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Milo D. Dahl, Edward J. Rice, and Donald E. Groesbeck
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135
ABSTRACT
The acoustic behavior of a flexible fibrous material was studied
experimentally. The material consisted of cylindrically shaped fibers arranged
in a batting with the fibers primarily aligned parallel to the face of the
batting. This type of material was considered anisotropic, with the acoustic
propagation constant depending on whether the direction of sound propagation
was parallel or normal to the fiber arrangement. Normal incidence sound
absorption measurements were taken for both fiber orientations over the
frequency range 140 to 1500 Hz and with bulk densities ranging from 4.6 to
67 kg/ma. When the sound propagated in a direction normal to the fiber
alignment, the measured sound absorption showed the occurrence of a strong
resonance, which increased absorption above that attributed to viscous and
thermal effects. When the sound propagated in a direction parallel to the
fiber alignment, indications of strong resonances in the data were not present.
From comparing these two sets of data and from considering the material
structure, the resonance in the data for fibers normal to the direction of
sound propagation was attributed to fiber motion. An analytical model was
developed for the acodst1c behavior of the material that displayed the same
fiber motion characteristics shown in the measurements.
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specific heat at constant pressure
specific heat at constant volume

fiber diameter (1.254x107° m)

porosity, 1 - (pb/pf)

heat transfer coefficient
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heat transfer parameter, Eq. (A14)

complex propagation constant

thermal conductivity of air

depth of material

length of a fiber

acoustic pressure

acoustic pressure in air incident on material
ambient air pressure

fiber length with motion/total fiber length
gas constant

resistance coefficient of a fiber

ambient air temperature

time

acoustic particle velocity in the material
velocity of fiber motion

volume velocity per unit area

acoustic particle velocity in air incident on
material

volume of a fiber

characteristic impedance

distance along x-axis




Z acoustic impedance
a_normal absorption coefficient
v ratio of specific heats, 1.4 for air
© acoustic varitation 1n temperature
u  Vviscosity of air
v kinematic viscosity of air
Ef displacement of a fiber
p acoustic density of air
ambient density of air (1.21 kg/m3)
bulk density of material
density of fiber matertal (1440 kg/ms)
o viscous loss term, Eq. (A5)
w radilan frequency
resonant frequency of a fiber
INTRODUCTION
Acoustic propagation in porous materials has been studied since the time
of Rayleligh. The early approach was to assume that the material was rigid and
that the sound moved through small pores and lost energy through viscosity and

heat conduct1on.]'2

added.a-6 Since the matertal frame itself was flexible, an elastic wave could

Later, the additional complexity of material motion was

be sustained in the material and interact with the wave propagating through the
air. Thus, additional losses of acoustic energy were made through deformations
of the material frame. Many of these studies have been done for porous
materials, in general, while others have been based on modeling a specific type
of material. Attenborough7'8 has reviewed most of these studies, so no attempt
will be made here. This study will concentrate on the behavior of one

particular type of fibrous material.



Two characteristics of acoustic propagation in fibrous materials will be
considered in this report. The first is the effect of fiber motion on a
material's acoustic behavior. 1In this context, the term "fiber motion" means
that the fiber moves only under the influence of a passing acoustic wave. The
ends of the fiber are assumed to be fixed in space at the joints of the complex
interconnection of fibers that make up the material. While Attenborough8 has
expressed that no real material has shown the behavior described as fiber
motion, Kawas1ma9 has analytically studied a model where fiber motion was
assumed to be present in the material. 1In this report, fiber motion is used
to describe some of the behavior seen in the data. When frame motion is
discussed, 1t refers to the motion of the fibers under the influence of other
fibers. An elastic, wavelike motion then occurs through the interconnected
frame of the material. Most analysis has been done with this flexible frame
approach, and much data have been collected to verify the analysis.

The second acoustic characteristic to be considered here results from the
forming of a fibrous material into a blanket. When the fibers are hanufactured
into a blanket, the fibers are primarily aligned in two-dimensional parallel
planes, with some fibers arranged across these planes to hold the blanket
together. This general alignment of the fibers creates an acoustic medium that
is anisotropic, a characteristic of the medium where the acoustic propagation
constant depends on the direction of propagation. Inside a fibrous material,
the acoustic propagation constant depends on whether the sound 1s propagating
parallel to the planes into which the fibers are arranged or whether the sound
is propagating normal to these planes.

This study considers a fibrous bulk material called Kevlar. When it is
used as a lining for wind tunnel test sections and for aircraft engine inlets,

this material can withstand the severe environmental conditions that may occur




without breaking down and dispersing in the flow. Kevlar has also been the
subject of previous work,m'12 the results of which are used for comparison
with the results of this study.

Data consisting of normal impedance measurements were taken from a series
of single-density Kevlar samples, all with the same dimensions. The densities
ranged from 4.6 to 67 kg/m3, and data were taken at identical densities in both
directions of sound propagation: normal to the fibers and parallel to the
fibers. After a description of the experimental apparatus and procedure, the
results for the normal fiber measurements and the paralilel fiber measurements
are shown and compared in terms of the normal absorption coefficients. This
is followed by descriptions of the models of Hersh and l«la]ker]0 and of
Kawas1ma,9 which are compared with data. Finally, the two models are
combined to obtain an improved model for the normal fiber measurements.

EXPERIMENTAL APPARATUS

An acoustic duct, originally described in Ref. 13, was modified for use as
an impedance tube.]4 As shown in Fig. 1, one end was closed off by a steel
plate, and a 120-W compression driver with an acoustic horn was attached to the
other end. The rectangular duct had inside dimensions of 3.81 by 10.16 cm.

The plane wave cutoff for these dimensions was apprdx1mate1y'1700 Hz, which
set the upper frequency 1imit of the measurements. To allow access to the
interior, the top of the duct was made of removable plate sections. In one of
these duct plates, two 0.64-cm condenser microphones were mounted with a
3.81-cm separation.

The measurements were based on the two-microphone transfer function
technique described by Chung and B]a\ser.]5 With the assumption that the

microphones measured the sound at a point, the microphone outputs were sent to

a two-channel fast Fourier transform analyzer, which calculated the transfer



function between those two points in the duct. Upon completion of this
measurement, the two microphone systems were switched in position, and the
measurement was repeated. This switching procedure resulted in two transfer
functions, which were used to calculate a geometric average transfer function
that was corrected for any gain and phase difference between the two microphone
systems.

In addition to the measurement technique, considerations were given to
minimizing blas and random errors.]G The bias errors were minimized by
locating the microphones cliose to the sample and by using a small analysis
bandwidth. The distance of the microphone farthest from the sample was
11.18 c¢m, and the analysis bandwidth was 5 Hz. The random errors were
minimized by maintaining a high coherence between the acoustic source and the
microphone signals. This is difficult to do at very low frequencies and when
the microphone spacing equals a half wavelength. The coherence was always
greater than 0.99 for frequencies of 140 Hz and above. The microphone spacing
was not a concern since the half-wavelength frequency was about 4.5‘kHz, well
above the frequency range of the measurements.

The Kevlar samples were cut from a low-density blanket in the form of a
batting. The fibers were layered and lightly needled to hold the batting
together. 1In add1t1on; the batting had been treated with Zepel, a fluid
repellant. The nominal specifications for the batting were a density of
6.4 kg/m3 and a thickness of 2.54 cm. FEach piece was cut slightly less than
the cross-sectional size of the duct to minimize any binding or clamping of the
material at the duct walls.

After being weighed, the individual samples were placed through an opening
in the top of the duct into a sample holder, a 4-mesh screen attached to the

hard walls near the end of the duct, which held the samples in place against




the hard end of the duct. With the screen in place, the sample holder was
3.81 cm high by 10.16 cm wide by 10.16 cm deep. An example of the sample
holder setup for measurements with the fiber planes normal to the direction of
sound propagation (referred to as normal fiber measurements) is shown 1in
Fig. 2(a). When measurements were made with the fiber planes parallel to the
direction of sound propagation (parallel fiber measurements), the samples set
up for the normal fiber measurements were taken out and rotated 90°, as shown
in Fig. 2(b). This arrangement allowed both the normal and the parallel fiber
measurements to be taken with the same samples, the same sample holder volume,
and the same density. At the lowest density, the samples were 1ightly expanded
to f111 the volume of the sample holder. Subsequently, to increase the
density, more individual samples were compressed into the volume of the sample
holder. Thus, the variation in density ranged from 4.6 to 67 kg/ma.
RESULTS FROM MEASUREMENTS

The transfer function data were used to calculate the specific impedances
and the normal absorption coefficients for all the samples that were measured.
These results, summarized in terms of the normal absorption coefficient, are
shown in Fig. 3 for the parallel fiber measurements and in Fig. 4 for the
normal fiber measurements. Each figure shows how the absorption coefficient
curves (an versus frequency) evolve as a function of density, which is
labeled on the third axis of the figures. The density i1s lowest at the front
of the figure and increases to the highest density at the back of the figure.
The frequency range for all the data begins at 140 Hz and ends at 1500 Hz.

The absorption coefficient curves for the parallel fiber measurements,
shown in Fig. 3, are smooth with gradual changes taking place as a function of
frequency and density. The primary absorption mechanisms are viscous losses

across the fibers and heat transfer effects between the air and the fibers.



In comparison to the parallel fiber data, the normal fiber data, shown in
Fig. 4, have a resonance present in the data. This resonance is especially
apparent in the higher density absorption coefficient curves, where a sharp
peak is present in the curves. When the structure of the material is
considered, this resonance is attributed to fiber motion. The viscous drag
and the pressure gradient across the length of a normal fiber create endugh
force to laterally displace the fiber. 1In the case of the parallel fibers,
the viscous drag and pressure gradient forces created along a fiber are not
enough to cause the fibers to compress or buckle.

The results for the normal fiber measurements are subject to different
interpretations. At first inspection, it looks as if, as the density
increases, the broad peak in the lowest density curve is evolving into the
sharp peak in the highest density curve. It will be shown that this 1s not the
correct interpretation and that the evolution of the sharp peak, which is
attributed to a fiber resonance, also creates the dip in the lower density
curves at the lower frequency end. The fiber resonance peak occurs at a
frequency just above this dip, and 1t is broader and lower in amplitude at the
lower densities on this plot; therefore, it is not clearly visible. As the
density increases, the fiber resonance peak becomes higher and sharper, and it
s always next to the dip. As shown, the dip and then the peak gradually move
to a higher frequency as the density increases.

The data from the normal and parallel fiber measurements show that the
material is anisotropic. The first obvious difference is the apparent
presence of fiber motion when the sound propagates normal to the fiber
direction. The second difference in the two directions is seen'1n the overall
levels of absorption. By ignoring the normal fiber resonance and by

considering the broad shape and level of the normal fiber and parallel fiber




absorption coefficient curves, a comparison over the range of densities
measured can be made. At the lowest densities, the parallel fiber curves are
at the same level or lower than the absorption coefficient curves for the
normal fiber data. For example, in Fig. 3 the lowest density sample has
absorption coefficients such that 0.16 <an< 0.67, and in Fig. 4 for the same
density, 0.16 <an< 0.78. As the density increases, both sets of data shift
until, at the highest density, the parallel fiber absorption coefficient curve

2,11 have made

s 3.5 to 14 percent higher than the normal fiber curve. Others
similar measurements of absorption in materials where the results were
dependent on the direction of sound propagation through the material. As in
this study, the materials were made in sheets, with the fibers arranged in
planes parallel to the face of the sheet. With higher density materials than
that used here, thetir results showed that the absorption wac higher in the
material when the sound propagated parallel to the plane of the fibers. This
is consistent with the results shown in Figs. 3 and 4.
| FIBROUS MATERIAL MODELS
Rigid Fiber Model

Hersh and Wa1ker10 developed a model to describe the acoustic behavior of
fibrous bulk mater1a1; It 1s based on empirical relations cderived from work
done on pressure drop and energy transfer across bundles of circular cylinders
or fibers. Because 1t assumes that the fibers are rigid, the model does not
consider frame motion or fiber motion. This model is useful, however, since it
describes the general behavior of Kevlar and it includes both paraliel and
normal fiber terms.

After the deve]ophenf of the empirical relations, the une-dimensional

equations for continuity, momentum, and state are given in the following form

for a differential volume of the material, where wdz/v <1:
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A1l the variables are acoustic quantities for air, and their definitions are
given in the List of Symbols. The viscous loss term o and the effective
propagation velocity ce are derived in appendix A. The effective propagation
velocity through the porous material takes into account the effects of heat
transfer between the air and the material.

Combining Egs. (1) to (3) and assuming that all acoustic quantities are
proportional to exp(iwt - kx), we can get the wave equation and subsequently
the propagation constant.

2o (‘é—’—)z (;9; N 1) (4)
e 0

The characteristic impedance for the material is defined as the ratio of
the pressure wave traveling in one direction to the volume velocity in the same
direction, W ; p/(uH). From Eqs. (2) and (4), the normalized characteristic

impedance of the porous material is found to be
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The final step to determine the surface impedance of the material with a

rigid backing requires the following boundary conditions at the surface:
p' =p
(6)
u' = Hu
The first equation has pressure continuous across the boundary, and the second

equation has mass flux continuous across the boundary. With the additional

10




condition that u = 0 at the rigid boundary, the normalized impedance for a

sample with finite depth L 1is

W
—L A oth(ky) (7
Poo  Po%

and the normal absorption coefficient is

Z 2
L
p.C
0°0
a, = 1 - _—i‘_:_; (8)
Poto

A comparison between the parallel fiber data and the original model of
Hersh and Walker using only the parallel fiber viscous loss term is shown in
Fig. 5 for the absorption coefficient, the specific acoustic resistance, and
the specific acoustic reactance. The figure includes measured data (1ine with
circles), results from the model (solid iine), and results from a modification
of the model (dashed 1ine) to be described later in this section. 1In this
sample of the data, the comparison is quite good throughout most of the
measured density range. The model specific resistance has larger deviations
from the data than the reactance at the higher densities. At lower densities,
both resistance and reactance show their greatest deviation from the data at
the higher frequencies. This is especially evident in the normal absorption
coefficient plot at the lowest density. The absorption coefficient 1s
sensitive to small changes in resistance at small values of resistance. Thus,
the model underpredicts the absorption.

Frame flexibility, which is not considered in any detail in this study,
s another factor that appears to affect the results shown in Fig. 5. As
mentioned in the Introduction, this is the case where the materfal frame
supports an elastic wave which interacts with the acoustic wave in the air.
Kosten and Janssen18 have shown for a general porous flexible material that

frame flexibi1ity is important at low frequencies. Their results show that at
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some low frequency the absorption coefficient for the flexible frame material
peaks at a higher level than the absorption coefficient for the same material
with a rigid frame. As the frequency increases, the absorption coefficients
for the two frames tend towards agreement. An example of this behavior 1is seen
in Fig. 5(b). The experimental data (1ine with circles), which is assumed to
include frame flexibility effects, has peak absorption at about 850 Hz. This
absorption 1s higher than that shown for the rigid fiber model represented by
the solid 1ine. The two curves, then, tend towards agreement as the frequency
increases. Similar behavior 1s seen in Figs. 5(c) and 5(d).

Since the model of Hersh and Walker is based on some empirical
correlations, an attempt was made to see if any improvements could be made in
the model by varying the fit parameters within the correlation, specifically

the parallel fiber viscous loss term originally given by Hersh and Walker as

0.413

fp(] - H) = 1.0[3.94(1 - H) 0+ 270 - H)S]] (9)

The term fp(] - H) was used as a fit parameter to adjust the model impedance
to best fit the data impedance for each density. The results of this fit are
shown in Fig. 6. The fit for data below 1 - H = 0.02, or a bulk density of
about 29 kg/m3, is scattered, and no fit equation comparable to Eg. (9) is
possible. However, the fit data above this point do provideva good correlation

represented by the equation

fp1 = H) = 1.3[3.94(1 -0 v 2000 - H)3]] (10)

When this fit is used in the acoustic model, the results are as shown in

Fig. 5. The lack of significant change between the origina: paralilel fiber
model (Eq. (9)) and the modified model (Eq. (10)) when compared with the data
is most 11kely due to the lack of inclusion of frame flexibility effects. This

is especially evident at the lower densities where, as shown in Fig. 6, the
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fit of fp(l - H) did not agree with the rigid fiber correlations given by
Eq. (9) or Eq. (10).

Comparison between the normal fiber model of Hersh and Walker and the
data 1s shown in Fig. 7 for the absorption coefficient, the specific acoustic
resistance, and the specific acoustic reactance. The trends in the data are
similar to the model; however, the model generally underpredicts the measured
impedance. Also, the model shows no indications of the resonances seen in the
three higher densities in Fig. 7. The correlation for the normal fiber viscous

loss 1s given by

F(1 - H) = 0.44 [16(1 w230+ 147500 - H)3]] (1)

Its similarity to Eqs. (9) and (10) shows that the expected behavior of the
normal fiber model is the same as the behavior shown for the parallel fiber
model. The difference would be due to the different levels of viscous loss.
It s interesting to note that for 1 - H < 0.05, which 1s the case for all the
measured densities, (1 - H)3 << 1 with the result that £q. (11) is
approximately equal to Egq. (10).

The works of Lambert]] and Smith and Parrott12 have shown data on the
impedance of Kevlar samples that have the same characteristics as shown in
Fig. 7. Lambert's data for a porosity of 0.94 and a sample depth of 12 cm
showed a resonance at about 950 Hz. He states that this may be evidence that
the sample 1s vibrating and absorbing energy. Smith and Parrott took impedance
measurements for Kevlar with and without a Zepel fluid repellant treatment.
Their data for 1-cm-thick Kevlar samples at a porosity of 0.94 showed a
resonance between 700 to 800 Hz. No other resonance was seen in the data out

to 3.5 kHz. They attributed the resonance to the possibili*y of fiber motion.
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Fiber Motion Model

Kawas‘\ma9 developed a model that included the effects of fiber motion.
He assumed that each fiber could be represented as a string fixed at both ends.
To simplify the analysis, the string of length & was modeled as a rigid bar
with the center part of length q% vibrating linearly and with the end parts
of total length q(1 - &) fixed. The vibrating force was the oscillating
viscous fluid, and the restoring force was governed by Hooke's law. From a
dynamical analysis comparing the vibrating string to the vibrating bar, q was

found to be equal to 0.811. The following equations were developed:

ou

e au 1-H_f

at = " Poax P 9TH ax (12)
au_ _a_  1-Hr 1-Hr
Poat™ " ax "9 7H Ve (u-u) -0 -aq =y Ve v (13)

au

_f 2. _ 3 _r_

Peat * Pt T T ax Ty, (U~ Y (4

Ve

Equation (12) 4s the continuity equation. The change in mass in a
differential volume is governed by both the movement of air and the movement of
fibers. The latter is represented by the second term on the right side of the
equal sign. This equation 1s derived in appendix B.

The momentum equation 1s shown in Eq. (13). It shows that the motion of
an elemental mass of air is driven by the pressure gradient, with damping
across both the fiber parts that move and those that are fixed. The viscous
loss coefficient, given by the ratio r/vf, is assumed to be the same for
both moving and fixed portions of the fibers.

The third equation governs the fiber motion. The left side of Eq. (14)

is a mass-spring equation for the fiber in the elemental volume, with the

restoring force governed by the resonant frequency wg - The forcing terms,
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shown on the right side of the equation, are due to the pressure gradient and
the viscous drag on the fiber.

When the acoustic pressure and density are related by the adiabatic speed
of sound in air (p = Cgp), Eqs. (12) to (14) can be combined to derive a wave

equation for the pressure. Thus, the propagation constant 1s determined to be

2
K =1 (%—) N (15)
0

2
1 -0V Ve . Phy 1o (Y
N e | et ol B el bors
Po Po Po Po

r/v P r/v r/v
D,[ f+,_f&],q1-ﬂ[l-u f”]”qu_f

where

H

ki []C‘»f_)]z

The characteristic impedance for the material in this case 1s defined by

©
-
©
!

using the following equation for the volume velocity per unit area:

u = Hu + q(1 - H)ug (16)

This equation shows that the volume velocity is affected by those fibers that

move. The result 1s that, depending on the phase relationship between u and
U, the volume velocity is higher or lower than that which would be found in a
rigid material having the same porsity. By using Eq. (16), the normalized

characteristic impedance i1s found to be

2)

o\k

— = = \— )3 (17)
P00 poc0 ( w/ 1H
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Using the boundary conditions given in Eq. (6) and the additional fact
that u = ug = 0 at the rigid boundary yields the specific acoustic impedance

at the surface:

Z W = '
L. K [1 v q Lot ';—.]cotn(m (18)
00 00

where

r/v P r/v
D' = [p wf .1 Pf! ] g 1 -H " °f
0 0

It should be noted that the ratio N'/D' equals the ratio between the fiber
velocity and the air velocity uf/u. The absorption coefficient is then
calculated from the impedance by using Eq. (8). This model development is
similar to that given by Ingard,]9 except that material frame motion was used
there instead of fiber motion.

In Kawasima's model, the viscous loss coefficient r/vf is computed for
Stokes flow around a long ellipsoid of gyrat1on; The term is a function of the
length and diameter of the fiber, and not a function of frequency. No attempt
was made in this study to calculate this term; it was used as a parameter to
fit the model to measured data.

A comparison between Kawasima's model and the data is shown in Fig. 8.
The resistance, reactance, and absorption coefficient curves for both model
and data follow the same behavioral trends. The obvious featﬁre is the
resonance due to fiber motion. The assumption that viscous loss is not a
function of frequency is shown to be inaccurate, since the viscous loss
coefficient must provide the loss at each frequency and be a damping term at

the resonance frequency. The model provides insufficient damping at the
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resonance, and 1t is much less accurate in predicting impedance at the low
frequencies.
Combined Model
Two factors that contribute to the inaccuracy of Kawasima's model are the
use of the non-frequency-dependent viscous loss coefficient r/vf and the
use of the adiabatic speed of sound for the air inside the fibrous material.
It 1s proposed here to modify Kawasima's model by replacing these two factors

by the equivalent factors from the model of Hersh and Walker.

The first factor to replace 1s the viscous loss coefficient r/vf. If

there 1s no fiber motion, then ue = 0. Substituting this value into Eq. (13)
and reducing results in
au 3p 1 -Hr
Poat ® " ax - H u (19)

Comparing this momentum equation to Eq. (2) shows that for the two equations to

be equivalent

L., (20)

Thus, the constant r/vf is replaced by a function that is dependent on both
frequency and porosity.

The adlabatic speed of sound is the other factor to replace in Kawasima's
model. This 1s done by using Eq. (3) to define the relationship between
pressure and density. When the propagation constant and characteristic
impedance are determined, the result of this change is to replace ¢y by Co
in Eq. (15) and to multiply the right side of Eq. (17) by (ce/co)z. Thus, the
effects of heat transfer between the air and the fibers have been taken into
account.

The final calculations, then, for the specific impedance are done by using

Eq. (18) with the proper substitutions: Eq. (20) is used to replace the
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viscous loss coefficient, and the modified Eqs. (15) and (17) are used for the

propagation constant and the normalized characteristic impedance, respectively.
The results of calculations using this combined model are shown in Fig. 8.

The only factor unknown a priori in these calculations was tﬁe fiber resonant

frequency w A1l other factors were based on the original models of Hersh

10

¢
and Walker = and Kawas1ma.9 As shown in the figure, the calculated specific
reactance agrees quite well with the data, but the model does underpredict the
specific resistance. Factors such as losses due to internal damping of the
fibers or due to fibers rubbing together and frame flexibility were not
considered. This may have led to the inaccuracies in the model at the lower
densities, at the lower frequencies, and at the resonant frequency.

CONCLUDING REMARKS

Experiments were conducted to study the acoustic behavior of a fibrous
material. The fibers in this material were arranged such that the sound could
propagate in a direction normal to the fiber arrangement or parallel to the
fiber arrangement. This permitted an evaluation of the anisotropic acoustic
characteristics of the material.

The results of the measurements were summarized in three-dimensional plots
of absorption coefficient versus frequency as a function of the sample density.
When the sound was propagating normal to the fibers, the measurements indicated
a resonant condition, which was attributed to fiber motion. This resonance was
shown to change in frequency as the density increased. When the sound was
propagating parallel to the fibers, the measurements showed no indications of a
fiber motion resonance. Other than the fiber motion effects, anisotropy was
shown to exist over the rest of the frequency range of the measurements. This
was shown by the level of absorption that took place. At low density, the

parallel fiber absorption coefficients were less than the normal fiber
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absorption coefficients. The opposite was true at the higher densities.
There, the normal fiber absorption coefficients were less than the parallel
fiber absorption coefficients.

Models were used to confirm these results. The parallel fiber
measurements were compared with the parallel fiber model of Hersh and Walker.
Though an attempt was made to improve the model by adjusting constants in the
model, no significant improvement was obtained. For the normal fiber model,
improvements were made by combining the model of Hersh and Walker with the
model of Kawasima. This combined model accounted for the effects of fiber
motion, and it accounted for the frequency and porosity dependence of the
viscous loss term and of the heat transfer parameter. Results for this model
were found to agree with the data except at the lower densities, where frame

flexibility, which was not included in any of the models, had a large effect.
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APPENDIX A - DERIVATION OF EMPIRICAL PARAMETERS
Viscous Loss Term o
The one-dimensional pressure drop per unit distance across a bundle of

fibers numbering N 1is

Aop N
Ax -~ AXxA (A1)

where D 145 the fluctuating drag of each fiber and A is the cross-sectional
area of the duct. The minus sign assures that the pressure decreases across
the bundle of fibers. The fluctuating drag is given by the product of the

cylindrical area A, of a fiber and the area-averaged fluctuating shear stress

f
TAv
D = Afov (A2)
where TAv is approximated by
T = ufu (A3)
AV ~ d

The function f 1s a nondimensional term that accounts for the average drag of
a circular cylinder in a bundle of cylinders. It 1s a function of porosity.
Using the definition of porosity as the ratio of the volume of air to the total

volume of the material ylields the following equation:

Nv

f
1 -H= XA (A4)
Combining Eqs. (A2) to (A4) into Eq. (A1) yields
fp -<5—§)(1 - H)fu = - ou (A5)
d

where the following relation was used for the ratio between the circular area
of a cylinder and its volume:
L.z (A6)
The viscous loss term o has been defined in Eq. (A5). It 1s made
nondimensional by dividing by p, and . Thus,
20
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——,4——"—-(1-H)f=4(-"—)(1-n)f A7
Py . ) il (A7)

€
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The function f 1s defined from correlations derived by Hersh and \Ma]ker.]0

For parallel fibers, f = fp in Eq. (9); and for normal fibers, f = fn in
Eq. (11).
Effective Propagation Velocity Co
For a unit volume of material AxA, the rate of increase in energy per
unit volume of air minus the net rate of energy out of the volume through the
air must equal the energy flow from the fibers to the air per unit volume of

alr. This statement can be written as

p
90 "0 3 _
Potv 3t ~ po 3t T T € (A8)

Combining an equation for the heat flow

Q = hNA® (A9)

and the definition of the Nusselt number

hd

Nu=k,

(A10)

we get

Nu k'NAfe
Q- —5— (A11)

To put Eq. (A11) on a basis of per unit volume of air, we divide the equation
by AxAH. Then, by using Eqs. (A4) and (A6), an equation for e s obtained:

Q 4k 'Nu (1 - H
®C hxAR T2 ( H >° - (A12)
Thus, with this equation, we can rearrange Eq. (A8) to get
T
aw K o 0 3
st 0= (y-1 228 (A13)
(V] 0
where
RT
0 0
—— == (Y- T
PoCy  Cy o



and

K = —;—"— (‘T”> Nu (A14)
d Cy

Equation (A14) can be nondimensionalized as follows:

C t
Po® v/\¥p/\Po / wd

=§(J§Gﬁ¢)w (A15)
" \od

where Pr 1is the Prandtl number for air. The correlation for Nu given by

Hersh and Walker10 s

Nu = 1.0 [5.4(1 w250+ 30801 - H)3]] (A16)
Equation (A13) mai now be solved for © by assuming harmonic motion
exp(iwt).
i(y - 'I)To
@ =7 NP (A7)
po(%_; ¥ 1)
Po
The equation of state is given in its instantaneous form as
(Py* P) = (py* PIR(T, + 6) (A18)
wWhen only linear terms are retained, this equation becomes
P = poRe + RTop (A19)
and upon substituting in Eq. (A17), a relationship between p and p 1is
obtained.
p=2C.p
where
2 _ Ry g " (A20)
(o =
€ ol K, 1
Po®

Note that when K/pom >> 1 (very low frequencies), cg

speed of sound. Also, when K/pom << 1 (very high frequencies), cg

= RTO, the 1sothermal
= YRTO, the

the adiabatic speed of sound.




APPENDIX B - DERIVATION OF EQUATION (12)
Equation (12) 1s derived from two continuity equations. The first

continuity equation is for the air in the material, and the second continuity

equation is for the fiber material.

S (ot p M = - pH 3 (B1)
2 3ug |
5t Pe(1 - H) = - pea(1 - H)32= (B2)
Expanding these two equations and retaining only linear terms, we get
Po %% + H %? =T P %% (83)
LT RUE R R (o

By assuming that the compressibility of the fiber material %s very small

compared to air and may be neglected, then apf/at = 0 and Eq. (B4) becomes

au

Mo -1 5t (B5)

Substituting Eq. (B5) into Eq. (B3) and rearranging, we get‘Eq. (12).

au

au 1-H_f
=~ Poax " Po 9T H Tax (86)

[
(o
|
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