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ABSTRACT
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approximation of the Korteweg-de Vries equation are analyzed. It is proven that the (aliased)
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l._INTRODUCTION,

In this paper, we analyze the numerical approximation by Fourier spectral methods to the
Korteweg—de Yries ( briefly K.d.V. ) equation with periodic solutions:
du/dt + udu/dx + x8°u/dx’ =0 , xeR, t>0 ,
(1.1) u(x+2m,) zu(x,t) , x€R, t>0 ,
u(x,0) =u’(x) , x€R ,
where the initial condition u’ is a real valued 2n-periodic function and « is a real non zero
parameter.

The Korteweg-de Vries equation was formerly introduced in 1895 by Korteweg and de Vries
[10] to model long, unidirectional, dispersive waves and, nowadays, it is used to describe
phenomena arising from several different fields of applied science. A survey of these numerous
applications is given, e.g., in Bardos [1].

From a more theoretical point of view, after the early sixties, the study of the K.d.v.
equation has benefitted from the application of the scattering theory and from the discovery of
many energy integrals. We refer to the pioneering work by Miura [14], Témam [22], and the
more recent papers of Lax [9], Miura [15] and Bardos [ 1,2]. Moreover, the analogies with the
studies of Hamiltonian systems that have been focussed lately, have permitted extension of the
applicability of the K.d.Y. equation to new thesretical and physical models. These aspects, and their
relevance for the interaction between pure and applied mathematics, are discussed in a very
instructive review article of Bardos [1].

Numerical approximations of the K.d.V. equation based either on ﬁm’tve differences or finite
elements methods are abundant in the literature. We refer, interalia, to the papers by Bona,
Pritchard and Scott[4], Bona, Dougalis and Karakashian [3] and to the references quoted therein.
Fourier spectral methods have been used also in many applications of the K.d.V. equations in the
last decade. We refer, e.g., to the works by Tappert [21], Fornberg [S], Schamel and Elsdsser
[20], Fornberg and Whitham [6], He Pingand Ben Yu [ 13] and Pasciak [ 18].

The classical Fourier-Galerkin method has been used, as well as the more flexible
collocation pseudospectral method in which the discrete Fourier transform is applied to deal with
nonlinear terms ( see e.g. Canuto, Hussaini, Quarteroni and Zang [S], chapters 2 and 4 ). A crucial
question has been raised from several authors, and this is precisely whether the (aliased)

collocation—pseudospectral method retains the same asymptotic accuracy as the pure Galerkin



method. This is a sort of master question which is recurrent in the context of numerical
approximations by the spectral method. In the case of the K.d.V. equation, particularly, this doubt
has induced several authors to introduce new pseudospectral methods with the aim of regaining the
(presumably lost) exponential accuracy ( see again Canuto, Hussaini, Quarteroni and Zang [5],
sections 4.5 and 4.6 ).In this paper, we provide a precise mathematical answer to the above
question. We prove that the genuine (non dealiased, non skew-symmetric) collocation
—-pseudospectral method enjoys the same convergence properties as the Galerkin method.

In section |l we start by proving that the Galerkin approximation conserves the three first
energy integrals of the K.d.V. equation. Then, classical energy methods allow us to prove that the
Galerkin solution converges with spectral accuracy to the mathematical solution.

In section |1, the collocation-pseudospectral approximation is considered. The related
solution fails to conserve the second energy integral. However, convergence with spectral accuracy
in any finite time interval {0,T] can still be shown by using a much more involved proof. In its
essence, the new proof exhibits first that the pseudospectral solution cannot blow-up in a small
subinterval [0,t,] of [0,T]. This property, joined to the property of consistence of the numerical
method, allows us to initialize an inductive process which yields the desired result on the large
time interval [0,T].

in this paper, we will not be concerned with any time discretization of the K.d.V. equation.
However, we recall that the semi-implicit time advancing schemes are customarily used for such
a kind of equation. These schemes are computationally convenient since, at each time interval, they
yield a diagonal system in terms of the unknown Fourier coefficients of the spectral solution.
Moreover, for finite time intervals, they are stable without any restriction on the time and space
discretization parameters. We refer the interested reader to Chan and Kerkhoven [6] where a
linear stability analysis is presented for the K.d.Y. equation, to Quarteroni [19] where a nonlinear
stability analysis is carried out for a family of equations of the same kind and to Bona, Dougalis and
Karakashian [3] and the references quoted therein where extended equations are also considered.

Working along with 2n-periodic functions, we introduce the periodic Sobolev spaces
defined over 10,21 . We first recall the definition of classical Sobolev spaces. We set

L20,21) = {f: J0.2n[~>C , Ifll=[J2"If0)P dx "% < o0 } |
and we denote its scalar product by (.,.). Now, for any integer r > 0, we set

H(0,21) = {fe L?(0.21) , IIfll = [Z] o 18'1/0x 212 < o0 )

and for any real r > O, not in N, the space H"(0,2n) is defined by interpolation between




HE(0,21) and HEM*1(0,211) ( we denote here by E(r) the integral part of r ). Next we consider
the subspace C’(0,2m) of C>(0,2m) of all functions that are 2n-periodic as well as all their
derivatives. Moreover, for any realr > O, H:(0,2n) stands then for the closure of C:°(0,2n) in
H"(0,27). As pointed out in Lions and Magenes [12], if r-1/2 is not an integer, then H,(0,2n)
consists of all functions of H™(0,21) that are 2n—-periodic as well as their derivatives of order
<r-1/2 . For any real number r < 0, we define H"(Q) as the dual space of H™"(Q). Its norm is
again denoted by || . [|..

Finally, if A isan interval of R and X is a Banach space, for any function f from R into X, we will

define
Il f “L°° (AX) = Sup I} £(t) “x
X7 e

With these notations it is known (see Témam [22]) that as soon as u® belongs to HT(O,2n), with
m in N, then the solution to (1.1) satisfies
12 luli= (o 10,21 < Wl
for any T > O, where the constants m_ are independent of W0
It is well known, that the family
(1.3) g (x) = (2n) % exp (ikx) , ke Z ,
is orthonormal and complete in L2(O,2n). Thus a natural approximation of L2(O,2n) by periodic
functions will consist of the spaces defined by
(1.4) VNe2N , Sy=span{g, , -N/2<k<N/2} .

Let us denote by P, the operator

N2
Vgel?0,2m) , PNO=2p w2 G ¥ o

with _
(1.5) g, = Ig" gx)g (x)dx , kKe€Z .
Since P\ is in fact the orthogonal projection operator over Sy we have equivalently
2
(16) VyeS,, [, (Pyo-9) wdx=0 .
For allgin L%(0,2m), (Py @)y < CONverges to g. Moreover, it can be proved that for anyr > s,
r > 0 one has ( see, e.g. Jackson [9], Pasciak [17])
(.7)  VvgeH 0.2m) , g-Pygl,<ceNTllgll, .
(Throughout this paper, ¢ will denote a positive constant, independent of N, not necessarily the

same in different contexts).



Besides, all the norms defined by the imbedding of Sy, into H:(O,2n) are equivalent since S, is a
finite dimensional subspace of H:(O,2n); more precisely we can readily see that
(18) v(rs)e®)withr<s,VoeSy, ol <loll<y()NT]ql .
The second inequality is known as the "inverse inequality”.
We finally notice that
19 VgeSy, lal =T, vs(1+kD 8 < 82 + 2 dg/ox 7

This property will be frequently used in the sequel.




1. ANALYSIS OF THE FOURIER-GALERKIN APPROXIMATION OF THE K.d.V EQUATION

A spatial approximation (continuous in time) of problem (l.1) based on the
Fourier-Galerkin method reads as follows :

Find a mappinguy: [0,T] - S such that
(1) | VeeS, , vt, 0<t<T , (duy/dt +u, Buy/dx + x 3°uy/8x°, ) =0,

uN(O) = PNuo )

This entails a nonlinear system of 0.D.E.'s for the Fourier coefficients (Uy), (1) of the solution uy, .
We present now the main properties satisfied by the above Fourier-Galerkin approximation. They
are concerned with the concepts of conservation, stability, uniqueness and convergence.

Lemma |l.1: There exists a unique solution uy to problem (11.1). Moreover this solution
conserves the three first energy integrals of the K.d.Y. equation, namely

(1.2) (3780 [[g" uy(x.) dx] = 0 ,

(1.3) (8780 [[; luy (x.DF dx]=0 ,

(1.4) (0700 [[3 ((Buy/0%)? = ud/3)(x.0) dx] = O .

Proof: The existence of a maximal time t;, 0 < t; < T such that, for all t < t, , there exists a
unique solution uy(t) to problem (I1.1) is aclassical result of the theory of differential systems.
The problem is to get the existence for a "long"” time T, or equivalently to prove that one can take
t, = T. This result will be achieved with the use of (11.3) that the solution cannot blow-up.

Since the initial condition u®

is real, then uy(0) is real too. We deduce that uy(t) is real for
any t < t, from the uniqueness of the solution to problem (1. 1).
In order to show (11.2), let us first choose y = 1 as a test function in (11.1). We get

(07002 uy (x.0) dx + (1722 (8u2/3%) (x,0) dx + o [ (8%uy/3x%) (x.V) dx = O
using the periodicity of u, , we deduce then (11.2). Choosing now ¢ = uy in (11.1), we obtain
(I1.5)  (8/80)[2" (uy (x,)Z dx +(1/3)[g" (8u3/8%) (x,0) dx + ofq (uy 8%uy/3x%) (x,1) dx=0
Integrating by parts and using the periodicity of uy yield

(2% (0 330y /0x%) (x0 dx = = (1/2) [ 8/8x (8uy/8x)% (x,1) dx = 0 .
Similarly we have

fo" (ud/ax) (x, D dx = O .
We derive now (11.3) from (11.5). Integrating (11.3) between O and t, proves that no blow-up

occurs at time t, . More precisely for any t, 0<t<t,,wederive
(11.6)  fuyC.0laluO Nl



whence t, is equal to T and we can state that the existence and uniqueness of the solution u, holds
for any timet, 0 <t < T.
In order to prove now (11.4), let us take y = P [u: + 20 ﬁzuN/axz](.,t) in (11.1) and, for
convenience of notation, let us drop for a while the explicit dependence on x and t. Then
(1.7) [3% (3uy /80 Py, [u2 + 20 8%uy/8x?] dx
+ (1/72)[37 (3/8)[2 + 20 8%y /8x%] Py, (U2 + 20 82,/ 8x2] dx = 0 .
Since duy/0t is in § we have from (1.6)
12 (Buy /00 P, [U2 + 20 3%uy/8x%] dx = [o" Buy/3t [ud + 20 82uy/3x2] ok
=3/t [[5" (U3 /3 - a(Buy/8x)2 ) dx] .
On the other hand using again (1.6) we derive
Ii“(ﬁ/ﬁx)[u§+20(62uN/6x2]PN[u§+20(62uN/6x2]dx
=(1 /2)fgﬂ(ﬁ/dx) {Py[u2+20cd%uy/8x*])?dx = O .
From (11.7) we get now (11.4).

Remark 1l.1: The estimates (11.2) to (11.4) are the discrete analogues of the conservation laws

for the K.d.V. equation defined in, e.g., Miura, Gardner and Kruskal [ 16] which are at the basis of

the scattering theory.

In the next two lemmas we state some a priori estimates for the Fourier-Galerkin solution
in higher order norms.
Lemma 11.2: Assume that u° belongs to Hl (0,21).Then there exists a constant ¢ > O independent
of N such that for anyt,0 <t T:
(11.8y  fu Ol <c.
Proof: For any t < T, we derive from (1l 4)
(1.9) 5" (oc(Buy/8x)2 = ud/3)(x,0) dx = [o (o(Buy/8x)? - ud/3)(x,0) dx |
Using now the continuous imbedding of H'(0,21) inta L*°(0,21) ( see,e.q. [ 12]), we obtain first
that |

[f,"(u,:j/s)(x,o) dx < (1/3) [ uy(,0) oo [l uy(.,0) I

< cllug.0) 1l luy(.,0) I

By the definition of uy(.,0) and (1.7) it follows that
(1.10) 5" (ud/3)(x,0) dx <ol u®ll, 12 <o (hulZ + IWCI*).

In asimilar way, using (11.6), we get




JZ" (37300 dx < eluyCO I Tu O I <elu GOl TE IR,

< (led/2) uyCO I + el 1*
The estimate (11.8) is then an easy consequence of (1.9), (11.9) and (11.10) .

With this stability in the Hl(0,2n)—norm we can prove now, as in the continuous case, the
boundedness of another energy integral.
Lemma |1.3: Assume that u? belongs to Hi(0,2n). Then there exists a constantc > O independent
of N such that forany t,0<t<T:
(Lt fuy Coll, <c.
Proof: As in the proof of Lemma |1.1 we have to choose properly a test function in (11.1). This
time we take § = Py, [us + 30(Buy/0x)? + 60cuy d%uy/ax” + (18/5)a® 8%y /8x*1(,1). This
choice yields ( here again we drop the dependence on x and t )
(1.12)  [37 [8uy /8t § + uy (Buy/8%) ¥ + o (8%uy/8x%) ] dx = 0.
Let us examine now the first term in (11.12).

Since 8uy/at belongs to Sy , by (1.6) we have

(28U, /8t § dx =[5 8uy/8t(uS + Bo(Buy/3x)? + Bocuy 82uy/0x? + (18/5)&? 3%y /8x%) dx;
integrations by parts yield
(1.13) [2"ou, /0t dx = (8780 [o [uf /4 - 3oty (Buy/8x)2 + (9/5) o (8%uy/3x%)?] dx.
Now we notice that ﬁ;:PN[u3+30((6uN/ax)2+6o<uN62uN/ax2]+( 1 S/S)azﬁduN/ﬁxd, hence we
obtain
(1.14)  [27[ uy (Buy/8%) + x8%uy /0]y de = A+ B +C4 D +
with

A= (18/5)0C [5 83uy/0x° 8%, /0x*dx = 0

B:= j:n uy (Buy/8x) PN(U:) dx ,

C = o2 [8%uy/3x% U3 + 3 uy Buy/8x Py (uy 82Uy /0xD) ] dx

D:= 3cx[§" Uy Buy/0x Py ((Buy/0x)? + uy 8%uy/8x%) dx

E o= o [27[(18/5) uy Buy/8x 8%y /0x* + 3 0%uy/0x> ((Buy/0%)%+2 uy 0%uy /0x7) ] dx
In order to bound B we use the continuous imbedding of Hl(0,2n) into L™°(0,2m)

B < clluy Il 18uy/8x iy I PCui) < cllug I uy 1< e lluy 13 4 ug I
Since Hl(0.2n) is an algebra, || u: I, <clluy II? and therefore we deduce from (11.8) that
(11.15) |Bl<¢c

Let us consider now the term C; integrating by parts the first addendum we obtain



-8 -

C = — of2" [820,/8x% (3 uZ Buy/3x) — 3 uy Buy/3x Py (uy82uy/3x%)] dx
= 30(]'5" uy 0uy/8x [Py (uy8%u,/3x?) - (uy0%uy/0x)] dx
so that
C < 3ot || Uy oo Il uy Il 11 Py Cuy82uy/8x?) = C(uy8uy/ax?) |
From (1.7) ( usingagain the imbedding of Hl(0,2ﬂ) into L*°(0,2m)), we derive
lCl< ol uy e lhuy Il Il ugd®uy/8x? Il <l ug oo Il uy Iy Il uy lloeo Il 3%uy70%% |
<clug Byl .
and by (11.8) we conclude that
(r16) Icl<elugll, -
We now have
D = 3oc[ " uy Buy/3x Py ((8/8x)( uy Buy/3x)) dx |,
= 35 Py (uy Buy/8x) Py ((8/8%)( Uy 8uy/3x)) dx
= 3 [q" Py (uy Buy/8%) (8/8x) Py ( Uy Buy/8x) dx = O .
Similarly we obtain |
E=o? o [(=18/5) ((Buy/3x)% + uy82u,/3x% )(8%u, /x> )
+ 3 (OsuN/st)((GuN/ﬁx)2+2 uNazuN/ﬁxz)] dx
= —o? [5"[(3/5) (Buy/3x)2 8%u, /0x° = (6/5) uy 8/0x(8%u,/0x2)?] dx
= o2 3" [(3/5) (8/8x)((Buy/8x)? )82uy/3x° + (6/5) uy (8/0x)(8%u,/0x%)?] dx .
After integration by parts, we deduce thatE = 0 .
From (11.14), (11.15), (11.16) and the fact that A = D = E = 0 we derive
271172 0u2 /0% + o B%uy /8Ty dx < (ugll, + 1)
Due to (11.12) and (11.13) we obtain
(8/8) 2" [uf 74 - Bty (Buy/8%)? + (9/5) o2 (82uy/ax2)2] dx < ¢ (Jugll, + 1) .
After integrating between O andt, 0 <t < T and using (11.8) to bound the two first resulting terms
under the integral, we have
Jzﬂ (9/5) o (fizuN(.,t)/axz)2 dx <c( 1+ ﬁ) Il uy (.,S)||§ ds)
where ¢ depends on the Hi(0,2n)-norm of the initial condition u® and on T. Using now the

Gronwall's lemma yields (11.11).

We turn now to the convergence estimate for the Galerkin approximation of the K.d.V.

equation.




Theorem 1.1; Assume that u° belongs to H:‘(O,2n) , for some integer m > 2 . Then there exists
a constantc > O independent of N such that for anyt, 0 <t < T:
A7) JuC) - uy GO s eN™™.
Proof: For any time t, 0 <t < T, we set e(t) = Pyu(t) - uy(t). From (1.1) and (1i.1), and setting
E[f.g] = f8f/8x - gdg/dx, we derive for any y in S
(11.18)  (Be/dt + x3%e/8x> , w) = (E[Pyu,ul - E[Pyu, uyl, )
Let us choose y = e as test function in (I11.18) and bound each term on the right-hand side. We
obtain first, using (1.2) and (1.7)
(.19) [ EPyuul e l<Uully +IPyully) lu-Pyull,lleli<cllu-Pyullllel .
Moreover, a repeated use of integration by parts yields
[CEIPy U] - e) | =1C172) [5 (3/80[(Pyu)? - uy2] e dx |
=(1/2) j’jn (Pyu +uy)ede/dx dx|
= 1(1/4) [5 (3/0x)[Pyu + uy] €2 dx |
From (1.2), (11.11) and the imbedding of H'(0,21) into L*(0,2m) we deduce that
(11.20) | (E[Pyu,uy).e)l<cli(8/8)[Pyu+uy]ll=le I2<clelf?.
Let us note now that e(0) = 0; by (i1.18) to (11.20) and the Gronwall's lemma we obtain
le(t) Il < cexplc t) [ [¢ll uls) - Pyu(s) 12 ds]'2 .
The estimate (11.17) is then an easy consequence of (1.2), (1.7), and the triangle inequality:

lu-ugll<lhu-Pyull+llel .

The above result yields the following error estimate in the H‘_ (0,2n)-norm.
Corollary |1, 1: Assume that u° belongs to H7(0,2n) , for somem > 2 .Then there exists a
constantc > O independent of N such that for anyt, 0 <t < T:

(121 Ful,b) - uyC 0 Il < e N,
Proof: This result is a consequence of the inverse inequality in (1.8). Indeed, we have
luy C1) = PuC ) Il < NjFuyCt) = Pyu 0 ]
' SNLTUCD = ugCO T+ TuC,D - PO T,
and from (1.7) and (11.17) we derive

lug G0 =P Ol < NF™

Now (11.21) follows by using again (1.7).
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I1l. ANALYSIS OF THE CQLLOCATION METHOD FOR THE APPROXIMATION OF THE K.d.V
EQUATION.

Despite its mathematical interest, the Fourier-Galerkin method is generally abandoned in
the applications in favor of the Fourier collocation method. The latter method allows a very
efficient treatment of the nonlinear term u(du/3x) by transform techniques at the expense,
however, of introducing an extra error due to the aliasing. This has induced many authors to
dealiase the Fourier collocation solution by resorting to different kinds of techniques. For a more
invoived discussion about these arguments, the reader is referred to [S] ( see e.g. Chapter 3 and
section 4.4.2 ).

We will show in this chapter that the aliased Fourier collocation method is stable and

convergent, and that its asymptotic rate of convergence is the same as that of the Fourier Galerkin

method.

ill.1 Position of the problem.

Let us introduce the collocation points Cj = 2nj/(N+1), for j = 0,...,N. Then we associate
with this set the interpolation operator I : C°(O,2ﬂ) — Sy, defined by:
(1) ¥ 1ec%0,2m) , IyfeSyand I,f(T) = (X)) ,j=0,.N.
Now we define the pseudo-spectral derivative operator 3y as

(11.2) V¥ feC'0,2n), 8,f =80 I,f=3(I,f)/dx.

Remark {Il.1: The calculation of the nodal values of 0,f in terms of those of  is accomplished by
two F.F.T.s plus N complex multiplications ( see, e.g.,[S] Chapter 2 ). This requires SN log,N

operations if N is a power of 2.

Let us introduce the following "discrete” scalar product over c%o ,2rt)2
(113) Vg, yeC%0,21), (g.9)y = ((2)/(N+1) T 0()w(E)) .
It is well-known that it coincides with the L?-scalar product when the product ¢y belongs to S

2N
hence in particular

(I.4) Ve,veSy ., (o.w)y=(g.y) .
Then the operator I, is precisely the orthogonal projection operator onto S, with respect to

(.,.)y . Moreover, it has been proved in [17] that this operator satisfies the following inequality
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for any real numbersrands ,0<r<s ,

(H1.5) VgeHY0.2) , o~ Iyoll. <cN ol .

With these notations we can now introduce the formulation of the approximate problem
obtained by a collocation pseudo-spectral method:

Find a mappinguy : [0,T] - S, such that
(111.6) | V4, 0<t<T Vi, 0<i <N, [Buy/8t+ (1/2) 8y(ud) + & 8%u,/8x°1(T) = 0,
Vi,0<i<N, u(0L)=u"() .
or, equivalently, since these equalities entail equalities between polynomials of S
(.7) | Vees, . VH0<t<T , (du/dt+(1/2) 3 (ud) + o 3%u/ax® ,y)y =0 ,

uy(.,0) = INuo .

The proof of the existence of the solution to this scheme and of the convergence of uy to u
will be more technical than the one for the Galerkin method.

Let us introduce two extended problems that will be useful in the analysis of (111.6). The
first one is a standard K.d.V. problem with initial condition v° ( that will be equal to u(..t) for
various times t ):

dv/0t + v ov/ox + « 8°v/0x® =0 , x€R, t>0 ,
(111.8) vix+2n ) =vix,t) , xe€eR, t>0,

v(x,00=v%(x) , x€R .
The second problem is a collocation pseudo-spectral problem whose initial condition vg €S, isa
suitable approximation of v , which may differ from INv° (the one that was taken in (111.7)):

Find a mappingvy : [0,T] - S such that
VEO<t<T Vi, 0] <N, [Bvy/8t+ (172) 8y(v) + & 3%vy7ax’ (k) = 0,
Vi,0<i <N, v(0.L) =vg(E) .
or equivalentlg
1119) | VweSy, VHO<t<T , (3vy/8t + (172)8,(v3) + a 3%vy/ax® L)y = 0,

VN(. ,0) = vg )

We first exhibit a time interval [0, t7] (t} < T) in which there exists a solution to the
collocation problem (111.9). Then we prove that this solution, together with its three first
derivatives, can be bounded in [O,t;] by some constants depending only on the initial data. This is

accomplished in Lemma 111.2 and in Lemma 111.3. We then prove an estimate of the error between
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v - vy in terms of Vo - va . Finally, in section |11.4, we show by an iteration argument that the

above convergence result, applied to u - uy , can be in fact extended to cover the whole time
interval [0,T].

111.2 Three lemmas about the boundedness of the solution of the collocation
problem.
We begin by noting that, due to the classical theory of differential systems, problem (111.9)

admits a local solution. This means that there exists t; > O, such that for all t < t, . the solution of
(111.9) exists and is unique ( note that t, may depend on N ).
However, no information about the boundedness of the solution in any norm independently of

N is provided from this result. For this we shall take now well suited test functions in (111.9) as
we did in the previous section.
The first choice y = 1 in (111.9) yields
(11.10) (8730 [f5 vy (x.D dx1=0
as in (11.2), or again .
(D) YL0<tety o [o v dx = for vy (x,0) dx = [0 vO(x) dx ,
which expresses the conservation of the Fourier coefficient (vy),(t) .
We turn now to the proof of
Lemme Ill.1: For any real number R, there exist three positive constants {5 < t,, Bor Yo
depending only on Rsuch that for any initial value v,? verifying
(11.12) lvglly <R
andanyt, 0 <t < tj, we have
(11.13) v 1< 8oty - 0712,
(114 Tve GO < x (1 + (12 - 07570
Proof: Let us take y = v, in (111.9); this gives (we drop again the dependence on x and t )
(172) (3/30)(vyy , vy + (172) ((3/8%) Ty(v@), vy + & (8%vy/8x% )y = 0 .
From property (111.4) the third term vanishes by integration by parts, thus
(8781 [l vy I? + ((8/8%) T (v3),vy) = 0.

Using now the Cauchy-Schwarz inequality gives

(8/00) [l vy I2 < IC Iy(vE), vy7ax) | < Il T (v2) lllavy/0x |

< (IN(V:)' IN(Vz))N " VN "1 < (Vﬁ, V: )N " VN "1 < " VN “L°° " VN “ l| VN ”1 .
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Then by the following Gagliardo-Nirenberg inequality
(1.15) Vg eH'(0,21) , lolw<C ol loll}’?,
we have
(11.16) (3781) vy I < S, vy v ID*2
Using now y = I, (vﬁ + 20(62VN/Ox2) in (111.9) yields

(v /8%, Vi + 20087y /8x)y + (1/2)(By/8x,w)y = O .
The second term vanishes using (111.4) and integration by parts, hence
(111.17) (8/8D[ ocfl dvy/8x P - (1/3) (v 1), 1=0 .
Let us integrate this equality between 0 and t, with t < t, and use (111.4) to get

llavy, (£ 78x I7 =l avy(.,0)7ax = (1730 {(vi (1), 1)y = (Va(.,0),1)y]

< (1736 vg 0 lsallvg O 12 + vy (.00 oo Il vy CLOY 1)

Once more, using again inequality (111.15) gives the following result,

Favy () 7ax 12 <K%+ CClvy 172 vy IP72)
where C, = (1/3a) C, and

K® = [l 8v,,(..0)/0x II? + C, [l v\ (.,0) fl o vy(.,0) IF < R%(1 + C,R) .
Now a bound for the Hl(0,2n)-norm of v\(.,1) is easily recovered by means of (1.9). We deduce
11.18) vy 2 <K+ U vy GO I 2 vy GO IR
where K' = 2K® + (2" v,(x,0)dx)? < 2R%(1 +C,R) + 2m R?.

For some technical reasons which will be clarified at the end of our proof, if necessary we
take in (111.18) a possibly larger K' in order to satisfy the following inequality
(M1.19) K > val®
This is achieved for instance for K' = max {R3 , 2 R2(n+1 +C, R)}.
Let us set t3 = min(T ,1/((14C,)C, K'*’®) and 85 =1/{(1+C,)C,] . We show that (Ii1.13) holds
with these constants.

Assume by contradiction that there exists t* < tg such that (111.13) is not verified for
t=t* ,ie
(111.20) vy 12 > [C1/KDP? - (1468, 1]
We shall prove now that the derivative of the mapping t — || v\(.,t) || is bounded, then we will
derive a lower bound for || vs Il incompatible with (111.19). First, we notice that, for any time
t < t, such that
.21 vk

we get
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K< vy GO I < v GO 12 v COIRE
since
vy GO Tl = v O
From (111.18) it follows that for any t satisfying (111.21), we have
(111.22) vy IR € Qe SO T2 v GO IR
we deduce then
(111.23) vyl < CC) 22 vy GO 172
Noting that
[C1/K)3 - (140,00, 17 > K23,
we deduce from (111.20) that (111.21) holds for t = t*, hence (111.23) is satisfied for t = t*.
Let us introduce now (111.23) in (I11.16).For any t, O < t < t* such that | v (.,.) || > K we
have
(3780) Il v O 17 € (146,)C, v O 1Y,
which can be written as
(111.24) (8781 [-1/] v P < (1+C,)C,
Let us consider now the set A c [0,t*] defined by
A = {s, 0 <'s < t* such that for any t in [s,t*] we have || vy(.,t) | > Ky
It is an easy matter to check that, by virtue of the continuity of the function t > v (., ) |, Aisa
closed interval [o* t*] of [O,t*]. Besides, from (l11.24) we obtain for any s in A that
lvg(8) 1P 2 L) 3D + (14C,)C, (=901,
and by (111.20)
(111.25) VseA , fvy(,9) 7> [(17K)?? - (14C,)C, 817" > K5,
Applying (111.25) to 0* shows that 0* = O hence A turns out to be equal to [0,t*]. We arrive now
to the contradiction between (111.25) with s = O and (111.19). We deduce first that the max time t,
is independant of N since no explosion occurs before ta and that (111.20) cannot hold. Whence, we

have (111.13) for all t < t§ .Now (I11.14) follows from (111.13), (111.18) and Cauchy-Schwarz

inequality.

Remark 111.2 : We note that equation (111.17) is the discrete analogous of the equation (11.4) of
conservation of the third energy integral for the solution of the collocation problem.
Unfortunately, the conservation of the second integral does not hold any more in the current case.

This failure does not allow us to deduce directly the conservation of the Hl(0,2n)—norm of vy. On
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the other hand, this would still be possible if the following skew symmetric decomposition of the
nonlinear term

(173) 0,(vZ) + (173) vy Bvyy/0x
was considered in (111.9) instead of (1/2) GN(vﬁ). However, this choice would slow down the
efficiency of the numerical scheme since an extra nonlinear term should be computed. Besides, we
will prove also for the genuine pseudospectral scheme (111.9) a uniform bound of the
Hl(0,2n)-norm of vy on the large time interval [0,T]. To this end, we start by proving a bound

on a "small" time interval in the next corollary.

Corollary lil.t: For any real number R, there exist three positive constants f1, Bys ¥,
depending only on R such that for any initial value vg verifying

(111.26) velly <R

andanyt,0 <t<t,, we have

(111.27) v DI < 8,

(111.28) vy O1L < ¥,y

Proof: It is a simple consequence of the previous lemma. For instance one can take f1 =t /2, in

which case (111.27) and (111.28) hold with 8, = 8, [2/t31"% and ¥, =¥, (1+( t3/2)>®)

The same kind of bounds we obtained for v, will now be proved for the derivative dvy/0t. Let
us first recall that in view of (111.10) the following equality holds
(11.29) V,0<tsty |, [o dvy/8tx,.0dx=0.
Further information concerning the boundedness of the L2(0,2n) and Hl(0,2ﬂ)—norms of Qv /0t
are obtained by differentiating equation (111.9) with respect to the time variable. We get
(111.30) VyeS, , VE,0<t<T, (82vy/3t% + 8, (vydvy/8t) + o (8%/8x°)(Bvy/81), )y = 0.

We can now prove the following resuit

Lemma 111.2: For any real number R, there exist three positive constantsty < f1 , B and x;‘b
depending only on R such that for any initial value VS verifying

(.31 vl <R

andanyt, O <t < tf, we have

(111.32) || (3vy73t)(.,0) || < 87,

(11.33) || (@vy /oD D Il < ¥ -
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Proof: Let us take y @ dv, /8t in (111.30). We obtain, using (I11.4) and noting that dv,/at is
periodic
V0t (172) (0730 [ avy/8t I + ( 8y(vy8vy/3t) 8vy /8ty = O
By the definition (111.2) and the property (111.4), integrating by parts and using the
Cauchy-Schwarz inequality, it follows
V0t , (3/01) ]| avy/0t I < 21 Iy(vydvy/8t),(8/8x)8v, /80|
< 2| Ty(vydvy /0t [l avysatll,
< 2 vy e Il 3wy /8t Il Bv /3t I,
Using the Gagliardo-Nirenberg inequality (111.15) and Corollary I11.1, we can find a constant K"
depending only on the Hl(O,Zn)—norm of the initial condition such that
(11.34) vt,0<t<t) |, vy liee <K,
We can therefore obtain the inequality
(11.35) Vt,0<t<t, , (8/81) [ avy/at|? < 2Rl avy/at |l avy/atll, .
Our goal is now to provide a bound for || v, /8tl|, . To this end, let us take
w = Iy (vy 0vy/0t + o (8%/3x%)dv,/0t)
as test function in (I11.30). This choice yields the equality
~(8%v/0t%, w(8%/0xD) vy /8t ) = (8%vy/3t2, vy Bvy/BY)y, .
After integration between O and t, 0 < t < t,, we obtain
(111.36) [1(8/8x)(Bvy/30C.) 2 = || (3/8x)(3vy /81)(..0) 2 = 20" [ (8%vy /8%, vy Bvyy/80), .
Let us now focus on the right-hand side of the previous equality. Integrating by parts with respect
to the time variable gives
[ (02, /882, vy Bvy /80, ds @ [(Bvy /8L, v,y 8vy/3t)y Ty - [o (Bvy/81.(8/81)(vy Bv,/3D)),, ds
= [(Bvy /0L, vy Bvy /80y Iy — [o (Bvy/8t,(Bv,y/80%), ds
[ (v /8t vy 8% 133 ds
Noting that the last term on the right-hand side is the opposite of the ieft-hand term, we get
2[4 (8%v, /312, vy, Bvy /80y ds = ((Bv,/8D2(,0), vy (D) - ((Bvy /802,00, vy(.,0))y
~ [5(1,(8vy /00, ds .
By virtue of (111.34) and the Gagliardo-Nirenberg inequality (I11.15), we deduce that
2 {[4 (02, /88, vy Bvy /80y ds < K™ || (v, /80,0 IZ + I (Bvy/80(,0) 2 1 v3 l oo
« [ 11 3vy/8t oo Il By /8L [ s
<R 1 (Bvy /0,0 12 + 11 (v /80,00 [P v ll oo
+Cy [o lavy/0tll} "2 Il avy/at 2 ds .

et —




-17-

Injecting this inequality in (111.36) and using (1.9) and (111.29) gives

(/2) 11 (v /30,0 117 < o [l (Bvy /80,0 117 + | (3vy /38 (.,0) 12l v8 ll oo

N avy/8t 172 1| Bvy /8t 132 ds « R* || (Bv, /a0 (1) |17

We can rewrite (111.9) as follows

Bvy /0t = (172) 8y(vf) + ot 3%v/ax° .
Then using (111.31), it is an easy matter to deduce from this equality on the one hand that

l[(avyy /80,00 < € [ H13/8xC(vE) - TN Il + 1873x(v2)) Il + 1 8%y, /ax |
and using (111.5) withr =s = 1, we deduce that [|(dv,/8t)(.,0)|| is bounded by R2(1 + «R); on the
other hand, by taking its derivative in the x~direction, we derive that the term || (3v,/3t)(.,0) |,
can be bounded by R2(1 + o R). Finally, with a new constant K* depending only on R, we derive
the inequality
(111.37) v t,0<t<t , 1(avy/30C.012 <K (1 + ] (8v, /30,0 IP)

+Cy o I 8vy /8t 11172 || avy /0t I¥/2 ds |

Let us now consider the set B defined by

B={s€10,1']: Vte[0,:]: C, [qlavy/tl!"?lav/otlP? ds <k” } .
It is an easy matter to check that B is not empty; indeed, we derive from (1.8) and (111.35) that

V1,0t (8/00) [ 0vy/8t(, 0 2 < 2N K" [ vy/8t(,0) |7 .
Then, we get, using again (1.8)

Vr,0<t<t avy/at O « oN ' avy/0t(, 07 < 21 8vy/8t(.,0) I* exp(2eN K" 1).
This proves the existence of a time t, > 0 (obviously depending on N) such that ]0,t.] < B. Next,we
derive from (111.37) that
(111.38) VteB, [(@vy/a0( DIF <K (2 +] (Bvy/a0C D113
and due to (111.35)

VteB, (a/01)]lav, /0t <K VK (2] 8vy/8tl + [ dvy/8t )

< 4K" VR (14| av/at?) .

After integration on time, we obtain
(111.39) VteB , (2+[(avy/00C. DI < (2 +[I[(Bvy/80(,0)]I?) exp(4 K" VK1) .
From (111.38) we then state
(111.40) ¥V teB, [[(vy/a)( DIF <K" (2 +][(3vy/8t)(,0)I%) exp(4 K" VK™ 1)
We deduce that there exists a constant t,, that depends only on the H:(O ,21)~norm of the initial

function vg and on T such that

VteB, [[(avy/a0( DI2<T, .
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From the definition of B we can state that this set contains an interval [0,t]] with
t} = min( f1, K"/(C,tg/z), which is therefore independent of N. Thus the desired results follow
from (111.39) and (111.40).

In order to prove the convergence of the discretization we need a further stability result
Lemma 111.3: For any real number R, there exists a constant 5 depending only on R such that
for any initial value VS verifying
(111.41) fvgll, <R
andanyt, 0 < t < tf, we have
(111.42) fvy(D < x5 -

Proof: Let us choose y = 63VN/ax3 in the equation (111.9). We obtain
Lo ||| vy /0x° 2 = —(Bvy/8t,8%v,78x7) - (1/2)(878x( T (v2)),8%,/0x%)
<l avy/at i 18%vy/8x> || + [l 8/8x((v) - T (v Il + el vy 1311 8%y 70’ |l
Using (111.5) withr o s = 1we have
(111.43) Joc || 8%, 70x% P < |l Bvy/at §118%v,/ax3 | + ¢ vy I3 1 a°vzax’ |l .
On the other hand, using the definition of the Hi(0.2n)—norm, the inequality (111.15) and the

inverse inequality (1.8) we deduce
Ivd lly <c vy vyl + vy i3] <N vy 2.
By virtue of (111.43) we obtain
Lo |11 8%y /0x° 17 < Il avy /ot I 13%vy7ax3 || + c vy I3 11 8%y /e |
The two previous lemmas yield now that the term || 63VN/é)x3 || is bounded and we derive the desired
result (111.42) by noting that
Il a2vN/ax"’ I<Cl Ei"’vN/ax3 Il

111.3 Analysis of the convergence in the local interval [O,t]].

We are now in the position of stating a first local convergence result of the solution of the
collocation problem (111.9) to the one of the K.d.V. equation in the time interval [0,t}]. Precisely
we have
Proposition il1.1: Assume that v belongs to HT(0,2T1) , for some m > 4 , and that vﬁ is
bounded in H: (0,2n) independently of N. Then there exists a constant A > 0 , depending
continuously on || vﬂ |, and independent of N such that for any t,0 <t <t}

(111.44) fvyC 0 =-vOD I < A NT™ v =vO ;.
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Proof: From (111.8) it is easy to check that (remind that E(x) denotes the integral part of x)
Vt,0€t<T , Pga0v/0t + v av/ax + « 8%v/0x%) = 0 ,
so that
Vyel?(021) ,Vt,0<t<T , (Pyyo(3v/8t + v av/0x + « 8%v/0x%) y) = O .
For a fixed time t, let us substract this equation from the collocation equation (111.9) at the same
time. If we set v(t) = Pgy 5 v(1) and e(t) @ v(t) - v\((1) , for any y in S, we derive the identity
(111.45) (3e/dt + «d%e/8x>, w) = (1/2) (3/3x(Ty(v}) = Pgrymy(V?)), w) .
Taking y = e(t) for all t and noting that v2(t) € Sy we obtain
(111.46) (3/0t) e l? = (3/3x(V? - v?) &) + (3/3x(v? = P pp(v2)) &) +(8/0x(Ty(v2 - ¥%)) ).
The last term on the right can be bounded as follows
(8/3x(Ty(vi - ¥9)).e) = ((vi - ¥2),8e/0x) = ((2V - e)e,de/0x),,
<2(ve,v e),}l2 | 8e/ax || + | de/0x | =l € 112
< 2|Vl ae/ox il ell + Il 3e/0x il e .
Then from (111.46), we deduce
(11.47) (/80 llel® <l e l{{l 89/8x ll oo + | 3v/8x lleo I = v I, + 1 V2 = Pyiy,pv? I,
+ 2|Vl ool 3e/8x || + || Be/0x [l el eI} .
From (1.2) and (1.7) we get, as soon as v° belongs to HT(O,ZH) withm > 3
(111.48) [l 8v/0x |l oo + Il Ov/3x [leo JI vV = v I, + 1 V. PE(N,z)vz I, < C(m) N-™
Here C(m) is a constant that depends only on the norm D I vo IIm . Moreover, from (111.42) we
have (we enlarge, if needed, the value of C(m) keeping although its dependence only on 7_ || vO Il )
(111.49) 219 [l o + | 38/0x ll c0 < C(M) + ¥ .
Taking into account (111.47) (111.48) and (I11.49)
(111.50) (a/at) [lel < (C(m) + y5) (N'"™ el + | de/ax || ell +llel?) ,
where the constant depends on the initial conditions only.
Our next goal is to obtain an estimate for || de/dx || in order to use it in (111.50). For this,
we take y = (I v - Py jo9v2) - 2003%e/8x in (111.45), so that we find the identity
~20(e/08t,0%/0x?) = (3e/8t Py pV° - IyVE) .
Therefore
(11.51) «(3/8t) || 3e/0x |7 = (3e/at, Pgy v’ - ¥2) + (3e/8t, T(V2 - v2)) ,
or again, if weset w = pE(le)Vz—\.lz,
(111.52) «(a8/8t) |l de/ax | = (de/at,w) + (Be/dt, I [e(V + v)]) .

Besides we remark that
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(8e/0t, T, [e(v + vy)]) = (3e/8t,e(V + vy))y = (1/2)(36*/3L,7 + v\)y -
Then integrating (111.52) between 0 and t for any t <t} we derive
(11.53) ol (3e/8x)(.0) |12 = ol (3e/8x)(.,0) | = [ (3e/0t,w) ds +( 1 /2[4 (062/0t,7 + vy)y ds .
Settingz=v + vy and integrating by parts with respect to t gives
(111.54) | [4(3e2/0t,2), ds | = | ~[(e2,2),15 + [o (62.02/80) |

<1 (€20,1),20. 0] + [(2(,0),2(.,0), | + max [ |92/8tC., llee 1[ Il & I2ds
Ogtxt

Furthermore, we have
(111.55) | [§(3e/ot,w) ds| = | ~(e(t),w(t)) + (e(0) w(0)) + [y (e.aw/at) |

<le Il w) [+ leCO) IIfw(O) I+t max  [le(T) i, |l dw/at(D) |_,
0<txt

Finally, we can deal in a similar way the last term of the right-hand side of (111.53).
Let us set now
Ko = Il 3e/8x(0) |1 + | (e2(0),2(0))y | + Il eCO) | w(O) || ;

then, from (111.53) to (111.55) we deduce that

t
Vi oststr lae/ax() P <Ky +c max {[}2(0) lleo+ Il 82/8t(T) ll o] [oll e(s) I ds
O<txt

sl aw/at(o) |12, + (1720) lle(t) 2 }
+ leC) % + [ w12
It is an easy matter to derive from (1.2) and (111.8) that if v° belongs to H:‘(O,Zﬂ) withm > 3,
then v belongs to L*(0,T; HJ'(0,21)) and dv/dt belongs to L=(0,T; HT-3(0,2T()). Thus, by a
straightforward application of (1.7) , we deduce
Ko+ Cmax [l aw/0t(x) 2+ w(v) 2 1< C(m) (N22™ 4 |le(0) |2 ).
O<tgt)

Hence we derive from (111.28) and (111.33) that

¢
(111.56) max || 8e/dx(T) |2 < C(m)[NZ2™ . Joll e(s) 2ds +| e(O)“?]
Ogtxt

Let us now introduce this last inequality into (111.50); we obtain
(8/80) [l e() 2 < (C(m) + ¥3) (N22™ Ll e(t) 2 + [yl e(s) 2 ds + [ (|2 ,
whence, after integration with respect to the time variable
Vi o<tett , le® | <le(0) |2 +(Ctm)+yg) (AN22™ 4 [ e(0) 2 ) + fol e(s) |I? ds)

t
< (C(m) +y ) ANFZ™ o [ eONI2) + [yl eCs) 1P ds) .
The Gronwall lemma yields now
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(111.57) Vi, 0<t<tr , lle®) P < (Cm)+y)(N“™ 4 [ e(0))?)

We recall that the constant (C(m)+x3) that appears here depends only on the HT(0,2n)—n0rm of
the initial condition v® and on ¥3 » Which in turn, from Lemma I11.3, is a bound for the
Hi(O,Zn)—norm of vy. Hence c is a constant independent of N and t..

The result (111.44) follows now using (1.7) once more together with (I11{.56) and (1i11.57).

1.4 nvergen 1ts for th roximation.
We can state now the main result of this section.

Theorem [li.1:Assume that u®° belongs to H:‘ (0,2n) , for somem > 4 . Then for anyt, 0 <t < T

and any N large enough the following estimate holds
(11.58) Ju(,)-uy O, <N
Proof: Let us choose a class of initial conditions for (111.9) such that
(11.59) vglly <210l
where 1, is the constant which appears in (1.2). From Lemma {11.2 ( applied with
R=27,4l u® l,), we deduce the existence of a time t* independent of N such that, for any initial
condition verifying (111.59), the solution of (111.9) exists for any t , 0 <t < t* . Under the
current hypotheses, by virtue of Proposition 1111 there exists a constant A_ = A( ]| u® ]l ) such
that, for any timet, 0 <t < t*,
(111.60) vyt = vl < AN+ lvg - VO,
Finally, we denote by N* the integral part of 1 + ([(4K + 1Z>)/\m]'1'r]4 0 u® ||4)”(5"“) , where we
have set K = T/t*.

From (111.5), it can be deduced that there exists a constant N, > N* such that for any
N > N, the estimate (111.59) is true for uy and that
.61) u® - udlly + HuC,0) = PyuC, Ol + N3 u,t) - Py, ll, < AN
(if necessary, we have enlarged the value of the constant A ).
We are going to prove by induction on k < K that

Forany t, kt* <t < (k+1)t*, uy exists and satisfies
(H,) Il ugCkt*) ll, < 2 9,1l Il and
Vi, ktr gt (ke D, uC,0 - uyC O Il € (ke2)A N2

It is an easy matter to check that (Hg) is a simple consequence of (111.60) and (I111.61). Let us
assume that H, is true for k and let us prove it for k+1. It is readily seen that the solution

of (111.8) with v% = u(_,(k+1)t*) is the solution of (1.1) and that the solution of (111.9) with
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vg = uy(.,(k+1)t*) is the solution of (111.7) for t > (k+1)t*. First, we have to prove a bound for
fluy C.Ck+ 1), . Using (1.7) and the inverse inequality (1.8) we deduce from (111.61) and the
previous estimate that
Vt,0 <t ke D, Tug 0 - PyuCt) ly < 4N ug(,t) - Py, Il
< AN [ugCt) = uCO Il +HuC D = PO L)
< 4 (k+3)A N
Therefore
V0 < te (ke Dt T ug(ot g < Hugt) =PyuC 0 T, + uC,0 =P ll, + luC O
< (4K + 1A N+ ffluC,O |, -
If N is chosen greater than N* we derive from (1.2) that || uy(.,(k+1)t*) |, < 2 9, || WP I,
Moreover, from Lemma Iil.1, we deduce that uy exists for any t , (k+1)t* <t < (k+2)t* and
from (111.60)
Vi,0<tst, Jluy Clke D et) - uC (ke D) )l < AN
+uy Gk 1) = uC (ke D)
Using now the induction hypothesis we obtain
Vt,0<t<tt, fluyC ke D) —ul (ke D +t) ||, < (k+3)A_ N2
This proves hypothesis (Hk”). Thus the induction procedure applies successfully and the desired

result (111.58) follows.

Remark 111.3: The stability result in the H*(0,21)-norm stated in (H,) plays a fundamental
role in the proof of the global convergence result (111.58). As we have seen, stability has been

obtained by exploiting the spectral decay of the error on each local interval [kt*, (k+1)t*].




.23.

BIBLIOGRAPH

[1] C.Bardos : Historique sommaire de 'équation de Korteweg-de Vries. Un exemple de
l'interaction entre les mathématiques pures et appliquées ; Publ. n°45, (1983), Université de Paris
Nord.

[2] C.Bardos : Ondes solitaires et solitons ; Boll. UM.L §, 16-A, (1979), pp 21-47 .

[3] na, V. A. D li A K ian : Fully discrete Galerkin methods for the
Korteweg-de Vries equation, to appear in Comput. and Math. with applications 12 A.

(4] L. Bona, W, G, Pritch L.R : Numerical schemes for a model nonlinear,
dispersive wave; to appear in J. Comput. Phys.

(5] n Y. Hussaini, A roni & T.A. Zang : Spectral methods in Fluid Dynamics.
Springer-Verlag, in press (1987).

[6] T.F.Chan & T. Kerkhoven : Fourier methods with extended stability intervals for the
Korteweg-de Vries equation ; S.I.A.M. J. Numer. Anal. 22,(1985), pp 441-454.

[71 B.Fornberg : Numerical computation of nonlinear waves, Technical Report Plenum,
Nonlinear Phenomena in Physics and Biology, (1981).

(81 B.Fomberg & FR.S, Whitham : A numerical and theoretical study of certain nonlinear
phenomena, Phil. Trans. Roy. Soc. 289, (1978), pp 373-404.

[91 D.Jackson : The Theory of Approximation , AM.S. Colloquium publications, Vol. XI,
(1930), New-York.

[10] D.J. Korteweg & G. de Vries : On the change of form of long waves advancing in rectangular
canal, and on a new type of long stationnary waves ; Philos. Mag., (1895), pp. 422-443 .

[11] P.D. Lax : Almost periodic solutions of the K.d.V. equation, S.I.A.M. Review 18, (1976),
pp 351-375.

[12] LL. Lions & E. Magenes : Nonhomogeneous Boundary Value Problem and Applications ,
Volume I, Springer Verlag, (1972), Berlin, Heildelberg and New-York.

[13] M. He Ping & G. Ben Yu : The Fourier pseudospectral method with a restrain operator for the
Korteweg-de Vries equation, J. Comp. Phys. 65, (1986), pp. 120-137.

[14] R.M. Miura : Korteweg-de Vries equation and generalization. I. A remarkable explicit
nonlinear transformation, J. Math. Phys. 9, (1968), pp. 1202-1204.

tlS] R.M., Miura : The Korteweg-de Vries equation: A survey of results ; S.I.A.M. Review 18,
(1976), pp 412-459.

[16] R.M. Miur ner & M.D, Kruskal : Korteweg-de Vries equation and generalization.
I1. Existence of conservation laws and constants of motion ; J. Math. Phys. 9; N°8 (Aug. 1968),
pp-1204-1209 .

[17] LE. Pasciak : Spectral and pseudo-spectral methods for advection equation ; Math. Comput.
35, (1980), pp.1081-1092.



-24-

[18] LE. Pasciak : Spectral method for a nonlinear initial value problem involving pseudo-
differential operators. SIAM J Numer. Math., 19, 1982, pp 142-154.

[19] A.Quarteroni : Fourier spectral methods for pseudo-parabolic equations, to appear in
S.I.LA.M. J. Numer. Anal. (1987).

[20] H.Schamel &’ K., Elsésser : The application of spectral method to nonlinear wave propagation,
J. Comp. Phys. 22 (1976), pp. 501- 516.

[21] E. Tappert : Numerical solution of the Korteweg-de Vries equation and its generalizations by
the split-step Fourier method, in Lecture in Nonlinear wave Motion, A.C. Newell, ed., Applied
Mathematics, Vol.15, AM.S., Providence, Rhode Island, (1974), pp. 215-217.

[22] R.Témam : Sur un probléme non linéaire, J. Math. Pures Appl. 48, (1969), pp. 159-172.

e m— .




Standard Bibliographic Page

1. Report No. NASA CR-178317 2. Government Accession No. 3. Recipient’s Catalog No.
ICASE Report No. 87-36

4. Title and Subtitle 5. Report Date
ERROR ANALYSIS FOR SPECTRAL APPROXIMATION June. 1987
OF THE KORTEWEG-DE VRIES EQUATION 6. Performing Organization Code

7. Author(s)
Y. Maday and A. Quarteroni

8. Performing Organization Report No.

87-36

. k Unit No.
9. Performing Organization Name and Address 10. Work Unit No

Institute for Computer Applications in Science 505-90-21-01
and Engineering 11. Contract or Grant No.
Mail Stop 132C, NASA Langley Research Center NAS1-18107

Hampton, VA _23665-5225

13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address

Contractor Report
14. Sponsoring Agency Code

National Aeronautics and Space Administration
Washington, D.C. 20546

15. Supplementary Notes

Langley Technical Monitor: Submitted to the M2AN Numerical
J. C. South Analysis

Final Report

16. Abstract

The conservation and convergence properties of spectral Fourier methods for
the numerical approximation of the Korteweg—-de Vries equation are analyzed. It
is proven that the (aliased) collocation-pseudospectral method enjoys the same
convergence properties as the spectral Galerkin method, which is less effective
from the computational point of view. This result provides a precise
mathematical answer to a question raised by several authors in the latest years.

17. Key Words (Suggested by Authors(s)) 18. Distribution Statement

collocation, spectral method, 64 — Numerical Analysis
Korteweg de Vries

Unclassified - unlimited
19. Security Classif.(of this report) 20. Security Classif.(of this page) {21. No. of Pages{22. Price
Unclassified Unclassified 26 AO3

For sale by the National Technical Information Service, Springfield, Virginia 22161
NASA Langley Form 63 (June 1985) NASA-Langley, 1987



