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Summary requirements. Conseztuentlythe engine control toohas becomeincreasingly complex (fig. 1). Because of this complexity

The objective of the Advanced Detection, Isolation, and trend and the revolution in digital electronics the control has
Accommodation (ADIA)Program is to improve the overall evolved from a hydromechanical to a fuU-authority digital

electronic (FADEC) implementation. These FADECcontrolsdemonstrated reliability of digital electronic control systems
for turbine engines by using analytical redundancy to detect have to demonstrate the same levels of reliability as their
sensor failures. The results of a test-bed evaluation of an hydromechanical predecessors, or better.

analytical-redundancy-based algorithm developed as part of Thus in an effort to improve the overall reliability of the
the ADIA program are presented in this report. The ADIA digital electrorticcontrol system, various re_tundancymanage-
program is organized into four phases: development, ment techniques have been applied to bo_ the total control
implementation, evaluation, and demonstration. This report system and individual components. One of the least reliable
describes the evaluation phase. This includes a validation of of the control systemcomponents is the engine sensor. In fact
the ADIAalgorithm for sensor failure detection, isolation, and some type of engine sensor redundancy will be required to
accommodation effectiveness, documentation of algorithm achieveadequate control systemreliabilit7. One importantUpe
performance, validation of the algorithm's real-time is analyticalr_undancy (AR).AR-basedsystemscan have cost
implementation, and establishment of a data base for the and weight savings over other redundancy approaches such

as hardware redundancy.demonstration phase of the ADIA program.
The algorithm was evaluated in a test-bed system that Considerable work has been done in applying analytical

consisted oftheenginesystem, the multivariablecontrol, and redundancy to improve turbine engine control system
the ADIA algorithm. The engine system, including actuators reliability. Reference 1 surveys these accomplishments and
and sensors, was simulated in real time on a hybrid computer, defines several technology needs. These needs include
The multivariable control used was an existing control design (1) the ability to detect small (soft) failures, (2) real-time
based on linear quadratic regulator theory. The ADIA implementations of algorithms capable of detecting soft
algorithm is bash on hypothesis testing and can detect, isolate, failures, (3) a comparison of algorithm complexity versus
and accommodate hard and soft sensor failures, performance, (4) a full-scale demonstration of a soft-failure

The evaluation is defined by a test matrix. The test matrix
consists of engine evaluation operating conditions along one
axis and the type of test performed along the other axis. 16-
Control performance with and without the ADIAalgoritlunwas ---O--- MILITARY

.-r-I--- COMMERCIAL ENGINE
evaluated. Eight operating points were considered, and one 14--
or more of the 13 possible tests were performed at these _ E3-_
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of turbine engine control systems have matured into highly 1950 1960 1970 1980 1990 2000
reliable units. However, there is a trend towardgreater engine YEAR
complexity to meet ever-increasing engine performance Figure 1.--Trends in control complexity of aircraft turbine engines.



detection capability, and (5) an evaluation of the pseudo- algorithm and the implementation hardware are described.
linearized modeling approach. The ADIAprogram addresses Next the results of the evaluation are presented. Finally
all of these technology needs, conclusions and recommendations for further work are given.

The ADIA program is organized into four phases:
development, implementation, evaluation, and demonstration.

In the development phase (refs. 2 and 3) the ADIAalgorithm Test-Bed System
was designed by using advanced filtering and detection

methodologies. In the implementation phase (refs. 4 and 5) The ADIAalgorithm was evaluated in a test-bed system
this advancedalgorithm was implemented in microprocessor- (fig. 2) consisting of the engine system, the multivariable
based hardware. A parallel-computer architecture (three control algorithm, and the ADIA algorithm. The ADIA
processors) was used to allow the algorithm to execute in a algorithm is described in the next main section.
timeframe consistent with stable, real-time operation. This

report describes the evaluation phase. In this phase algorithm Engine System
performance was evaluated by using a real-time hybrid
computer engine simulation. The objectives of the evaluation The engine system consisted of an F100 turbofan engine,
were to validate the algorithm for sensor failure detection, the control actuators, and the sensors. The F100 turbofan
isolation, and accommodation (DIA) effectiveness, to engine is a high-performance, low-bypass-ratio, twin-spool
document algorithm performance, to validate the algorithm's turbofanengine. The test-bedengine has five controlledinputs,
real-time implementation, and to establish a data base for the five sensed outputs, and four sensed environmental variables.
demonstration phase of the ADIA program. The ADIA These variables are defined as follows:
algorithm will be demonstrated on a full-scale F100 engine Controlled engine inputs Ucomand Um
in the NASA Lewis Research Center altitude test facility. WF main combustor fuel flow

The report begins with a description of the test-bed system AJ exhaust nozzle area
used in evaluating the ADIA algorithm. Then the ADIA CIVV fan inlet variable vanes
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RCVV rear compressor variable vanes is more completely described in reference 6. The control
BLEED compressor bleed modes in this logic normally use fuel to set engine fan speed

Sensed engine outputs Zm and use nozzle area to set nozzle pressure (engine pressure
N1 fan speed ratio). However, at those conditionswhere limiting is required,
N2 compressor speed fuel flow can be used to limit the maximum FT1T,the
PT4 combustor pressure maximum FT4, or the minimum PT4.
PT6 exhaust nozzle pressure
FTIT fan turbine inlet temperature

Sensed environmental variables Em AlgorithmPO ambient (static) pressure

PT2 fan inlet (total) pressure The ADIA algorithm detects, isolates, and accommodates
TT2 fan inlet temperature sensor failures in turbofan engine control systems. It was
TT25 compressor inlet temperature originally developed for NASA Lewis under contracts

Strictly speaking, TT25is an engine output variable. However, NAS3-22481 and NAS3-23282 by Pratt & Whitney Aircraft
since TT25 is used only as a scheduling variable in the control with subcontractor Systems Control Technology (refs. 2 and
(like TT2), it is called an environmental variable. Also, TT25 3). The algorithmincorporatesadvanced falteringand detection
sensor failures are not covered by the ADIA logic, logic and is general enough to be applied to different engines

Multivariable Control System or to other types of control systems.The ADIA algorithm consists of three elements: (1) hard-
The multivariable control (MVC) system (fig. 3) is failure detection and isolation logic, (2) soft-failure detection

essentially a model following proportional plus integral and isolation logic, and (3) an accommodation filter. These
control. The components of the control are the reference point are shown as part of the test-bed system in figure 2. The
schedules, the transition control schedules, the proportional algorithm detects two classesof sensor failures, hard and soft.
control logic, the integral control logic, and the engine Hard failures are out-of-range or large bias errors that occur
protection logic. The reference point schedules generate a instantaneously in the sensed values. Soft failures are small
desired engine operating point given the pilot's commanded bias errors or drift errors that accumulate relatively slowly
power lever angle (PLA). The transition logic generates rate- with time.
limited command trajectories for smooth transition between The general concept is shown is block diagram form in
steady-state operating points. The proportional and integral figure 4. Here, in a normal or unfailed mode of operation the
control logic minimizes transient and steady-state deviations accommodationfilter uses the full set of engine measurements
from the commandedtrajectories. The engine protection logic to generate a set of optimal estimates of the measurements.
limits the size of the commanded engine inputs. This control These estimates Z are used by the control law. When a sensor
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Figure 4.--Advanced detection, isolation, and accommodation concept.

failure occurs, the detection logic determines that a failure has of the engine. The model used has a linear state-space
occurred. The isolation logic then determines which sensor structure, and the basepoints are nonlinear functionsof various
is faulty. This structural informationis passed to the estimator, engine variables.
The estimator then removes the faulty measurement from

further consideration. The estimator, however, continues to X = F(X - Xb) + G(U - Uo)
generate the full set of optimal estimates for the control. Thus

the control mode does not have to restructure for any sensor Z = H(X - Xo) + D(U - Uo) + Zo
failure.

The ADIAalgorithm inputs are the measured engine inputs Here the subscriptrepresents the basepoint (steady-statepoint)
Um(t ) (fuel flow, nozzle area, compressor inlet guide vane and X is the 4 × 1 model state vector, U the 5 × 1 control
angle, rear compressor variable vane angle, and bleed flow) vector, and Z the 5 × 1 output vector. The F, G, H, and D
and the measured engine outputs Zm (t) (fan speed, matrices are the appropriately dimensioned system matrices.
compressor speed, combustor pressure, augmentor pressure,
and fanturbineinlettemperature). The algorithmoutputsZ(t) The system matrices and the model base points were
are optimalestimatesof the engine outputs Z (t). The measured determined at 109 operating points throughout the flight
environmental variables Emare also used to schedule engine envelope. Three variables are sufficient to completely define
model parameters. The outputs of the algorithm, the estimates an operating point--power lever angle (PLA),altitude, and
Z(t), are used as input to the proportional (linear quadratic Mach number. An alternative definition set is PEA, inlet
regulator, or LQR) part of the control. During normal-mode pressure (PT2),and inlet temperature (TT2).Figure 5 showssome of those 109 points as a function of the altitude/Mach
operationengine measurementsare used in the integral control, number envelope at 83 ° PLA. In figure 6 the same points are
When a sensor failure is accommodated, the measurement in shownat 83* PLAas a function of engine inlet conditions. The
the integral control is replaced with the corresponding second envelope is the more appropriate format for ensuring
accommodation filter estimate by reconfiguring the interface that all significant model dynamics are considered by
switch matrix, adequately spanning the entire envelope with model points.

Engine Model Oncesystemmatricesare determinedat allof the 109operating
points, the individual matrix elements are corrected by the

The performance of the accommodation filter and the engine inlet condition E m and scheduled as nonlinear
detection and isolation logic is strongly dependent on a model functions of Z. These functions are given in reference 2.
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Accommodation Filter where K is the Kalman gainmatrix and 3,is the residual vector.
Like the system matrices the elements of K are corrected by

The accommodation filter (fig. 7) incorporates the engine E m and scheduled as nonlinear functions of Z. An
model along with a Kalman gain update to generate estimates improvement that was added to theaccommodation filter was
of the engine outputs Z and states X as follows: the incorporation of integral action to improve steady-state

accuracy of the FTITestimate Zs.
F(X - Xb) + G(Um - Ub) + K'y One important engine control mode is the limiting of FTIT

X

= H(X - X9) + D(Um -- Ub) + Zb at high-power operation. Because the FTIT sensor is relatively
slow, control action is based on the dynamically faster FTIT

"Y= Zm_ _ estimate. The FTIT limiting control has integral action;
therefore a high degree of steady-state accuracy in the FTIT



estimate is required to ensure satisfactory control. This When a sensor failure has been isolated, the filter is
accuracy is accomplished by augmenting the filter with the reconfiguredby settingthe appropriate diagonalmatrix element
following additional state and output equations: to zero. For example, if a compressor speed sensor failure

(NZ)has been isolated, the switch matrix becomes
/_= K63,

1O000
FTIT = Z5 + b

00000

where K6 is a gain matrix, b is the temperature bias, Z5 is S = 00100
the unbiased temperature estimate, and 3, is the vector of
residuals from the accommodationfilter. The additionof these 00010
dynamics, although improving FTIT estimation accuracy,
results in a larger minimum detectable FTITdrift failure rate. 00001
Concatenating the temperature bias state to the filter state
vector yields the same filter equations with the following The effect of this reconfiguration is to force 3'2equal to 0.

This is equivalent to setting sensed N2equal to the estimate
replacements: of N2generated by the filter. The residuals generated by the

accommodation filter are used in the hard-failure detection

Hard-Failure Detection and Isolation Logic

[ F I [ G] The hard-failure detection and isolation logic (fig. 8)
0] G *-* compares the absolute'valueof each component of the residual

F *-*Lb---_j with its own threshold. If the residual absolute value is greater
than the threshold, a failure is detected and isolated for the

[__] sensor corresponding to the residual element. Threshold sizes
K *-* are initiallydeterminedfrom the standarddeviationof the noise

on the sensors. These standard deviation magnitudes are then
increased to accountfor modelingerrors in the accommodation

[ 1_] filter. The hard-failure detection threshold values (table I) are
H ,--, H twice the magnitude of these adjusted standard deviations.

The failure is accommodated by reconfiguring the switch
matrices in the accommodation filter and all of the hypothesis

D _ D filters in the soft-failure detection logic.

This filter structure, which includes the FTITbias state, is the RESIDUALS,"Y
structure used in the accommodation filter and all the |
hypothesis filters in the soft-failure detection and isolation
logic.

After the detection and isolation of a sensor failure the

accommodation filter is reconfigured by a switching matrix
(fig. 7). This matrix is defined as NO SOFTDETECTION

1 0 0 0 0 "N_

0 1 0 0 0 YESI

S= 00100

00010 [ MODIFYS ]

0 0 0 0 1 Figure 8.--Hard-failure detection logic.



TABLE I.--HARD-FAILURE statistic. The maximum of the results is compared with the
DETECTION THRESHOLD soft-failure detection and isolation threshold. If the threshold

MAGNITUDES is exceeded, a failure is declared. If a sensor failure has
occurred in N1,for example, all of the hypothesisfilters except

Sensor i Adjusted Detection
standard threshold, H1will be corrupted by the faulty information. Thus each of

deviation, kn the corresponding likelihoods will be small except for Ht.
ol Thus the Ht likelihood will be the maximum, and it will be

compared with the threshold to detect the failure.
N1 1 300 rpm 600rpm Each hypothesis filter is identical in structure (fig. 10) toN2 2 400rpm 800rpm
PT4 3 30 psi 60 psi the accommodation filter except for the switch matrix Si.
PT6 4 5 psi 10 psi Each hypothesis filter generates a unique residual vector _'i.
FTIT 5 250OR 500OR Assuming Gaussian sensor noise, each sample of '_i has a

certain likelihood or probability

Soft-Failure Detection and Isolation Logic Li = Pi(3/i) = ke-WSSR;
The soft-failure detection and isolation logic consists of

multiple-hypothesis-based testing. Each hypothesis is where k is a constant and WSSR/=3'i_-t_i with _ =
implementedby usinga Kalmanfilter. The soft detectionand diag (aT). The oi are the adjustedstandarddeviationsdefined
isolation logic structure (fig. 9) consists of six hypothesis in table I. These standarddeviationvalues scale the residuals
filters, onefor normalmode operationandfive for the failure to unitlessquantitiesthatcanbe summedin the WSSRstatistic.
modes (one for each engineoutputsensor). For example, the The WSSRstatisticis smoothedto remove gross noise effects
firsthypothesis filterH 1uses all of the sensedengineoutputs by a first-order lagwith a timeconstantof 0.1 sec. When the
except the first, N1. The seconduses all of the sensedoutputs log of the ratio of likelihoods is taken,
except the second, N2, and so on. Each hypothesis filter

generates a statistic or likelihood called the weighted sum of /L\

squared residuals (WSSR)statistic, which is defined below. LRi = log L_--J = WSSRo-- WSSRiThis statistic is subtracted from the normal-mode WSSRfilter

I WSSRo

--"°1 .11
cH_ , 1", ,_

H2 WSSR2 \ _ ( "_
(N2)

I ( _ LR3 MAXIMUM _ NO NO FAILURE

H3 WSSR3 _ _- _'--_€" _ LRi ISOLATED(PT4) .j

•_. LR4
H4 WSSR4 _ _ _ FAILURE

(PT6) ._ ISOLATED

(FTIT)

Zm Um

Figure 9.--Soft-failure isolation logic.
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If the maximum log likelihood ratio exceeds the threshold, where Xiss is the steady-state detection/isolation threshold and

a failure is detected and isolated and accommodation occurs, r = 2 sec. The values of Xiss,r, and Mtran were found by
Three steps are taken for accommodation. First, all seven of experimentation to minimize false alarms during transients.
the filter (one accommodation and six hypothesis)switching The adaptive threshold expansion logic enabled ;kiss to be
matrices are reconfigured to account for the detected failure reduced to 40 percent of its original value. This resulted in
mode. Second, the states and estimates of all seven filters are an 80percent reduction in the detectionand isolation threshold

updated to the correct values of the hypothesis filter that Xi2.The adaptive threshold logic is illustrated in figure 11 for
corresponds to the failed sensor. Third, the interface switch a PLApulse transient.
matrix is reconfigured.

83--

• rs o,o IISince the WSSR statistic is the sum of Gaussian variables 20 I [ [ l
squared, it has a chi-squared distribution. Initially the soft-

failure detection and isolation threshold is determined by _ i--TRANSIENTINDICATOR(MTRAN)standard statistical analysis of this distribution to set the 4.5

confidence level of false alarms and missed detections. Next 0_ _ ! I [
the threshold is modifiedto accountfor modelingerror. It was
soon apparent from initial evaluation studies that transient 2l-'-

modeling error was dominant in determining the fixed thresh- |
old level. It was also clear that this threshold was too large / /-- THRESHOLD
for desirable steady-stateoperation. Thusan adaptivethreshold
was incorporated.

The adaptive threshold is triggered by an internal control
system variable Mtran , which is indicative of transient
operation. When the engine experiences a transient, gtran is \

set to 4.5; otherwise it is 0. This variable is used to modify x\_LIKELIHOODRATIO
the isolation threshold h i as follows:

I I I I
)ki ----_kiss()_exp q- 1) 0 5 10 15 20 25TIRE, SEC

7"_expq- )kexp= Mtran Figure 11.--Soft-failure detection threshold.



Evaluation System interval requirement of 40 msec necessary for stable engine
operation, multiple processors operating in parallelwere used.

The ADIA algorithm was evaluated by using a real- Initially only the normal-modeaccommodation filter andthe
time hybrid computer simulation of the F100 engine, a hard-failure detection logic of the ADIA algorithm were added
microprocessor-basedcontrol computer includingaccompany- to the MVCalgorithm. For this initial configuration a second
ing interface and monitoring hardware and interactive data 8086-basedcentral processing unit (cPu), running in parallel,
acquisition software, and the sensor failure simulator (SFS). was added to the cPu used to implement the MVCalone. The

CPU's used were Intel 86/30 single-board computers. Data
Hybrid Computer Simulation were transferred between cPu's through dual-ported memory,

The F100 engine hybrid simulationis a nonlinear, real-time, and synchronization between cPu's was achieved through
32nd-order model that includes sensor and actuator dynamics, interrupts. The software for the combined MVC-ADIA

algorithm was partitioned so that the ADIA software ran on
Differential equations, which are based on lumped-parameter the second cPu while the MVCalgorithm remained intact on
thermodynamic and mechanical conservation equations, are the first cPu. This straightforward way to partition the
solved on the analog portion of the hybrid. Component algorithm allowed the parallel-processing mechanism to be
performance informationis stored in the digital computer with thoroughly evaluated. It was assumed that the soft-failure
interpolation and table lookup functions being handled by detection and isolation logicwould be addedto the secondcPw
digital software. The simulation was derived from a digital at a later date.
computer program developed by the engine manufacturer and During algorithmdevelopmentthe soft-failureisolation logic
from engine test data obtained during the MVCtest program.
Simulation accuracy is 2 to 4 percent of nominal for steady- was only run after a soft failurewas detectedby the soft-failure
state performance and is good for transient performance. A detection logic. Because the soft-failure isolation logic is
complete description of the simulation and its accuracy complex and since we felt that there might be some benefit

to running the soft isolation logic in parallel with the soft
performance is given in reference 7. detection logic, a third cPu was added to implement the soft

isolationlogic. The softdetectionlogic was addedto the second
Control Computer cPu. Data were transferred and synchronized in the same

The control, interface, and monitoring (CIM) unit contains manner as with the two-cPu implementation. Most recently,
the microcomputer used to implement the combined MVC- the three 8086-based cPu's were replaced with 80186-based
ADIAalgorithm in real time. The CIMunit also contains CPU's. These are Monolithic Systems MSC8186 single-board
hardware and cabling to provide a flexible interface to and computers. The new cpu's are software compatible with the
from the engine or engine simulation being controlled. A old cPu's but are considerably faster. The relative timing for
monitoring system in the CIM unit allows the signals between the three cPu's is shown in figure 11.
the microcomputer and the controlled engine to be checked As shown in the figure, the different parts of the combined
for correctness. The interface and monitoring functions of the MVC-ADIAalgorithm are divided among the three cPU'S. The
CIMunit are described in detail in reference 8. The remainder MVCis implemented in fixed-point assembly language on
of this subsection describes the control microcomputer cPu 1. When the MVCwas implementedon a microcomputer,
hardware and software, assembly language programming using fixed-point arithmetic

Implementingthe MVC-ADIAalgorithm required integrating was necessary to achieve real-timeexecutionof the algorithm.
the ADIA algorithm with an existing microcomputer With thedevelopmentofefficientfloating-pointcoprocessing
implementationof the F100 multivariable control (MVC).The hardware, in this case the Intel 8087, came the capability of
update interval of the microprocessor-based MVCimple- implementing real-time controls in floating-point arithmetic.
mentation was 22 msec. The FI00 engine system dynamics Thus most of the ADIAalgorithm running on cPu's 2 and 3
required that the combined MVC-ADIA algorithm update is programmed in floating-pointarithmetic and the application-
interval be 40 msec or less. oriented language Fortran. Fortran was chosen because the

The microcomputer implementation of the MVCalgorithm ADIAas developed was coded in Fortran and because a fairly
had been developed by porting the minicomputer implemen- good compiler was available for the 8086-8087. The
tation of the MVCalgorithm used for the F100 MVCprogram advantagesof using floating-pointarithmeticand an application
to an Intel 8086 microprocessor-basedcontrol microcomputer, language such as Fortran rather than programming in fixed-
The ADIA algorithm was then merged with this MVC point assembly language as was used for the MVCare well
implementation to give a full microcomputer implementation known.
of the control algorithm with sensor analytical redundancy. The primary disadvantage to using an application language
The resulting control microcomputer was also based on the is that it generally produces less efficient object code than the
Intel 8086 microprocessor architecture. However, in order to equivalent functions programmed in assembly language.
implement the combined algorithm and satisfy the update Execution efficiency is critical for real-time control systems
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CONTROL,ANDENGINEPROTECTIONLOGIC the MVC-ADIAalgorithm, an executive routine that maintains
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CPU2 requirements for the algorithm and for the executiveare shownEMODEL ENGINEMODELMATRIXAND BASEPOINTCALCULATION
ETRANS TRANSFEROF EMODELINFORMATIONTO CPU 3 foreachcPu.Inaddition,thememoryrequirementforMINDS
FDIA ACCOMMODATIONFILTERANDHARDDETECTIONLOGIC is shown for cpu 1. In all cases the code and the constants

CALCULATIONS were about 65 percent, and the data and the variables aboutINLET MACHNUMBERAND ALTITUDECALCULATION
CPU5 35 percent, of the total memory required. Lastly figure 13

FDISOLHYPOTHESISFILTERSANDSOFTISOLATIONLOGIC showsthetotalmemoryrequirementsforallexecutives,the
CALCULATIONS total algorithm, and MINDSfor all three cPu's combined.ITRANS TRANSFEROF SOFTISOLATIONINFORMATIONTO
CPU 5

Sensor Failure Simulator
Figure 12.--ADIA timing for 8-MHz MSC8186.

The sensor failure simulator (SFS)provides an efficient

including the MVC-ADIA. Thus for the ADIA,table lookup meansof modifying enginesensor signals to simulate sensor
routines, which are written to take advantageof the 8087 failures. The SFSunitconsistsof a personalcomputerdriving
architecture (ref. 9) and are executed frequently in the discrete analog hardware. The personal computer allows a
algorithm, and the hardware interfaceroutines, which have menu-driven,top-downapproachto failurescenarioretrieval,
no Fortranequivalent,areimplementedin assemblylanguage, creation, editing,andexecution.The SFScan simulateany of
To allow the remainderof the algorithmto remainin Fortran, four basic sensor failure modes: scale-factor change, bias,
the source code has been optimized to make it run more drift, and noise. These failure modes are implemented in
efficiently (ref. 10). As shown in figure 12, the entire analog electronic hardware that is controlled by the personal
MVC-ADIA algorithm now executes in less than the required computer. The SFSallows complete and repeatable control
40 msec. over the failure size and the timingof failure injection. Details

The programs for each of the cpu's are downloaded into of the SFSare given in reference 13.
the cPU'S by using a commercially available disk operating
system, CP/M-86. The Microcontroller INteractive Data
System (MINDS)is used for data acquisition (ref. 11). This Real-Time Evaluation
software runs on cPU 1 in the spare time when the cPU is not
executing the MVCalgorithm (fig. 12). The package has both This section describes the evaluation of the ADIAalgorithm
steady-state and transient data-taking capabilities and can using a hybrid-computer-based, real-time simulation of an

10



F100 engine. The objectives, the procedure, and the results (altitude/Mach number) used during the evaluation are across
of the evaluation are discussed, the top of the matrix, and the different tests conducted at these

points are along the side. Both MVConly and ADIA-MVC

Objectives evaluation tests are shown.
Operating conditions.--The rationale used in selecting the

The first objective of the evaluation was to validate the test matrix operating conditions was to duplicate as many
operation and performance of the ADIAalgorithm and its conditions as possible used in the F100 Multivariable Control
implementation. It was especially important to conduct this Program (ref. 6), to avoid high fan inlet pressures, and to
validation in a real-time environment in order to establish the reasonablyspanthe envelope. This rationalewas a compromise
feasibility and practicality of the implementation. The second between taking advantage of previous results for comparison,
objective was to document the performance of the algorithm limited-riskengine operation,and full-envelopevalidation.The
over the envelope of the engine. The third objective was to testconditions selected are plottedon the engine face condition
establish a data base for comparison with results obtained envelope in figure 14.
during the demonstration phase of the program. Test definitions.--The tests used in the evaluation were

selected to completely define detection performance for five
common failures modes. Also, tests were conducted to

Procedure determine engine control performance with and without the
The procedure for evaluating the algorithm is defined by ADIA algorithm and with and without engine sensor failures.

the test matrix (table II). The different operating conditions The tests are summarized in table III.

TABLE II.--EVALUATION TEST MATRIX

Test Operating condition,
altitude (1000 ft)/Mach number

10/0.6 30/0.9[ 10/0.9[ 45/0.9[ 10/1.2 50/1.8 , 35/1.9 I 55/2.2

Number of tests

Sensor failure test:
Hard 10
Soft 10 10 10 5 5 5 5 5
Drift 10 10 10 5 5 5 5 5
Noise 2 2
Scale 2 2
Sequence 12 12
Pulse 1 1 1 1 1

Open 1 1
Random 4 4
Frequency 4 4

MVCtests:
MVCSS 7 3 3 3 2 1 1 1
MVCpulse 1 1 1 1 1
Original/CIM 1 1. 1 1 1
comparison

Single 5

11



TABLE III.--TEST DEFINITIONS

Test Description

ADIA-MVCevaluation

Hard Large bias failure
Soft Small bias failure
Drift Small drift failure

Noise Random noise failure 60 --
Scale Scale-factor bias change
Sequence Sequence of successive output sensor failures
Pulse Minimum-to-maximum-to-minimum transient power _-

excursions. Maximum power level is maintained for 10 sec.
Open Same as pulse test except that minimum power level is

o.

raised slightly, maximum power level is decreased slightly, __ qO -- OPERATINGPOINT,
and engine is controlled without using any sensed engine _ ALTITUDE(1000 FT)/
output information, ua_ MACHNUMBER

10/1 0

MVC-onlyevaluation _°_ 20-- 10_ O 35/1.9

MVC Same as pulse test except that control is run exclusively with _ /0.6,L'7 - O 55/2.2
engine sensed output. ADIA estimates are not used - 10 f_ O 50/1.8
in control. _ /O 30/0.9

MVCSS Steady-state data at operating point 0 _-- O 45/_..9 I_"-"-'_ I I
Bleed Pulse test with bleed control disabled 400 500 600 700 800 900
Single Pulse test with single sensor failure accommodated before FANINLETTEMPERATURE,TT2o OR

initiating transient
Alt/Mach Altitude/Mach number excursion from 10000 ft/Mach 0.6

to 45 000 ft/Macb 0.9 Figure 14.--Evaluation test conditions.

Results demonstrated that the microprocessor-based implementation
of the MVCcontrol algorithm could accurately and safely

Three types of real-time evaluation results are presented, control the test-bed engine. Steady-state and transient results
The first shows the performance of the microprocessor-based were obtained at the testmatrix operating conditions. In every
MVCcontrol. The second shows the accuracy of the Kalman- case both the steady-state and transient accuracy results were
filter-based estimator. Finally the performance of the ADIA good. The steady-state results are summarized in table IV.
algorithm itself is given. Minimum and maximum steady-state error results at seven

MV€performance.--The performance of the MVC control points in the 10 000-fi/Mach 0.6 operatingcondition are given
was evaluated without the ADIAlogic. This evaluation graphically in figure 15 for N1 (minimum error) and in

TABLE IV.--STEADY-STATE MVC PERFORMANCE RESULTS

Operating condition Engine output

Altitude, Mach Power N1 N2 PT4 PT6 FTIT EPR

ft number lever

angle, Value, percent of nominal
PLA,
deg

10×103 0.6 50 0.07 0.66 1.94 -0.18 6.71 -0.79
.6 83 -.40 .08 -.31 -.48 .24 1.53
.9 50 -.17 -.36 -2.66 .00 1.49 .13
.9 83 - .72 .17 .75 - .07 - .41 - .07

1.2 70 -.08 - .21 -. 15 - 1.35 .32 -.07
30 .9 50 -.07 -.52 -. 11 -.37 7.20 - 1.39

.9 83 .09 -.20 .94 -.24 1.16 -.24
35 1.9 83 -.34 -.31 -2.47 -.86 -1.96 -.51
45 .9 70 -.16 -.31 0 -.71 -9.89 -1.45
50 1.8 83 -1.20 -2.01 -5.50 -2.18 -3.78 -1.93
55 2.2 83 .28 1.37 4.97 .11 .81 .11

12
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Figure 15.--Steady-state accuracycomparison (minimumerror) forfan speed Figure 16.--Steady-stateaccuracycomparison(maximumerror)forfanturbine
N1 at 10 000-_/Mach 0.6 operating condition, inlet temperature FTIT at 10000-_/Mach 0.6 operating condition.

figure 16 for FTIT(maximum error). The error magnitudes during the original real-time evaluation of the MVC algorithm
for FTITat PLAof 50° and 70° from table IV represent some (ref. 7).
inaccuracy in the steady-state control schedules. However, In this original evaluation a different computer (a mini-
these inaccuracies will have no effecton control performance computer) was used to implement the control. Both good
since the FTIT control schedule information is not used in the steady-state reference point accuracy and transient trajectory-
control at these PLA settings. Typical transient response followingaccuracy were demonstrated throughout the engine
examples at the 45 000-ft/Mach 0.9 operating condition are operating envelope. Although the minicomputer-based
shown in figure 17 for N1and in figure 18 for PT6for pulse implementationused a slightlydifferent principal control mode
tests. Of the five pulse responses the 45 000-ft/Mach 0.9 (nozzle area sets the airflow Mach number rather than the
operating condition represents worst-case engine control engine pressure ratio), this did not significantly affect the
performance. It is, however, completely acceptable control comparison. Thus if the two implementations compared
response. Additionallythe pulse test resultsat the five transient closely, an additional level of confidence in the ability of the
operating conditions were compared with results obtained new implementation to accurately control the test-bed engine

lOxlO3

-- REQUESTED
SENSED

9 ESTIMATED

5
o-)

8

7 [ I L [ I
0 5 10 15 20 25

TIME, SEC

Figure 17.--Multivariable control performance showing 45 000-ff/Mach 0.9 pulse transient response forfan speed N1.

13



I I I I
0 5 10 15 20 25

TIME, SEC

Figure 18.--Multivariable control performance showing 45000-fi/Mach 0.9 pulse transient response for exhaust nozzle pressure PT6.
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Figure 19.--Multivariable control response to 45 000-ft/Mach 0.9 pulse transient for fan speed Nl--comparison for two implementations.
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Figure 20.--Mu]tivariable control response to 45 O00-ft/Mach 0.9 pulse transient for augmentor pressure PT6--comparison for two implementations.
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(a) N] pulseresponse.
(b) PT6 pulse response.

Figure 21 .--ADIA-MVC performance at 10000-ft/Mach 0.6 operating condition.
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(a) NI pulse response.
(b) PT6 pulse response.

Figure 22.--ADIA-MVC performance at 10 000-ft/Mach 0.6 with a PT6 sensor failure.

systemwas obtained.As seenin the typicalresponsesof figure 19 Control performance was also evaluated given that a single
for N1and in figure 20 for PT6,the comparisonwas quitegood. sensor failure had occurred. The purpose of this test was to
This wastypicalfor all fiveof the transienttestmatrixconditions, evaluate control performance after a single sensor failure had

Additionally the control was evaluated to determine if been accommodated. In this case five pulse transients at the
successful engine operation could be obtained without com- 10 000-ft/Mach 0.6 operating condition were simulated. In
pressor bleed. In these tests the simulation was subjected to each case a single, but different, output sensor failure was
the pulse transientwith the compressorbleed fixedin the closed accommodated before the pulse transient was initiated. The
position. The transient was simulated at the 10 000-ft/Mach normal-moderesponses and the failure transient responses are
0.6 operating condition. These results were compared with compared for an N1failure in figure 21 and for a PT6 failure
those for the nominal configuration. The comparison shows in figure22. Control performance was good for all five failure-
no discernible difference between engine control operation mode cases. Additional information about estimate accuracy
with and without compressor bleed, during these tests is given in the next section.
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(a) Model operating points for PT2/TT2 envelope.
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Figure 23.--Altitude and Mach number excursions.
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Figure 24,--ADIA-MVC performance--N1 response to altitude and Mach number excursions of figure 23.

Finally control performance was evaluated for an altitude the 45 000-ft/Mach 0.9/83 ° operating condition as shown in
and Mach number excursion. The ADIA-MVC control figure 23. Data showing N1 and PT6 control for this transient
performed acceptably during this excursion. The excursion are given in figures 24 and 25, respectively. Control
went from the 10 O00-ft/Mach0.6/83" operating condition to performance for this transient was quite good.
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Figure 25.--ADIA-MVC performance--PT6 response to altitude/Mach number excursions of figure 23.

Estimator accuracy.--The single most important element
in determining ADIA algorithm performance is the accuracy
of the engine output estimates used in the algorithm, These
estimates are determined by the accommodation filter, which
incorporates a simplified engine model. The accuracy of the TABLE V.--STEADY-STATE ESTIMATION ACCURACY

output estimates for both steady-state and transient operation RESULTS WITH NO SENSOR FAILURES

was evaluated at various engine operating conditions. An
Operating condition Engine output

engine operating condition is defined by the pilot's power

request (power lever angle, PLA)and the altitude (ALT)and Altitude, Mach Power NI N2 I PT4 ]PT6 ]FTITMach number (MN) at which the engine is operating. The ft number lever
accuracy of the estimates is presented in two parts, steady- angle, Accuracy,percentof nominal

state accuracy and transient accuracy. PLA,
Steady-state accuracy was obtained in a straightforward deg

manner. The simulationwas "flown" to the desired operating 10× 103 0.6 83 0.43 0.11 3.16 0.53 0. I 1

condition and allowed to reach steady state. Then control 30 .9 50 .06 .16 .21 1.53 .11

execution was halted (or frozen). MINDSwas then used to 10 .9 83 .42 .28 1.36 .69 .04
sample and store a set of steady-state data. Measured and 45 .9 60 .12 .21 t.87 1.45 .0410 1.2 83 .17 .11 1.36 .33 .11
estimated variables for seven operating conditions are 55 2.2 _ .33 .54 5.64 2.48 .05
compared in table V by showing the difference (the residual) 35 1.9 | .03 .32 .92 5.12 .01
between sensed and estimatedfan speedN1, compressor speed 50 1.8 _ .39 .49 3.12 2.48 .04
N2, combustor pressure PT4,exhaust nozzle pressure PT6,and
fan turbine inlet temperature FTIT as a percentage of the Average 0.24 0.28 2.21 1.83 0.06
nominalvalue. Maximum .43 .53 5.64 5.12 .11
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From these comparisons it is clear that the estimates exhibit
excellent steady-state accuracy. Maximum error magnitudes 12I_L0_3

occurred for PT4 at the 55 000-ft point and for PT6 at the i :__- ESTIMATESENSED

35 000-ft point. These error magnitudescan be easily reduced , 1 - /_'--'--_"x
by straightforward adjustment of the base-point schedules J, ,used in the algorithm. The average and maximum steady-state _ _1 I
accuracy results are summarized in bar graph form in 0 5 10 15 20 25
figure 26. TIME.SEC

Transient accuracydata were obtainedin the following Figure 28.--Example of pulse response to sensed and estimated fan speed
manner: Again the simulation was "flown" to the desired for 10000-fl/Mach 0.6 operating condition.
operating conditionand allowed to reach steady state. An idle-
to-intermediate-power PLApulse transient was then simulated
(see fig. 27) at five different operating conditions. MINDS was
used to sample and store data throughout the transient.
Example plots of sensed and estimated fan speed and its
residual, as well as the likelihood ratio for N1, are presented
in figures 28 to 30.

These trajectories give the reader a "feel" for the summa-

rized results of tables VI to IX. In table VI the maximum value _ 200
of the residuals obtained in response to the reference transient

is given for each output at each of the five operatingconditions. _ _ 0In table VII the average absolute values of the residuals are
•_ -200

given. R

-,00 I I I I
0 5 10 15 20 25

6- TIME,SEC

F_ AVERAGE _"Q Figure 29.--Example of pulse response to fan speed residual for5

F,,\',_ _ 10000-ft/Mach 0.6 operating condition.D MAXIMOM..,.,
z ....-

v//
I -- _\" v//

F--  TCTIO.THRESHOLD_ I_///_,, .,,, o .... LIKELIH00DRATIOFORN1
0 ,_',Y/A, \\" _ _.

NI N2 PT4 PT6 FTIT _ _: .8
ENGINEOUTPUT u_

=i::

Figure 26.--Steady-state estimation accuracy. _ "
4

..J

0 5 10 15 20 25

.-- INIERMEDIAIE TIME, SEC

_, Figure 30.--Example of pulse response to fan speed likelihood ratio for
10O00-ft/Mach 0.6 operating condition.

"_ 1260/SEC

_J

_._f" IDLE Sincedetection performance is determinedby the likelihood
20 I I I J ratios, estimate accuracy interpreted in terms of these statistics
0 s 10 15 20 is critical to understanding algorithm performance. TheTIME,SEC

maximum ratio values and the average ratio values are given
Figure27.--Idle-to-intermediate power pulse transient used to generate in tables VIII and IX, respectively, to summarize transient

transientresults, accuracy for the reference trajectories.
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TABLE VI.--MAXIMUM RESIDUAL VALUE IN TABLE IX.--AVERAGE LIKELIHOOD RATIO IN
RESPONSE TO PLA PULSE INPUT RESPONSE TO PLA PULSE INPUT

(NORMAL MODE) (NORMAL MODE)

Operating condition Engine output Operating condition Engine output

PT6 I FTIT Altitude, Mach N1 N2 PT4 PT6 FTIT

F

Altitude, Mach N1 N2 PT4
fi number I ft number

Value, percent of nominal Average likelihood ratio

10x103 0.6 3.57 0.81 6.50 12.55 5.78 10x103 0.6 0.086 0.057 0.044 0.059 0.010
30 .9 1.47 .74 4.48 13.08 5.49 30 .9 .060 .037 .006 .045 .007
10 .9 4.30 1.13 5.22 14.98 5.68 l0 .9 .088 .047 .038 .123 .010
45 .9 2.89 1.86 7.81 19.30 4.44 45 .9 .044 .034 .003 .007 .007
10 1.2 1.54 1.24 5.02 9.21 3.50 10 1.2 .015 .107 .124 .020 .006

Average 2.75 1.16 5.81 13.82 4.98 Average 0.059 0.056 0.023 0.051 0.008
Maximum 4.30 1.86 7.81 19.30 5.78 Maximum .088 .107 .044 .123 .010

Plots of the likelihood ratios became the standard tool used
TABLE VII.--AVERAGE RESIDUAL ABSOLUTE VALUE

INRESPONSETO PLA PULSE INPUT for evaluation and performance prediction. Transient accuracy
(NORMAL MODE) was considered to be quite good overall although not as good

as steady-state accuracy. It was fairly evident then that

Operating condition Engine output detection performance could be greatly improved if different

I thresholds for steady-state and transient detection were
Altitude, Mach NI N2 PT4 PT6 FTIT

ft number allowed. This observation led immediately to the implemen-
Value,percentof nominal tation of the adaptive threshold logic described earlier.

Estimatoraccuracy resultswere also obtained for the single-
10xl03 0.6 0.77 0.24 1.67 2.33 1.44 failure pulse tests described in the MVCevaluation. These
30 .9 .63 .28 .92 2.94 1.64 results are given in table X for maximum residual values and10 .9 .60 .42 .78 2.98 1.39
45 ,9 .49 .36 2.37 5,78 1.21 in table XI for average residual values. These tests show very
10 1.2 ,21 .23 1.21 .75 .85 littledegradationinestimator accuracyperformance even when

it was operating with only four sensors. Thus ADIA perfor-

Average 0.54 0.31 1.39 2.96 1.31 mance will not degrade significantly after a single sensor
Maximum .77 .42 2.37 5.78 1.64 failure.

Estimator accuracy was also studied during the altitude/
Mach number excursion of figure 23. As an example sensed
and estimated N1 and PT6 are compared in figures 24 and 25,
respectively. In each case the accuracy was excellent.

TABLE VIII.--MAXIMUM LIKELIHOOD RATIO IN
RESPONSE TO PLA PULSE INPUT

(NORMAL MODE)
TABLE X.--MAXIMUM RESIDUAL ERRORS FOR PULSE

Operating condition Engine output TRANSIENTS AT 10 000 FT/MACH 0.6 WITH
SINGLE SENSOR FAILURE

Altitude, Mach N1 N2 PT4 PT6 FTIT

ft number Output Failure mode
Maximum likelihood ratio

None N1 N2 PT4 PT6 FTIT
10× 103 0.6 0.875 0.342 0.286 0.598 0.080
30 .9 .241 .146 .076 .305 .042 Maximum residual error
10 .9 1.025 .236 .162 1.340 .059
45 .9 .400 .238 .009 .059 .042 NI 3.570 0 2,931 2.592 2.481 2,877
10 1.2 .126 .253 .355 .401 .041 N2 .810 .979 0 .823 .784 .791

PT4 6.500 7.513 5.211 0 6.454 6.550
Average 0.533 0.243 0.177 0,540 0.053 PT6 12.550 10.740 12.220 11.480 0 11.880

Maximum 1.025 .342 .355 1.340 .080 FTIT 5.780 6.383 5.704 5.650 5.731 0
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TABLEXI.--AVERAGE RESIDUALERRORSFOR PULSE TABLE XII--MINIMUM BIAS FAILURE MAGNITUDES
TRANSIENTS AT 100!30FT/MACH 0.6 WITH

SINGLE SENSOR FAILURE (a) Units

Operating condition Engine output
Output Failure mode

Altitude, Mach Power N1, N2, PT4, PT6, FTIT,

None NI N2 PT4 PT6 FTIT ft number lever rpm rpm psi psi °F
angle,

Average residual error PLA, Failure magnitude
deg

N1 0.770 0 0.755 0.472 0.571 0.483

N2 .240 .249 0 .250 .265 .270 10× 103 0.6 50 300 300 12.50 3.00 150
PT4 1.670 1.479 .693 0 1.067 1.260 .6 83 350 350 12.50 3.00
PT6 2.330 2.211 2.486 2.432 0 2.431 30 .9 50 300 13.50 2.75
FTIT 1.440 1.305 1.417 1.406 1.455 0 83 325 13.50 3.00

10 50 300 13.50 2.75
83 300 " 11.00 3.00

45 " 70 200 400 18.00 3.00 250
Detection, isolation, and accommodation performance.-- 10 1.2 70 200 400 20.00 3.50 150

Two types of sensor failureswere considered:hardandsoft. 50 1.8 83 300 350 12.50 3.00 |
Hardfailures, becauseof theirsize, areeasily detected.Thus 35 1.9 83 300 300 19.00 3.00

hard-failure detection performance, although important to 2.2 83 250 500 25.00 3.00

systemreliability, was examined at only one operating condi- (b) Nominal
tion. The ADIAalgorithm exhibited excellent hard-failure
detection performance at this condition. There were no false Operatingcondition Engineoutput

alarms or missed detections of any hard failures at the oper- Altitude, Mach Power N1 N2 PT4 PT6 FTIT
ating condition studied. Hard failures were simulated in each ft number lever

of the engine sensor outputs. The failure was successfully angle,
detected and accommodated in each case. In addition, no false PLA, Failure magnitude,
alarms in the hard-failure detection logic were encountered deg percent of nominal

during the subsequent soft-failure evaluation. 10×103 0.6 50 3.47 2.60 6.39 12.02 12.00
Soft sensor failures, although small in magnitude, if .6 83 3.41 2.67 3.85 7.74 8.75

undetected, may result in degraded or unsafeengine operation. 30 .9 50 3.43 3.10 10.92 18.10 12.36
Soft failures are more difficult to detect. Therefore the 83 3.25 2.73 6.99 13.24 9.41

evaluation concentrated on soft-failure detection and isolation 10 50 3.54 2.60 6.17 9.74 12.17
83 2.91 2.66 2.86 6.40 8.72

performance. Four soft-failure modes were considered: bias, 45 ', 70 2.12 3.34 21.33 29.96 18.18
drift, noise, and scale factor. Algorithm performance for 10 1.2 70 2.11 3.21 5.71 7.78 10.00
the bias and drift failure modes was studied extensively. 50 1.8 83 2.94 2.71 8.33 17.44 9.06
Performance for the noise and scale-factor modes was studied 35 1.9 83 2.95 2.31 5.94 7.69 8.94
at a limitednumber of conditions. Performancecriteria studied 55 2.2 83 2.57 3.76 16.34 15.54 8.80

were minimum detectablebias values and drift rates, detection (c)Full-scalebias
time, steady-state performance degradation, and transient
response to failure accommodation. Operating condition Engineoutput

The procedure followed to obtain performance data was Altitude, Mach Power NI N2 PT4 PT6 FTIT
identical to that used to obtain transient accuracy data. ft number lever

Additionally the SFSwas used to simulate a sensor failure of angle,
the appropriate size and at the desired time. The results PLA, Failure magnitude,
obtained are summarized for the minimum detectable level of deg percent of full scale

bias in table XII. lOx103 0.6 50 2.92 2.29 3.85 7.74 8.75
In table XII the minimum detectable biases at 11 different .6 83 3.41 2.67 3.85 7.74

operating conditions for each engine output are given. The 30 .9 50 2.92 2.67 4.15 7.10
83 3.17 2.67 4.15 7.74detection times for the minimumdetectable biases were essen-

10 50 2.92 2.29 4.15 7.10
tially instantaneous. The results are presented as a percentage 83 2.92 2.67 3.38 7.74 ,'
of full scale, a percentageof nominal, and in engineeringunits. 45 , 70 1.95 3.05 5.54 7.74 4.59

Full-scale values are constant, but nominal values can vary 10 1.2 70 1.95 3.05 6.15 9.04 8.75

throughout the operating range. Note that the size of the 50 1.8 83 2.92 2.67 3.85 7.74 |

failures detected (in units or equivalently as a percentage of 35 1.9 83 2.92 2.29 5.85 7.7455 2.2 83 2.44 3.81 7.69 7.74
full scale) was essentially constant over the operating range.
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D AVERAGE _ TABLE XIII.--MINIMUM DRIFT FAILURE MAGNITUDES25

#: --D MAXIMUM _\.,, (a) Units

20 -- _ _ Operating condition Engine output

_N'--_ Altitude, Mach Power NI, N2, PT4, PT6, FTIT,
...... \\\ fl number lever rpm/sec rpm/see psi/see psi/see °F/seeI
"" " \" \ angle, '

• \\\ \_.\10 -- \\\ _ _\,_'_ PLA, Failure magnitude
v / / ,,\,, deg

\\\ V/I \\\

5 ?_._ \\\ v// \\-,v// \., 10X 103 0.6 50 100 100 2.50 0.80 70
\ \\ 11"// \\\
"-\" t/// ,\\ .6 83 125 125 1.25 .60

v// 30 .9 50 130 100 2.50v//
0 "_] ] 83 150 125 3.00

NL NH PTtl PT6 FTIT 10 50 100 100 2.50
ENGINEOUTPUT 83 125 125 2.00 ,

45 " 70 100 150 3.00 .80 75

Figure 31.--Minimum detectable bias failure. 10 1.2 70 25 150 3.50 1.20 70
50 1.8 83 150 150 1.75 .20 70

35 1.9 83 125 50 3.00 .20 70

Note also that the highest detectable bias (29.96 percent) as 55 2.2 83 75 215 4.50 .60 75
a percentage of nominal occurred for PT6 at 45 000-ft/Mach
0.9/70 ° because of the low nominal value of PT6 at this (b)Nominaldrift

condition. However, this failure as a percentage of scale (7.74 Operatingcondition Engine output

percent) was about average. The minimum detectable bias I I

Altitude, Mach Power N1 I N2 PT4 ] PT6 FTIT
magnitudes were small overall and represented excellent ft number lever
performance.Thisperformanceis summarizedin bar graph angle,
form in figure 31. PEA, Failure magnitude, percent of nominal

deg
The minimum detectable drift rates (table XIII) were

determined by adjusting the drift magnitude such that a failure lOx103 0.6 50 1.16 0.87 1.28 3.20 5.60
was detected approximately5 sec after its inception. As in the .6 83 1.22 .95 .38 1.55 4.08

30 .9 50 1.49 .89 2.02 3.95 5.77
bias case the highest minimum detectable drift rate as a 83 1.50 .97 1.55 2.65 4.39
percentage of nominaloccurred at the 45 000-ft/Mach 0.9/70 ° 10 50 1.18 .87 1.14 2.13 5.68
operating condition. However, as before, this value as a per- 83 1.21 .95 .52 1.28 4.07

45 _ 70 1.06 1.25 3.55 7.99 5.45
centage of nominal was well below the maximum value as a 10 1.2 70 .26 1.20 1.00 2.67 4.67
percentage of full scale. The percentage-of-full-scale values 50 1.8 83 0 .01 .01 .03 .05
are all similar in magnitude. In general these results, which 35 1.9 83 1.23 .38 .94 .51 4.17

55 2.2 83 .77 1.61 2.94 3.11 4.40
are summarized in the bar graph of figure 32, were excellent.

(c) Full-scale drift

8 -- _ Operating condition Engine outputi

D k\x,.\\AVERAGE "-\ \ Altitude, Mach Power N1 N2 P ['4 PT6 FTIT
_.._," ft number lever

,,=5,6- U MAXIMUM _.'_'_ angle,
0.. \\\ _ PLA, Failure magnitude, percent of full scale_d \\x ,xx

-...-- _N'K deg

z 4 ....... lOxlO 3 0.6 50 976 0.76 0.77 2.70 4.08

\\\ \\\
" "" "\\ /._ .6 83 1.22 .95 .38 1.55• \\ \\\

\\', /,(, .\, 30 .9 50 1.27 .76 .77
"-\', "-"-", 83 1.46 .95 .92
\\\ \\\

2- _'_ ,,\\ 10 50 .97 .76 .77
_.._-_ 83 1.22 .95 .62 ,'

+I E \\\ \\\ 45 70 .97 1.14 .92 2.07 4.38,,\\ \\'h 10 1.2 70 .24 1.14 1.08 3.10 4.08
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NL NH pTtl PT6 FTIT 55 2.2 83 .73 1.64 1.38 1.55 4.38

ENGINEOUTPUT

Figure 32.--Minimum detectable ramp failure.
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TABLE XIV.--STEADY-STATE RESULTS OF SLOW DRIFT FAILURE TRANSIENTS FOR ORIGINAL ADIA ALGORITHM

Operating condition Failure ADIAalgorithm
parameter

Altitude, Mach Power Parameter bias Change in Time for Comments Performance a
ft number lever before DIA thrust DIA,

angle, before DIA, sec
PLA, percent

deg

0 0 24 P6 7.4 psi (42%) -4.5 0.490 A
0 40 NI 1333 rpm (12.1%) -44.5 1.994 U
0 83 PT4 46.5 psi (12.7%) --.1 3.080 Filter noisy during ADIA A
1.2 83 FTIT 90 F (5.2%) -2.2 2.53 |

10× 103 .75 50 PT4 40.5 psi (19.6%) -.2 2.664

.75 83 PT6 9 psi (21.8%) --1.5 .572
20 .3 40 N2 Undetected .... Undetected Unstable diverging U

.3 83 N2(-) Undetected .... Undetected Unstable U

.3 ! N2 1415 rpm (11.4%) -4.5 3.518 A
25 1.0 / PT4 46.5 psi (18.1%) --.2 3.066 A

2.2 _' PT4 False alarm ........ PT4 and PT6 false alarms prior to failure U
40 .6 40 N2 Miss -48 .... 2000-rpm drift miss U

.6 83 PT6 6.75 psi (63.7%) -.5 .448 System oscillatory after failure induced A
45 2.2 / P4 -56.4 psi (-24.5%) -.16 3.750 A
60 1.2 / N2 2000 rpm (15.8%) --19.4 5.016 Drift caused system to go unstable U
65 2.5 _ P6 -3.75 psi (-27.4%) +24.7 .400 FTIT false alarm U

aA = acceptable; U = unacceptable.

To place these results in perspective, the soft-failure detect-
ion performance of this improved version of the algorithm TABLEXV.--DRIFTFAILURERESULTS
was compared with the original algorithm (ref. 1). In this
comparison drift failures were injected at 17 "edge of the Operatingcondition Failure Parameter Change in Time

parameter bias thrust for
envelope" points. Performance data for the original algorithm Altitude, Mach Power beforeDIA, DIA,
(table XIV were obtained from a nonlinear, digital simulation ft number lever percent sec
of the engine. The performance of the improved algorithm is angle,

PLA,

presented for comparison in table XV. deg
Some of the operating conditions of table XIV are only

approximated in table XV. The hybrid computer could not 0 0 24 P6 3.7psi 0 0.5
successfully attain these conditions because of scaling limita- 0 40 NI 263.0rpm 1 .30 83 PT4 15.2 psi 0 .9

tions. In every case but one, the improved version of the 1.2 83 FTIT 124.0°V -4 2.5
algorithm had a smaller parameter bias before detection than 10×103 .75 50 PT4 16.4psi 0 .9

.74 83 PT6 2.7 psi -8 3.7
the originalversion. In all failurecases the improved algorithm 20 .3 40 N2 248.0rpm -1 .3
allowed continued engine operation; in some cases the original .3 83 iN2(-) -234.0rpm 1 .5
algorithm would have required an engine shutdown. The drift .3 [ N2 265.0rpm - 1 .3
failure rates used in this comparison are given in reference 1. 25 1.0 _ IPT4 16.8psi 0 1.02.0 PT4 17.8 psi -- 1 1.2

Estimation accuracy and false alarm performance were also 40 .6 40 N2 216.0rpm -5 .5
evaluated for the altitude/Mach number excursion definedby .6 83 PT6 2.6psi - 11 1.6
figure 23. Likelihood ratio and detection threshold responses 45 2.1 PT4 15.7psi 0 .560 1.2 N2 274.0 rpm -- 15 .8

are given in figure 33 for the PT4 and PT6 engine outputs. The 65 2.3 PT6 3.7psi -5 2.3
likelihood ratios for N1, N2, and FTITwere all smaller than 45 2.1 " PT4(--) --15.0psi 0 1.5
those for PT4 and PT6. Here the accuracy was quite good and
there were no false alarms.
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Actuator Modeling Error Evaluation

The effectsof fuelflow actuatorand fuelflow feedbacksen-
sor modelingerrors were also evaluated.Since the algorithm
estimates depend on fuel flow informationand since fuel
flow is the primary control variable, fuel flow actuationor
measurement errors could significantly degrade detection

,8 DETECTION performance. Likelihood ratio results for the PLApulse testTHRESHOLD
PT_ at the 10 000-ft/Mach 0.6 operating condition are shown in

o .6 -- PT6 figure34 for normal operation, for operationwith a 10percent
,_ change in the fuel flow actuator gain, and for operation with

a 10percent change in the fuel flow feedback measurement.
_.4 -- In each case no false alarms were encountered. In general,
._ detection performance was not significantly degraded by the
__ modeling errors. However, some effect was seen for a

•2 - feedback sensor error on the N2 and PT4 likelihood ratios. For

,_""_ PT4 the difference occurred only during an engine acceleration
_/,.,,'.,._2__._.,j,.,_ I _ I, I and wouldhave onlya limitedeffecton detectionperformance.

5 10 15 20 25 For N2, however, a steady-state error occurred that in theTIME,SEC

worst case would result in approximatelya 50 percent increase
Figure 33.--Likelihood ratio response during altitude/Machnumberexcursion, in minimum detectable failure magnitudes.

1.2 -- DETECTIONTHRESHOLD
NORMALMODE

SENSORERROR

1.0 ACTUATORERROR

2 f'\
%

-.2 I I I I
0 5 10 15 20 25

TIME, SEC

(a) N1 likelihood ratio.

Figure 34--Fuel flow modeling error effects for various likelihood ratios.
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1.2
DETECTIONTHRESHOLD

_-_ NORMALMODE
.... SENSORERROR

.... ACTUATORERROR
1.0

(c)

-.2 I I I I i
0 5 10 15 20 25

TIRE, SEC

(b) N2 likelihood ratio.

(c) PT4 likelihood ratio.

Figure 34.--Continued.
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1.2

"-"" DETECTIONTHRESHOLD

--'-- NORMALMODE
.... SENSORERROR

1.0 ACTUATORERROR

.8

,2--

(E)

-. I I I I I
0 5 10 15 20 25

TIME,SEC

(d) PT6 likelihoodratio.

(e) FTIT likelihood ratio.

Figure 34.--Concluded.
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Conclusions and straightforward programming procedures, including
Fortran and floating-point arithmetic, were used. Parallel

As a result of this real-time evaluation study several conclu- processing was also used and shown to be an effective
sions have been reached, multiplier of computational resources.

1. The advanced detection, isolation, and accommodation 3. The ADIA algorithm and MVCcontrol microprocessor-
(ADEn)failure detection algorithmworks and works quite well. based implementationsare ready for demonstration. The ADIA

Sensor failure detection and accommodationwere demonstra- algorithm will be demonstrated on a full-scale F100 engine
ted over a broad range of operating conditions and power in the Lewis Research Center's altitude test facility.
conditions. The minimum detectable failure magnitudes
represent excellent algorithm performance.

2. The algorithm is implementable in a realistic computer Lewis Research Center
environment and in an update interval consistent with real- National Aeronautics and Space Administration
time operation. Off-the-shelf microprocessor-based hardware Cleveland, Ohio, April 14, 1987
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