D34/
o007

Computer resource managers have a difficult assignment. They
are responsible for selecting and allocating finite computer-
related resources in such a manner as to promote an efficient
software development process and a resulting quality product.
The difficulty is that this job must be accomplished amidst a
plethora of potential software tools and a lack of suitable -
measures for determining the impact of such tools and’of other
computer resource support. -

MEASURING THE IMPACT OF COMPUTER RESOURCE QUALITY
ON THE SOFTWARE DEVELOPMENT PROCESS AND PRODUCT

Frank McGarry and Jon Valett
NASA Goddard Space Flight Center
Greenbelt, Maryland
and
Dr. Dana Halt
NASA Headquarters
Washington, D.C.

ABSTRACT

The availability and quality of computer resources during the software development process has been
speculated to have measurable, significant impact on the efficiency of the development process and
the quality of the resulting product. Environmental components such as the types of tools, machine
responsiveness, and quantity of direct access storage may play a major role in the effort to produce
the product and in its subsequent quality as measured by factors such as reliability and ease of
maintenance.

During the past six years, the NASA Goddard Space Flight Center has conducted experiments with
software projects in an attempt to better understand the impact of software development
methodologies, environments, and general technologies on the software process and product. Data
has been extracted and examined from nearly 50 software development projects. The data collection
and analysis has been performed jointly by NASA, the Computer Science Department at the Univer-
sity of Maryland, and the Computer Sciences Corporation. The projects have varied in size from -
3000 up to 130,000 lines of code with an average of 60,000 lines of code. All have been related to the
support of satellite flight dynamics ground-based computations. As a result of changing situations
and technology, the computer support environment has varied widely. Some projects enjoyed fast
response time, excess memory, and state-of-the-art tools, while other projects have endured slow
computer response time, archaic tool support, and limited terminal access to the development
machine.

This study examined the relationship between computer resources and the software development
process and product as exemplified by the subject NASA data. Based upon the results, a number of
computer resource-related implications are provided.

BACKGROUND Numerous measures have been proposed to both characterize

3-38

the software development process and to quantify and qualify
- the software product. McCabe (1) defined a measure which
could be used to determine the extent of testing that should be
performed on a particular software component. This measure,
called tl;e cyclomatic measure, has aiso been used as a means
of characterizing the overall complexity of the software. Gilb
(2) did a thorough job of describing the practical applications
and uscfulness of applying software metrics to the software

SIR61 fdaded Supioa S7Z\ fadwiag, tagny s et
VWY UPE Wo) 11 fHosuIYAIdiuo;)y WeIBoL) 00 S1Hute) pue uoty
SE2UININPOLY JO 190§7) ML CUaE T4 A e faowsungg Y T TPIPOOA N R

‘1261 JUN[*OE - ST "dd *Q ‘@ $29110N] NV 1 I OIS *A30[0POY 13N {eruatl
-padxg uy swesdodd 10ndwo)d Jo Hixajduiod {82300 AS] "URUISSIIAN "]

‘ggB1 A18n1qa, ‘'gol-2S1 "dd ‘g "T1-5IS 46uzg 3som)fos suvs]
4] *SI0res0qe] 3Upau(IuG 3LMJOS YT WO BIE(] awog :saduey) Jo
sisA1BUY £q 1UMBA012Ad(] 3IBM1JOS Fulrenfeal] ‘NIS8El U CA PUR SSIIAL INCd

‘2281 *gL-1S "dd ‘1 'QT [swasAS jygl] ‘uonennsy
PUE TUIWIINSEIPN BULUBWLBIZ0I] JO POYRIN V “XI3d "d "D pue uosie " D

‘}861 ‘2S1-gh1 "dd ‘7|4 ‘opueiiQ *4bug davmifos fuo) 1u]
yIN203G 205 ‘SIIWUOIAUG] FUpULITOL | PUB SI0LJ ANANINPOL] 017
‘A PUE ‘U3QOH 'S ‘3ITIN "H "193UIV ‘f] 'UOUIAIOM Y 'SIIND "8 "UTINAsOA °F

‘€861 "qag ‘IEl
-8z1 dd ‘'z ‘9% WOV 2y1 fo suoyvitumunio) ‘Apnag jwapdmrg uy taouen
RN Jieday weddosg Bupdajiv s1010L JWOS 'JIGIAN U puv £3589)

12261 ‘TN SUID POOMIBUZ) ‘I 90102l
‘ap 'l Y 'pa ‘Abojepoypajy Sutiitepabos y 1Y SPUILL Juaiin) uy ‘Suend
210§ 3ujaoiduwi] JO) S00L PNRWOIMY UL SHODMNG MIN IS D)

1301 "1dag ‘80N-¢oy "Ud G QI-gS 1buiy 2wnfos suvd |
aBpamou)] Bujwiuiesdory Jo SAPMIS [RIIIUAIL] IDHNED) TN pUR Semojus T

TERB CAON (NN
1aquaaln) "DJSH/VSVN ‘doysyioqy abuzy 2avmpfos uuy’ Wbz vosg
‘ugdisa(d SI13UASIA MOF] JUIYILAL 1SN Aq 107 ¥ 2A13SQ) UL 1o\ ‘SeM0jox

SL2ot “1RE-ER b R T V)V Byl fo suonul
SteRwwo) (VW WEIZ0] Ul SHTCHIMNO[) PATEIN JO XY A1 JO suoped
“1is9AU] [RIUAM AN "3a9E] “J PUR ARMIIN (A gase)y o] Y uelRpungs

SfwGl WMEIN OG- 108 T
g shianimg Sunndiuio) BuUTINOL | JO APMIK TERIT Lo NITR R A LT T TR TP G 1 |

(abuzg aavamfos suvdf i}
A1 01 PANUIGNS) "g8OL SJUNIUdg CIFT-LL R IRCTEER M LA SERD U
PUBIAIEIY CAHY TS TWo) AdaC) THOPIRHIEAT] RaLidng] Uy Stamdogaa
-a@) 2IBMI0S IWOOUNVITD “Haque] "L "o PUE "1HsuE) Y " AP QPSS Ay CH

“gRGE MOPNEISSIC) ()
Wod *NIB 9BD|IOD (PUBIAIEIN TAUY UHaS TWO) srlag] saagN put ‘N oY
SOVHTD Aupsal, SaBojouyaa], ddumijos JO suopmnjeall “Ip *Aqloy

TRRB1 TAON RDO-TR-1FIS Uy
CIN 121U 1NN MBU AR PIEPPOHF VRV U] R Eaos
casnaed o] (FIels) Saoaoqe) FURAATUS) 2JEMJOs Jo AURIRoNYLE] paiotuy’

(3]

{e0}

(20

{ou}

|vol

(%6

[ao)

fral

fonl

juy)

‘+861 'LT-+T Ki0r “AN
‘INET UIBIUNON aNig ‘uonunoay 20udusiof12] 24pmifog uo doysysosq
JOOIQMOUUIN YIUIAIG ‘Jupisa], jeuopdun g jo a%elaao)d {ein1dnng ‘Kaswey

‘zLel ‘6Te

-gze "dd ‘Tp ‘fuoy i1andwoy juwror o4 FLET 204d SAIAV ‘sanbluydal
Suyssauj3ug JeEMIJOS U] JudWIad Xy Ue WOI) sUoIsN(dU0) awos ‘stuled 1] d

' ‘1801 82T

‘BN '82-6T "dd ‘(N ‘3IngsiayieD ‘'spIS nvaing "N ‘suonpanyddy pup
spuas] SAN 2044 ‘3uf1sa], WIvIF0LJ JBUIOINY YUm DUdX] ‘tzued f 'd

(£861
AN pasjadl]) T8O1 SNBny ‘i doyf "YdaJ, ‘AN AN WO MIN B BN
‘YICW “ASU] JUBINOD) IS WO 1da(] MINBUOIAUL EHISHpUf U Ul eieQq
Joasy] aremajog Jujzyaodare) pue 3upRsiiod CIIANAIMA I 6] pue pueaIsQ UL

‘0261
*HIOL MIN ‘SUOS ¥ AN Uyor ‘6usa] aiomifos fo pay YL CSIAIN T D

‘8201 "day
‘801001 49 WOV 2y} fo suonjoasuniuie)) ‘SUOLdAdSH L /SUBNOIYINIR Ay
apoD puv Fupsa], WRaB0L g Ul AUAMPAXY PANONIUCD YV SIALN T D

‘Zu6L "13-c0 "dd ‘1
Q1 sapnls UIYIVpY-uDiY [0 Nl Jpuopuiaju] ‘RUBANBUL ATem oy
Uy YoIeasay (RuLtuadXY] pue SHOOPOINAIN TIRPIUIPRS CIN O PUR DGOIN (L

TA01 CIT00-TL TS Wod
S INEI CIUUNUTEITOL,] [EIR1INNES JOJ STOPEPURO] IRV IYIRIN SIIN A 1

‘EROT1 AON "1o8-10R “dd
‘11 °9Z WOV 2y fo suonpotunuiwer) CKNRAISUINYIUWIO]) pUE BOLTRIMApU]
We 30l] "UBWIAPIRUNS "f] PUY "OJIRABN "V [‘UBWIISSNN "V C¥IRN T Y

‘G201 CVIN SHIPRIY SISIAN-UOSIPDY (201304 4 puy
faoayy Bunuwpsbosf pasnpanaps INA LG bUS SN Cd TH Jaduir) i

“FR01 CAON “dIN
PaquaY) DASD/VSVN ‘doysyioyy buriaauibuy ivinfoy ponuny yury
ay) fo vuiy STUPUIIRII0L] HOISI0,\ =N U1 WURUIIdXT] 9IS w3] V WSIaN [

“ongl
SSISULL AU VLN agavonliby’ $SIAA() UEISHT € JO SolpS (Buow
SOUXS] FMEMNYOS HOSIVA-NIN]N WEIDO] - uR | JO WOPHIYWIAS AN F I

124

los)

1<)

fie]

foc]

{or)

{sr]

ot

3-37

'dé\;elopment process. He described methods of aﬁixgggi_ng -
rors, cost, and overall software quality as wcllas approaches
for applying factors such as methodology and environment to
cost estimation. Basili and Freburger (3) characterized various
relationships between software size, effort, reliability, and
quality. Their work helped to verify some earlier efforts which
had been done by Walston and Felix (4) and by Jeffrey and
Lawrence (5). These studies indicated a near linear relationship
between effort and lines of code. The Basili work produced the
relationships: *

E=1.55® (NL**.99) and E=1.48 ® (DL**.98)

where E = effort, NL = new lines of code, and DL =developed
lines of code. Later, Bailey and Basili (6) described a
mcchanisxit for refining local resource estimation models with
locally tuned parameters. They describe the process by which
the cost equation, which is based exclusively on lines of code,

could he refined bv enlvine fo

H * st
e refined by solving for and adding such factors as the

d ad 75 as the
computer support environment or the personnel experience on
the overall development process. Putnam (7) noted that the
commonly used metrics of productivity and cost per instruction
have been found to be very sensitive to schedule variation,
‘system size, and the development environment. Putnam went
on to develop mathematical relationships that express software
development progress in accordance with Shannon’s informa-
tion theories. Specifically developed is a *‘software equation”
that relates exccutable delivered source statements and three
critical parameters: the life cycle effort in manyears, the im-
plementation project duration in years, and a parameter (Cy)
that attempts to account for quantized technology and
development environment effects. Putnam’s software equation
is:

Ss=C,K**1/3(t**4/3)

It is commonly thought that the availability of good develop-
ment tools in an integrated reliable support environment will
materially contribute to software with quality attributes such as
those defined by McCall. An industry example where such
thinking is being put to practice is the Software Productivity
Project initated in 1981 at TRW (8). The major thrust of that
project is the establishment of a software development environ-
ment that includes among other aspects, the provision for im-
mediate access to computing resources and integrated tool sets.

Although still early in the TRW program, productivity gains to
date have been quite encouraging. In one instance, for exam-
ple, people were moved out of the experimental productivity
environment back into the traditional TRW surroundings. Of
the 23 possible respondents, 20 indicated that their productivity
in the improved environment had been almost 50 percent
higher. The dominant features of that gain were the availability
of software tools to support software development and office
functions (approximately 15 percent), a personal terminal with
high speed access to computers (roughly 14 percent), and a
private office with modern office furniture (about 8 percent).

At present, it is not known whether gains such as the above
are universally possible or are peculiar to certain types of pro-
jects or situations. The Software Engineering Laboratory
(SEL) at the NASA Goddard Space Flight Center (GSFC) is
actively pursuing answers to such questions. Created in 1977,
the SEL has three major goals:

1. Improve the understanding of the software development
process in the time varying environment;

2. Intentionally instill and measure the effects of various
methodologies, tools, and models; and

3. Identify and subsequently apply successful practices.

The SEL is funded and coordinated by NASA/GSFC and is
supported by the Computer Science Department at the Univer-
sity of Maryland and by Computer Sciences Corporation. The
SEL functions as part of the organization at Goddard which
develops the flight dynamics ground support software for God-
dard missions. Within this production environment, the SEL
experiments by applying varying degrees of proposed techni-
“ques (such as development methodologies and tools) then study- ~
ing the resulting product to determine the resulting impact.
Detailed software development data is collected throughout the
entire development life cycle as described in references 9 and
10.

?o-- date, the SEL has monitored nearly 50 dsvelopment pro-
jects totaling over 2 million lines of source code.* The projects
have ranged in size from 3,000 to 130,000 lines of code with
the average project running about 60,000 lines. This relatively
unique effort (at least within NASA) is beginning to yield
substantial returns; one of which is a better understanding of
the importance of the computer support environment on the
production of reliable, cost effective software.

*Line of code =80 byte r'ecord‘ pfbcessable by compiler or assembler. It includes commentary and other

non-executable lines.

3-39

By the term ‘‘computer support environment®’, we mean the
cumulative availability of software tools and suppost other
than tools, e.g., terminal availability, job turnaround time, and
storage capacity. In the light of this definition, the computer
support environment within the SEL has van'c.d from very poor
to very good. .

In order 10 compare projects from these environments, certain
measures have been adopted by the SEL (and this investiga-
tion) as representative of process efficiency and product quali-
ty. These measures are productivity, reliability, and two
measures of mainuinability: effort to change and effort 10

repair. These terms are defined as:

¢ Productivity - the amount of product in lines of source code

that is output per person-month invested,
o Reliability - the number of errors per thousand lines of
source code,

e Effort to Change - the average amount of time needed to

effect a non-error change, and

¢ Effort to Repair - the average amount of time required to

make an error correction.

Reliability and both maintenance factors are measured from

the time that unit (module) coding and testing is considered to -

be complete. -

i‘hc rclaii'o;ship explored in this paper is that between the
development environment (as measured by tools and support
other than tools) and the dual atin‘butcs of process efficiency
and product guality (as indicated by the above four factors).
Specifically, the following questions are addressed:

1. Does the availability and increased usage of tools have a
favorable, measurable impact?
2. Do other, non-tools types of computer resource support play

a determinable role?

3. Does increasing the ratio of terminals to programmers have
2 positive, measurable influence?

EXPERIMENT APPROACH

Fourteen flight dynamics software projects were seiected [or ex-
amination in this study. These projects were chosen because
they ranged across a number of computer support en- .
vironments, data had been recorded in the SEL data base, the

. projects were of similar complexity and utilized similar teams
of people, and because the responsible two ;‘aroject managers

were available to provide subjective ratings and opinions wicn
needed.

The approach used in this experiment consists of four steps:

Step 1 - Data descriptive of the selected developinent efficiency
and product quality measures were compiled from the SEL
data base. This data is presented in Table 1. Indicated as well
is the size of each project in lines of code. This data shows
considerable variation between projects. Reliability (erTors per

) KLOC), for exampie, varies from 0.3 up to 10.

Stip_z - The types of non-tool computer resource support
shown in Table 2 were seiected. The two managers that had in-
dividually led the 14 projects then subjectively scored the
amount of use of each type of non-tool support on a scale
from 1 to 3 for each project. Two non-tool support measures
were used in the later statistical correlations. One was the in-

dividual factor, ratio of terminals to programmers, and the

other was the simple total non-tools score for each project (ses
the last column of Table 2). The terminals to programmers
factor was singled out because of its intuitive probable impor-

tance.

Step 3 - This step consisted of first idcnu'—fying twenty ore

" software tools potentially availabie to the selected projects and

then rating the use and quality of those tools. As presented in
Table 3, the specific tools are classified as assemblers and com-
pilers, documentation and configuration coatrol aids, debug-
gers, design tools, editors, preprocessors, development and
post-development aids, and requirements togls. These tools
were subjectively ranked by the project managers using a scale
of 0 to 3 (see Table 4). “The t0ols ratings then were subjected to
further adjustment by factoring in four tool quality measures:
reliability, level of integration into the work enviro;nn:m. ease
of use, and tool usefulness. These subjective scorings are
shown in Table . The resulting adjusted tool measures (=
usage x quality) were summed to give a tools score for each
project. No weighting of the tools was applied, so that
although a compiler may be more important to the overall pro-
ject than is an accounting aid, both carried equal weight in this
analysis.

S_te_p_4_ -~ After all the data was compiled, a means for deter-
mining the relationships between the defined computer support
environment and the selected project quality and process effi-
ciency measures was nceded. The Wilcoxon Two Sample Test
{11) was detérmined 1o be the proper statistical method far study-~
ing these relationships. Ap exampie of an application of this

3-40

technique is shown in Table 6. First, the projects were divided
into two groups by choosing a breaking point between high

tool support and low tool support. That is, those projects with ,
an aggregate tool support number over a certain value were
considered high tool support, while those under that value

were considered low support. Then the productivity values for
each project were ranked from best to worst. The sum of these
ranks was used to determine the significance of the correlation
between tool support and productivity. In this case, since the

smaller group (low tool support) has a higher total, i.e., pro-
ductivity was worse in the low tool support projects, a correla-
tion exists between high tool support and productivity. The
Wilcoxon Test indicates that there is an 11.4 percent chance
‘that the correlation between high productivity and high tool
subport is random. Similar tests were performed to study each
of the environmental factors affects on each of the quality
measures.

TABLE 1

Development Efficiency and Product Quality Measures for

14 Selected Projects

Project Size Loc Errors Effort to Repair* Effort to Change*

®LOC) | MDAY | KLOC Low Med High Low Med High
A 4 2 0.3 2 3 12 172 80 18
B 46 27 3.9 118 57 6 57 35 14
C 54 27 0. 14 10 3 4 5 10
D 49 17 9.4 239 176 55 180 184 130
E 49 18 8.9 234 175 37 136 94 86
F 136 21 43 401 148 34 218 174 80
G 78 36 39 182 97 2 152 154 98
H 67 31 4.5 162 133 10 146 110 2
I 22 8 10 190 32 1 152 57 2
] 11 30 1.6 4 1 3 1 11 2
K 46 38 0.9 15 17 10 8 23 27
L 30 10 1.1 17 16 1 9 21 20
M 15 1 5.5 33 a1 9 18 26 11
N 17 10 5.6 27 41 30 38 s7 28

*Entries from left to right indicate number of repairs or changes requiring low effort (1-2 hrs.), medium effort

(2-8 hr;.). high effort (more than 8 hours).

EXPERIMENT RESULTS

The results of this limited experiment show a great deal of
variance over the affects of computer support environment on
the efficiency of the software development process and the
quality of the resulting software product. Some significant rela-
tionships between overall tool usage and the defined measures
were found, but the impact of support other than tools did not
prove to be obvious. Some of the results were quite surprising.

TOOL USE AND PRODUCTIVITY:

A significant correlation was found between increased tool
usage and increased productivity.,

It had been hypothesized that greater usage of software tools

" during the software development process would result in an in-

crease in software productivity. A strong relationship support-

ing that hypothesis was found. The probability that the

positive relationship is due to chance is 11 percent. However,
no attempt has been made in this investigation 10 determine
the magnitude of the productivity gain. The TRW study
previously referenced indicated that greater usage of software
tools was responsible for nearly a 15 percent productivity in-
crease. Further analysis is necessary to quantify the correspond-
ing SEL estimate.

- TOOL USE AND RELIABILITY:

No significant correlation was found between increased tool
usage and increased software product reliability.

The fourteen projects in this study reported error rates after
unit testing completion ranging from 0.3 to over 10 errors per
KLOC. Prior to the statistical analysis, it was anticipated that
the projects with the lower error rates would be those where

.

3-41

TABLE 2

Application of Non-Tool Support to
Development of Selected Projects

'
‘

Spectrum of Tool Support

o8 Z Z E g
% = E 3': T'é, E 5 g g =3 Ec ﬁ v [T
v — . ‘B - 0
Sis | Ef |E.B| B3 | Bz |sel| EE| SE | 5 | EE | £f |Po
Projects | EE€8 | &< | £&& | 54 eE | <03 | &3 oy 4 A& o& Total
A 1 T 1 3 1 2 1 1 1 1 1 14
B 1 1 1 3 1 2 1 1 1 1 1 14
C 1 1 1 3 1 2 1 1 1 1 1 14
D 2 2 2 3 1 2 1 1 1 1 2 18
E 2 2 2 3 1 2 1 1 1 1 2 18
F 3 . 3 3 3 2 2 3 -3 1 3 3 29
G 1 1 1 3 1 2 1 1 1 1 1 15
H 2 1 1 3 1 2 1 1 1 1 1 16
1 3 3 3 3 3 2 3 3 2 3 2 30
J 3 3 3 3 3 3 3 3 3 3 2 32
K 3 2 2 3 2 3 3 3 2 3 2 28
L 3 3 2 3 2 3 3 3 2 3 2 29
M 3 2 3 1 1 1 3 3 2 1 2 22
N 3 2 3 2 1 1 2 2 2 1 2 21
Notes: a.).1=low or poor
2 =medium or average
3=high or good
b.) 1 for Avg CPU utilization implies CPU highly utilized
c.) 1 for MTTF implies short intervals between failures
d.) 1 for MTTR implies long time waiting for repairs.
TABLE 3 .

Assembler/Compilers: Documentation and Configuration Control:
PDP Source Code Management Tool
INTEL Software Documentation (SDOC)
VAX Gessdoc
434) Configuration Analysis Tool (CAT)
360
Debugging: Design Aids:
Symbolic Debugger Program Design Language
Editors: PreProcessors:
VAX Namelist Preprocessor (NPP)
360 Structured Fortran Preprocessor (SFORT)
4341

Development and

Post Development Aids:
General Accounting Aids
Timing and Program Optimizer |
Data Simulator (data generator) *
Source Analysis Program (SAP) -

‘Requirements Tools:
Automatic OnLine Requirements Analyzer

3-42

COO0OO0OOMOOODOOOOO

Editors

17

m

17

<

+5]00], 's3,boy

Aids

Dcvelqpment

- dvs

3
8 |18

5

Joe|nuig
! ered

1363} 10

HzundQ
/3upuny

4 | 4@

9

3ununodoy

€ssors

Pre-
Proc-

1 LYOIS

5
17

19

BLIELTEIN|

1ad

1933nqaQ doquILg

TABLE 4

TABLE §

Tool Quality Matrix

&

Tool Usage Rating for Selected Projects

Documentation
Config. Ctrl.

1vD

5
17 | 16
3-43

§

0PSSO0

s 4(2)
17 (120} 17

o0das

5
16

nuspy -
9p0D NINog

vy
b
.m m AN NONNODOQOOO
w
< D000 O0OOONMMMMM
nzieuy
.w-&ow— QOO — QO ™ v = vt v =
¢ .
dvS|l NN a
.—oua_ﬂﬁ_nm— AN == N
wzwrdo NNNANANONNOODOOOO
/3unuyy,
SUNUNONIY | NN A N Al M 8 et e
JYOIS | ~NNmMmemmemooooOoO
ddN|{ oocococococoonmammmmmnm
%WMM_MM 0000 OOONANNMMO
WPSPHD | NMENMMANMENOOO0O0O0O
oodS | M~ —~oO—~~00O0OOQOCO
3N 2pO
~E_>u_.u._ﬂo”m MmEOMmAaNAMNO00000
4] MHNN N MNONMOOOOOO
Ajloocoococomoocoocoooooo

OO0 QCOCODOMNMMmMMNmMmOO

d Used Somewhat
Assembler/
Compilers

Assemblers/
Compilers
C

CO0OO0O0O0O0O0CO0OO0OOOOMO

CO00O0OO0O0OLDOOOOOO™M

s

5

L{0)

(=]

19 190 18

5

5

20

5
8

Projects

<MVAKLOLN~=MJdSZ

1=Tool Available but Used Very Little
3=Tool Available and Used Extensively

0=Tool Not Available
Z=Tooi Avaiiable an

5
5
18

Totals

2 - 4 except for Projects D and E which equal 2 and column total = 10
3 - 4 except for Project M which quals 2, Project C=3, and Project B=1

Reliability
Level of
Integration
Ease of
Use
Functionality
(usefulness)

Notes: 1 - § except for Project A which equals 2 and column total=16

TABLE 6
Example Application of Statistical Correlation Technique
High Tools Tools .. Productivity
Support Projects Score Productivity Rank
A 332 22 7
B 374 27.1 6
C 378 21.7 5
G 384 36 2
H 384 31 3
F 424 21 8
E 433 18 9
D 443 17 10
50 Total
Low Tools Tools Productivit Productivity
Support Projects |- Score ¥ Rank
I 249 8.8 14
N 256 10.3 12
L 268 10 13
M 273 10.9 11
J 273 30 4
K 283 38 1
55 Total

. the tool usage was the greatest. However, the data showed no
such measurable relationship. (The probability that the ex-
emplified relationship was simply due to random chance was
42 percent.) '

TOOL USE AND MAINTAINABILITY:

A significant correlation was found between increased tool
usage and software maintainability.

The SEL ina;ir;ains in it? Hi;tngi.éal—aata base detailed records
of all the modifications made to a project’s software after the
units comprising that software have completed unit testing.
The analyses made on the data found a high correlation be-
tween increased tool usage and ease of repair {(only a 9 percent
chance that the correlation is random) and between increased
tool usage and ease of change (4 percent possibility of random
chance). Such findings point to a very favorable impact on the
quality of the software product when the development is aided
with increased application of software tools.

NON-TOOLS SUPPORT AND ALL FACTORS:

No significant correlation was found between the cumulative
contributions of other, non-tools forms of computer resource
support and any of the four defined measures.

The overall effect of non-tools types of computer resource sup-
. port on the four measures seems to be minimal, at Jeast accor-
ding to the data used in this investigation. In fact, a disturbing

finding was that an inverse relationship appears o exist be-
tween ease of change of the end product and increased non-
tools computer resource support. If true, this means that
greater numbers of terminals, more ready access to printers,
faster compilers, etc. result in software that is more difficult to
modify. The probability that this finding is due to random
chance was only 14 percent, Needless to say, this finding is
receiving considerable attention at present in the SEL.

RATIO OF TERMINALS PER PROGRAMMER AND
ALL FACTORS

The data available to this analysis indicated a negative correla-
tion between the number of terminals per programmer and

productivity and reliability.

The most unanticipated resuli was that as the availability of ter-

minals increased, the efficiency of the process and the quality
of the product seemed to decrease. The relationship between

lower terminal availability (more programmers per terminal) and
productivity resulted in a correlation value of slightly less than
ten percent. The relationship between lower terminal availabili-

‘ty and reliability was even more pronounced, indicating a less
. than 5 percent chance that the statistic was due to chance.

" Obviously, this result caused disbelief and muny rechecks of
‘ the compiled data. Two plausible explanations are:

1. The sample size is too small,

2. Programmers accustomed to a terminal shortage are
disciplined to be better prepared by doing,more design and
checking at their desks. Programmers with an abundance of
terminals may not do the critical desk preparatory work and
instead try to design, test, enhance, etc. directly at the ter-
minal.

Investigations are continuing to better understand this result
and its implications.

CONCLUSIONS

Based upon the findings of this study, it appzars that managers
can gain worthwhile benefits by concentrating on providing
software development tools for their prograrmmers and not
focus as much attention on other, non-tools types of computer
resource support, e.g., improved terminal and computer ac-
cessibility, faster compilers, and more online storage.

This research indicates the following answers to the three ques-

tions posed earlier in this paper:

3-44

Q: Does the availability and increased usage of tools have a
favorable, measurable impact?

A. The SEL data shows a significant correlation between in-
creased tool use and productivity and between tool use and
product maintainability.

Q: Do other, non-tools types of computer resource support
play a determinable role?

A: Non-tools types of computer resource support do not seem
to have much influence on the software development pro-
cess or the quality of the resulting product, at least within
the SEL.

Q: Does increasing the ratio of terminals to programmers have
a positive, measurable influence?

A: Unexpectedly, the data shows that more terminals may
have a detrimental effect on the quality of the resulting
software and the efficiency of the development process. A
significant inverse relationship was found in the data
recorded for the 14 subject projects.

It musi be emphasized that these resuits may not be applicabie

to other software development environments. The tool set

utilized in this study was limited as was the variation in the
overall software development environment. Although the
results may not be universally true, the analysis technique
should be valid and may serve as a model for similar investiga-
tions elsewhere.

Research in the general topic area of software tools and other
forms of computer resource support is continuing within the
SEL. A future goal is to quantify the productivity and quality
gains and losses in order to provide more substantiative
guidance to managers and to enable comparisons to other
research efforts such as the Software Productivity Project at
TRW.

References

1. McCabe, T., “*A Complexity Measure”, IEEE Transac-
tions on Software Engineering, Vol. SE-2, Number 4,
" December 1976.

2. Gilb, T., “Software Metrics’’, Winthrop Computer
Systems Series, Gerald Weinberg, editor, 1977,

3. Basili, V. R., K. Freburger, ‘‘Programming Measurement
and Estimation in the Software Engineering Laboratory”,
The Journal of Systems and Software 2, pg. 47-57, 1981.

4. Walston, C. E., C. P. Felix, ‘*A Method of Programming
Measurement and Estimation’’, IBM System Journal 16, B
1977.

5. Jeffrey, D. R., M. J. Lawrence, “‘An Internal Organiza-
tional Comparison of Programming Productivity’’, Depart-
ment of Information Systems, University of New South
Wales, 1979.

6. Bailey, J. W,, V. R. Basili, ““A Meta-Model for Software
Development Resource Expenditures’®, Proceedings, Fifth
International Conference on Software Engineering, 1981.

7. Putnam, L. H., “The Real Metrics of Software Develop-
ment”’, 1980, EASCON Proceedings, IEEE.

8. Boehm, B. W. et al.,, ““A Software Development Environ-
ment for Improving Prodactivity’’, Computer, June 1984.

9. McGarry, F. E., G. Page, et al, *“The Software Engineer-
ing Laboratory’’, NASA Technical Report, SEL 81-003,
September 1981,

-10. Church, V.,De Card, F. McGarry, “Guide to Data Collec-

tion’”’, NASA Report SEL-81-001, September 1981.

11, Marascuilo, L. A., M. McSweeney, ‘‘NonParametric and
Distribution-Free Methods for Social Sciences’’, 1977,
Brooks/Cole Publishing Company, Monterey, California,
pg. 267-273.

DR. DANA L. HALL

Currently Level A Manager for Data Systems and Software
for the NASA Space Station program. Previously associated
with NASA’s office of the Chief Engineer in programs to im-
prove NASA software management practices and to standar-
dize space data system operational elements (telemetry,
telecommand, etc.) across all space agencies. Eight years in-
dustrial experience with the MITRE Corporation and TRW.

FRANK E. MCGARRY

Mr. McGarry is Head of the Systems Development Branch at
NASA/Goddard Space Flight Center where he is responsible
for directing the software development of flight dynamics
systems. The Branch is also responsible for conducting research
in software engineering technology which is to be applied to
the operational software systems. He has been with Goddard
for 18 years.

3-45

JON D. VALETT

Currently working in the Systems Development Branch at
Goddard Space Flight Center, where he is responsible for both
the development of applications software and software '
engineering research. Joined Goddard in 1983, inir'nediatclif
after graduating from the University of Iowa.

