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Abstract

General formulation of a problem involving a macrocrack
propagating through an area with microcracks is considered. The
applied approach is based on the simultaneous solution of a system of
singular integral equations.

Several methods described in the literature are discussed in
detail and compared with our approach.

The specific problem considered represents a macrocrack
approaching an infinite transverse array of microcracks. Results can
be used for interpretation of the microcrack-toughening mechanisms.

Results illustrate the different effects due to loading types in
materials with transverse microcrack arrays (stacks of microcracks).
Numerical results are compared with data recently appearing in
literature and they demonstrate the importance of the accuracy of the
numer ical scheme employed. Our results differ by a factor in certain

cases as compared with data given in [6].

Introduction

An accurate assessment of the toughness of structural materials
usually requires an estimate of the distortion of the applied (macro)
stress field due to material microdefects. As a result, the actual
parameters controlling the crack propagation may differ significantly
from the expected values based on the applied load. The ratio KO/K°°
of the actual stress intensity factor (SIF) to the value of SIF which
is expected without the influence of microdefects can be taken as a
main parameter characterizing the influence of the microdefects on
material toughness in the framework of the fracture mechanics of
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brittle materials. In ref. [1] the influence of the single defects
is investigated.

It is shown in [l1] that a primary effect of the change of the
local SIF takes place at a relatively short distance from the crack
tip of the main crack to the location of the microdefects (distance
in the wunits of the characteristic 1length of the defect).
Additionally, the location of the defect has a principal role in the
overall effect. Thus, cracks, voids, and inclusions, with lower
stiffness than the main matrix, located ahead of the macrocrack,
increase local SIF. The same defects behind the crack front decrease
local SIF. Rigid inclusions or inclusions of higher stiffness than
the main material will act in the opposite direction. However, when
any of these defects is located at about 90 degrees from the crack
line, they act in exactly the same manner (even quantitatively):
they shield the main crack. The analysis of the interaction of a
semi-infinite array of collinear micro-cracks with the macrocrack (2]
shows, as previously, a relatively short range of the influence of
the array, but the intensity of the interaction is significant as the
macrocrack approaches the array.

The aim of this study is an investigation of the interaction of
the macrocrack with a transverse array of parallel microcracks
(stack) . The problem is formulated in terms of the small scale
approach, when the applied stress field is characterized by a remote
stress intensity factor. The formulation can be applied to any
arbitrary crack distribution and it is straightforward. Generally,
the problem involving a finite number of cracks can be solved
numerically by reducing the system of integral equations to a system
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of linear algebraic equations. The case of an infinite array is
analyzed by applying a certain extrapolation technique in order to
obtain a complete effect.

Problems of multicrack interactions have been addressed in
literature [1-6]. The approach usually is different to a degree, but
the basic principles are of course the same. The difference in the
approach, however, can influence the accuracy of the numerical
results, assuming a similar computational effort in each case. This
can be demonstrated in the following example. Consider the
formulation given in [3]). The problem of multiple crack interaction
in the infinite plate is posed as a superposition of a single crack
homogeneous problems. The traction of each crack includes the terms
corresponding to the remote loading and terms called
"pseudo-traction." The pseudo-traction components represent the
additional traction on each crack due to the crack interactions.
Thus, expanding these unknown components in power series by powers of
normalized local coordinates, the authors reduce the problem to a
system of linear algebraic equations. The number of terms in the
expansion dominate the accuracy of the procedure. However, it 1is
easy to show that the error of this calculation will strongly depend
on the relative distance between the cracks. The straightforward way
to do this would be to consider the case of N collinear cracks in an
infinite plane under remote uniform loading. The resulting stress

potentials as per [3] will be

N C.
1
1 1 Vit-a;) (t-c)
, _ 1 i i 1
P (2) = z : 271 (z=a;) (z-¢;) f t - z ol (£)dt + 7 o= (1)
i=1
a .
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where a;, C; are coordinates of the i-th crack tips and ol stands for
the total complex surface traction on i-th crack, including the
pseudo-traction, ot = 0221 + if’12 - gw, On the other hand, the exact

solution can be obtained, and the stress potential will have the

q \/ (t-a,) (t-c;)
1 Z/ oK (t)at
i J—W (z-ai) (z-ci) - Z
i=1

k=1

following form

¢2'(Z) =

(2)

1
+ Z g .

Here ok represents the applied traction on k-th crack. In the case
of remote loading ok = - g .

Thus, compare the forms (1) and (2). Obviously the
"pseudo-traction" represents the expansion of square roots on the
intervals outside the branch cuts. However, as the distance between
the cracks decreases, the number of terms in the expansion has to be
increased in order to maintain the desired accuracy. Naturally the
expansion will fail as the cracks will coincide (for a branched
crack) .

In ref. [4] the crack opening displacement 1is taken as an
unknown function in representation of the individual potentials and
the superposition principle is used. Basically, the formulation is
very close to that described above, although it is done in different
terms and in the form applicable to three dimensional problems.

A simple and effective approach based on superposition technique
and ideas of self-consistency was introduced in ref. [5,6]). However,
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the accuracy of this method has to be examined and it will be
discussed below. As illustrated above, in the examples of collinear
cracks, a superposition of single crack solutions in the form (1) is
not always the best way to solve the problem of the interaction of
closely located cracks. The form (2) certainly will give better
results in terms of accuracy. The alternative to the form (2)
follows from the theory of mixed boundary value problems [8]. It is

well known that the same function ¢2(z) can be written as

N Cx
\ A b (t) 1
b, (2) = Z Tl t-z 9t * 7 o, (3)
k=1 d
K

(E/4)(l-v2) for the plane strain case) and

Here A is a constant (A
bk(t) is a dislocation density distribution along the crack (ak'ck)‘
The form (3) represents the general case; the cracks do not have to
be collinear. The corresponding fuhction V' (z) can be obtained as
superposition of dislocations as well.

In the following sections the necessary details of the
formulation are given and special cases are considered. Special
consideration in this report is given to the analysis on a small
scale, meaning that microcracks surround the macrocrack, which is
much larger than microcracks and therefore is represented as a
semi-infinite crack. Two specific microcrack arrays are analyzed.
We consider transverse arrays, stacks of microcracks. Type A
corresponds to the case when macrocrack is aligned with one of
periodically distributed microcracks, and type B corresponds to the
case when macrocrack approaches the array in the middle between the

microcracks.



2. Formulation

As mentioned above, our formulation 1is based on the
superposition of dislocation arrays representing cracks. Consider
the case of a finite number of microcracks. Introduce the stress
potentials [7], ¢(z) and ¥(z), so the stress and displacement fields

can be represented as follows

911 + 059 = 4Re ¢'(2), 2 = xl + ix2
059 = 9y + 2i0y, = 2(zo¢"(z) + v'(2)) (4)

up +duy =3 [k e(2) - E ¢'(2) - w(2)].

here k = 3-4v for the plane strain case and x = (3-v)/(l+v) for the
plane stress case. v is the Poisson's ratio and u is the shear
modulus. The analytic functions ¢'(z) and ¥'(z) are chosen for the

case of N microcracks as
o' bq {% ¥
" (z) = v (z) + ?i % (z) (5)

~

(o]
: A Gy (t)
9,(2) = o7 _I. zZ - t dt
o _ (6)
bz = - — f L
° i z - t (z-t) 2

and functions ¢3(z) and w%(z) represent the microcracks




. A L gj(s) ds
0502 = —32 f e,
- a. — Sh.
z aJ s Je
-1
(7)
1 - ~ie
AL, (s .+ 4.8e j . (s
w'(z) _ j 93( ) i ) (aJ i J)gj( ) ds
3 i 1ej , iej 2
- a. - Si. -~ a. - si.
z aJ s Je (z aJ s Je )
-1
Here A = u/(k+1), gj(s) represents the dislocation density

distribution along the microcracks and Gl(t) is the dislocation
density along the macrocrack. The notations along the microcracks
are illustrated in Fig. 1.

The traction free conditions on the crack surfaces lead to a
system of singular integral equations for determination of the

unknown dislocation density functions. These conditions are

o1 *iog, = ¢'(2) + ' (2) + zZe"(2) + ¥'(2) =0 (8)
on X4 < 0, X, ® 0]
and .
219j
. _ ' v - > oall '
oan ¥ 1o, = ¢'(2) + e (2) + e [(ze"(2) + ¢'(2)] (9)
on the j-th microcrack. Additionally, the conditions of single

valued displacement have to be stated. This condition, as in the
case of multiply connected regions, is reduced to close contour
integrals. The contours have to be chosen surrounding each
microcrack. Thus one will obtain N additional equations which are

reduced to

1
/ 9 (s) ds =0, j = 1,2,..,N. (10)
-1



The homogeneous system of singular integral equations of the first
kind obtained above has a family of solutions. The supplementary
conditions (10) apply to finite intervals only. For the
semi-infinite interval an additional condition has to be stated. As
discussed in [l], the singular integral equation of the first kind on
a semi-infinite interval requires a stabilizing term; namely, the
terms of the order 0(t°l/2) as t + o have to be specified up to a
multiple constant as a parameter of the problem.

Physically, for the considered case it corresponds to a
description of the remotely applied stress. Thus the dislocation

density has to be taken in the form

G, (t) = G(t) - K, /2a\/2nt (11)
t + - ®
and
G(t) = o(t™172), t » -w. (12)

Substituting (l1) into (6), then

o

A G(t) K

b, (2) = — f at + —=2— (13)
TL

z2-t 2 V2nrz
and
o
' A G(t) t G(t) K, 1 K
bo(z) = - — |1 - ] dt + —— - - 2 (14)

Tl

z-t (z-t) 2 221z 4 \VZnz

K_ here is the remote (applied) stress intensity factor. Of course,
terms corresponding to a remote stress field do not produce traction
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on the macrocrack surfaces. The resulting system with potentials %
and wo in the form (13) and (l14) with restriction (12) is complete
and has a unique solution,

Following the theory of singular integral equations [8] and
using the numerical technique based on Gauss-Chebyshev quadrature [9]

one represents unknown functions as

G(t) = afu) -}f—s (-1 <u < 1) (15)
and
B. (s)
9 (s) = 4 (-1 <s <1). (16)
2

j = l,2.uo,N

Condition (l12) becomes
a(-1) =0 (17)

The numerical procedure is based on discretization of the integration
interval by the nodes of Chebyshev polynomial of the first kind for
the dummy variable and the second kind for the variable on the right
hand side. The value of interest here is the ratio of the acting SIF
at the macrocrack to a remote SIF.

K,/K,_, =1 -1 af(l) * A/K_. (18)
For the values of a(u) at u=-1 and u=l Lagrange formulas for the

Chebyshev polynomials were used.

3. Numerical Results

The formulation above is different from the previously used
methods of solution of crack interaction problems. The difference is
not significant in its basis, but more or less in its technical
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aspects. The main feature of the above approach is simultaneous
solution of a large system of singular integral equations. There is
no influence type function for particular boundary conditions in this
formulation; none of the conditions has to be satisfied with
preferable accuracy. The numerical accuracy is uniform and is
controlled by the number of nodes (or, in other words, by the order
of the approximating polynomial) on a particular integration
interval. So, Lj will correspond to a number of nodes on j-th
microcrack and L, will stand for the number of nodes on the
macrocrack. The case Lj=2 will simplify integrals (7), and using

Gauss-Chebyshev integration formula one can obtain a simple algebraic

system very similar to one used in [5,6].

i) Collinear Cases

The test cases for our formulation were the problems of
collinear macrocrack-microcrack interaction and macrocrack-semi-
infinite array interactions. The first case is solved exactly and
the second is solved by using a completely different technique in
[2]. The numerical solution for the case of a single crack compares
well with the exact solution. For the distance between the
macrocrack tip and the closest tip of microcrack higher than 0.021
(in the units of a microcrack length), the error is below 0.3% with a
relatively low number of nodes used in the computations. For higher
values of this distance the error is rapidly decreasing. The data of
this comparison is given in Table 1. In table 1, the data

corresponding to a semi-infinite microcrack array is given as well.
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The numerical solution of the problem dealing with an infinite
number of cracks is simplified by using the effect of the order of
microcrack distribution. As a result, we seek the difference between
dislocation density distribution functions of the neighboring cracks
instead of the function itself. This difference approaches to zero
faster than the dislocation density function. Therefore, a number of

equations in the system can be reduced. Thus we take in (16)
J

Bj(s) = Bl(S) + Z ABk(S) (19)
k=1

Additionally, solution of the problem on a small scale is associated
with decaying remote stress as 1/ z, so the dislocation density on
the cracks located at sufficient distance from the main crack can be

expected to decay as
const
‘/ak

Incorporation of (19) and (20) into the numerical procedure allows

max | Bk (s) | = , as ak + o, (20)

one to reduce the number of equations and at the same time to keep
the effect of distant microcracks present. The results given in
Table 1 correspond to N=15 (number of 48, evaluated) but the total
number of microcracks taken into account using (20) is up to 200.
The results in Table 1 indicate an excellent consistency of the
numer ical sequence and indicate mainly the influence of the number of
nodes chosen in the procedure.

(ii) Macrocrack interaction with an array of parallel

macrocracks. As mentioned above, the numerical technique outlined
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here can be applied to an arbitrary crack distribution. In this
report we focus our attention on the cases of parallel microcrack
arrays (stacks of microcracks) transverse to a macrocrack. We
consider two types of parallel microcrack distributions. The array
of type A has a microcrack on the x-axis contrary to type B. Both
arrays are symmetric with respect to the axis and are equally spaced

with a pitch p. Thus in both cases ek=0 and in the case A

N L .
ay = d + 5 + ipk (21)
and in the case B
_ L .k
ak = d + —2— + 1p E (22)

in (21) and (22) k = ...,-3,-2,-1,0,1,2,3,... The symmetry of the
problem reduces the number of unknown functions by using the

following relations:

g_k(s) - gk(s) for Mode I loading and

g_x(s) gy (s) for Mode II loading.

As guiding cases, we consider the cases of three parallel cracks
for type A and two cracks for type B. These cases were studied in
order to determine the regions of significant influence of the
microcrack on the stress intensity factor at the main crack. Thus,
we found that at the ratio of p/%>14 (p here is the distance from the
microcrack to x axis) the effect of two microcracks (outside in the
case A) is less than 0.1%, regardless of the distance ratio d4/&. 1In
our calculations, infinite arrays are modeled by arrays of half
length Nc = 15 for P/%>1.0 (p now is the pitch of the microcrack
distribution) and N_=30 for p/%<l.0. Additionally, in order to
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obtain results with uniform accuracy, the number of nodes on each
microcrack is chosen in relation to the distance of the array from
the macrocrack tip. For example, for the smaller values of 4/, like
d/1<0.05 we used 11 nodes on each microcrack and a smaller number of
nodes for the larger ratio d4/%. The minimum number of nodes used was
7.

The results for the infinite microcrack array of type A are
given in Fig. 2 and 3, for the loading modes I and II respectively.
The corresponding results for the array of type B are given in Fig. 4
and 5. We compare results obtained here for the arrays with the data
given for a single crack along the crack line [2] in case A (and B
when applicable: d>0) and the case B is compared with the case of
two parallel microcracks equally distant from the crack line.

The main feature of the effect produced by the transverse array
is the shielding effect of the remote microcracks. As demonstrated
in [7] by analyzing the solution for an arbitrary positioned
microcrack in the vicinity of the macrocrack tip, the effect on the
resulting SIF depends on the angular position of the microcrack and
on its orientation. This data observation 1is supported by an
approximate analysis given in [10]. Microcracks with positional
angle higher than 62 deg. will produce a shielding effect. Thus for
the transverse array there will always be a portion that will act as
a shield. The effectiveness of the shielding depends on the ratio
d/ %. As evident from the presented data, the cracks located closer
to the main crack dominate the resulting interaction effect.
Practically (within 1-5% accuracy) only 3-4 first microcracks in each
half plane control the overall result.
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4. Concluding Remarks

A simple approach based on the solution of a system of integral
equations was applied to a problem of a macrocrack quasi-statically
propagating through an array of parallel microcracks (stack of
microcracks). This analysis was aimed at evaluating an effect of
microcracking on overall material toughness. The method and the
numerical formulation were carefully examined in cases with known
solutions and were found to be highly accurate. As explained in the
introduction, the number of nodes taken into the numerical scheme or
taken into account for the development of simplified techniques has a
significant impact on the final results. For example, our results in
some regions are significantly different from the data presented by
Kachanov and Montagut [6] in similar geometries. Thus, in the case
of a macrocrack approaching two parallel cracks, the maximal
shielding effect according to [6] is about 25%. In our computations
the same geometry will yield 77% shielding. Similarly, cases of the
infinite arrays give different results. Evidently, the numerical
approach used in [6] will give better results for geometries when
cracks do not overlap each other, or spread at larger distances.

The overall results of this study demonstrate the significant
effect of microcrack shielding (reduction of the actual value of the
stress intensity factor with respect to one remotely applied). Two
modes I and II were examined and found to have somewhat different
effects. If one can consider such factors as stability of the
shielding effect, which would depend on geometrical deviations of the
considered configuration, and secondly on the width of the region
with qualitatively similar effect. The first factor was not
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considered here but certainly is expected to be related to the
seéond. The second factor can be judged by observing results, and it
is evident that mode I gives stable shielding and mode II does not.
In the case of mode II we have two regions, shielding and
antishielding, very close to each other, and therefore the total
shielding effect hardly can be expected in a practical situation.
Thus Mode 1 can be characterized by reduction of the applied stress
intensity factor by 80% which would lead to a material toughness
increase of four times.

The Mode II on the other hand can not claim a stable shielding
effect. If in the Mode I case the crack advances toward the stack of
microcracks will be stimulated by the microcrack up to the point when
they overlap with the macrocrack and then stable shielding takes
place; in the case of Mode II after similar development, the next
region will still stimulate crack growth and so slight deviation of
the macrocrack tip from the shielding zone will still stimulate crack
growth. This effect can explain different toughness of porous

materials when they are subjected to shear stresses.
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Table 1. SIF for a Single Crack and Semi-Infinite Array Distributed
Along x-axis.
d=0.021, P=1.5 d=0.1, P=2.0 d=0.2, P=5.0
KS/KQ K/K, KS/KQ K/K_ KS/KQ K/K,
Ref. [2] 2.14848] 2.26081 1.38738} 1.42075 1.209231.21237
Result of 2.14212}) 2.25618 1.3874 1.42137 1.2092211.21380
Present
Computations
]
Error % 0.3 0.2 0.003 0.04 0.000Si 0.1
|
LO,LJ,N 40, 11, 15 40, 9, 15 40, 8, 15

d is distance between macrocrack and first crack in the array, p is

the pitch of the crack distribution. L
the macrocrack.

is the number of noded on on

. Q N N
L. 1is number of nodas dn each microcrack and N is
the number of micracracks for which ABk(s) is evaluated.
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Figure 2. Results of the computation for the case of array A, Mode I.
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Figure 3. Results of the computation for the case of array A, Mode II.
' 20




=
g
_ Tr
<
MODEI =
<.>
=20 -0
N
, h o9
p/£=2.0 l Infinite crack
‘ I e array
\ /: —-—Two cracks
10 07 (p/£=0.5)
N | - Single crack
\ -0.6
p/L=0.5 \.\ / 0.5
. /
/ 0.4
\ o/ "03
\/
-0.2

Figure 4. Results of the computation for the case of array B, Mode I.
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Figure 5. Results of the computation for the case of array B, Mode II.
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