERENCE METHOD TO EXACT
RESULTS OF BOUNDARY LAYER EQUATION
[10] FOR THE VELOCITY PROFILE AT
ONE DOWNSTREAM LOCATION.
[Distance downstream x = 500 cm,

v = 0.0072 cm?/s.]

Distance Exact Exponential
perpendicular | result | method result,

to plate, [10] N=21 m=28
y (cm)

1.0 0.17 0.17428

2.0 .34 .34643

3.0 ool .51020

4.0 .65 .65658

5.0 .18 .77684

6.0 .87 .86636

7.0 .93 .92638

8.0 .96 .96265




\\‘
IR

52

i.j - SPACIAL GRID
n - TIME GRID

\
]

FIGURE 1.- COMPUTATIONAL GRID FOR { XPONENTIAL FINITE DIFFERENCE
TECHNIQUE FOR 2-DIMENSIONAL CARTLSIAN COORDINATES.
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1sT 2ND
TIME SUB- TIME SUB-
INTERVAL INTERVAL
TIME STEP
n+1/3 n+2/3 n+1
° ° ° —T—
Ax
® ° e ——
Ax
° ° ¢ ——
l 2/3 I /3
aAt
Qemaals
@x)?

- TOTAL DIMENSIONLESS TIME STEP

FIGURE 2. - COMPUTATIONAL GRID FOR 2 IIM

TESIAN COORDINATES.

(SHOWN FOR 1-DIMENSION).

SUB-INTERVALS (M - 2). CARI
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BEGIN
INITIALIZE
PROGRAM
VARIABLES

————— L=1...NTOT L 2> Nior @

L < NTOT

I
L VT, VT, j CEXPAM 1 /NST)

L 4| 'i»'Vi'i(iXP(ﬂPl'i/NSU)

FIGURE 3. - FLOW DIAGRAM FOR 2-DIMENSIONAL EXPONENTIAL
FINITE DIFFERENCE ALGORITHM.

NTOT - TOTAL NUMBER OF TIME STEPS

Pi, i - SUM OF DIMENSIONLESS DRIVE NUMBERS
T, i FIELD VARIABLE DURING TIME STEP
Hifi - DIMENSIONLESS DRIVE NUMBER
NS1" - NUMBER OF TIME SUB-INTERVALS

aat

Q- DIMENSIONLESS TIME ~( )2
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METHOD T?”n{'
TEULER (EXPLICIT) 1-20
CRANK-NTCOL SON A-070+
TPURE IWPLICIT | 10 o
T YA ExP, (-20D) Bim ==
__BHATTACHAR S JISE an2
STEADY UN-

f BOUNDED

1.0 I GROWTH
STEADY
/~PURE IMPLICIT DECAY

3 |
= 90 + I' f == 2
= 1 2 |3 4 f
!
L BHATTACHARYA
~—EULER STEADY
/ 0SCILLATIONS

CRANK-NICOLSON —/

FIGURE 4, - EFFECT OF NONDIMENSIONAL TIME STEP SIZE ON 1 NODt MODEL

SOLUTION, (FROM REF. [21).

|
|

UNSTABLE
OSCILLATIONS




SURKOUND | NG
Lruin
SOLID
loe 170 =2
[ ] °
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IIGURE 5. - £XPONENTIAL FINITE DIFFERENCE NODAL CONF IGURATION FOR
T-DIMENSTONAL HEAT TRANSHER WITH FINITE HEAT TRANSFER COEFFICIENT.
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INSULATED
SURFACE AT
r=Ry

INITIAL CONDITION: T(r.0) = 0
BOUNDARY CONDITIONS: TRy, 1) = 1.0

oT
or (Ry.) =0

Ry = 10.0 1n. Ry = 19.0 In.
P'IGURE 6. - PROBLEM CONDITIONS fOR COMPARISON OF EXPONENTIAL

FININTC DIFFERENCE TECHNIQUE TO CHARACTERISTIC PROBLEM SOLUTION.



H8

1.C. : I(x.y.0) 0.0
B.C."s: 1(x.1.0.1) = T(1.0.y.t) = 1.0

y
ﬂ %} ,y.1) = %(x,o. t =0.0

‘I.O;

o

y

7

7

7

%
[/TTT7R777TTT77, o
/ \ .

/ \
/INSULATED SURFACES *

FIGURE /. - PROBLEM DESCRIPTION FOR 2 DIMENSIONAL COMPARISON OF
EXPONENTIAL FINITE DIFFERENCE METHOD TO THE ALTERNATING DIRECTION
IMPLICIT (ADI) METHOD.
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Ay
T-0 B
— — ‘\
T-0 T=0
— X
W
T =100

FIGURE 8. - PROBLEM SKETCH FOR COMPARISON OF EXPONTENTIAL FINITE
DIFFERENCE SOLUTION TO THE GAUSS-SEIDEL ITERATIVE METHOD FOR
THE. SOLUTION OF LAPLACES EQUATION IN 2-DIMENSIONS.
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— ] ESS e 1(x.0) 100.0
0. 1) I, 0.0
K(I) = Kg * BKgT
X
WJ
(A) ONE-DIMENSIONAL PROBLEM WITH VARYING THERMAL CON-
DUCTIVITY.
=
=
=
S
o
¥
=
Kp 4
Tr
TEMPERATURE

(B) L INtAR RELATIONSHIP Bt TWEEN CONDUCTIVITY AND TEMPERATURE.

FIGURE 9. SKETCHES SHOWING PROBLEM STAIEMENT FOR TEMPERATURE VARY-
ING 11t RMAL CONDUCTIVITY.




TEMPERATURE, °C

80

60

40

20

6l

P>
b

O EXPONENTIAL
O PURE EXPLICIT
A IMPLICIT

| I I I

o .8 1.0

A4 .6
DIMENSIONLESS POSITION, x/L

FIGURE 10. - COMPARISON OF METHODS FOR TEMPERATURE-VARYING
CONDUCTIVITY. SHOWING TEMPERATURE FIELD AT t = 0.02 sec.
K(T) ~ Kg(1#BI), WHERE K = 1.0: B = 0.01: T(x,0) = 100;
1€O. 1) = T(L.t) = 0; @ =1,

EXPONCNTIAL = M~ 4: @ = 0.5: 20 TIME STEPS,
PURE IMPLICIT: © = 0.25: 8 TIME STEPS.
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MOVING WALL VELOCITY = U, TEMPERATURE =
S

To

VELOCITY PROFILE uy = U (y/L)

L
y
To T
STATIONARY WALL
BOUNDARY CONDITIONS:  T(y.0) = T, x<o

T(o.x) = 11 x=0

FIGURE 11. - SKETCH SHOWING CONDITIONS FOR DEVELOPING TEMPERATURE
FIELD IN LAMINAR COUETTE FLOW.
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rX=0.1m
/I-x=0.5m Lo
ex=1.0m ) U
"0 = I/!Il‘ //”——
II' // 4
Il’/ f/
sl /1 77
//l," ////
/] o
74N Fairc
60 — WiV
v A r////
/)
/ Q\\x=o.1n
/ ~ N o L
40 f— / G/ TN X=05mi L oo
/ %/ S—x=10m)VU T
9y
/) 4
0 ///4"
/4
/ Z
| J
0 5 1.0

CROSS-STREAM POSITION, (m)

FIGURE 12. - DEVELOPING TEMPERATURE FIELD IN LAMINAR COUETTE
[1OW, SHOWING THE EFFECT OF FLUID VELOCITY "U”: (L = 1.0 M).
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3-DIMENSIONAL UNSTEADY STATE CONDUCTION

y
! 0.1.1 (1.1.1
Y
I
|
|
|
|
|
0.0.1 i .0.M
(0,1.0)/i- ————— ————= {.1.0)
/
/
/
7
/
/
» X

0.0.1)
INITIAL CONDITION: T(x.,y.z.0) =Ty =1

BOUNDARY CONDITIONS: t >0

31 ot a1
; 0.y.2. X.,0.2.1) = 5, (X.y.0. =
ox ¢ D gy ¢ ) = 57 (Xey:0.1) =0

T(Ly.z.t) - T(x,1.z.0) = T(x.y.1, ) = 0

FIGURr 13. - BOUNDARY AND INITIAL CONDITIONS FOR THREE DIMENSIONAL
UNSTLADY STATE CONDUCTION HEAT TRANSFER.
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FIGURE 14. - METHOD OF DOUGLAS SHOWING THE PROCEDURE USED TO SWEEP IN
THE SUCCESSIVE COORDINATE DIRECTIONS.

YELOCITY *U", W/s

O EXPONENTIAL FINITE

DIFFERENCE RESULT
EXACT ANALYSIS

EXPONENTIAL Mt THOD, PARAMETERS :
N=21; w=8: o= 4.0
v - 0.4 M2/sec: t= 2.0 SEc SHOWN

FIGURL 15. - COMPARISON OF STEADY STATE SOLUTIONS COMPARING

TH | XACT RESUL

SOLUTION UCo. 1) -

TS TO THE EXPONLNTIAL FINITE DIFFERENCE
1.0: UCL.1) = 0.0.
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,I || U = 0.01 (EXPLICIT
| /" SAME CONDITIONS)
I

WS

VELOCITY "U”,

0 7 4 .6 .8 1.0
X/1

I IGURt 16.  t XPONENTAL FINITE DIFFERENCE RESULTS FOR VARY-
ING KINEMATIC VISCOSITY. ALL VELOCITIES ARE SHOWN FOR

t = 1.0 seconps WITH: N = 21. M = 8, _AL2 = 4.0.
Aax)

Uto.t) = 1.0
ULt = 0.0
y
A
UNIFORM « THERMAL BOUNDARY
VELOCITY \LAYER
AND \
TEMPERATUR N
UCo.y) = 1.0 L
T(o.y) = 1.0
\
\— VELOCITY BOUNDARY
LAYER

S T A T AT AT i i el
5
\_PLATE AT TEMPERATURE T(x.0) = 0

OTHLR CONDITIONS: U(x.0)  0: Vix.0) = 0
Vix.l) 0

LIGURE 17, BOUNDARY LAYtR Dt Vi1 OPMENT ALONG A COOLED FLAT PLATE.
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Y - VELOCITY BOUNDARY LAYER THICKNESS. cM
®
T

Y - THERMAL BOUNDARY LAYER THICKNESS. cM
o

0 100 200 300 400 500 0 100 200 300 400 500
X - DISTANCE DOWN THE FLAT PLATE. cM

FIGURE 18. - EXPONENTIAL FINITE DIFFERENCE RESULTS FOR BOUNDARY LAYER EQUATIONS. WITH CONDITIONS UCo.y) = 1.0,
U(x.0) 0. V(x.0) = 0. V(x.L) = 0. T(x.0) = 0.0, T(0.y) = 1.0: v = 0.0072 cM2/SEC: @ = 0.01 CMZ/sEC.




APPENDIX

This appendix contains all the computer programs mentioned in this
report. A computer program variable Tist is also contained with a
description of their use, and a program number to refer to the programs
that they are contained in.

Each of these programs was written to be run in an interactive
mode with the mainframe computer. The only cases run differently were
for the three-dimensional unsteady state heat transfer cases that were
run in batch mode on the Cray X-MP.

The program structure is as follows. A main program is used to
describe the necessary parameters and for asserting the proper boundary
conditions. The main program then calls the subroutine where the
actual finite difference methods are exercised and the results are then

printed.
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Program
number

1

10

11

2

11

14

Program
name

SOURCE.

SOURCE.

SOURCE.

SOURCE.

SOURCE.

SOURCE.

SOURCE

SOURCE.

SOURCE.

SOURCE.

SOURCE.

SOURCE.

SOURCE.

SOURCE

EFDCYL

EFD2D

LAPLAC

EFDVAR

EXPVAR

IMPVAR

.COUE

EX3D

EFD3D

EXPL3D

DOUGLA

BURGER

EXBURG

.NONBOU
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COMPUTER PROGRAM LIST

Program function

One-dimension, unsteady state, cylindrical
coordinates, infinite and finite heat
transfer coefficient

Two-dimensional Cartesian coordinates,
unsteady state heat transfer

Two-dimensional Laplace's equation

One-dimensional unsteady state heat
conduction, varying thermal conductivity,
exponential finite difference method

One-dimensional, unsteady state heat
conduction, varying thermal conductivity,
explicit finite difference method

One-dimensional, unsteady state heat
transfer, varying thermal conductivity,
implicit finite difference method

One-dimensional, developing temperature field
in laminar couette flow

Exact analysis, three-dimensional heat
transfer in a cube

Three-dimensional unsteady state heat
transfer in a cube using exponential finite
difference method

Three-dimensional unsteady state heat
transfer in a cube using explicit finite
difference method

Three-dimensional unsteady state heat
transfer in a cube using the method of
Douglas

Exponential solution of nonlinear viscous
Burger's equation

Pure explicit solution of nonlinear viscous
Burger's equation

Exponential Method of solution for boundary
layer equations for flow over a flat plate



Program
variable
name

N
NS
NTOT

ST

DL

IPR

NB

HK

VM

vT

THE

TIME

ITMAX

ETI
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COMPUTER PROGRAM VARIABLE LIST

Programs
used in

1-14
1-12,14
1-14

1-13

1-1,9,10,12,13

1-14

i

1-10,12
1-10,12

1-14

4
1-3,12-14

1-6,8-13

1-14

3

Variable Description

Number of nodes

Number of time sub intervals

Total number of time or spacial steps
Dimensionless time step increment

Total elapsed time or spatial distance
between steps

Radial distance between adjacent nodes
Radial length

Number of steps between output of results
Heat transfer boundary condition flag
Dependent variable

Convection heat transfer coefficient
divided by thermal conductivity

Dependent variable value outside of
solid in the surrounding medium

Dimensionless drive number
Sum of the drive numbers

Dependent variable value during
sub-time interval

Biot number
Variable used for the output of results

Total elapsed time of the solution at
the current output

Output counter

Accuracy desired in solution of
Laplace's equation



Program
variable
name

DELV

ETA

KR

BETA

KO, K

THE

KAPPA

DERSQR

OMEGA

A;B,C,D

KAP, GAM

BETA, GAMMA

TS

T

)

SP

FL
DIST

Program
numbers
used in

3

4-6

4-6

11

Description

Difference in dependent variable value from
one time step to the next

Sum of the absolute value of the differences
found in DELV

Reference thermal conductivity

Slope of thermal conductivity variation with
temperature

Thermal conductivity at the total time step
interval or sub-time interval respectively

Kirchoff transformation variable (used in
exponential finite difference program with
varying thermal conductivity)

A11 values known from the last time step
increment and used to solve the quadratic
equation that results in the exponential
finite difference solution with temperature
varying thermal conductivity

Absolute value of velocity difference found in
evaluation of velocity gradient

Same as nondimensional time step

Coefficient used in tridiagonal matrix
algorithm.

Variables used to determine A,B,C

Variables used in Thomas, tridiagonal
algorithm

Same as total elapsed time

Dependent variable

Solution vector tri-diagonal algorithm
Maximum width divided by maximum velocity
Parameter based on position in flow

Serves same function as time for unsteady
state problem



Program
variable
name
PI,PI2,PI3
NODES
T0
TI
ALFA

TNEW

T

DELX,DELY,DELZ

u,v

RNU

DX

RAL
YMAX
DY

u,v

T

MU,MT

PU,PT

uT,TT7,VT

uml

TS, 131

Program
numbers
used in
8

8

1

1

1

11

12-14
14
14
14
14

14

14

14

14

14

14

14

12

Description

n, 1!2, 1(3

Same an N

Initial temperature
Surface temperature, t > 0
Thermal diffusivity

Exact temperature at a x, y, and z
location after elapsed time t has occurred

Dependent variable
Part of the central difference operator

Variables used to sweep preliminary solution
in the x then y directions respectively

Used as an array to contain the known
quantities used in the tridiagonal algorithm

Kinematic viscosity

Step length in flat plate direction

Thermal diffusivity

Maximum distance perpendicular to flat plate
Step length perpendicular to the flat plate

Dependent variables (velocity) in x
directions respectively

and vy

Temperature field variable

Drive numbers for velocity in x-direction

and temperature field
Sum of drive numbers for MU, MT

x-direction velocity, temperature, and
y-direction velocity on subinterval

Temporary U-direction velocity field

Dimensionless time step for temperature and
x-direction velocity respectively
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Qo

Qoo

15
10
12

L3

16
21
24
25
22
23
26
27

28
32
33
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WRITTEN BY R.F. HANDSCHUH
SOURCE.EFDCYL
¥¥X¥¥ DROGRAM #1 X¥¥¥x

THIS PROGRAM IS TO BE USED AS THE STARTING POINT FOR INVESTIGATING

THE EXPONENTIAL FINITE DIFFERENCE ALGORYTHM. THIS METHOD WAS INTRODUCED
BY M.C. BHATTACHARYA. THIS SOURCE CODE IS FOR CYLINDRICAL

COORDINATES, UNSTEADY-STATE HEAT CONDUCTION, 1 DIMENSION.

IMPLICIT REAL*8(A-H,0-2)
REAL*8 V(100),R(100)

IﬁPUT THE PROGRAM DATA

WRITE(6,15)

FORMAT(1X, '"NUMBER OF NODES=N I3 7)

READ(9,10)N

FORMAT(I3)

WRITE(6,12)

FORMAT(1X, '"NUMBER OF TIME SUB INTERVALS= NS 1I3')
READ(6,13)NS

FORMAT(I3)

WRITE(6,16)

FORMAT(1X, 'TOTAL NUMBER OF TIME STEPS= NTOT I3')
READ(9,21)NTOT

FORMAT(I3)

WRITE(6,24) :

FORMAT(1X, 'INPUT TIMEXTHERMAL DIFFUSIVITY ~ RAD INT SQUARED F5.3')
READ(9,25)TSI

FORMAT(F5.3)

WRITE(6,22)

FORMAT(1X, 'TOTAL TIME OF ONE TIME STEP= T F7.5')
READ(9,23)T

FORMAT(F7.4)

WRITE(6,26) .

FORMAT(1X, 'INPUT RADIAL INTERVAL LENGTH=DL F5.3')
READ(9,27)DL

FORPMAT(F5. 3)

R(1)=1.

DO 28 I=2,N

IMl=I-1

R(I)=R(IM1)-DL

WRITE(6,32)

FORMAT(1X, 'INPUT NUMBER OF TIME STEPS BEFORE PRINTING I3')
READ(9,33)IPR

FORMAT(I3)

DETERMINE THE TYPE OF BOUNDRY CONDITION, THEN SET VALUES
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WRITE(6,14)

FORMAT(1X, 'INPUT HEAT TRANSFER B.C. 0 - INFINITE 1 - FINITE'/)
READ(9,17)NB

FORMAT(TI1)

IF(NB.EQ.1) GO TO 100

V(1l)=0.

DO 30 I=2,N

v(I)=1.0

CALL EXP FIN DIF FOR INFINITE HEAT TRANSFER COEFFICENT

CALL EFDIHC(N,NS,NTOT,TSI,V,T,R,DL,IPR)

GO TO 101

CONTINUE

WRITE(6,31)

FORMAT(1X, 'INPUT HEAT COEF 7/ TERM COND F5.3')
READ(9, 34)HK

FORMAT(F5.3)

DO 40 I=1,N

V(I)=1.

VM=0.

CALL EXP FIN DIF FOR FINITE HEAT TRANSFER COEFFICENT

CALL EFDFHC(HK,N,VM,DL,NS,V,NTOT,TSI,T,R,IPR)
CONTINUE

STOP

END

SUBROUTINE EFDIHC
SUBROUTINE EFDIHC(N,NS,NTOT,TSI,V,T,R,DL,IPR)
FOR INFINITE HEAT TRANSFER COEFFICENT

IMPLICIT REAL*8(A-H,0-Z)

REAL*8 VT(100),Vv(100),M(100),P(100),R(100),THE(100)
TS=TSI/DFLOAT(NS+1)

WRITE(6,21)(R(I),I=1,N)

FORMAT(1X,11(F6.3,2X))

WRITE(6,22)DL, TSI

FORMAT(1X,2(F6.3,2X))

N1=N-1

NS1=NS+1

BEGIN MAIN TIME STEP LOOP
DO 20 L=1,NTOT

ZERO DRIVE NUMBERS AND SET TEMPORARY VARIABLES EQUAL TO THE
LAST TOTAL TIME STEP VALUES

DO 15 I=1,N
P(I)=0.
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DO 10 I=1,N

VI(I)=V(I)
SUB TIME INTERVAL

DO 30 K=1,NS1

CALCULATE THE DRIVE NUMBERS

DO 40 I=2,Nl

dily i B e |

IP1=T+1
M(I)=(2.%VT(I)-VT(IM1)-VT(IP1))/VT(I)
M(I)=M(I)+DL*¥(VT(IP1)-VT(IM1))/(VT(I)*2.%¥R(I))
M(N)=2.¥(VT(N)-VT(N1))/VT(N)

CALCULATE THE DEPENDENT VARIABLE ON THE SUB-INTERVAL LEVEL

DO 50 TIl=2,N
VT(I1)=VT(I1)¥DEXP(-TS*M(I1))

SUM THE DRIVE NUMBERS

DO 60 I=2,N
P(I)=P(I)+M(I)
CONTINUE

CALCULATE THE DEPENDENT VARIABLE ON THE NEXT COMPLETE TIME STEP

Do 70 I=1,N
V(I)=V(I)¥DEXP(-TS*P(I))
CONTINUE

ITMAX=ITMAX+1

PRINT THE RESULTS

IF(ITMAX.LT.IPR)JGO TO 20

DO 71 I=1,N

THE(I)=V(I)

ITMAX=0

WRITE(6,5)

FORMAT(/)

WRITE(6,31)L

FORMAT(1X,'TIME STEP NUMBER=',I3)
TIME=T*DFLOAT(L)

WRITE(6,32)TIME

FORMAT(1X, '"ELAPSED TIME=',F10.4,"' SECONDS')
IF(N.GT.11)N21=Ns2

IF(N.GT.11)GO TO 81
WRITE(6,82)(THE(I),I=1,N)
FORMAT(11(2X,F8.6))

GO TO 84

CONTINUE
WRITE(6,82)(THE(I),I=1,N21)
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NNS=N21+1
WRITE(6,82)(THE(I),I=NNS,N)
CONTINUE

CONTINUE

RETURN

END

SUBROUTINE EFDFHC

SUBROUTINE EFDFHC(HK,N,VM,DL,NS,V,NTOT,TSI,T,R,IPR)
IMPLICIT REAL¥*8 (A-H,0-Z)

REAL*8 VT(100),V(100),M(100),P(100),R(100),THE(100)
B=HK¥*DL

TS=TSI/DFLOAT(NS+1)

NS1=NS+1

N1=N-1

N2=N-2

BEGIN THE TOTAL TIME STEP LOOP
DO 20 L=1,NTOT

ZERO THE DRIVE NUMBERS AND SET THE TEMPOARY DEPENDET VARIABLES
EQUAL TO THE LAST COMPLETE STEP VALUES

DO 15 I=1,N
P(I)=0.

DO 10 I=1,N
VT(I)=V(I)

SUB TIME INTERVAL
DO 30 K=1,NSl1
CALCULATE THE DRIVE NUMBERS

M(1)=~(2.%VT(2)-(2.+2 .%¥B)¥VT(1)+2.%¥B*¥VM)/VT(1)
M(1)=M(1)-DL¥B*¥(VT(1)-VM)/(R(1)*VT(1))

DO 40 I=2,Nl1

IM1=I-~1

IP1=I+]

M(I)=(2.%VT(I)-VT(IM1)-VT(IP1))/VT(I)
M(I)=M{(I)+DL¥(VT(IP1)-VT(IM1))/(VT(I)*2.%R(I))
M(N)=2 . %¥(VT(N)-VT(N1))/VT(N)

CALCULATE THE DEPENDENT VARIABLE ON THE SUB-INTERVAL LEVEL

DO 50 I1=1,N
VT(I1)=VT(I1)*¥DEXP(-TS*M(I1l))

SUM THE DRIVE NUMBERS

DO 60 I=1,N
P(I)=P(I)+M(I)
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CONTINUE

CALCULATE THE DEPENDENT VARIABLE ON THE NEXT COMPLETE TIME STEP

DO 70 I=1,N

V(I)=V(I)*DEXP(-TS*P(I))

CONTINUE
ITMAX=ITMAX+1

IF(ITMAX.LT.IPR)GO TO 20

PRINT THE RESULTS

DO 71 I=1,N
THE(I)=V(I)
ITMAX=0
WRITE(6,5)
FORMAT(/)
WRITE(6,31)L

FORMAT(1X, 'TIME STEP NUMBER=',I3)

TIME=T¥DFLOAT(L)
WRITE(6,32)TIME

FORMAT(1X, 'ELAPSED TIME=',F10.4,"' SECONDS')

IF(N.GT.11)N21=N/2
IF(N.GT.11)GO TO 81

WRITE(6,82)(THE(I),I=1,N)

FORMAT(11(2X,F8.6))

GO TO 84
CONTINUE

WRITE(6,82)(THE(I),I=1,N21)

NNS=N21+1

WRITE(6,82) (THE(I),I=NNS,N)

CONTINUE
CONTINUE
RETURN
END
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SOURCE.EFD2D
WRITTEN BY R.F. HANDSCHUH
¥%%%% PROGRAM $2 ¥¥¥¥x

THIS PROGRAM IS FOR 2-DIMENSIONAL CARTESIAN COORDINATES

UNSTEADY STATE HEAT TRANSFER. THE METHOD OF SOLUTION IS THE
EXPONENTIAL FINITE DIFFERENCE ALGORYTHM. THIS PARTICULAR PROGRAM IS
FOR INFINITE HEAT TRANSFER COEFFICENT AT THE EXPOSED SURFACES

AT X=Y=1.0 FOR X=Y=0 THE SURFACE IS CONSIDERED TO BE

PERFECTLY INSULATED.

IMPLICIT REAL*8(A-H,0-Z)
RLAL¥8 V(25,25)

INPUT PROGRAM DATA

WRITE(6,15)

FORMAT(1X, "NUMBER OF NODES=N I3'7)
READ(9,10)N
FORMAT(I3)
WRITE(6,12)
FORMAT(1X, "NUMBER OF TIME SUB INTERVALS= NS I3')
READ(9,13)NS

FORMAT(I3)
WRITE(6,16)
FORMAT(1X, 'TOTAL NUMBER OF TIME STEPS= NTOT I3%)

READ(9,21)NTOT

FORMAT(I3)

WRITE(6,24)

FORMAT(1X, "INPUT TIME*THERMAL DIFFUSIVITY / LENGTH SQUARED F5.3')
READ(9,25)TSI

FORMAT(F5.3)

WRITE(6,22)

FORMAT(1X, 'TOTAL TIME OF ONE TIME STEP= T F6.4")

READ(9,23)T

FORMAT(F6.4)

WRITE(6,26)

FORMAT(1X, "NUMBER OF TIME STEPS BEFORE PRINTING= I3')
READ(9,27)IPR

FORMAT(I3)

WRITE(6,250)N,NS,NTOT

FORMAT(1X,'# OF NODES="',I3,2X,'# OF SUB-TIME-INT=',I3,2X, =

¥'§ OF TIME STEPS=',I3)

WRITE(6,251)TSI,T
FORMAT(1X, ' (TIME*¥THER DIFF)/LENGTH SQUARED='F5.3,2X, -

*'TIME STEP LENGTH=',F6.4/)

Nl=N-1
INITIALIZE THE BOUNDRY CONDITIONS
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DO 30 I=1,Nl1
DO 30 J=1,Nl1

V(I,J)=1.0
I=N

DO 50 J=1,N
V(I,J)=0.0
J=N

DO 51 I=1,N
V(I,J)=0.0

CALL EXP FIN DIF FOR INFINITE HEAT TRANSFER COEFFICENT

CALL EFDIHC(N,NS,NTOT,TSI,V,T,IPR)
STOP
END

SUBROUTINE EFDIHC
SUBROUTINE EFDIHC(N,NS,NTOT,TSI,V,T,IPR)
FOR INFINITE HEAT TRANSFER COEFFICENT

IMPLICIT REAL*8(A-H,0-2)
REAL*8 VT(25,25),V(25,25),M(25,25),P(25,25),THE(25,25)

PRINT HEADING

WRITE(6,222)

FORMAT (1X, " ¥¥XRRHRKHHHX SOURCE.EFD2D ARKKRKRRRKRKRY 7 /)
TS=TSI/DFLOAT(NS+1)

N1=N-1

NS1=NS+1

BEGIN MAIN TIME STEP LOOP
DO 20 L=1,NTOT

ZERO THE DRIVE NUMBERS AND SET TEMPORARY DEPENDENT VARIABLE
EQUAL TO THE LAST FULL TIME STEP VALUE

DO 15
DO 15 I=1,N
P(I,J)=

DO 10 J N
DO 10 I=1,N
VT(I,J)=V(I,J)

SUB TIME INTERVAL

=1,N
=1
0.

1
1
Y

DO 30 K=1,NSl
CALCULATE THE DRIVE NUMBERS
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DO 41 J=2,Nl1
JMl=Jd-1
JP1=J+1
DO 40 I=2,Nl1
IM1=I-1
IP1=I+1

M(I,J)=(VT(IP1,J)+VT(IM1,J)+VT(I,JPL)+VT(I,JIJM1)-4.*¥VT(I,J))

M(I,J)=M(I,J)/VT(I,J)
CONTINUE

INSULATED BOUNDRY ALONG X-AXIS

J=1

JP1=J+1

DO 42 I=2,Nl
IP1=I+1
Ini=I-1

M(I,J)=(VT(IP1,J)+VT(IM1,J)+2.%¥VT(I,JP1)-4.*¥VT(I,J))/VT(I,J)

INSULATED BOUNDRY ALONG Y-AXIS

I=1

IP1=1I+1

DO 43 J=2,N1
JP1=J+1
JM1=J-1

M(I,J)=(2.*¥VT(IP1,J)+VT(I,JP1)+VT(I,JIM1)-4.*¥VT(I,J))/VT(I,J)

CORNER AT ORIGIN
M(1,1)=(2.%VT(1,2)+2.%VT(2,1)-4.%VT(1,1))/VT(1,1)

CALCULATE THE DEPENDENT VARIABLE ON THE SUB-INTERVAL LEVEL

DO 50 Il=1,Nl
DO 50 J1=1,N1
VT(I1,J1)=VT(I1,J1)*¥DEXP(TS*M(I1,J1))

SUM THE DRIVE NUMBERS

DO 60 I=1,Nl1

DO 60 J=1,N1
P(I,J)=P(I,J)+M(I,J)
CONTINUE

CALCULATE THE DEPENDENT VARIABLE AT THE NEXT COMPLETE TIME STEP

DO 70 J=1,N

DO 70 I=1,N
V(I,J)=V(I,J)*DEXP(TS*P(I,J))
CONTINUE

ITMAX=TTMAX+1
IF(ITMAX.LT.IPR)GO TO 20
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PRINT THE RESULTS

WRITE(6,5)

FORMAT(/)

WRITE(6,31)L

FORMAT(1X, 'TIME STEP NUMBER=',I3/)
TIME=T*¥DFLOAT(L)

WRITE(6,32)TIME

FORMAT(5X, 'ELAPSED TIME=',F10.4,'SECONDS'/)
DO 71 I=1,N

DO 71 J=1,N

THE(I,J)=1.0-V(I,J)

TEUNLGESL1 GO TO 58

DO 59 J=1,N

WRITE(6,82)(THE(I,J),I=1,N)
FORMAT(11(2X,F8.6))

CONTINUE
GO TO 54
CONTINUE
DO 57 J=1
WRITE(6,5
FORMAT(11
WRITE(6,5
CONTINUE
CONTINUE
ITMAX=0
CONTINUE
RETURN
END

X,F8.6))

N
)J(THE(I,J),I=12,N)

6
(
6
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SOURCE.LAPLAC
WRITTEN BY R.F. HANDSCHUH
¥X%¥%% PROGRAM #3 ¥¥%¥%x

THIS PROGRAM IS TO BE USED TO SOLVE THE LAPLACE'S EQUATION
USING THE EXPONENTIAL FINITE DIFFERENCE METHOD.

IMPLICIT REAL*8(A-H,0-2)
REAL*8 V(25,25)

INPUT PROGRAM DATA

WRITE(6,15)

FORMAT(1X, '"NUMBER OF NODES=N I3/
READ(9,10)N

FOLRMAT(I
WRITE(6
FORMAT( UMBER OF TIME SUB INTERVALS= NS I3'")
READ(9,

FORMAT (
WRITE(6
FORMAT (
READ(9,21

e~
-

TOTAL NUMBER OF TIME STEPS= NTOT I3")

FORMAT(1X, 'IN
READ(9,25)TST
FORMAT(F5.3)
WRITE(6,22)

FORMAT(IX.'TOTAL TIME OF ONE TIME STEP= T F7.6")
READ(9,23)T

FORMAT(F7.6)

WRITE(6,26)

FORMAT(1X, *NUMBER OF TIME STEPS BEFORE PRINTING= I3')
READ(9,27)IPR

FORMAT(I3)

WRITE(6,31)

FORMAT(1X, 'INPUT ACCURACY DESIRED= F7.6")
READ(9,32)ET1

FORMAT(F7.6)

N1=N-1

PUT TIME / LENGTH SQUARED F5.3')

INITIALIZE THE BOUNDRY CONDITIONS

DO 30 I=2,Nl
DO 30 J=2,N1
V(I,J)=100.

I=N
DO 50 J=1,N
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V(I,J)=0.0
J=N

DO 51 I=1,N
V(I,Jd)=0.0

J=1
DO 53 I=2,N1
V(I,J)=0.0

I=1
DO 52 J=1,N
V(I,J)=100.0

CALL EXP FIN DIF FOR LAPLACE EQUATION

CALL EFDIHC(N,NS,NTOT,TSI,V,T,IPR,ETI1)
STOP
END

SUBROUTINE EFDIHC
SUBROUTINE EFDIHC(N,NS,NTOT,TSI,V,T,IPR,ET1)

IMPLICIT REAL*8(A-H,0-Z)

REAL*8 VT(25,25),V(25,25),M(25,25),P(25,25),THE(25,25)
TS=TSI/DFLOAT(NS+1)

N1=N-1

NS1=NS+1

BEGIN MAIN STEP INCREMENT

DO 20 L=1,NTOT
ETA=0.0

ZERO THE SUM OF THE DRIVE NUMBERS

DO 15 J=1,N
DO 15 I=1,N
P(I,J)=0.

SAVE THE DEPENDENT VALUES FROM THE LAST TOTAL TIME STEP

DO 10 J=1,N

DO 10 I=I1,N
DELV=V(I,J)-VT(I,J)
ETA=ETA+DABS(DELV)
VT(I,J)=V(I,J)
IF(L.LE.88) GO TO 107
IF(ETA.LE.ET1)GO TO 100
CONTINUE
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SUB TIME INTERVAL
DO 30 K=1,NSl
CALCULATE THE DRIVE NUMBERS

DO 41 J=2,Nl1

JMl=J-1

JP1=J+1

DO 40 I=2,Nl1

IMl=I-1

IP1=I+1
M(I,J)=(VT(IP1,J)+VT(IM1,J)+VT(I,JP1)+VT(I,JM1)-4.¥VT(I,J))
M(I,J)=M(I,J)/VT(I,J)

CONTINUE

CALCULATE THE DEPENDENT VARIABLE ON THE SUB-TIME INTERVAL

DO 50 I1=2,Nl
DO 50 Jl1=2,Nl1
VT(I1,J1)=VT(I1,J1)*¥DEXP(TS*M(I1,J1))

SUM THE DRIVE NUMBERS

DO 60 I=1,Nl

DO 60 J=1,N1
P(I,J)=P(I,J)+M(I,J)
CONTINUE

CALCULATE THE DEPENDENT VARIABLE ON THE NEXT TOTAL STEP

DO 70 J=1,N

DO 70 I=1,N
V(I,J)=V(I,J)*DEXP(TS¥P(I,J))
CONTINUE

ITMAX=ITMAX+1

PRINT THE RESULTS

IF(ITMAX.LT.IPR)GO TO 20
WRITE(6,5)

FORMAT(/)

WRITE(6,31)L

FORMAT(1X, 'TIME STEP NUMBER=',I3/)
TIME=T*¥DFLOAT(L)

DO 71 I=1,N

DO 71 J=1,N

THE(I,J)=V(I,J)
IF(N.GT.11)GO TO 58

DO 59 J=1,N
WRITE(6,82)(THE(I,J),I=1,N)
FORMAT(11(2X,F8.4))
CONTINUE



58

56

57
54

20

100

103

102
101

GO TO 54
CONTINUE
DO 57 J=1,
WRITE(6,56
FORMAT(11(
WRITE(6,56
CONTINUE
CONTINUE
ITMAX=0
CONTINUE
GO TO 101
CONTINUE
WRITE(6,10
FORMAT (2X'
DO 102 J=1
WRITE(6,56
CONTINUE
CONTINUE
RETURN

END

X,F8.4))

N
)(THE(I,J),I=1,11)
2
J(THE(I,J),I=12,N)

¥% CONVERGED RESULT
vV(I,J),I=1,N)

85
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WRITTEN BY R.F. HANDSCHUH
¥%%%¥¥ PROGRAM $4G ¥¥*¥%x
SOURCE.EFDVAR

THIS PROGRAM IS FOR THE SOLUTION OF THE DIFFUSION EQUATION
WITH VARYING THERMAL CONDUCTIVITY. THE METHOD USED IS THE

EXPONENTIAL FINITE DIFFERENCE METHOD.

IMPLICIT REAL*8(A-H,0-Z)
REAL*8 V(100),KR

INPUT PROGRAM DATA

WRITE(6,15)

FORMAT(1X, '"NUMBER OF NODES=N I3'7)
READ(9,10)N

FORMAT(I3
WRITE(6,1
FORMAT(1X
READ(6,13
FORMAT(I3
WRITE(6,1
FORMAT(1X
READ(9,21

WRITE(6,264)
FORMAT(1X,'I
READ(9,25)TST
FORMAT(F5.3)
WRITE(6,22)

FORMAT(1X, 'TOTAL TIME OF ONE TIME STEP= T F7.5'")

READ(6,23)T
FORMAT(F7.5)
WRITE(6,14)

FORMAT(1X, '"INPUT REFERENCE THERMAL CONDUCTIVITY=F5.4')

READ(9,17)KR
FORMAT(F5.4)
WRITE(6,26)

FORMAT(1X, 'INPUT THERMAL CONDUCTIVITY SLOPE VALUE= F5.4"')

READ(9,27)BETA
FORMAT(F5.4)

INITIALIZE THE BOUNDRY CONDITIONS

V(1)=0.
V(N)=0.
H1=N=-1

DO 30 TI=2,Nl
V(I)=100.

UMBER OF TIME SUB INTERVALS=

TOTAL NUMBER OF TIME STEPS= NTOT
i

NS I3'")

T3

NPUT TIME*¥THERMAL DIFFUSIVITY / LENGTH SQUARED F5.3')
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CALL EXP FIN DIF FOR INFINITE HEAT TRANSFER COEFFICENT

CALL EFDIHC(N,NS,NTOT,TSI,V,T,KR,BETA)
STOP
END

SUBROUTINE EFDIHC

SUBROUTINE EFDIHC(N,NS,NTOT,TSI,V,T,KR,BETA)
FOR INFINITE HEAT TRANSFER COEFFICENT
IMPLICIT REAL*8(A-H,0-2)
REAL*8 VT(100),V(100),M(100),
REAL*8 KR,K(100),K0(100),THE(1
TS=TSI/DFLOAT(NS+1)

N1=N-1

NS1=NS+1

PRINT HEADING

WRITE(6,5)

WRITE(6,100)

FORMAT(1X, " X¥¥%*x* SOURCE.EFDVAR HRHKXKNT /)
BEGIN MAIN TIME STEP LOOP

DO 20 L=1,NTOT

ZERO THE SUM OF THE DRIVE NUMBERS

DO 15 I=1,N
P(I)=0.

SET VARIABLES EQUAL TO THE LAST STEPS VALUES

Do 10 I=1,N
VT(I)=V(I)

DO 11 I=1,N

KO0 (I)=KR+BETA*¥KR*V(I)

SUB TIME INTERVAL

DO 30 KK=1,NSl1

DO 35 I=1,N

K(I)=KR+BETA¥KR*VT(I)
THE(I)=VT(I)+BETAX*VT(I)*¥VT(I)/2.0

CALCULATE THE DRIVE NUMBERS
DO 40 I=2,N1

Ini=I-1
IP1=I+1

P(100)
00),KAPPA(100)



|

40
50

Qo

95

elele!

32

elele]

70

81
20

88

M(I)=VT(IP1)+VT(IM1)-2.*VT(I)
M(I)=M(I)+BETA¥(VT(IP1)**2 +VT(IML)**2, -2 %VT(I)**2.)/2.
M(I)=M(I)/THE(I)

DO 50 Il1=2,Nl
KAPPACI1)=THE(IL1)¥DEXP(TS*(1.+BETA*¥VT(I1))*M(I1))

CALCULATE THE DEPENDENT VARIABLE ON THE SUB-TIME INTERVAL

DO 55 Il1=2,Nl
VI(I1)=(-1.+SQRT(1.+2.*KAPPA(I1)*BETA))/BETA

SUM THE DRIVE NUMBERS

DO 60 I=2,N1

P(T)=PCE)+MCT)

CONTINUE

WRITE(6,5)

FORMAT(/)

WRITE(6,31)L

FORMAT(1X, '"TIME STEP NUMBER=',I3/)
TIME=T*DFLOAT(L)

WRITE(6,32)TIME

FORMAT(5X, 'ELAPSED TIME=',F10.4,'SECONDS'/)

CALCULATE THE NEXT TOTAL STEP DEPENDENT VARIABLES AND PRINT RESULTS

DO 70 I=1,N

THE(I)=V(I)+BETA¥V(I)*V(I)/s2.0
KAPPA(I)=THE(I)*DEXP(TS*(1.+BETAXV(I))*P(I))
V(I)=(-1.+SQRT(1.+2.*KAPPA(I)*BETA))/BETA
WRITE(6,81)(V(I),I=1,11)
FORMAT(1X,11(F8.5,2X))

CONTINUE

RETURN

END
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WRITTEN BY R.F. HANDSCHUH

SOURCE.EXPVAR
*¥XX¥%% PROGRAM #5 %X

THIS PROGRAM IS FOR THE SOLUTION OF THE DIFFUSION EQUATION
WITH VARYING THERMAL CONDUCTIVITY. THE METHOD USED IS THE
EXPLICIT FINITE DIFFERENCE METHOD.

IMPLICIT REAL*8(A-H,0-2)
REAL*8 V(100),KR

INPUT PROGRAM DATA

WRITE(6,15)

FORMAT(1X, '"NUMBER OF NODES=N T3 7:)
READ(9,10)N

FORMAT(I
WRITE(6 )
FORMAT( o OTAL NUMBER OF TIME STEPS= NTOT BRI,
READ(9,
FORMAT(
WRITE(6,
FORMAT(1
READ(9,2
FORMAT(F
WRITE(6,22
FORMAT(1X,
READ(6,23)T

FORMAT(F7.5)

WRITE(6,14)

FORMAT(IX,'INPUT REFERENCE THERMAL CONDUCTIVITY=F5.4")
READ(9,17)KR

FORMAT(F5.4)

WRITE(6,26)

FORMAT(1X, 'INPUT THERMAL CONDUCTIVITY SLOPE VALUE= F5.4"')
READ(9,27)BETA

FOPMAT(F5.4)

INITIALIZE THE BOUNDRY CONDITIONS

0)
3)
»16
1%,
21)NTO
I3)
24)
§S;§ PUT TIME*THERMAL DIFFUSIVITY / LENGTH SQUARED F5.3')
5.3)
)
L}

TOTAL TIME OF ONE TIME STEP= T F7.5')

V(1)=0.
V(N)=0.
N1=N-1

DO 30 I=2,Nl
V(I)=100.

CALL EXP FIN DIF FOR INFINITE HEAT TRANSFER COEFFICENT
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CALL EFDIHC(N,NTOT,TSI,V,T,KR,BETA)
STOP
END

SUBROUTINE EFDIHC
SUBROUTINE EFDIHC(N,NTOT,TSI,V,T,KR,BETA)
FOR INFINITE HEAT TRANSFER COEFFICENT

IMPLICIT REAL*8(A-H,0-Z)

REAL*8 VT(100),V(100),M(100),P(100)
REAL*8 KR

N1=N-1

BEGIN TIME STEP LOOP
DO 20 L=1,NTOT
CALCULATE DEPENDENT VARIABLE

DO 40 I=2,Nl1

IMl=I-1

IP1=T+1
VT(I)=V(I)+TSI*((1.+BETA*¥V(I))*(V(IP1)+V(IM1)-2.%V(I)))
DERSQR=DABS(V(IP1)-V(IM1))

IF(DERSQR.LE.0.0)GO TO 40

VI(I)=VT(I)+TSI*( (BETA*¥(DERSQR)*¥2,)/4.)

CONTINUE

PRINT RESULTS

WRITE(6,5)

FORMAT(/)

WRITE(6,31)L

FORMAT(1X, 'TIME STEP NUMBER=',I3/)
TIME=TXDFLOAT(L) )

WRITE(6,32)TIME

FORMAT(5X, 'ELAPSED TIME=',F10.4,"'SECONDS'/)
Do 70 I=1,N

V(I)=VT(I)
WRITE(6,81)(V(I),I=1,N)
FORMAT(1X,11(F9.5,2X))
CONTINUE

RETURN

END
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SOURCE.IMPVAR

WRITTEN BY R.F. HANDSCHUH

X%¥¥*% PROGRAM $#6 X¥H%X%

THIS ROUTINE IS TO BE USED FOR COMPARISION TO EXPONENTIAL

FINITE DIFFERENCE ALGORITHM. THIS ROUTINE WILL USE THE
IMPLICIT ROUTINE TO SOLVE FOR THE TEMPERATURE FIELD USING

aaoaoaaaoaoaaaaaaaQ
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30

Qo

THE TRI-DIAGONAL MATRIX ALGORITHM.

IMPLICIT REAL*8(A-H,0-2)
REAL*8 V(100),KR

INPUT PROGRAM DATA

WRITE(6,15)

FORMAT(1X, '"NUMBER OF NODES=N I3'7)
READ(9,10)N

FORMAT(I3)

WRITE(6,16)

FORMAT(1X, '"TOTAL NUMBER OF TIME STEPS= NTOT
READ(9,21)NTOT

FORMAT(I3)

WRITE(6,24)

FORMAT(1X, "INPUT TIMEX¥THERMAL DIFFUSIVITY / LENGTH SQUARED F5.3")

READ(9,25)TSI
FORMAT(F5.3)
WRITE(6,22)

I3%)

FORMAT(1X, 'TOTAL TIME OF ONE TIME STEP= T F7.5'")

READ(6,23)TS
FORMAT(F7.5)
WRITE(6,14)

FORMAT(1X, 'INPUT REFERENCE THERMAL CONDUCTIVITY=F5.4')

READ(9,17)KR
FORMAT(F5.4%)
WRITE(6,26)

FORMAT(1X, "INPUT THERMAL CONDUCTIVITY SLOPE VALUE= F5.4")

READ(9,27)BETA
FORMAT(F5.4)

INITIALIZE BOUNDRY CONDITIONS

V(1)=0.
V(N)=0.
N1=N-1

DO 30 I=2,Nl
V(I)=100.

CALL IMPLICIT ROUTINE
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CALL IMPL(N,NTOT,TSI,V,TS,KR,BETA)
STOP
END

SUBROUTINE IMPL

SUBROUTINE IMPL(N,NTOT,OMEGA,T,TS,KR,BETA)

FOR INFINITE HEAT TRANSFER COEFFICENT AND VARYING THERMAL CONDUCTIVITY
IMPLICIT REAL*8(A-H,0-Z)

REAL*8 A(101),B(101),C(101),D(101),KAP(101),GAM(101),T(101)

REAL¥*¥8 TO(101)
REAL*8 KR

20202

aQaa

PRINT HEADING

WRITE(6,331)
331 FORMAT(1X, "%%%%% SOURCE .IMPVAR ERHNKT /)
RHO=1.0
CP=1.0
N1=N-1

Qoo

BEGIN TIME STEP LOOP
DO 20 L=1,NTOT

CALCULATE THOMAS ALGORITHM VARIABLES AND THOSE THAT ARE A FUNCTION
OF TEMPERATURE

DO 21 I=1,N
21 D(I)=T(I)
DO 200 I=1,N
200 TO(I)=T(I)
DO 25 I=2,Nl
KAP(I)=1.0+BETAXT(I)
25 GAM(I)=BETA*(T(I+1)-T(I-1))/(4.)

aaaa oo

C
DO 30 I=2,Nl
A(I)=-OMEGA*(KAP(I)-GAM(I))
B(I)=(1.+2.*OMEGAXKAP(I))
30 C(I)=-OMEGA¥(KAP(I)+GAM(I))
c
C CALL TRI-DIAGONAL-MATRIX ALGORITHM
C
CALL TRIDAG(2,N1,A,B,C,D,T)
o]
60 CONTINUE
c
c PRINT THE RESULTS
c
WRITE(6,5)
5 FORMAT(/)

/c*_
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WRITE(6,31)L

FORMAT(1X, 'TIME STEP NUMBER=',I3/)
TIME=TS*DFLOAT(L)

WRITE(6,32)TIME

FORMAT(5X, 'ELAPSED TIME=',F10.4, 'SECONDS'/)
WRITE(6,81)(T(I),I=1,N)
FORMAT(1X,11(F9.5,2X))

CONTINUE

RETURN

END

SUBROUTINE TRIDAG
THIS ROUTINE IS FOR THE SOLUTION OF THE THOMAS ALGORITHM

THIS ROUTINE WAS TAKEN FROM THE BOOK APPLIED NUMERICAL METHODS
BY CARNAHAN, LUTHER, AND WILKES.

SUBROUTINE TRIDAG(IF,L,A,B,C,D,V)
IMPLICIT REAL*8(A-H,0-Z)
REAL*8 A(101),B(101),C(101),D(101),V(101),BETA(101),GAMMA(C101)

COMPUTE INTERMEDIATE ARRAYS BETA AND GAMMA

BETA(IF)=B(IF)

GAMMA(IF)=D(IF)/BETA(IF)

IFP1=IF+1

DO L T=arE], L
BETA(I)=B(I)-A(I)*C(I-1)/BETA(I-1)
GAMMA(I)=(D(I)-A(I)*GAMMA(I-1))/BETA(I)

COMPUTE FINAL SOLUTION VECTOR V

V(L)=GAMMA(L)

LAST=L-IF

DO 2 K=1,LAST

I=L-K
V(I)=GAMMA(I)-C(I)*V(I+1)/BETA(I)
RETURN

END
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SOURCE.COUE
WRITTEN BY R.F. HANDSCHUH
*¥¥%%% PROGRAM #7 ¥¥*¥%x

THIS PROGRAM IS TO BE USED TO DEMONSTRATE THE USE OF THE
EXPONENTIAL FINITE DIFFERENCE METHOD ON THE DEVELOPING TEMPERATURE
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FIELD IN A LAMINAR COUETTE FLOW

IMPLICIT REAL¥8(A-H,0-Z)

REAL*8 V(

INPUT PROGRAM DATA

WRITE(6,1

FORMAT(1X, "NUMBER OF NODES=N

READ(9,10

100)

5)
)N

FORMAT(I3)
WRITE(6,12)

FORMAT(1¥X, "NUMBER OF SUB INTERVALS=

READ(6,13)NS
FORMAT(I3)

WRITE(6,1

FORMAT(1X, '"TOTAL NUMBER OF POSITION

6)

READ(9,21)NTOT
FORMAT(I3)
WRITE(6,24)
FORMAT(1X, 'INPUT (POSITION STEP*KIN.
READ(9,25)TSI
FORMAT(F5.3)
WRITE(6,22)

FORMAT(1X, 'TOTAL DISTANCE OF ONE STEP= T F5.3')

READ(6,23)T
FORMAT(F5.3)
WRITE(6,14)

FORMAT(1X, 'INPUT (MAX WIDTH)/(FLOW VEL)

READ(6,17)SP
FORMAT(F5.4)
WRITE(6,31)

FORMAT(1X, 'INPUT INTERVAL FOR PRINTING RESULTS= I3')

READ(6,32)IPR
FORMAT(I3)

£3Y7)

INITIALIZE THE BOUNDRY CONDITIONS

V(1)=0.

DO 30 I=2,N

V(I)=100.

NS I3')

STEPS= NTOT

VISC)/(LENGTH SQUARED) F5.3")
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CALL EXPONENTIAL FINITE DIFFERENCE FOR COUETTE FLOW
CALL EFFL(N,NS,NTOT,TSI,V,T,SP,IPR)

STOP

END

SUBROUTINE EFFL

SUBROUTINE EFFL(N,NS,NTOT,TSI,V,T,SP,IPR)
FOR COUETTE LAMINAR FLOW

IMPLICIT REAL*8(A-H,0-2Z)

REAL*8 VT(100),V(100),M(100),P(100),FL(20)
TS=TSI/DFLOAT(NS+1)

N1=N-1

PRINT HEADING

WRITE(6,92)
FORMAT(1X, 'SOLUTION FOR DEVELOPING TEMPERATURE FIELD IN'

*'LAMINAR COUETTE FLOW'~//)

DY=1./DFLOAT(N-1)

CALCULATE PARAMETER THAT VARIES WITH POSITION IN THE FLOW

DO 115 I=2,N
FL(I)=SP/(DY*¥DFLOAT(I-1))
NS1=NS+1

BEGIN TOTAL POSITION STEP LOOP

DO 20 L=1,NTOT
IT=IT+1

ZERO THE SUM OF DRIVE NUMBERS

DO 15 I=1,N
P(I)=0.

SET TEMPORARY VALUES EQUAL TO THE LAST POSITION STEP VALUE

Do 10 I=1,N
VT(I)=V(I)

SUB POSITION INTERVAL
DO 30 K=1,NSl1
CALCULATE THE DRIVE NUMBERS

DO 40 I=2,N1
IMl=I-1
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IP1=I+1
M(I)=(2.%VT(I)-VT(IM1)-VT(IP1))/VT(I)

CALCULATE TEMPORARY DEPENDENT VARIABLE ON SUB-INTERVAL

DO 50 TI1=2,N1
VI(I1)=VT(I1)*DEXP(-TS*M(I1)*FL(I1))
DO 60 I=2,Nl1

P(I)=P(I)+M(I)

CONTINUE

CALCULATE THE COMPLETE STEP DEPENDENT VARIABLES

DO 70 I=1,N
V(I)=V(I)¥DEXP(-TS*¥P(I)*FL(I))
CONTINUE

IF(IT.LT.IPR)GO TO 20

IT=0

PRINT THE RESULTS

WRITE(6,5)

FORMAT(/)

WRITE(6,31)L

FORMAT(1X, 'POSITON STEP NUMBER=',I3)
DIST=T*DFLOAT(L)

WRITE(6,32)DIST

FORMAT(5X, 'LOCATION DIST=',F10.4, 'METERS"')
WRITE(6,82)(V(I),I=1,N)
FORMAT(1X,11(F9.5,2X))

CONTINUE

RETURN

END
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WRITTEN BY R. F. HANDSCHUH
SOURCE.EX3D
*¥%%%% PROGRAM #8 ¥X**x

THIS ROUTINE IS FOR FINDING THE TEMPERATURE AT A GIVEN LOCATION
AND TIME FOR A 3-DIMENSIONAL SOLID.

THIS PROGRAM CALCULATES THE EXACT TEMP AS FOUND IN THE BOOK
"TRANSPORT PHENOMENA" BY BIRD, STEWART, AND LIGHTFOOT.

IMPLICIT REAL*8(A-H,0-2Z)
REAL*8 PI,PI2,PI3
PI=3.1415926

INPUT PROGRAM DATA

WRITE(1,31)

FORMAT(1X, '"NUMBER OF NODES PER COORDINATE DIRECTION=I3')
READ(5, 32)NODES

FORMAT(I3)

WRITE(1,1)

FORMAT(1X, 'INPUT INITIAL TEMPERATURE FOR THE SOLID Fé6.3')
READ(5,2)T0

FORMAT(F6.3)

WRITE(1,3)

FORMAT(1X, 'SURFACE TEMPERATURE FOR TIME > 0 SECONDS 61235
READ(5,4)T1

FORMAT(F6.3)

WRITE(1,5)

FORMAT(1X, 'INPUT THERMAL DIFFUSIVITY F5.3')

READ(5,6)ALFA

FORMAT(F5.3)

ASSUMING 3 DIM. CUBE

DATA A,B,Cr1.0,1.0,1.0/

WRITE(1,9)

FORMAT(1X, 'INPUT THE NUMBER OF TIMES THROUGH SUMMATION I3')
READ(5,11)N1

FORMAT(I3)

WRITE(1,12)

FORMAT(1X, "INPUT TIME TO BE EVALUATED AT F5.3')
READ(5,14)TIME

FORMAT(F5.3)

WRITE(6,20)T0,T1

FORMAT(1X, 'TEMP INITIAL=',E15.8,2X,'TEMP SURF=',E15.87)
WRITE(6,30)ALFA, TIME

FORMAT(1X, 'THER DIFF=',E15.8,2X, 'TIME=",F7.5)
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START SUMMATION ROUTINE

PI3=PI**3.
PI2=PI**2.

CALCULATE THE TEMPERATURE ALONG THE DIAGONAL
DEL=A/(DFLOAT(NODES-1))

DO 100 NODE=1,NODES
X=DEL*DFLOAT(NODE-1)

Y=X

Z=X

SUM=0.0

DO 10 K=1,N1

RP=DFLOAT(K-1)

RP1=RP+.5
COSP=DCOS(RP1¥PI*Z/C)

DO 10 N=1,Nl

RN=DFLOAT(N-1)

RN1=RN+.5
COSN=DCOS(RN1*PI*Y/B)

DO 10 M=1,N1

RM=DFLOAT(M-1)

RM1=RM+.5
COSM=DCOS(RM1*PI*X/A)
J=M+N+K-3

Jl=Js2

J2=J1%2

VAL=-1.0

IF(J.EQ.J2)VAL=1.0
GAM=(RM1%%2)/(A¥A)+(RN1¥%¥2)/(B*B)+(RP1*%¥2)/(C*C)
EXPLIM=(-GAM¥PI2*¥ALFA*XTIME)
IF(EXPLIM.LT.-100.)GO TO 999
EP=DEXP(EXPLIM)

GO TO 998

CONTINUE

EP=0.0

CONTINUE

SUM=SUM+(VAL/ (RM1*RN1*¥RP1¥*PI3) )*EP*COSM*¥COSN*¥COSP
CONTINUE
TNEW=T1+8.%(T0-T1)*SUM

PRINT THE RESULTS

WRITE(6,16)X,Y,Z

FORMAT(1X, 'X=',F5.3,2X,'Y="',F5.3,2X,'2=",F5.3)
IF(THEW.LT.1E-10)TNEW=0.0

WRITE(6,15)TNEW

FORMAT(1X, 'TEMPERATURE="',E15.8)

CONTINUE

STOP

END
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SOURCE.EFD3D
WRITTEN BY R.F. HANDSCHUH
X¥X%%% PROGRAM #9 X¥X¥¥¥

THIS PROGRAM IS FOR 3-DIMENSIONAL CARTESIAN COORDINATES

UNSTEADY STATE HEAT TRANSFER IN A CUBE. THE METHOD OF SOLUTION IS THE
EXPONENTIAL FINITE DIFFERENCE ALGORYTHM. THIS PARTICULAR PROGRAM IS
FOR INFINITE HEAT TRANSFER COEFFICENT AT THE EXPOSED SURFACES

AT X=Y=Z=1.0 FOR THE THREE SURFACES WHERE X,¥Y,Z EQUAL 0.0

ARE TO BE CONSIDERED AS PERFECTLY INSULATED.

IMPLICIT REAL¥*8(A-H,0-2)
REAL*8 V(25,25,25)

INPUT PROGRAM DATA

WRITE(6,15)

FORMAT(1X, "NUMBER OF NODES=N L31%7)
READ(9,10)N
FORMAT(I3)
WRITE(6,12)
FORMAT(1X, '"NUMBER OF TIME SUB INTERVALS= NS 1I3')

READ(9,13)NS

FORMAT(I3)

WRITE(6,16)

FORMAT(1X, 'TOTAL NUMBER OF TIME STEPS= NTOT I3")

READ(9,21)NTOT

FORMAT(I3)

WRITE(6,24)

FORMAT(1X, 'INPUT TIMEXTHERMAL DIFFUSIVITY - LENGTH SQUARED F5.3')
READ(9,25)TSI

FORMAT(F5.3)

WRITE(6,22)

FORMAT(1X, 'TOTAL TIME OF ONE TIME STEP= T F6.4")

READ(9,23)T

FORMAT(F6.4)

WRITE(6,26)

FORMAT(1X, "NUMBER OF TIME STEPS BEFORE PRINTING= I3')
READ(9,27)IPR

FORMAT(I3)

WRITE(6,250)N,NS,NTOT

FORMAT(1X, '# OF NODES=',I3,2X,'# OF SUB-TIME-INT=',I3,2X, =
¥'# QF TIME STEPS=',I3)

WRITE(6,251)TSI,T

FORMAT(1X, ' (TIME¥THER DIFF)/LENGTH SQUARED='F5.3,2X, =
¥'TIME STEP LENGTH=',Fé6.4/)

N1=N-1

INITIALIZE BOUNDRY CONDITIONS
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DO 30 I=1,Nl1
DO 30 J=1,Nl1
DO 30 K=1,N1
30 V(I,J,K)=1.0

50 V(I,J,
5 V(I,J,

52 V(I,J,K)=0.0

CALL EXP FIN DIF FOR INFINITE HEAT TRANSFER COEFFICENT

aaa

CALL EFDIHC(N,NS,NTOT,TSI,V,T,IPR)
STOP
END

SUBROUTINE EFDIHC
SUBROUTINE EFDIHC(N,NS,NTOT,TSI,V,T,IPR)
FOR INFINITE HEAT TRANSFER COEFFICENT

IMPLICIT REAL*8(A-H,0-Z)

REAL*8 VT(25,25,25),V(25,25,25),M(25,25,25),P(25,25,25)
REAL*8 MI1,M2

TS=TSI/DFLOAT(NS+1)

N1=N-1

NS1=NS+1

aaaQ oo

PRINT HEADING

aaan

WRITE(6,200)
200 FORMAT(1X, '*X*%¥X%¥X%¥ RESULTS FROM EFD3D XXXXXXXXX%'//)

START TOTAL TIME STEP LOOP
DO 20 L=1,NTOT
ZERO THE SUM OF THE SUB-INTERVAL DRIVE NUMBERS

QaaaQ aaa

DO 15 K=1,N
DO 15 J=1,N
DO 15 I=1,N
15 P(I,J,K)=0.

C SET SUB-INTERVAL VALUES EQUAL TO THE LAST TIME STEP VALUES
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DO 10 K
DO 10 J
DO 10 T
VT(I,J,K)=V(I,J,K)

SUB TIME INTERVAL
CALCULATE THE DRIVE NUMBERS WHICH IS DEPENDENT ON LOCATION IN THE CUBE

DO 30 KS=1,NS1

DO 42 K=2,Nl

KM1=K-1

KP1l=K+1

DO 41 J=2,Nl

JM1=J-1

JP1=J+1

DO 40 I=2,Nl1

IMl=1-1

IP1=TI+1
M1=VT(IP1,J,K)+VT(IM1l,J,K)+VT(I,JP1,K)+VT(I,JM1,K)
M2=M1+VT(X,J,KP1)+VT(I,J,KM1)-6.%VT(I,J,K)
IF(VT(I,J,K).LE.0.0)M(I,J,K)=0.
IF(VT(I,J,K).LE.0.0)GO TO 40
M(I,J,K)=M2/VT(I,J,K)

CONTINUE

CONTINUE

CONTINUE

INSULATED BOUNDRY ALONG X-AXIS

=1,N
=1,N
=1,N

J=1

K=1

KP1=K+1

JP1=J+1

DO 48 I=2,Nl

IP1=I+1

IMl=I-1
M1=VT(IP1,J,K)+VT(IM1,J,K)+2.%¥VT(I,JP1,K)+2.%¥VT(I,J,KP1)
IF(VT(I,J,K).LE.0.0)M(I,J,K)=0.
IF(VT(I,J,K).LE.0.0)GO TO 48
M(I,J,K)=(M1-6.%VT(I,J,K))/VT(I,J,K)
CONTINUE

INSULATED BOUNDRY ALONG Y-AXIS

I=1

IP1=I+1

K=1

KP1=K+1

DO 43 J=2,N1

JP1=J+1

JMl=J-1
M1=2.%VT(IP1,J,K)+VT(I,JP1,K)+VT(I,JM1,K)+2.%¥VT(I,J,KPl)
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IF(VT(I,J
IF(VT(I,J
M(I,J,K)=
43 CONTINUE

INSULATED BOUNDRY ALONG Z-AXIS

J=1

JPl=J+1

I=1

IP1l=I+1

DO 44 K=2,Nl

KM1=K-1

KP1=K+1

M1=2.%VT(IP1,J,K)+2.%VT(I,JP1,K)+VT(I,J,KP1)+VT(I,J,KM1)

IF(VT(I,J,K).LE.0.0)M(T,J,K)=0.

IF(VT(I,J,K).LE.0.0)GO TO 44

M(I,J,K)=(M1-6.%VT(I,J,K))/VT(I,J,K)
44 CONTINUE

»K).LE.0.0)M(T,J,K)=0.
yK).LE.0.0)GO TO 43
(Ml-6.*VT(I.J,K))/VT(I,J,K)

INSULATED FACE AT Z=0

K=1

KP1=K+1

DO 45 I=2,Nl1

IP1=I+1

Ifi=t=1

DO 45 J=2,N1

JP1=J+1

JMl=J-1

M1=VT(IP1l,J,K)+VT(IM1,J,K)+VT(I,JP1,K)+VT(I,JM1l,K)+2.%¥VT(I,J,KP1)

IF(VT(I,J>K).LE.0.0)M(I,J,K)=0.

IF(VT(I,J,K).LE.0.0)GO TO 45

M(I;J,K)=(M1-6.*VT(I:J,K))/VT(I,J:K)
45 CONTINUE

AT THE FACE WHERE Y=0

J=1

JP1=J+1

DO 46 I=2,Nl

IP1=I+1

Il=T=]

DO 46 K=2,Nl

KP1=K+1

KMl=K-1

M1=VT(IP1l,J,K)+VT(IM1,J,K)+2.%¥VT(I,JP1,K)+VT(I,J,KP1)+VT(I,J,KML)

IF(VT(I,J,K).LE.0.0)M(I,J,K)=0.

IF(VT(I,J,K).LE.0.0)GO TO 46

M(I,J,K)=(M1-6.%VT(I,J,K))/VT(I,J,K)
46 CONTINUE

AT THE FACE WHERE X=0
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I=1

IP1=TI+1

DO 47 J=2,N1

JP1=J+1

JMl=J-1

DO 47 K=2,Nl1

KP1=K+1

KM1=K-1
M1=2.%¥VT(IP1,J,K)+VT(I,JP1,K)+VT(I;,JM1,K)+VT(I,J,KP1)+VT(I,J,KM1)
IF(VT(I,J,K).LE.0.0)M(T,J,K)=0.
IF(VT(I,J,K).LE.0.0)GO TO 47
M(I;J’K)=(M1"6.*VT(I'JyK))/VT(I;J;K)
CONTINUE

CORMER AT ORIGIN

M1=2.%VT(1,2,1)+2.%VT(2,1,1)+2.%VT(1,1,2)-6.%VT(1,1,1)
Mf1,1,1)=M1/VT(1,1,1)

CALCULATE THE SUB-INTERVAL DEPENDENT VARIABLES

DO 50 Il=1,N

DO 50 J1=1,N

DO 50 K1=1,N
IF(M(11,Jd1,K1).LT.-50.)VT(I1,J1,K1)=0.0
IF(M(I1,J1,K1).LT.-50)GO TO 50
VT(I1,J1,K1)=VT(I1,J1,K1)*DEXP(TS*M(I1l,J1,K1))
CONTINUE

SUM THE DRIVE NUMBERS

DO 60 I=1,N

DO 60 J=1,N

DO 60 K=1,N
P(I,J,K)=P(I,J,K)+M(I,J,K)
CONTINUE

CALCULATE THE NEXT COMPLETE TIME STEP DEPENDENT VARIABLES

DO 70 K=1,N

DO 70 J=1,N

Do 70 I=1,N
IF(P(I,J,K).LT.-50.)V(I,J,K)=0.0
IF(P(I,J,K).LT.-50.)GO TO 70
V(I,J,K)=V(I,J,K)*¥DEXP(TS*P(I,J,K))
CONTINUE

ITMAX=ITMAX+1

IF(ITMAX.LT.IPR)GO TO 20
WRITE(6,5)

FORMAT(/)

WRITE(6,31)L

FORMAT(1X, 'TIME STEP NUMBER=',I3/)
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TIME=T*DFLOAT(L)
WRITE(6,32)TIME
FORMAT(5X, "ELAPSED TIME=',F10.4,'SECONDS'/)

PRINT OUT THE DIAGONAL RESULTS

WRITE(6,82)(V(I,I,I),I=1,N)
FORMAT(11(2X,F8.6))

ITMAX=0

CONTINUE

RETURN

END
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SOURCE . EXPL3D
WRITTEN BY R.F. HANDSCHUH
¥%%%% PROGRAM #10 **%%X

THIS PROGRAM IS FOR 3-DIMENSIONAL CARTESIAN COORDINATES

UNSTEADY STATE HEAT TRANSFER IN A CUBE. THE METHOD OF SOLUTION IS THE
PURE EXPLICIT METHOD. THIS PARTICULAR PROGRAM IS

FOR INFINITE HEAT TRANSFER COEFFICENT AT THE EXPOSED SURFACES

AT X=Y=Z=1.0 FOR THE THREE SURFACES WHERE X,Y,Z EQUAL 0.0
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IS TO BE CONSIDERED AS PERFECTLY INSULATED.
IMPLICIT REAL*8(A-H,0-2)

REAL*8 V(25,25,25)

INPUT PROGRAM DATA

NUMBER OF NODES = N

READ(5,10)N
FORMAT(I3)

TOTAL NUMBER OF TIME STEPS = NTOT

READ(5,21)NTOT
FORMAT(I4)

TIME*THERMAL DIFFUSIVITY/LENGTH SQUARED = TSI

READ(5,25)TSI
FORMAT(F5.3)

TOTAL TIME OF ONE TIME STEP = T

READ(5,23)T
FORMAT(F6.4)

NUMBER OF STEPS BEFORE PRINTING THE RESULTS =
READ(5,27)IPR

FORMAT(I3)
WRITE(6,252)

FORMAT (1X, " ¥¥RXHXK XXX XXX ¥X¥ PURE EXLICIT FINITE DIFFERENCE

¥ TMETHOD & ¥¥XRHHRAKRRRRRKKKRKR 7/ /)
WRITE(6,250)N,NS,NTOT

FORMAT(1X, '# OF NODES=',I3,2X,'# OF SUB-TIME-INT=',I3,2X,

*'# OF TIME STEPS=',I%)
WRITE(6,251)TSI,T

FORMAT(1X, ' (TIME¥XTHER DIFF)/LENGTH SQUARED='F5.3,2X,

¥'TIME STEP LENGTH=',Fé6.4/)
Nl=N-=1
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INITIALIZE BOUNDRY CONDITIONS

DO 30 I=1,Nl1
DO 30 J=1,Nl1
DO 30 K=1,N1
V(I,J,K)=1.0

I=N

DO 50 J=1,N
DO 50 K=1,N
V(T,J,K)=0.0

I
DO 52 J

V(I,J,K)=0.0

~ I 1

CALL PURE EXPLICIT FINITE DIFFERENCE FOR INFINITE HEAT TRANSFER

CALL PURE(N,NTOT,TSI,V,T,IPR)
STOP
END

SUBROUTINE PURE
SUBROUTINE PURE(N,NTOT,TSI,V,T,IPR)

PURE EXPLICIT FINITE DIFFERENCE METHOD
FOR INFINITE HEAT TRANSFER COEFFICENT

IMPLICIT REAL*8(A-H,0-Z)

REAL*8 V(25,25,25),VT(25,25,25)
REAL*8 M1,M2

N1=N-1

START TIME STEP LOOP

DO 20 L=1,NTOT

SAVE VALUES FROM THE LAST TIME STEP
DO 39 I=1,N

DO 39 J=1,N

DO 39 K=1,N
VT(I,J,K)=V(I,J,K)

COEFFICENT

CALCULATE THE FIELD VARIABLE USING THE EXPLICIT FINITE DIFFERENCE METHOD

DO 42 K=2,Nl
KM1=K-1
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KP1=K+1

DO 41 J=2,Nl1

JM1=J-1

JP1=J+1

DO 40 I=2,Nl1

TMl=I=1

IP1=I+1
M1=VT(IP1,J,K)+VT(IM1,J,K)+VT(I,JP1,K)+VT(I,JM1,K)
M2=M1+VT(I,J,KP1)+VT(I,J,KM1)~6.%¥VT(I,J,K)
V(I,J,K)=V(I,J,K)+TSI*M2

CONTINUE

CONTINUE

CONTINUE

INSULATED BOUNDRY ALONG X-AXIS

J=1

K=1

KP1=K+1

JP1=J+1

DO 48 I=2,Nl1

TERT=41

IMl=T~1
M1=VT(IP1l,J,K)+VT(IM1,J,K)+2.*¥VT(I,JP1,K)+2.¥VT(I,J,KP1)
M2=M1-6 .%¥VT(I,J,K)
V(I,J,R)=V(I,J,K)+TSI*M2
CONTINUE

INSULATED BOUNDRY ALONG Y-AXIS

I=1

IPl=T+1

K=1

KP1=K+1

DO 43 J=2,Nl1

JP1=J+1

JM1=J-1
M1=2.%VT(IP1,J,K)+VT(I,JP1,K)+VT(I,JIJM1,K)+2.%¥VT(I,J,KP1)
M2=M1-6.%VT(I,J,K)
V(I,J,R)=V(I,J,K)+TSI*M2
CONTINUE

INSULATED BOUNDRY ALONG Z-AXIS

J=1

JP1=J+1

I=1

IP1=I+1

DO 44 K=2,N1

KMl=K-1

KP1=K+1
M1=2.%VT(IP1,J,K)+2.%VT(I,JP1,K)+VT(I,J,KP1)+VT(I,J,KM1)
M2=M1-6 .%VT(I,J,K)

V(I,J,K)=V(I,J,K)+TSI*M2
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CONTINUE
INSULATED FACE AT Z=0

K=1

KP1=K+1

DO 45 I=2,Nl

IP1=I+1

ImMl=I-1

DO 45 J=2,Nl1

JP1=J+1

JM1l=J-1
M1=VT(IP1,J,K)+VT(IM1,J,K)+VT(I,JP1,KI+VT(I,JM1,K)+2.%¥VT(I,J,KP1)
M2=M1-6 . ¥VT(I,J,K)
V(I.J,K)=V(I,J,K)+TSI*I’12
CONTINUE

AT THE FACE WHERE Y=0

J=1

JP1=J+1

DO 46 I=2,Nl1

IP1=I+1

IMli=I-1

DO 46 K=2,N1

KP1=K+1

KM1=K-1
M1=VT(IP1,J,K)+VT(IM1,J,K)+2.*¥VT(I,JP1,K)+VT(I,J,KP1)+VT(I,J,KM1)
M2=M1-6 . ¥VT(I,J,K)
V(I,J,K)=V(I,J,K)+TSI*M2
CONTINUE

AT THE FACE WHERE X=0

I=1

IP1=I+1

DO 47 J=2,Nl1

JP1=J+1

JMl=J-1

DO 47 K=2,Nl1

KP1=K+1

KM1=K-1
M1=2.%VT(IP1,J,K)+VT(I,JP1,K)+VT(I,JM1,K)+VT(I,J,KP1)+VT(I,J,KM1)
M2=M1-6 . ¥VT(I,J,K)
V(I,J,K)=V(I,J,K)+TSI*M2
CONTINUE

CORNER AT ORIGIN
M1=2.%VT(1,2,1)+2.%VT(2,1,1)+2.%VT(1,1,2)-6.%VT(1,1,1)
V(1,1,1)=V(1,1,1)+M1*TSI

ITMAX=ITMAX+1
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IF(ITMAX.LT.IPR)JGO TO 20

WRITE(6,5)

FORMAT(/)

WRITE(6,31)L

FORMAT(1X, 'TIME STEP NUMBER=',I3/)
TIME=T*¥DFLOAT(L)

WRITE(6,32)TIME

FORMAT(5X, 'ELAPSED TIME=',F10.4, 'SECONDS'/)

PRINT OUT THE DIAGONAL RESULTS

WRITE(6,82)(V(I,TI,I),I=1,N)
FORMAT(11(2X,F8.6))

ITMAX=0

CONTINUE

RETURN

END
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SOURCE.DOUGLA

WRITTEN BY R.F. HANDSCHUH
¥¥%%% PROGRAM #11 X¥xxx

THIS PROGRAM IS FOR 3-DIMENSIONAL CARTESIAN COORDINATES

UNSTEADY STATE HEAT TRANSFER IN A CUBE. THE METHOD OF SOLUTION IS THE
METHOD OF DOUGLAS. THIS PARTICULAR PROGRAM IS

FOR INFINITE HEAT TRANSFER COEFFICENT AT THE EXPOSED SURFACES

AT X=Y=Z2=1.0 FOR THE THREE SURFACES WHERE X,Y,Z EQUAL 0.0

IS TO BE CONSIDERED AS PERFECTLY INSULATED.

IMPLICIT REAL*8(A-H,0-Z)
REAL*8 T(25,25,25)

INFUT PROGRAM DATA

WRITE(6,15)
FORMAT(1X, '"NUMBER OF NODES=N I3'/7)
READ(5,10)N
FORMAT(I3)
WRITE(6,16)
FORMAT(1X,'
READ(5,21)
FORMAT(I3)
WRITE(6,24
)

TOTAL NUMBER OF TIME STEPS= NTOT I3")
NTOT

)
FORMAT(1X,'I
READ(5,25)TS
FORMAT(F5.3)
WRITE(6,22)
FORMAT(1X, 'TOTAL TIME OF ONE TIME STEP= T F6.4'")

READ(5,23)DT

FORMAT(F6.4)

WRITE(6,26)

7ORMAT(1X, "NUMBER OF TIME STEPS BEFORE PRINTING= I3')
READ(5,27)IPR

FORMAT(I3)

WRITE(6,250)N,NS,NTOT

FORMAT(1X, '# OF NODES=',I3,2X,'# OF SUB-TIME-INT=',I3,2X, =
¥'% OF TIME STEPS=',I13)

WRITE(6,251)TSI,DT

FORMAT(1X, ' (TITME*THER DIFF)/LENGTH SQUARED='F5.3,2X, -
*'TIME STEP LENGTH=',F6.4/)

N1=N-1

INITIALIZE BOUNDRY CONDITIONS
DO 30 I=1,Nl

DO 30 J=1,Nl1
DO 30 K=1,Nl

NPUT TIMEXTHERMAL DIFFUSIVITY / LENGTH SQUARED F5.3')
I .
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30 T(I,J,K)=1.0

(2
I=N
DO 50 J=1,N
DO 50 K=1,N
50 T(I,J,K)=0.0
J=N
DO 51 I=1,N
DO 51 K=1,N
51 T(I,J,K)=0.0
K=N
DO 52 I=1,N
DO 52 J=1,N
52 T(I,J,K)=0.0
C
CALL DG(N,NS,NTOT,TSI,T,DT,IPR)
S5TOP
END
C
(o2 SUBROUTINE DG
¢ )
SUBROUTINE DG(N,NS,NTOT,TSI,T,DT,IPR)
C
c FOR INFINITE HEAT TRANSFER COEFFICENT
€
IMPLICIT REAL*8(A-H,0-Z)
REAL*8 U(25,25,25),V(25,25,25),M(25,25,25),T(25,25,25)
REALX*8 TEMP(25),A(25),B(25),C(25),D(25)
REAL*8 M1,M2
N1=N-1
o
c PRINT OUT HEADING
(0,

WRITE(6,200)
200 FORMAT(1X, "¥%xx%%%%%% RESULTS FROM METHOD OF DOUGLAS XXX¥XXX%%' -
&E47)

C
B CALCULATE COEFFICENTS FOR THOMAS ALGORITHM ( TRI-DIAGONAL MATRIX SOLVER)
c

A(1)=0.0

B(1)=1.+TSI

C(1)=-TSI

DO 60 I=2,N

A(I)=-.5%*TSI

B(I)=1.+TSI

60 C(I)=A(I)
BEGIN TIME STEP LOOP
DO 20 L=1,NTOT

CALCULATE TEMPORARY VARIABLES "U"™ - X DIRECTION, ""V" - Y DIRECTION,
THEN ACTUAL FIELD VARIABLE "T" - Z DIRECTION.
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DO 120 LOOP=1,3

DO 42 K=2,Nl1

DO 41 J=2,N1

DO 40 I=2,Nl

IF(LOOP.EQ.2)GO TO 140

IF(LOOP.EQ.3)GO TO 141

DELX=T(I+1,J,K)+T(I-1,J,K

DELY=T(I,J+1,K)+T(I,J-1,K
K=l

)

)
)
DELZ=T(I,J,K+1)+T(I,J, i

M(I,J,K)=T(I,J,K)+TSI*(.5%¥DELX+DELY+DELZ)
GO TO 40

CONTINUE
DELU=U(I+1.J.K)+U(I-1,J,K)-Z.*U(I,J.K)
DELY=T(I,J+1 rK)"'T(IrJ'l;K)"Z-*T(I;J)K)
M(I,J,K)=M(I,J,K)+.5%¥TSI¥(DELU-DELY)

GO TO 40

CONTINUE

112

2.%¥T(I,J,K)
2.%T(I,J,K)
2.%T(X,J,K)

DELV=V(I,J+1,K)+V(I,J-1,K)-2.%¥V(I,J,K)
DELZ=T(I,J,K+1)+T(I,J,K-1)-2.%¥T(I,J,K)
M(I,J,K)=M(I,J,K)+.5¥TSI*(DELV-DELZ)

CONTINUE
CONTINUE
CONTINUE

INSULATED BOUNDRY ALONG X-AXIS

J=1

K=1

KP1=K+1

JP1=J+1

DO 48 I=2,Nl

LPI=1+}

IMl=I-1
IF(LOOP.EQ.2)GO TO 148
IF(LOOP.EQ.3)GO TO 248

N1=.5*(T(I+l;J,K)*T(I-l;J,K)-Z.*T(I,J;K))
M2=2 .%¥T(I,JP1,K)+2.¥T(I,J,KP1)-4.%¥T(I,J,K)

M(I,J,K)=T(I,J,KI+TST*(M1+M2)
GO TO 48
CONTINUE

DELU=U(I+1.J;K)+U(I—1;J:K)"2.*U(I,J,K)

DELY=2.%(T(I,J+1,K)-T(I,J,K))

M(I,J,K)=M(I,J,K)+.5%¥TSI*(DELU-DELY)

GO TO 438
CONTINUE
DELV=2.%V(I,J+1,K)-2.%*V(I,J,K)

M(I,J,K)=M(I,J,K)+.5%¥TSI*(DELV-2.%(T(I,J,KP1)-T(I,J,K)))

CONTINUE
INSULATED BOUNDRY ALONG Y-AXIS
I=1

IRl=T+1
K=1
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KP1=K+1

DO 43 J=2,N1

JP1=J+1

JMl=J-1

IF(LOOP.EQ.2)GO TO 143

IF(LOOP.EQ.3)GO TO 243
N1=T(IP1;J;K)+T(I,JP1;K)+T(I;JH1;K)+2.*T(I;J,KPI)-S.*T(I:J,K)
M(I,J,R)=T(I,J,KI+TSI*M1

GO TO 43

CONTINUE

DELU=2.*(U(IP1,J,K)-U(I,J,K))
DELY=T(I,JP1,K)+T(I,JM1,K)-2.%T(I,J,K)
M(I,J,K)=M(I,J,K)+.5%TSI*(DELU-DELY)
GO TO 43

CONTINUE
DELV=V(I,J+1,K)+V(I,J-1,K)-2.%V(I,J,K
M(I,J,K)=M(I,J,K)+.5¥TSI*¥(DELV-2.%(T(
CONTINUE

INSULATED BOUNDRY ALONG Z-AXIS

J=1

JP1=J+1

I=1

IP1=I+1

DO 44 K=2,Nl

KM1=K-1

KP1=K+1

IF(LOOP.EQ.2)GO TO 144

IF(LOOP.EQ.3)GO TO 244
M1=T(IP1,J,K)+2.%¥T(I,JP1,K)+T(I,J,KP1)+T(I,J,KM1)-5.%¥T(I,J,K)
M(I,J,K)=T(I,J,K)+TSI*M1

GO TO 4%

CONTINUE

M1=M(T,J,K)
M2=M1+.5%TSI*(2.%¥(U(IP1,J,K)-U(I,J,K))-2.%(T(I,JP1,K)-T(I,J,K)))
M(I,J,K)=M2

GO TO 4%

CONTINUE

DELZ:T(I;J)K+1)"’T(I;J'K"l)-z.*T(I;JrK)
M(I,J,K)=M(I,J,K)+.5%¥TSI*(2.%(V(I,JP1,K)-V(I,J,K))-DELZ)
CONTINUE

)
I,J,KP1)-T(I,J,K)))

INSULATED FACE AT Z=0

K=1

KP1=K+1

DO 45 I=2,Nl

IP1=I+1

LMi=T=1

DO 45 J=2,N1

JPl=Jd+1

JMl=Jd-1
IF(LOOP.EQ.2)GO TO 145
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IF(LOOP.EQ.3)GO TO 245
M1l=.5%(T(IP1l,J,K)+T(IM1,J,K)-2.%¥T(I,J,K))
M2=T(I,JPl,K)+T(I,JM1,K)+2.%¥T(I,J,KP1)-4.*T(I,J,K)
M(I,J,K)=T(I,J,K)+TSI*¥(M1+M2)

GO TO 45

CONTINUE
DELU=U(I+1,J,K)+U(I-1,J,K)-2.*U(TI
DELY=T(I,J+1,K)+T(I,J-1,K)-2.%¥T(I
M(I,J,K)=M(I,J,K)+.5¥TSI*(DELU-DE
GO TO 45

CONTINUE
DELV=V(I,J+1,K)+V(I,J-1,K)-2.%V(I,J,K)
M(I,J,K)=M(I,J,K)+.5%¥TSI¥(DELV-2.%(T(I,J,KP1)-T(I,J,K)))
CONTINUE

AT THE FACE WHERE Y=0

»J,K)
»J,K)
LY)

J=1

JP1=J+1

DO 46 I=2,Nl1

IP1=I+1

IM1=I-1

DO 46 K=2,N1

KP1=K+1

KM1=K-1

IF(LOOP.EQ.2)GO TO 146

IF(LOOP.EQ.3)GO TO 246
Ml=.5%(T(IP1,J,K)+T(IM1,J,K)-2.%¥T(I,J,K))
M2=2.%T(I,JP1,K)+T(I,J,KP1)+T(I,J,KM1)-4%.*¥T(I,J,K)
M(I,J,K)=T(I,J,K)+TSI*(M1+M2)

GO TO 46

CONTINKUE
DELU=U(I+1,J,K)+U(I-1,J,K)-2.%U(I,J,K
M(I,J,K)=M(I,J,K)+.5%¥TSI*(DELU-2.%(T(
GO TO 46

CONTINUE
DELZ:T(IlJIK+1)+T(I’JIK—1)—2-*T(I)J’K)
M(I,J,K)=M(I,J,K)+.5%TSI*(2.%(V(I,JP1,K)-V(I,J,K))-DELZ)
CONTINUE

)
I)JPl:K)"T(I,J:K)))

AT THE FACE WHERE X=0

I=1

IP1=I+1

DO 47 J=2,N1

JP1=J+1

JM1=J-1

DO 47 K=2,N1

KP1=K+1

KM1=K-1

IF(LOOP.EQ.2)GO TO 147

IF(LOOP.EQ.3)GO TO 247
M1=T(IP1,J,K)+T(I,JP1,K)+T(I,J,KP1)+T(I,J,KM1)+T(I,JIM1,K)
M(IyJyK)=T(I,JyK)+TSI*(M1-5.*T(I;J;K))
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GO TO 47

CONTINUE

DELY=T(I,J+1,K)+T(I,J-1,K)-2.%T(I,J,K)
M(I,J,K)=M(I,J,K)+.5%TSI*(2.%(U(IP1,J,K)-U(I,J,K))-DELY)
GO TO 47

CONTINUE

DELV=V(I,J+1,K)+V(I,J-1,K)-2.%¥V(I,J,K)
DELZ=T(I,J,K+1)+T(I,J,K-1)-2 %¥T(I,J,K)
M(I,J,K)=M(I,J,K)+.5%¥TSI*(DELV-DELZ)

CONTINUE

CORNER AT ORIGIN

IF(LOOP.EQ.2) GO TO 151

IF(LOOP.EQ.3)GO TO 251
M1=T(2y1r1)+2.*T(1'2p1)42.*T(111p2)—5.*T(1)1;1)
M(1,1,1)=T(1,1,1)+TSI*M1

GO TO 51

CONTINUE

M1=M(1,1,1)
M2=M1+.5*TSI*(2.*(U(2.1;1)—U(1,1.1))-2.*(T(1;2.1)-T(111;1)))
M(1,1,1)=M2

GO TO 51

CONTINUE

M1=M(1,1,1)

M2=MlH S 5XTST*(2 % (V(1,2,1)-V(1,1,1))~-2.%(TC1,1,2)-TC1,151)))
M(1,1,1)=M2

CONTINUE

IF(LOOP.EQ.2)GO TO 130
IF(LOOP.EQ.3)GO TO 230

DO 70 K=1,Nl1
DO 70 J=1,N1
DO 30 I=1,Nl
D(I)=M(I,J,K)

CALL TRI DIAGONAL MATRIX ALGORITHM
CALL TRIDAG(1,N1,A,B,C,D,TEMP)

DO 430 I=1,Hl
U(I,J,K)=TEMP(I)

CONTINUE
GO TO 330
CONTINUE
DO 71 K=1,Nl
PO 71 T=1,N1
DO 72 J=1,N1
D(J)=M(I,J,K)

CALL TRIDAG(1l,N1,A,B,C,D,TEMP)
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DO 472 J=1,N1
V(I,J,K)=TEMP(J)

CONTINUE
GO TO 330
CONTINUE
DO 73 I=1,Nl
DO 73 J=1,N1
DO 74 K=1,HN1
D(K)=M(I,J,K)

CALL TRIDAG(1,N1,A,B,C,D,TEMP)

DO 474 K=1,N1
T(I,J,K)=TEMP(K)

CONTINUE

CONTINUE

CONTINUE

ITMAX=ITMAX+1

IF(ITMAX.LT.IPR)GO TO 20
WRITE(6,5)

FORMAT(/)

WRITE(6,91)L

FORMAT(1X, 'TIME STEP NUMBER="',I3/)
TIME=DT*DFLOAT(L)

WRITE(6,32)TIME

FORMAT(5X, 'ELAPSED TIME=',F10.4,'SECONDS'/)

PRINT OUT THE DIAGONAL RESULTS

WRITE(6,82)(T(I,I,I),I=1,N)
FORMAT(11(2X,F8.6))

ITMAX=0

CONTINUE

RETURN

END

SUBROUTINE TRIDAG

SUBROUTINE TRIDAG(IF,L,A,B,C,D,V)
IMPLICIT REAL¥*8(A-H,0-2)
REAL*8 A(25),B(25),C(25),D(25),V(25),BETA(25),GAMMA(25)

COMPUTE INTERMEDIATE ARRAYS BETTAR AND GAMMA

BETA(IF)=B(IF)

GAMMA(IF)=D(IF)/BETA(IF)

IFP1=IF+1

DO 1 I=IFPl,L
BETA(I)=B(I)-A(I)*¥C(I-1)/BETA(I-1)
GAMMA(I)=(D(I)-A(I)*GAMMA(I-1))/BETA(TI)
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COMPUTE FINAL SOLUTION VECTOR V

V(L)=GAMMA(L)

LAST=L-IF

DO 2 K=1,LAST

I=L-K
V(I)=GAMMA(I)-C(I)*¥V(I+1)/BETA(I)
RETURN

END
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WRITTEN BY R.F. HANDSCHUH
SOURCE . BURGER
¥¥%%% PROGRAM #12 ¥%X¥¥x

THIS PROGRAM IS FOR THE SOLUTION OF BURGER'S EQUATION
BY THE EXPONENTIAL FINITE DIFFERENCE METHOD.

IMPLICIT REAL*8(A-H,0-Z)
REAL*8 V(100)

READ IN DATA TO BE USED IN THE SOLUTION

WRITE(6,15)

FORMAT(1X, "NUMBER OF NODES=N 137

READ(9,10)N

FORMAT(I3)

WRITE(6,12)

FORMAT(1X, '"NUMBER OF TIME SUB INTERVALS= NS I3')
READ(9,13)NS

FORMAT(I3)

WRITE(6,16)

FORMAT(1X, '"TOTAL NUMBER OF TIME STEPS= NTOT o320
READ(9,21)NTOT

FORMAT(I3)

WRITE(6,24)

FORMAT(1X, "INPUT TIME / LENGTH SQUARED F5.3')
READ(9,25)TSI

FORMAT(F5.3)

WRITE(6,26)

FORMAT(1X, "INPUT KINEMATIC VISCOSITY= F5.3')
READ(9,27)RNU

FORMAT(F5.3)

WRITE(6,22)

FORMAT(1X, 'TOTAL TIME OF ONE TIME STEP= T F5.3")
READ(9,23)T

FORMAT(F5.3)

WRITE(6,14)

FORMAT(1X, 'INPUT NUMBUR OF STEPS BETWEEN PRINTS=I3')
READ(9,17)IPR

FORMAT(I3)

DATA FOR INITIAL AND BOUNDRY CONDITIONS

V(1)=0.
V(N)=1.
Nl=N-1
DO 30 I=2,Nl1
V(I)=1.

CALL EXPONETIAL FINITE DIFFERENCE FOR BURGER'S EQUATION
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CALL BURG(N,NS,NTOT,TSI,V,T,RNU,IPR)
STOP
END

SUBROUTINE BURG
SUBROUTINE BURG(N,NS,NTOT,TSI,V,T,RNU,IPR)

IMPLICIT REAL*8(A-H,0-Z)

REAL*8 VT(100),V(100),M(100),P(100),THE(100)
T5=TSI/DFLOAT(NS+1)

DX=1.0/DFLOAT(N-1)

NI=R-1

NS1=NS+1

WRITE(6,900)

FORMAT (/' ¥%%¥¥¥ SOLUTION FOR BURGER EQUATION X¥XXX'/)

TOTAL TIME STEP LOOP

DO 20 L=1,NTOT
ITMAX=ITMAX+1

ZERO THE SUM OF DRIVE NUMBERS

DO L5 E=1yN
P(I)=0.

SET THE TEMPOARY FIELD VARIABLE EQUAL TO THE LAST TIME STEP VALUE

DO 10 . I=1,N
VT(I)=V(I)

SUB TIME INTERVAL
DO 30 K=1,NS1
CALCULATE THE SUB-INTERVAL DRIVE NUMBERS

DO 40 I=2,Nl

Il =r=1

TRT=E+]

IF(VT(I).LE.0.0)GO TO 40

MG )= 05 SR C 1. =VT(T ) )* (VI (IP1)~-VT(IM1) )/ VT(T)
M(I)=M(I)+RNUX¥(VT(IP1)+VT(IM1)-2.%¥VT(I))/VT(I)
CONTINUE

CALCULATE THE SUB-INTERVAL DEPENDENT VARIABLES

DO 50 Il=2,Nl
CHECK=TS*M(I1)
IF(CHECK.LE.-50.)VT(I1)=0.0
IF(CHECK.LE.-50.)GO TO 50
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VT(I1)=VT(I1)*DEXP(TS*M(
CONTINUE

SUM THE DRIVE NUMBERS
DO 60 I=2,N1

P(I)=P(I)+M(I)
CONTINUE

CALCULATE THE DEPENDENT VARIABLE AT THE NEXT COMPLETE STEP

bo 70 I=1,N
CHECK=TS*P(I)
IF(CHECK.LE.-50.)V{(I)=0.
IF(CHECK.LE.=50.)G0O TO 7
V(I)=V(I)*DEXP(TS*P(I))
CONTINUE

OUTPUT THE RESULTS

IF(ITMAX.LT.IPR)GO TO 20
ITMAX=0

WRITE(6,5)

FORMAT(/)

WRITE(6,31)L

I1))

0
0

FORMAT(1X, 'TIME STEP NUMBER=',I3)

TIME=T*DFLOAT(L)
WRITE(6,32)TIME

FORMAT(5X, 'ELAPSED TIME=',F10.4%, 'SECONDS')

ISTEP=(N-1)/10

DO 110 I=1,N
THE(I)=1.0-V(I)

DO 80 J=1,ISTEP
IS=(J-1)%¥11+1
IFIN=J%10+1
WRITE(6,81)(THE(I),I=IS,
FORMAT(1X,11(F8.6,2X))
CONTINUE

CONTINUE

RETURN

END

IFIN)
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WRITTEN BY R.F. HANDSCHUH
SOURCE . EXBURG
¥%%%% PROGRAM #13 ¥¥¥¥X

THIS PROGRAM IS FOR THE SOLUTION OF BURGER'S EQUATION USING AN EXPLICIT
TECHNIQUE. THE RESULTS WILL BE USED TO COMPARE TO THE EXPONENTIAL
FINITE DIFFERENCE TECHNIQUE.

IMPLICIT REAL*8(A-H,0-2)
REAL*8 V(100)

INPUT PROGRAM DATA

WRITE(6,15)

FORMAT(1X, 'NUMBER OF NODES=N I3'7)

READ(9,10)N

FORMAT(I3)

WRITE(6,16)

FORMAT(1X, 'TOTAL NUMBER OF TIME STEPS= NTOT L3:%)
READ(9,21)NTOT

FORMAT(I3)

WRITE(6,2%)

FORMAT(1X, '"INPUT TIME / LENGTH SQUARED F5.3')
READ(9,25)TSI

FORMAT(F5.3)

WRITE(6,26)

FORMAT(1X, 'INPUT KINEMATIC VISCOSITY= F5.3')
READ(9,27)RNU

FORMAT(F5.3)

WRITE(6,22)

FORMAT(1X, 'TOTAL TIME OF ONE TIME STEP= T F5.3')
READ(9,23)T

FORMAT(F5.3)

WRITE(6,14)

FORMAT(1X, "INPUT NUMBER OF STEPS BETWEEN PRINTS=I3')
READ(9,17)IPR

FORMAT(I3)

INITIALIZE THE BOUNDRY CONDITIONS

V(l)=1.
V(N)=0.
N1=N-1
DO 30 I=2,Nl
V(I)=0.

CALL EXPLICIT FINITE DIFFERENCE SOLUTION FOR BURGER'S EQUATION

CALL BURG(N,NTOT,TSI,V,T,RNU,IPR)
STOP
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END
SUBROUTINE BURG
SUBROUTINE BURG(N,NTOT,TSI,V,T,RNU,IPR)

IMPLICIT REAL*8(A-H,0-2Z)
REAL*8 VT(100),V(100),THE(100)

PRINT HEADING

WRITE(6,999)

FORMAT(1X, '**¥¥ EYPLICIT BURGER S EQT SOLUTION *¥X¥'/)
DX=1.0/DFLOAT(N-1)

N1=N-1

TIME STEP LOOP

DO 20 L=1,NTOT
ITMAX=ITMAX+1

SAVE LAST TIME STEP VALUES

DO 10 I=1,N
VT(I)=V(I)

EVALUATE EXPLICIT FINITE DIFFERENCE EQUATION

DO 40 I=2,Nl

IMli=I-1

IP1=I+1
V(I)=VT(I)-VT(I)*¥T*(VT(IP1)-VT(IM1))/(2.%DX)
V(I)=V(I)+RNUXT*¥(VT(IP1)+VT(IM1)-2.%¥VT(I))/(DX*¥DX)
CONTINUE

WRITE OUT THE RESULTS

IF(ITMAX.LT.IPR)GO TO 20

ITMAX=0

WRITE(6,5)

FORMAT(/)

WRITE(6,31)L

FORMAT(1X, 'TIME STEP NUMBER=',I3)
TIME=T*DFLOAT(L)

WRITE(6,32)TIME

FORMAT(5X, 'ELAPSED TIME=',F10.4, 'SECONDS"')
ISTEP=(N-1)/10

DO 110 I=1,N

THE(I)=V(I)

DO 80 J=1,ISTEP

IS=(J-1)%11+1

IFIN=J%10+1
WRITE(6,81)(THE(I),I=IS,IFIN)



FORMAT(1X,11(F8.6,2X))

CONTINKUE
CONTINUE
RETURN

END

81
80
20
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SOURCE . NONBOU
WRITTEN BY R.F. HANDSCHUH
X%%%% PROGRAM #16 *X%¥%xX

THIS PROGRAM IS USED FOR THE SOLUTION OF THE BOUNDRY LAYER FLOW
OVER A FLAT PLATE. THE DIRECTION OF FLOW IS IN THE X-DIRECTION
WHICH IS5 USED AS THE MARCHING DIRECTION FOR THE EXPONENTIAL FINITE
DIFFERENCE ALGORITHM. THE THERMAL AND VELOCITY BOUNDRY LAYERS

CAN BE EXTRACTED FROM THE TEMPERATURE AND VELOCITY FIELDS FOUND.

IMPLICIT REAL*8(A-H,0-2)
REAL*8 U(101),T(101),V(101)

INPUT PROGRAM DATA

WRITE(6,15)
FORMAT(1X, '"NUMBER OF NODES IN Y DIRC=N I3'7)
READ(9,10)N
FORHAT(IS)

NRITE(6.123

FORMAT (1 NUMBER OF SUB INTERVALS= NS I3")
S

OTAL NUMBER OF X-DIR STEPS= NTOT I3")

WRITE(6,
FORMAT(1
READ(9 2

]
O
oo
=
=
e ]
AN A

INPUT STEP LENGTH F5.3")

MBER OF STEPS BEFORE PRINTING= I3')

oo N et

UT KINEMATIC VISCOSITY= F6.4')

FORMAT(IX.
READ(9,102 L
FORMAT(F6
WRITE(6,10
FORMAT(IX.'INPUT YMAX F5.1")

READ(9,104) YMAX

FORMAT(F5.1)

WRITE(6,250)N,NS,NTOT

FORMAT(1X, '# OF NODES=',I3,2X,'# OF SUB-INT=',I3,2X, -

)

)

INPUT THERMAL DIFFUSIVITY F6.4")
RA

)

)
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¥'# OF TIME STEPS=',I3)

RN=DFLOAT(N-1)

DY=YMAX/RN

WRITE(6,251)DX,DY

FORMAT(1X, 'DX="',F8.4,2X,'DY=",F8.4/)

WRITE(6,252)RNU, RAL

FORMAT(1X, "KINEMATIC VISCOSITY=',F6.4%,'CM*CM/S',2X, 5%
*'THERMAL DIFFUSIVITY=',Fé6.4, 'CM*¥CM/S"')

INITIALIZE BOUNDRY CONDITIONS
DO 30 J=2,N

00
0.0
10

oo

CALL NON1(N,NS,NTOT,RNU,U,V,T,IPR,DX,DY,RAL)
STOP
END

SUBROUTINE NON1(N,NS,NTOT,RNU,U,V,T,IPR,DX,DY,RAL)

IMPLICIT REAL*8(A-H,0-Z)

REAL*¥8 U(101),MU(101),V(101),T(101),MTC101)
REAL*8 PU(101),PT(101),UT(101),TT(101),VT(101)
REAL*¥8 THE(101,1000,3),UT1(101)

PRINT HEADING

WRITE(6,5)

WRITE(6,222) ‘ :

FORMAT (1X, " %HHHH KKK, SOURCE . NONBOU HHRRRRRKKRRKRKKY / /)
WRITE(6,223)

FORMAT(/,1X, "SOLUTION FOR BOUNDRY LAYER FLOW PAST A FLAT PLATE'/)

DY2=DY*DY

$=DX¥RAL/ (DY2*DFLOAT(NS+1))
TS1=DX*RNU/(DY2¥DFLOAT(NS+1))
DEL=DX/DFLOAT(NS+1)

N1=N-1

N51=NS+1

NSTEP=(N-1)/10

BEGIN TOTAL INTERVAL LOOP FOR L=1 TO NTOT STEPS
DO 20 L=1,NTOT
ZERO THE SUM OF DRIVE NUMBERS FOR THE NEXT SET OF SUB-POSITION INTERVALS
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DO 15 I=1,N
PU(I)=0.0
PT(I)=0.0

SAVE LAST POSITION STEP VALUES FOR TEMPORARY VARIABLE CALCULATIONS

ON SUB-POSITION INTERVAL
DO 10 I=1,N

VT(I)=V(I)
UT(I)=U(I)
TT(I)=T(I)
SUB - POSITION INTERVAL

DO 30 K=1,NS1

CALCULATE TEMPERATURE FIELD DRIVE NUMBER
DO 41 J=2,N1

JM1=J-1
JP1=J+1

MT(J)=-VT(J)*¥(TT(JP1)-TT(JM1))*¥DY/ (2. ¥RAL¥UT(J)*TT(J))

MT(J)=MT(J)+(TT(JPLI+TT(JM1)-2.%¥TT(JI)/(UT(JI*XTT(J))
CONTINUE

CALCULATE X - DIRECTION VELOCITY DRIVE NUMBER
DO 141 J=2,Nl1

JMl=J-1
JP1=J+1

MUCJ)=-.5%¥VT(J)*¥DY*(UT(JP1)-UT(JM1) )/ (RNUX¥UT(J)*¥UT(J))

MU(J)=MUCJI+(UT(JPL)+UT(JIML1)-2.*%¥UT(J) )/ (UT(JI*¥UT(J))
CONTINUE

CALCULATE TEMPERATURE, X-DIRECTION VELOCITY, AND Y-DIRECTION VELOCITY

ON THE SUB-POSITION INTERVAL

DO 50 I1=2,Nl
TT(I1)=TT(I1)¥DEXP(TS*MT(I1))

DO 51 I=2,Nl
UT1(I)=UT(I)
UT(I)=UT(I)*DEXP(TS1*MU(I))

DO 65 J=2,Nl1
JM1=J-1

VT(J)=VT(JM1)-.5%¥(DY/DEL)*¥(UT(J)-UT1(J)+UT(JM1)-UT1(JIM1))

CONTINUE
SUM THE DRIVE NUMBERS

DO 60 J=2,N1
PU(J)=PU(J)+MU(J)
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60 PT(J)=PT(J)+MT(J)
30 CONTINUE

CALCULATE THE NEXT TOTAL POSITION STEP VALUES OF VELOCITIES AND TEMPERATURE

DO 70 J=1,N
UT(J)=U(J) .
U(J)=U(J)*¥DEXP(TS1*¥PU(J))
T(J)=T (J)*DEXP(TS¥PT(J))

70 CONTINUE

DO 75 J=2,Nl
JMl=J-1
75 V(J)=V(JM1)~-.5%(DY/DX)*(U(J)-UT(J)+U(IML)-UT(JIM1))

ITMAX=ITMAX+1
SAVE THE VALUES FOUND IN 3-DIMENSIONAL ARRAY "THE"

DO 76 J=1,N
THE(J,L,1)=U(J)
THE(J,L,2)=V(J)

76 THE(J,L,3)=T(J)
IF(ITMAX.LT.IPR)GO TO 20

WRITE OUT THE RESULTS AT THE REQUESTED INTERVAL OF POSITION

WRITE(6,5)
5 FORMAT(/)
WRITE(6,31)L
31 FORMAT(5X, 'POSITION STEP NUMBER=',I3)
TSTEP=DX*DFLOAT (L)
WRITE(6,32)TSTEP
32 FORMAT(5X, "X-POSITION="',F10.4/)
WRITE(6,101)
101 FORMAT(1X,'THE U VELOCITY COMPONENT')
DO 300 KK=1,NSTEP
IS=(KK-1)%11+1
IFIN=KK*10+KK
WRITE(6,82) (THE(I,L,1),I=IS,IFIN)
300 CONTINUE
82 FORMAT(11(2X,F8.5))
WRITE(6,102)
102 FORMAT(1X,'THE V VELOCITY COMPONENT')
DO 301 KK=1,NSTEP
IS=(KK-1)%*11+1
IFIN=KK*10+KK
WRITE(6,82)(THE(I,L,2),I=IS,IFIN)
301 CONTINUE
WRITE(6,103)
103 FORMAT(1X,'THE T FIELD VARIABLE ')
DO 302 KK=1,NSTEP
IS=(KK-1)%¥11+1
IFIN=KK*10+KK



302
20

WRITE(6,82)(THE(I,L,3),I=IS,IFIN)
CONTINUE

ITMAX=0

CONTINUE

RETURN

END
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