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Introduction

Algorithm: A set of rules for solving a problem

in a finite number of steps.

Development: The progression to a more effec-

tive state.

The past decade has seen considerable activity

in algorithm development for the Navier-Stokes

equations. This has resulted in a wide variety of

useful new techniques. It would appear, however,

that there is plenty of room for further improve-

ments. That is to say, we are far from exhausting

all possible sets of rules for these problems and it

is highly probable that some remaining ones will

be more effective than those we have now.

It is foolish and even counterproductive to an-

ticipate or set milestones for the detailed develop-

ment of basic or even applied research. The his-

tory of science tells us that we can expect some-

thing to happen in any major field if active minds

capable of original thinking are allowed to pose

challenging problems and seek elegant solutions.

What we can do is look backwards and find

what we are doing now in a given area of science

that was not anticipated ten years ago. Some ex-

amples of this type for the numerical solution of

the Navier Stokes equations form the body of this

paper. These are divided into two parts, one de-

voted to the incompressible Navier Stokes equa-

tions, and the other to the compressible form.

The discussion is far from being comprehensive,

and. in fact, the examples for the incompressible

case are strictly limited to experience at NASA

Ames.
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1. Incompressible Navier-Stokes Equations

In the middle and late 70s much attention was

paid to the direct solution of homogeneous tur-

bulent [tows with periodic boundary conditions,

see Rogallo (1981). The grids used at that time

were 643 and the storage capacity of available

computers was the limiting factor in the spa-
tial resolution. The natural method to use for

the numerical approximation of the space deriva-

tives was the classical spectral method composed

of finite Fourier series, and the algorithm used

for implementation was the fast Fourier trans-

form. The time advance was fully explicit so

that all of the time and space scales could [)e re-

solved as accurately as possible. However, even

with explicit schemes, time advance of a spectral

method requires a minimum of two memory loca-

tions for every dependent variable at cvcry point
in the mesh. The standard third and fourth or-

der Runge Kulla methods bolh take a minimum

of three locations, so the oplions at, that time

were to use an existing second order lime march
method or use a coarser mesh and reduce the

space accurac.v. This motivated I)r. Alan Wray

(Ames Research Center, unpuhlished) to turn to

the t{unge-Kulta t(,chnique and search for a sub-

set of high order methods thai require a minimum

(two location) amount of storage capacity. He

was successful and his third-order method, used

to time march the nonlinear equation,

du

dt - F(u,t) (11)



has the predictor-correclor form

= u,_ + c_AtF(u,, , t,_)

b = u,, + AAtF(u,, , t,_)

,; : ;,+ ,cxt r(,:,, t,,,+ (1.2)

ii = i, + BAtF(_,, t. + AAt)

u,,+, = b + -).AIF(_ , In + (a + B)At)

The value of un is initially provided and stored.

The value of 9, is then calculated and also stored.

Then the value of u is formed and overstores u,

which is no longer needed. The process continues

through 9, and /i, requiring at any imermediate

step only two memory locations t)er del)endent

variable per mesh point. Finally, u,_+l overwrites

, /i is discarded, and the cycle is repeated.

There are four equal ions for the five coefficients

in eq (1.2), so we have a one-parameter family of

low storage, third order l{ungc Kutta methods.

The four equal ions are

a +/_+'y = 1

(_+B)_+A_= 1/2
(l.a)

(. + + = 1/3

AI3_ = 1/6

One particular solution is given by

1/4, A =8/15, /3=0, B= 5/12, "7=3/4

(1.4)

This method is still being used to time march

codes for homogeneous turbulent flows. It is a

good example of an Mgorithm advance adding a

new cal)ability to an old concept.

A major advance in algorithms for wall bounded

turbulent simulations occurred in the early 1980"s.

At that time Leonard and Wray (1982) extended

the concepts being used to compute homogeneous

turbulent flows, to compute wall bounded turbu-

lent flows in relatively simple geometries. Let U

be the velocity vector, p the pressure, and u the

kinematic viscosity. One solves the vector equa-

tion expressing conservation of momentum,

Ut + U. VU = -Vp+ uV2U (1.5)

under the constraints of continuity in the domain

and no slip at the wall_:

V.U=0 inD, U= 0 on 0 D (1.6)

In homogeneous flows harmonic basis functions

are used and these automatically satisfy the pe-

riodic boundary ('onditions. Furthermore, it was

easy 1,) mako lhe _olutions solenoidal (V - l; - O)

so the pressure ternl couhl be eliminated. The

idea advance(l by l,eonard and \Vray was to build

the constrainls (1.6) into the basis functions ot'

a generalized speclral method for wall bounded

flows, so thai the constraints are automatically

and exactly satisfied with each time advance, and

do not need to be further enforced at each step in

conjunction with (1.5). The solmion is then ex-

pressed as a linear combination of global vector

"basis functions" that each satisfy (1.6). Due to

the constraints one needs to carry only two de-

grees of freedom per spectral mode while other

methods usually carry four, the three velocity

components and the pressure. Thus, less com-

puter storage is needed to achieve the better res-
oh, tion. For more details and further discussion

see the paper by Leonard and Wray.

Where they can be formed (this can be dif-

ficult since they are geometry dependent,), the

choice of the generalized spectral basis functions

greatly improves the numerical treatment of the

spalial aspec! of the problem. ]tmvever. to get

adequate resolution near lhe walls, the lime inte-

gral ion tends to be stiff due to the eigenslructure

of the viscous lerms. Because of this Dr. Philippe

Spalart (Ames liesearch Cent.er, unl)ublished) de-

vised the use of a hybri(t lime marching scheme

which is implicit for the (linear) viscous terms

and explicit for the (nonlinear) convection terms.

Again because of low memory requirements he

had been using existing 2nd order methods for the

time march. However, he has recently extended

Wray's Runge Kutta technique and developed a

hybrid method which is third order in time ac-

curacy and still has the minimum (two location)

sl<)rage requirements. Thus if we have the vector

relal ion

u, + L .,1

where L and N are matrix operators that are

linear and nonlinear, respectively, the sequence

can be made third order accurate with the proper
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choice of the coefficients in

-- un + At[L. (O_l'tt n -_-/31 ?_) + "/iNn]

%

(1.8)

The treatment of the N terms is equivalent to

that used in Wray's scheme. Only one solution

for the coefficients is known. This is given by the

conditions that

_1 = 0.7208762469,

_3 = 0.5778221005,

/35 = 0.0929740417,

el = 0.4724519312,

and

3'2 = 0.4001233399,

/31 = 0.3703996503,

/33 = 0.1818702938,

S'2 = 0.2263697562

(1.9a)

0,'1 +/31 _- "/'1 , 0:2-{-/32 _---- "/2-_-_'i , (2"3+/33 = "_3-_-{2

(1.9b)

Equations (1.9b) assure that the length of each

time substep is the same for both L and N. The

numerical stability bounds for the model equation

ut = iAu- uu (1.10)

where iAu represems N(u) and -uu represents

L-u, are _At <_ x/_ and vat, < 47, which were

quite adequate for Spa]art's purposes.

2. Compressible Navier-Stokes Algorithms

The development of compressible Navier-Stokes

algorithms has also seen moments of inspiration

in the last decade. We have taken several steps

forward in the general development of algorithms.

Some of these steps are via new concepts while

most are the result of applying old concepts in a

new setting. An example of a concept that was

newly introduced to practical application in the

field of fluid mechanics is the flux-vector splitting

deveh)ped by Steger and Warming (1979). This

Ol)ened up a wide new range of applications of

"upwind" algorithms for the Euler and Navier-

Stokes equations. Similar concepts have evolved

since thai time, most noticeably flux-difference

splitting algorithms. Both of these methods have

succeeded in removing much of the "fine tun-

ing" of parameters which had plagued many al-

gorithms previous to this time. A brief review of

this work is given.

A concept that is probably as "new" as one

can find is the total variation diminishing (TVD)

theory extended to finite differencing schemes by

Harten (1983). In this work, Harten extended

ideas concerning total variation properties of scalar

hyperbolic differential equations to discrete dif-

ferencing schemes. This was an important step

forward in determining the "ground rules" for de-

signing good shock capturing methods, although

it is not clear how religiously they need he fol-

lowed. A complete review of this subject would

be a formidable task by any measure. We chose

not to do this, but rather to take some of the orig-

inal underlying concepts involved and present a

new perspective which hopefully will inspire new

ideas.

Flux-Vector / Flux-Difference Splitting

In this section, we discuss two basic philoso-

phies in the construction of upwind algorithms

for systems of equations: flux-vector and flux-

difference splitting. Each has proved to be a pow-

erful technique in extending the upwind schemes

for scalar equations to systems of equations. By

the late 1970's, the theory for scalar hyperbolic

equations was well established and several up-

wind schemes for these equations had appeared

in the literature. The model nonlinear conserva-

tion equation

u, + (f(u))_ : 0 (2.1)

had been analyze<t exlensively by Lax (1973) and

others as an initial-value problem, yielding a fairly

complete descril)tion of the equation and its so-

lution. For smooth regions of initial data, (2.1)

can be represented for a small time interval by its

quasi-linear form

ut + a(u)ux = 0 a(.) -- df
du

\Vhile at discontinuities, an integral form of (2.1)

describes the solution behavior. The quasi-linear
form has characteristic solutions for small time

intervals of the form: u(x,t) = Uo(X at), i.e.

the sohtion is constant along the characteristic
lines, d_at = a. Upwind methods (more prop-

erly referred to as characteristic oriented meth-

ods) use this information by determining the lo-

cal propagation direction, sgn(a), and adapting
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differencing stencils accordingly. One of the sim-

plest upwind schemes using this strategy is the

Cole-Murman scheme. This scheme can be writ-

ten for the discrete mesh, u s = u(jAx, nAt),as

,,+1 ,_ hn ,-h ,)=0
,u s -- it.7 -k /kx J +_ 3-

1 ,_ ,_ 1_ n ,_
h'_ ' = )(fJ+'+fJ" 2' ' ""]-:lal_+{ (uJ+l-u_') (2.2)

f_f: if u s :_ uj+_where _3+! _-- uj+,-uj
2 a(u)) otherwise

This produces the following simple (and more rec-

ognizable) schemes for cases in which a i_ of uni-

form sign:

n At
uy+, = ,,, - h (f? - f;'_,) if a > o

u_+l _ At
: = uj -- Ax(f_n+l- f_) if a < 0

Obviously, if higher order accuracy is needed,
then a more elaborate scheme needs to be con-

strucled. But even for the simplest schemes (the

Cole-Murman scheme for instance) one can ask

the following question: what is the simplest and

most natural way to extend the scalar upwind

schenms to systems of equations? For the Eu-

]er equations, Steger and Warming (1979) and

van Leer (1982) answered this question with flux-

vector splitting while Roe (1981), Osher(1981)

and others answered with a flux-difference split-

ting technique. To illustrate these methods, we

consider the 1-D Euler equations

Q, + 0_E(Q) = 0 (2.3)

llere Q is the vector of conserved variables for

mass. momentu,,l, and energy while E is the cor-

responding tlux vector. Whenever needed, we as-

sume the ideal-gas law as an equation of state.

The basic notion in flux-vector splitting is to

split the ttux veclor into two parts

E=E++E -

The components, E- and E +, are to be chosen

such that they can be forward and backward dif-

ferenced, respectively. This choice is based on

the assumption that if the individual vectors can

be forward and backward differenced in a stable

fashion, i.e., if

Qt + ES- = 0 (stable for forward differencing)

Q, + E + = 0 (stable for backward ditferencing)

(2.4a)
|hen the same differencing (:an be used for the full

equation,

Qt + E + + E_- = 0 (2.4b)

This turns out to be the case, albeit some reduc-

tion in stability characteristics may be encoun-

tered. For the van Leer splitting described be-

low with first order explicit upwinding, van Leer

(1982) mentions that this amounts to a limit of

CFL < I for (2.4a) and CFL < _ for the full
-- -- "/+3

scheme, (2.4b).

Steger and Warming constructed a general class

of flux-vector splittings for the Euler equations by

exploiting the fact that the flux vectors are homo-

geneous of degree one in the conserved variables.

Enler's identity then gives

0E
E=AQ with A- (2.5)

0q

To construct the splittings, they tirst diagonalized

A,

X JAX = A = A2

A3

then split the diagonal matrix into nonnegative

and nonpositive parts, i.e.

A =A ++A- (2.6)

They define the new flux vectors by using (2.5)

E ± = XA±X-_Q = A+Q (2.7)

The split tings based on (2.6) are obviously not

unique; Steger and Warming suggest several dif-

ferent splitlings satisfying (2.6), of which proba-

bly the mosl frequently used is the " :i_ splitting

" defined by

A± = A + Ial (2.8)
2

For this + splitting they were able to determine
OE +

that the resulting flux vectors had Jacobians, _Q
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and °bEQ-, with all positive and negative eigen-

values, respectively (at least for 1 <_ "7 -< 5).

This is remarkable since nowhere in the develop-

ment is any effort made to insure this. Unfortu-

nately, this 4- splitting leads to flux vectors that

do not vary smoothly near sonic and stagnation

points, even though the correct solution behaves

smoothly there, and this produces "glitches" in
the numerical solution. Several "fixes" have been

proposed to remedy this, see Buning (1983).

Van Leer (1982) provided an alternate flux-

vector splitting, which he devised using special

Mach number polynomials to construct fluxes that

remain smooth near stagnation and sonic points.

His construction technique is quite different from

that of Steger and Warming, in particular it is

purely a vector construction (neither the Jaco-

bian matrix nor its diagonalizing transforms is

directly used). A reasonable question to ask is

whether van Leer's flux vectors have an equiva-

lent Steger-Warming representation via similarity

transforms of A as in (2.7). We find that, this is

so by redefining new A + and direct calculation.

In the case of van Leer's splitting they are given

by

A+ = #2 , A- =A-A +

#3

with

/.t 2 =

-((u-c) 2 - c2("7+1))(u+c) 2

4c3("7+ 1)

- e)(("7- +
4c3("7+i)

((_-l)u 2 + (1-3"7)uc+2(2"7+l)c2)(u+c) 2

4e3("7+1)

In general, we find that these entries are of

no particular uniform sign, (i.e. A + may have

negative diagonal entries). This is not too sur-

prising since the van Leer splitting only requires

that the Jacobian matrices of the split fluxes,
OE°E_ and have nonnegative and nonposi-

tive eigeuvalues, respectively. For illustration, we

chose the state: p = .9, u = .5 and c : 1.1.

]n this case, the van Leer splitting gives: #1 =

.5097,#2 = -.2885,tta = 1.5098, while the eigen-
OE +

values of _ are calculated to be 0.,.5795, and

1.6918. Thus it appears that defining splittings

from (2.6) is certainly not a necessary condition.

We have, in fact, considered other schemes which

satisfy (2.6) yet fail to have eigenvalues of their

Jacobians with signs consistent with (2.6). This

is certainly an avenue for future investigation.

Flux-difference splitting has also provided a

useful technique for extending scalar upwind al-

gorithms to systems of equations. These methods

use Riemann solvers to calculate the interaction

of neighboring cells by the exact or approximate

solution of Riemann's initial-value problem. The

simplest explicit schemes for solving the Euler

equations take the generic structure:

qy+l _ q,_ + ha+½ _ h:___
-At -- Ax - 0 (2.9)

where h:+_ is the numerical flux at the cell inter-
face between the grid points j and j+ 1. The role

of the local Riemann solver is to determine the

numerical flux at every cell interface by examin-

ing the neighboring conditions. The best known

approximate Riemann solvers are those of Roe

(1981) and Osher and Solomon (1982). Roe's Rie-

mann solver is particularly popular because of its

simplicity. Roe considered the exact solution to

the linearized form of (2.3),

Qt + A(QL, QR)Q_ = 0 (2.10)

with constant left and right states specified as

initial data,

QL x<0, t=0Q= QR x>0, t=0

ltere x = 0 corresponds to the local cell inter-

face and A is the approximate Jacobian, obtained

from a mean value linearization satisfying

E" - E L = A(Q",QR)(Qn _ QL) (2.11)

Equation (2.10) can be diagonalized, decoupled,

solved exactly, then recoupled. This amounts to

solving three linear (scalar) convection problems

with step functions as initial data and constant

convection velocities u, u+ c, and u- e. Since the

exact solution for each scalar problem is merely

the translation in x of the original step function,
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this resuhs in a "shocks only'" approximate Rie-

mann solver; expansion falls, shocks, and con-

tact discontinuities are all modelled as discontinu-

ities. Unfortunately, this allows expansion shocks

to form as solutions which must be precluded by

special ,,,cans (see ltarten (1983) for examples).

From the local solution, the numerical flux at

the cell interface can be calculated. If we con-

struct A + and A- as in (2.7) and (2.8), then the
numerical flux can be written with reference to

the left or right states as (details can be found in

Roe (1981,1986))

h(QL, QR) =E L + A-(QL, QR)((_R _ (_L)

=E R_ A+(QL,QR)(QR _ QL)

(2.12)

Taking the average and applying the local solu-

tion everywhere on the discrete grid, we obtain

the final form ( IA! = A + - A- )

1 (Ej+l+Ej)- 1
h,+_= 2 2 IA(Qj.Q,+,)i(Qj+I-Qj)

(2.13)

If we again look at cases in which the local eigen-

values are of uniform sign (supersonic flow), we

obtain the following conventional schemes

Qn+l = Qn_ At . n .
_(Ej-Ej_I) if[u,u-c,u+c]>0

Qn+l = Qn At ,
_A_(E3+,-Ey) if [u,u-c,u+c] <O

If we contrast this with the Cole-Murman scheme

(2.2), which can als0 be viewed as using a "shocks

only" scalar Riemann solver, we see that (2.13) is

a successful extension of a scalar upwind scheme

to systems.

We conclude this section by remarking that
we have limited our discussion to 1-D inviscid

flow. This is not really as restrictive as one might

guess. Remarkable success has been attained by

applying these ideas "dimension by dimension"
to the two and three-dimensional Navier-Stokes

equations, see Chakravarthy and Osher (1985) for

some excellent examples.

Basics of TVD Schemes for Scalar Equa-

tions

In this section, we briefly mention the key ele-

ments used in the development of the TVD con-

cept. More details as well as proofs can be found

in the literature. The basic notion is to consider

solutions, u(x,t), of the single nonlinear conser-

vat ion e(luation

df
ut + (f(u))_ = O, du = a(u) (2.14)

In this case, we make the usual assumption that

t he solutions of interest are entropy-satisfying weak

solutions with convex flux functions. In the sim-

plest case, to avoid boundary conditions, the ini-

tial value problem is considered ill which the solu-

tion is specified along the x-axis, u(x,O) = go(x),

either in a periodic or corot)act supported fash-

ion. This problem has been treated extensively by

Lax (1973). The solution can be depicted in the

x - t plane by a series of converging and diverging

characteristic straight lines. From the solution

of (2.14), Lax provides the following observation:

the total increasing and decreasing variations of

a differentiable solution between any pair of char-
acteristics are conserved. This means that in the

absence of shocks the exact solution of (2.14) con-
serves the total variation of the initial data in

time.

z(t + to) = Z(tn) Z(t) = rt O u(z,t)
dx

' J-oo[ cOx

(2.15)

Moreover, in the presence of shock waves it can

be shown that the total variation of the exact so-

lution actually decreases in time ( i.e..7"(t + to) _<

I(t0)). A simple heuristic argument for this de-

crease would be to consider solution data with a

shock present, u(x,t), and consider reconstruct-

ing the solution data at a previous time u(x,t -

At). But using characteristics, it becomes quickly

obvious that this cannot be done uniquely; infor-

mation (solution variation) has been irretrievably

lost in the shock formation. An equally important

result from Lax's observation comes from consid-

ering a monotonic solution between two noninter-

setting characteristics: between pair._ of charac-

teristics, monotonic solutions remain monotonic,

(i.e. no new extrema are created).

Although the properties described previously

are those of the differential equation (2.14) and

its solution, Harten developed a TVD criterion

for numerical schemes by considering the discrete
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form of (2.15) on a mesh u s = u(jAx,nAt),

u[ul,u2,u3,...]. The discrete total variation in
this case is defined as

+oo

YV(u) = E [Uj+l- u,51 (2.16)
--OO

with a corresponding TVD condition

TV(u n+l) <_ TV(u") (2.17)

It is not difficult to show that. this TVD condition

is sufficient for monotonic data with bounded to-

tal variation to remain monotonic, (to prove this,
assume a new extremum is introduced and com-

pute the new total variation). Although we will

only use (2.17) to investigate conditions for con-

structing TVD schemes, equation (2.17), along

with consistency of the scheme with the diffcren-

tim equation and satisfaction of the entropy in-

equality, is enough to guarantee convergence to

the weak solution(s) (see Harten (1983)).

Equation (2.17) now provides us with an ad-
ditional measure which will allow us to rule out

many existing schemes which do not diminish the

solution variation. More importantly, as we will

see in the next section, it will be used to derive

algebraic criteria which we can use to construct

new TVD schemes.

Matrix Interpretation of TVD Criteria

Sufficient conditions for constructing TVD al-

gorithms have been developed first by Harten

(1983) and later in a more general form by Osher

and Chakravarthy (1984), and Jameson and Lax

(1984). In this section we demonstrate general
sufficient conditions for TVD schemes. ]n devel-

oping the criteria for general explicit schemes, we

independently followed a path similar to that of

Jameson and Lax, although their claim of neces-

sary and sufficient conditions is generally agreed

to be in error (ltarten (1986) notes that this is

the danger of using their compact, indicial nota-

tion). In the development of implicit schemes we

depart from their strategy altogether and avoid

the introduction of expansive operators. More

importantly, we avoid the use of indicial notation

in favor of a more compact matrix-vector nota-

tion whenever possible. As a result, the natu-

ral simplicity of constructing TVD schemes be-

comes evident, and we are able to give another

(and perhaps clearer) interpretation of sufficient

conditions given by the previous authors.

An important step in the development of TVD

schemes arises from the form chosen to express

these schemes. We find it convenient to use a

generalization of the form used by Osher and

Chakravarthy. Since the objective is to obtain

bounds on the variation of u, the conservative dif-

ference schemes are put in a general form which

uses an "apparent" (p + q + 2) explicit and (p' +

q' + 2) implicit stencil of the solution, u.

q'

U?+l + E D(i)J+½Aj+½+iun+I

t=--p'

q

_us--+ +iu 
i_----p

(2.18)

where Aj+½u = u_+l - u s. Because C and
D are typically nonlinear functions of u at grid

points which could be outside the apparent sten-

cils, it should be clear that (2.18) is far from

being unique. This nonuniqueness provides a

large amount of freedom in designing schemes

and is essentially the distinguishing feature of

various schemes appearing in the literature. Al-

though the algebraic details of putting a particu-

lar scheme into the form of (2.18) are important,

we are only interested the general principles in-

volved in the construction of TVD schemes and

refer the reader to the literature for specific de-

tails.

We begin our analysis of TVD schemes by rewrit-

ing the discrete total variation in terms of the

forward difference matrix, D, (shown here for a

periodic domain)

D __

-1 1 0 0 ... 0 "_

/

0 - 1 1 0 ... 0

0 0 --1 l ... 0

0 0 0 0 -1 1

1 0 0 0 0 -1

from which liDuii, _ T_:(,) and the TVD condi-
tion can be written

IIDu +'ll, < IiDu ll, (2.19)
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In these expressions we are using the nota-

tion for the conventional LI vector norm, I]Vlll =

_-_j Ivj I- Using the forward difference matrix, eq.

(2.18) can be written

{;+ o TDlu-+, : [t - - o)MDlu" (2.20)

Here M and M are matrix operators which can

be nonlinear functions of u. This equation, with

the free parameter 0, represents various explicit,

and implicit forms of the evolution of u in time.

(We chose this particular form so that if M = M,

then the scheme would be a generalized form

of }larten's "]inearized" implicit "FVD scheme,

ttarten (1984).) One can also construct, a scheme

representing the timewise evolution of the varia-

tion, Pu. To do so multiply (2.20) from the left

by D and regroup terms•

[] q- 0Dm]_u n+l : [I - (1 - O)DMIDu" (2.21)

Symbolically this can be expressed in terms of the

matrix operators £ and £ as

£ Du n+l = R Pun

with

= [I + ODM],

or Du_+l = £-I_ pu n

(2.22)

_=[I-(1-O)DM l

choosing the column whose sum is largest.. Fur-

thermore, we have the usual matrix norm inequal-

ity IIz-' ll, < IIz-'lllll ll,, so in the moregen-
eral case, it is clear from (2.23) that il is sufficient

to show that ]l£-l]], < I and ]]_ll, -< 1 (L, con-

traclive). As we will see, these simple estimates

will be enough to obtain the TVI) criteria of pre-

vious investigators.

First consider the explicit operator J_ and mul-

tiply it from the left by the summation vector s --

[1,1,1,...,1]. It is clear that sD = [0,0,0,...,0],

so that that _ has columns that sum to exactly

unity, regardless of the particular choice of M.

Because the LI norm of R is simply the maxi-
mum of the sum of absolute values of elements in

the columns of _, it is obvious 1hat a sufficient

and necessary condition for [[_1[_ _< 1 is for

to be a nonnegative matrix, ( i.e. _ _> 0). Thus

for explicit schemes (0 = 0) to be TVI), we have

the general sufficient condition that £ be a non-

negative matrix• We illustrate that this leads to

Harten's criteria for explicit schemes by consider-

ing his particular explicit form of (2.18), (in his

notation)

C++ A u" C- A '_I = _t + i +l -- i _it/

The operator _ in this case (again assuming a

periodic domain) has the following banded struc-
| U re

Next we take the L1 vector norm of eq. (2•22)

and apply the matrix-vector norm inequalities•

Thus

I]pun+']], _< ]]£--'_]],]]PU'_]], (2•23)

and we find a sufficient, condition fi)r lhe scheme

t.o be TVD is that 11£-1£[1_ -< 1.

Note that for the extremely restrictive case in

which £ and £ are not functions of u, the ba-

sic definition of a matrix norm would guaran-

tee that 11£-' 11, -<1 is both a necessary and

sufficien! condition for the scheme to be TVD.

(Many monotone schemes would be included in

this class.) Recall that the Ll norm of a matrix

is obtained by summing the absolute value of el-

ements of individual columns of the matrix and

/

. 0 0 .

• " "v+

". ". Cj+_ 0 0
,- _+ _+ _+

- -C _, (5 __ 00 Cs_ _ 1 Cs+ { Je.2 s*_

0 0 -C-

• . 0 0 ". •

(2•24

We need only require that this matrix be non-

negative to immediately arrive at Harten's crite-
ria:
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1 - Cj++__ - ('-J3+_ >_ 0 (2.25) dominant, that. is,

For the general form of _, we can construct

the matrix in the same fashion and arrive at the

same conditions given by Harten, Jameson and

Lax, and Osher and Chakravarthy by requiring

that this resultant matrix he nonnegative.

Perhaps the more interesting use of a matrix

interpretation comes when considering implicit
schemes• Sufficient conditions would be to show

that both £-1 and _ are L1 contractive. We

have shown sufficient conditions for constructing

II_lll < 1 . We now consider conditions for mak-

ing ]1/'-1]11 < I. From the previous development,

one way to do this would be to show that L-1 is

a nonnegative matrix with columns that sum to

unity. At that point the development would be

the same as previously discussed• This turns out

to he a simple task and using some well known

results from matrix theory, we can determine al-

gebraic sufficient conditions on L.

Note that in the following discussion, we as-

sume that /_- is invertible, but after we have found

a TVD criterion we will see that this must be so.

First, we show that columns of/_-1 must sum to

unity. We use the same trick of premultiplying £

by the summation vector, s = [1, 1,1,...,1].

SL=S ---0 S=SL -1

Therefore the columns of £-1 sum to unity• We

need only find conditions on £ to make its in-

verse nonnegativc, but. from matrix theory we

know that a matrix whose inverse is nonnegative

( L -1 > 0 ) defines a monotone matrix. There-

fore a sufficient condition would be that /' is a

monotone matrix• This is not particularly use-

ful in itself, but a well known theorem from ma-

trix theory allows us to develop a TVD criterion.

Sufficient conditions for /'. monotone can be ob-

tained from the theory for diagonally dominant

M-matrices, a specific type of monotone matrix

with positive diagonal entries and negative off-

diagonal entries• To make this point clear we

summarize a proof which appears in several books

on matrix theory (see Lancaster, pp. 531-532 or

Ortega, pp. 53-54). We begin by defining a real

n× n matrix, aiy, and assume that a, > 0 for each

i and a, 3 < 0 whenever i # j. If A is diagonally

_t

a,i > Z la,31, i= 1,2,...,n,
3:1,3_i

then A is an M-malrix. To prove this, we first

let D = diag[all,a22, a33,...,a,_,_] and define B =
I - D-1A. Note that B has zero elements on the

main diagonal and that B _> 0. Also the fact that

A is diagonally dominant implies that

i= 1,2,...,n.

It follows immediately from Gersgorin's theorem

that the maximum eigenvalue of B is less than

one ( /IB < 1 ). Now we have D-IA = I- B,

and [I - B] -1 can be Neumann expanded into

[I - B]-1 = I + B + B 2 _ 133 + ...

Since B > 0, we conclude that [1 - t3] -I >_ O.
It follows that D-1A is an M-matrix and conse-

quently that A is an M-matrix.

Therefore, sufficient conditions for £ to be mono-

tone are that £ be a diagonally dominant M-

matrix, i.e. diagonally dominant with positive el-

ements on the diagonal and negative off-diagonal

elements. Also note that because of the diagonal

dominance, we now can guarantee invertibility of

£ as mentioned earlier. Again, we can recover

the results of other investigators from these con-

ditions. We illustrate this using liarten's implicit

['ornl

1 I U n+l = ,t/rL

In this case, £ takes the general structure

(

'. '. 0 0 '.

". "-. -D+_,_, 0 0

0 -D7 I+D++½ +DJ-4_I -D++_ 03 -1

0 0 - D_-+, • •
2

". 0 0 - "

(2.26)
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To obtain ltarten's TV1) criteria for the im-

plicit scheme, we need only require lhat this be

an M-matrix to obtain the following conditions,

as did ]tarten

Dj\_ >_(1

We conclude this section by noting the under-

lying conceptual simplicity. Once the schemes are

placed in the form of (2.211, then sufficient condi-

tions become very simple and naturally give rise

to the basic concept.s of nonnegative and M - ma-

t.rices.

3. Concluding Remark

Looking back over lhe last, ten years, we can

see that, ten years ago it would have been correct

to say: "There will be considerable advances in

algorithm development in the next decade. " We

believe it is reasonably safe to make the same
statement at this time.
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