
MEASURING THE IMPACT OF COMPUTER RESOURCE QUALITY
ON THE SOFTWARE DEVELOPMENT PROCESS AND P R O D U a

Frank McGarry and Jon Valett
NASA Goddard Space Flight Center

Greenbelt, Maryland
and

Dr. Dana Hall
NASA Headquarters
Washington. D.C.

ABSTRACI’

, The availability and quality of computer resources during the software development process has been
speculated to have measurable, significant impact on the efficiency of the development process and
the quality of the resulting product. Environmental components such as the types of tools, machine
responsiveness. and quantity of dirett access storage may play a major role in the effort to produce
the product and in its subsequent quality as measured by factors such as reliability and ease of
maintenance.

software projects in an attempt to better understand the impact of software development
methodologies, environments, and general technologies on the software process and product. Data
has been extracted and examined from nearly 50 software development projects. The data collection
and analysis has been performed jointly by NASA, the Computer Science Department at the Univer-
sity of Maryland. and the Computer Sciences Corporation. The projects have varied in size from *

3000 up to 130,000 lines of code with an average of 60,OOO lines of code. All have been related to the
support of satellite !light dynamics ground-based computations. As a result of changing situations
and technology, the computer support environment has varied widely. Some projects enjoyed fast
response time. excess memory, and state-of-the-art tools, while other projects have endured slow
computer response time, archaic tool support, and limited terminal acccss to the development
machine.

This study examined the relationship between computer resources and the software development
process and product as exemplified by the subject NASA data. Based upon the re.ulu, a number of
computer resource-related implications are provided.

During the past six years, the NASA Goddard Space Flight Center has conducted experiments with

BACKGROUND

Computer resource managers have a difficult assignment. They

are responsible for selecting and allocating finite computer-

related resources in such a manner as to promote an effiacnt

Numerous measures have been proposed to both characterize

the software development process and to quantify and qualify

the software product. McCabe (1) defined a measure which

could be used to detennine the extent of testing that should be

performed on a particular software component. This measure. - - . . -
called &e cydomatic measure, has also been used as a means

software development process and a resulting quality prduct.
The difficulty is that this job must be accomplished amidst a

of characterizing the overall complexity of the software. Gilb -
plethora of potential software tools and a lack of suitable

(2) did a thorough job of describing the practical applications

and usefulness of applying software m & u to the softwm.
measures for determining the impact of such tools and of o t h a

computer resource support,

3-38

i

Y .

;- i

3-37

development process. He described methods of estimating er-

rors, cost, and overall software quality as well as approaches

for applying factors such as methodology and environment to

cost estimation. BasiIi and Freburger (3) characterized various

relationships between software size. effort, reliability, and

quality. Their work helped to verify some earlier efforts which

had been done by Walston and Felix (4) and by Jeffrey and

Lawrence (5). These studies indicated a near linear relationship

between effort and lines of code. The Basili work produced the

relationships:

, - . - -. - - . .

E = 1.55 (NL**.99) a d E= 1.48 @L**.98)

where E = effort, NL = new lines of code, and DL = developed

lines of code. Later, Bailey and Basili (6) described a
mechanism for r e f d n g local resource estimation models with

locally tuned parameters. They describe the process by which

the cost equation, which is based exclusively on lines of code,

computer support environment or the personnel experience on

the overall development process. Putnam (7) noted that the

commonly used metrics of productivity and cost per instruction

have been found to be very sensitive to schedule variation,

system size. and the development environment. Putnam went

on to develop mathematical relationships that express software

development progress in accordance with Shannon’s informa-

tion theories. Specifically developed is a “software cq’uation”

that relates executable delivered source statements and three

critical parameters: thc life cyde effort in manycan, the im-
plementation p r o j m duration in yean, and a parameter (Ck)

that attempts to account for quantized technology and

development environment effects. Putnam’s software equation

is:

cnn!A he .ef;.n..l by s!?!Ying fer m d ad6r.g %&. facton zs the

- -
It is commonly thought that the availability of good develop-

- ment tools in an integrated reliable support environment will

materially contribute to software with quality attributes such as
those defined by McCall. An industry example where such

thinking is being put to practice is the Software Productivity

Project initated in 1981 at TRW (8). The major thrust of that

project is the establishment of a software development environ-
ment that includes among other aspeas. the provision for im-
mediate access to computing resources and integrated tool sets.

I ’ -

Although sti l l early in the TRW program, productivity gains to

date have been quite encouraging. In one instance. for exam-

ple, people were moved out of the experimental productivity

environment back into the traditional TRW surroundings. Of

the 23 possible respondents, 20 indicated that their productivity

in the improved environment had been almost 50 percent

higher. The dominant features of that gain were the availability

of software tools to support software development and office

functions (approximately 15 percent), a personal terminal with

high speed access to computers (roughly 14 percent), and a
private office with modem office furniture (about 8 percent).

At present, it is not known whether gains such as the above

are universally possible or are peculiar to certain types of pro-

jects or situations. The Software Engineering Laboratory

(SEL) at the NASA Goddard Space Fli&t Center (GSFC) is

actively punumg MSWCK to such questions. Created in 1977,

the SEL has three major goals:

1. Improve the understanding of the software development

process in the time varying environment;

2. Intentionally instill and m w u r e the effects of various

methodologies, tools, and models; and

3. Identify and subsequently apply successful practices.

The SEL is funded and coordinated by NASA/GSFC and is

supported by the Computer Science Department at the Univer-

sity of Maryland and by Computer Sciences Corporation. The

SEL functions as part of the organization a t Goddard which

develops the flight dynamics ground suppon’software for God-

dard rniss’ions. Within this production environment, the SEL

experiments by applying varying degrees of proposed techni-

ques (such-Zdevefopment meth6doIogies arid tools) then study- .
ing the resulting product to determine the resulting impact.

Detailed software development data is collected throughout the

entire development life cycle as described in references 9 and

10.

To date, the SEL has monitored nearly 50 development pro-

jects totaling over 2 million lines of source code: The projects

have ranged in Sire from 3,000 to 130,000 lines of code with

the average project running about 60.000 lines. This relatively

unique effort (at least within NASA) is beginning to yield

substantial returns; one of which is a better understanding of

the importance of the computer support environment o n the

production of reliable. cost effective s o f t w A

-

-

I *Line of code=80 byte record processable by compiler or assembler. It includes commentary and other

non-aecutable lines.

3-3 9

By the term "computer support environment", we mean the
cumulative availability of software tools and support other

than took, e.g.. terminal availability. job turnaround h e , and
storage capacity. In the light of this definition, the computer
support environment wirhin the S E L has varied from very poor
to very good. -

In order to compare projects from these environments. certain

mcasures have been adopted by the SEL (and this investiga-
tion) as representative of process efficicncy and product quali-
ty. These measures are productivity, reliability. and two

measures of mainlainakility: effort to change and effort to
repair. These t& are defined as:

Productivity - the amount of product in lines of source code
that is output p a person-month invested.

Reliability - the number of U ~ O K p a thousand lines of
source code,

Effort to Change - the average amount of time needed to
effect a non-crror change, and

Effort to Repair - the average amount of h e required to .
make an mor correction.

Rchbility and both maintenance factors are measured from
the time that unit (module) coding and testing is considered to

be complete. - . - - - -
The relationship explored in chis paper is that between the
development environment (as measured by tools and support
orher than tools) and the dual attributes of promt efficiency
and product quality (as indicated by the above four factors).
Specifically, tfic fobwing questions are a d d r d :

1. Doa the availability and incruscd usage of tools have a

-- -- -

__-- .-
favorable, m&ukble impact?

L Do other, non-took types of computer resource support play
a determinable role?

3. Docs increasing the ratio of terminals to programmers have
a posiuvc, measurable influence?

EXPERIMENT APPROACH
. --

Fourteen flight dynamics software projects were xlaicd for a-
d n a t i o n in this study. Thae projects WQC chosen because

they ranged across a number of computer support en-
vironments. data had been recorded in the SEL data base, the

. projests were of similar complexity and utilized h i l a r teams

of people. and kouK the responsible two projea managar

were available to provide subjective rating~ and opinions whcn
needed.

n e approach used in this experiment c3mistf of four steps:

Step 1 - Data descriptive of the s d a c d developmcnt e f f iaenq

and product quality measures were compiled from the SEL
data base. 'This data is presented in Table 1. Indiatcd as weti
is the size of each project in lines of code. This data shows

considerable variation between projects. Reliability (errors per
IiLOC). for utample, vmk from 0.3 up to 10.

Step 2 - l3e types of non-tool computer resource support
shown in Table 2 were seiected. The two managcrs that had in-
dividually led the 14 projects then subjectively scored the
amount of use of each type of oon-roo1 support on a scale

from 1 to 3 for each project. Two non-tool support meaSures
were used in the later statistical correlations. One was the in-
dividual factor, ratio of terminals to programmers, znd the

other was the simple total non-tools score for uch p r o j a (see

the last column of Table 2). The terminals to programmers
faaor was singled out because of its intuiuve probable impor-
tance.

Step 3 - This step consisted of fist identifying twenty oce

software tools potentially available to the selected p r o j m and
then rating the use and quality of those tools. As presented in
Table 3, the specific tools are classified as assemblers and com-

-

-

-

- pilm, documentation and configuration control aids, debug-
gcrs. design tools. editors. preprocessors, development and
postdevelopment aids, and requirements foals. These tools
were subjectively ranked by the project managers using a s d e

of 0 to 3 (sa Table 4). n a c ~ l r n t i n g s - & n Wsubjmd to
funher adjustment by factoring in four tool quality mc3surcs:
rdiability. Id of integration into the work environment, ease

of use. and tool usefulness. Thae subjmive scorings are
shown in Table 5. The resulting adjusted tool measures (=

usage x quality) were summed to give a tools score for each
project. No weighting of the tools was applied. so that
although a compiler may be more imponant to the overall pro-
ject than is an accounting aid, both carried q u a l weight in chis

molysil.

- Step 4 - Afkcr all the dam was compiled, a means for deter-

mining the rrktionships betwc~n the defied computer support
environment and the scleaed p r o j a q d t y and procas efii-
&cy m-rO was nccdcd. The Wcoxon Two Sample Tat
b I) was &&&dtO & fiG&=a&-&l m e s h d f& study- -
ing thoc rcktioruhips. b -pic of rrpptiation of this

3-40

technique is shown in Table 6. First. the projects were divided

into two groups by choosing a breaking point between high

tool support and low tool support. That is, those projects with

an aggregate tool support number over a certain value were

considered high tool support, while those under that value

were considered low support. Then the productivity values for

each project were ranked from best to worst. The sum of these

ranks was used to determine the significance of the correlation

between tool support and productivity. In this case, since the

smaller group (low tool support) has a higher total, i.e.. pro-

ductivity w+ worse in the low tool support projects. a correla-

tion exists between high tool support and productivity. The

Wilcoxon Test indicates that there is an 11.4 percent chance

that the correlation between high productivity and high tool

support is random. Similar tests were performed to study each

of the environmental factors affects on each of the quality

measures.

TABU 1
Development Efficiency and Product Quality Measures for

14 Selected Projects

Project

A
B
(1
D
E
F
G
H
I
J
K
L
M
N

46
46
54
49
49
136
78
67
22
11
46
30
15
17

22
27
27
17
18
21
36
31
8
30
38
10
11
10

0.3
3.9
0.5
9.4
8.9
4.3
3 -9
4.5
10
1.6
0.9
1.1
5.5
5.6

2
118
!4
239
234
401
182
162
190
4
I5
17
33
27

3
57
10
176
175
148
97
133
32
11
17
16
41
41

High

12
6
2
55
37
34
20
10
1
3
10

1
9
30

Effort t o Change*
~~

Low

172
57

180
136
218
152
146
152

1
8
9
18
38

A .)

MCd

80
35

5
184
94

1 74
154
110
57
11

i0
130
86
80
98
22
22
2

11 f; 1 28

*Entries from left to right indicate number of repairs or changes requiring low effort (1-2 hrs.). medium effort
(2-8 hrs.), high effort (more than 8 hours).

EXPERIMENT RESULTS

The results of this limited experiment show a great dcal of

variance over the affects of computer support environment on

the efficiency of the software development process and the

quality of the resulting software product. Some significant rela-

tionships between overall tool usage and the defined measures
were found, but the impact of support other than tools did not

prove to be obvious. Some of the results were quite surprising.

TOOL USE A N D PRODUCTIVITY:

A signipcant correlation was found between increawd tool
usage and increased productivity.

It had been hypothesized that great& usage 6f sof<ware to&

' during the software development process would result in an in-

positive relationship is due to chance is 11 percent. However,

no attempt has been made in this investigation to determine

the magnitude of the productivity gain. The TRW study

previously referenced indicated that greater usage of software

tools was responsible for nearly a 15 percent productivity in-

crease. Further analysis is necessary to quantify the correspond-

ing SEL estimate. - --
- TOOL USE AND RELIABILITY:

No signi/icont correlation was found between increased tool

usage and incmased softwarn product reliabili@.

The fourteen projects in thit study reported error rates after
unit testing completion ranging from 0.3 to over 10 errors per
KLOC. Prior to the statistical analysis, it waianticipated that

- -. . . the projects with the lower error rates would be those where crease in software productivity. strong reliixonship suppo~?: - .
ing that hypothesis was found. The probability that the

3-41

~~ ~~~ ~
~~~ - 



TABLE 2 
Application of Non-Tool Support to 

Development of Selected Projects 

0 - 0 0  

s e  .= E 8 Qs O w  

1 1 
1 1 
1 1 
1 2 
1 2 
3 3 
1 1 
1 1 
3 2 
3 2 
3 2 
3 2 
1 2 
1 2 

Project 
Total 

14 
14 
14 
18 
18 
29 
1s 
16 
30 
32 
28 
29 
22 
21 

e 
02 .s I- 
V L  $35 

Projects -ezm -;ma 

A 1 
B 1 
C 1 
D 2 
E 2 
F 3 
G 1 
H 2 
I 3 
J 3 
K 3 
L 3 
M 3 
N 3 

.- 

Gx g2:ct: ~ v l  

- 
1 1 3 
1 1 3 
1 1 3 
2 2 3 
2 2 3 

- 3  3 3 
1 1 3 
1 1 3 
3 3 3 
3 3 3 
2 2 ,  3 
3 2 3 
2 3 1 
2 3 2 

1 
1 
1 
1 

Nota: a.) 1 =low or poor 
2 = medium or average 
3 =high or good 

b.) 1 for Avg CPU utilization implies CPU highly utilized 
c.) 1 for MlTF implies short intervals between failures 
d.) 1 f o m = R  iiplies longtime waiting for repairs. 

- - - - - .- - . - - 

2 
2 
2 
2 

TABLE 3 
Spectrum of Tool Support 

1 
2 
1 
1 

Asscmblcr/Compilen: 
PDP 
INTEL 
VAX 
4341 
360 

2 
2 
2 
2 

Debugging: 
Symbolic Debugger 

3 
3 
2 
2 
1 
1 

Editors: 
V A X  
360 
4341 

2 
3 
3 
3 
1 
1 

Development and 
Post Development Aids: 

General Accounting Aids 
r i n g  and Program Optimizer 
Data Simulator (data generator) ' 
Source Analysis Program (SAP) . 

Documentation and Configuration Control: 
Source Code Management Tool 
Software Documentation (SDOC) 
Gessdoc 
Configuration Analysis Tool (CAT) 

Design Aids: 
Program Design Language 

PrePrGcssors: 
Namelist Preprocessor (NPP) 
Structured Fortran Preprocessor (SFORT) 

~~ - ~ ~~ ~~ ~~ 

'Requirements Took: 
Automatic OnLine Requirements Analyzer 

3-42 



.-. 
TAB-LE 4 

Tool Usage Rating for Selected Projects 

0 5  
i g  
5% 
- 

Projects 

2 
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
2 1  
2 1  
2 1  
3 1  
3 1  
0 1  

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 

k 
g g  
z k  
0 1  
0 2  
0 2  
0 3  
0 3  
0 3  
0 3  
0 3  
2 0  
3 0  
3 0  
1 0  
3 0  
3 0  

Assemblen/ 
Compilers 

to .- 
E a 
8 < 

E L  

>.E 
.E% 

2 2  
2 2  
2 2  
2 2  
2 2  
3 0  
2 2  
2 2  
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  

.9 E 
c c  

- 
E 

3 
3 
3 
3 
3 
0 
3 
3 
0 
0 
0 
0 
0 
0 

- 

L.l u - 35 
Z Z A  

0 =Tool Not Available 
1 =Tool Available but Used Very Little 
2 = iooi Avaiiabie ana u s e d  Somewhat 
3 *Tool Available and Used Extensively 

Editors 

B C 

0 0 1 0  
0 0 1 0  
0 0 2 0  
2 0 2 0  
2 0 2 0  
1 0 0 3  
0 0 2 0  
0 0 2 0  
1 2 0 0  
1 3 0 0  
1 3 0 0  
1 3 0 0  
1 3 0 0  
1 3 0 0  

- 
u z  
k!u 
.; 8 - 

3 
3 
3 
3 
3 
3 
3 
3 
0 
0 
0 
0 
0 
0 - 

A B C D  

0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 3  
0 0 0 0  
0 0 0 0  
0 0 . 3  
0 . 0  3 
0 0 3 0  
0 0 3 0  
0 3 0 0  
3 0 0 0  

0 
8 
v1 
c 

3 
3 
3 
1 
1 
0 
1 
1 
0 
0 
0 
0 
0 
0 - 

0 
0 

8 P 
3 
W 

2 
3 
2 
3 
3 
2 
3 
3 
0 
0 
0 
0 
0 
0 

- 

- 

c 
5 - 
0 
0 
0 
3 
2 
3 
0 
0 
1 
1 
1 
1 
1 
1 - 

TABLE 5 
Tool Quality Matrix 

- 
8 
a 

a a  
Z E  a z  

3 
2 
2 
3 
3 
3 
2 
2 
1 
1 
1 
1 
2 
2 

-. - 
- 

- 

- 

a 
2 
d 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 - 

_. 
Nota: 1 - 5 except for Project A which equals 2 and column total = 16 

2 - 4 except for Projects D and E which equal 2 and column total = 10 
3 - 4 except for Project M which equals 2. Project C=3. and Project B= 1 

3-43 



TABLE 6 
Example Application of Statistical Correlation Technique 

I 
N 
L 
M 
J 
K 

High Tools 
Support Projects 

249 8:s 
256 10.3 
268 10 
273 10.9 
273 30 
283 38 

Tools 
Score 

332 
374 
378 
384 
384 
424 
433 
443 

Productivity 

31 
21 
18 
17 

Productivity Low Tools I support Projects I- score I 

~ ~~ 

Productivity 
Rank 

7 
6 
5 
2 
3 
8 
9 

10 

50 Total 

Productivity 
Rank 

- -  

14 
12 
13 
11 
4 
1 

55 Total 

. the tool usage was the greatest. However, the data showed no 
such measurable relationship. (The probability that the ex- 
mplificd relationship was simply due to random chance was 

42 percent.) 

TOOL USE AND MAINTAINABILITY: 

A signifcant correIation was found between increased tool 
usage and software maintainabiIity. 

The SEL maintains in its historical data base detailed records 

of all the modifications made to a project’s software after the 

units comprising that software have completed unit testing. 
The analyses made on the data - fo in i  a high c6rrelation be- 

tween increased tool usage and ease of repair (only a 9 percent 

chance that the correlation is random) and between increased 

tool usage and case of change (4 percent possibility of random 

chance). Such findings point t o  a very favorable impact on the 

quality of the software product when the development is aided 

with increased application of software tools. 

- -  _ _  

- __ __ - 

- - _ _  

NON-TOOLS SUPPORT AND ALL FACTORS: 

No signifcant correlrrtion was found befween the cumulative 
contributions of other, non-took forms of computer resource 
support and any of the four defined measures. 

The overall effect of non-tools types of computer resource sup 
. port on the four measures seem to be minimal, at  ]cast accor- 

ding to the data used in this investigation. In fact, a disturbing 

_ _ _ - ~ _ _ _  
fmding was that an inverse relationship appears to exist be- 

tween ease of change of the end product and increased non- 
tools computer resource support. If true, this means that 
greater numbers of terminals, more ready access to printers. 

faster compilers, etc. result in software that is more difficult to 
modify. The probability that this finding is due to random 

chance was only 14 perccnt.Netdlas to say, this finding is 

receiving considerable attention at  present in the SEL. 

RATIO O F  TERMINALS PER PROGRAMMER AND 
ALL FACTORS 

The data available to this analysis indicated a negative correla- 
tion between the number of terminals per programmer and 
productivity and reIiabiIity. 

The most unanticrpated resultwasthat &-theavslabifity of ter- 

minals increased, the efficiency of the process and the quality 

of the product seemed to decrease. The relationship between 

lower terminal availability (more programmers p e r n a ) - G d  

productivity resulted in a correlation value of slightly less than 

ten percent. The relationship between lower terminal avdabili- 

ty and reliability was even more pronounced, indicating a less 

than 5 percent chance that the statistic was due to chance. 

Ubnously, t h ~ ~  result caused disbelief and m y  rechecks of 

the compiled data. Two plausible explanatioas are: 

1. The sample sue is too small, 

2. Programmers accustomed to a terminal shortage are 

. - _- - __ 

disciplined to be better prepared by doinp,more design and 

checking at their desks. Programmers wit5 an abundance of 
terminals may not do the critical desk pre3aratory work and 

instead try to design, test. enhance, etc. directly at the ter- 

minal. 

Investigations are continuing to better understand this result 

and its implications. 

CONCLUSIONS 

Based upon the findings of this study. it app -as  that managers 

can gain worthwhile benefits by concentrating on providing 

software development tools for their programmers and not 
focus as much attention on other, non-tools types of computer 

resource support. e.g.. improved terminal and computer ac- 

cessibility. faster compilers, and more online storage. 

Thk research i n d i & + ~ e ~ ~ o ~ ~ ~ t 6  the h-& queS- 
tions posed earlier in this paper: 

3-44 



Q: Does the availability and increased usage of tools have a 

A. The SEL data shows a significant correlation between in- 
favorable, measurable impact? 

creased tool use and productivity and between tool use and 
product maintainability. 

Q: Do other, non-tools types of computer resource support 

A: Non-tools types of computer resource support do not seem 
play a determinable role? 

to have much influence on the software development pro- 
cess or the quality of the resulting product, at least within 
the SEL. 

Q: Does increasing the ratio of terminals to programmers have 
a positive, measurable influence? 

A: Unexpectedly, the data shows that more terminals may 
have a detrimental effect on the quality of the resulting 
software and the efficiency of the development process. A 
significant inverse relationship was found in the data 
recorded for the 14 subject projects. 

ii iiiusi be emphasized that &ese resuirs may not be appiicabie 
to other software development environments. The tool set 
utilized in this study was limited as was the variation in the 
overall software development environment. Although the 
results may not be universally me, the analysis technique 
should be valid and may serve as a model for similar investiga- 
tions elsewhere. 

. 

Research in the general topic area of software tools and other 
forms of computer resource support is continuing within the 
SEL. A future goal is to quantify the productivity and quality 
gains and losses in order to provide more substantiative 
guidance to managers to ~ a 6 l e ~ p & o ~ ~  
research efforts such as the Software Productivity Project at 
TRW. 

References 

I. McCabe, T.. “A Complexity Measure”, IEEE Transac- 
tions on Software Engineering. Vol. SE-2. Number 4, 
December 1976. 

2. Gab, T.. “Software Metrics”, Winthrop Computer 
Systems Series, Gerald Weinberg. editor, 1977. 

3. Basili. V. R.. K. Freburger, “Programming Measurement 
and Estimation in the Software Engineering Laboratory”, 
The Journal of Systems and Software 2, pg. 47-57, 1981. 

- 

-- 

_ _  _ _  

4. Walston, C. E., C. P. Felix. “A Method of Programming 
Measurement and Estimation”, IBM System Journal 16, 
1977. 

5. Jeffrey, D. R.. M. J. Lawrence, “An Internal Organiza- 
tional Comparison of Programming Productivity”, Depart- 
ment of Information Systems, University of New South 

- 

wales, 1979. 

6. Bailey. J. W., V. R. Basili. “A Ma-Model  for Software 
Development Resource Expenditures”, Proceedings. Fifth 
International Conference on Software E n g i n d g ,  1981. 

7. Putnam. L. H., “The Real Metria of Software Develop- 
ment”, 1980, EASCON Proceedings, IEEE. 

8. Boehm, B. W. et al., “A Software Development Environ- 
ment for Improving P r T i a u c t i v i t y ’ ’ . - C ~ m ~ ~ , ~ J U n ~ 9 8 4 .  

9. McGarry. F. E.. G. Page, et al, “The Software Engineer- 
ing Laboratory”, NASA Technical Report, SEL 81-003, 

September 1981. 

~ - _ _ _ _ -  

10. Church, V.,& Card, F. McGarry, “Guide to Data CoUec- 
tion”. NASA Report SEL-81-001, September 1981. 

11. Marascuilo, L. A., M. McSweeney, *‘NonParametric and 
Distribution-Free Methods for Social Sciences”, 1977, 
BrooksKole Publishing Company, Monterey, California, 
pg. 267-273. 

-- 
Biographies 

BR. DANA L. HALL 

Currently Level A Manager for Data Systems and Software 
for the NASA Space Station program. Previously associated 
with NASA’s office of the Chief Engineer in programs to im- 
prove NASA software management practices and to standar- 
dize space data system operational elements (telemetry, 
telecommand, etc.) across all space agencies. Eight years in- 
dustrial experience with the MITRE Corporation and TRW. 

FR4NK E. MCGARRY 

Mr. McGarry is Head of the Systems Development Branch at 
NASMGoddard Space Flight Center where he is responsible 
for directing the software development of flight dynamics 
systems. The Branch is also responsible for conducting research 
in software engineering technology which is to be applied to 
the operational software systems. He has been with Goddard 
for 18 years. 

3-45 



._ 
JON D. VALETT 

Currently working in the Systems Development Branch at 
Goddard Space Flight Center, where he is responsible for both 

the development of applications software and software 
engineering research. Joined Goddard in 1983. &ediatel$. 
after graduating from the University of Iowa. 

3-46 


