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CHAPTER I

Introduction

1.! Objective and Motivation

In this thesis, the electromagnetic scattering from a cone frustum is investi-

gated using the high-frequency techniques of the geometrical theory of diffraction.

The emphasis in this work is on the development of a solution which, besides being

accurate, is easy to apply and fast to calculate. In other words, we want a solu-

tion suitable for engineering applications. Even though the scattering from basic

shapes, like the cone frustum, is fundamental, there is much to be gained from its

study.

The solution to such a problem can give insight into the development of solu-

tions to other scattering problems. There are many subtleties that need to be con-

sidered when the solution to the scattered fields of such a geometry is attempted;

the experience gained may be applied to similar situations in other geometries.

In fact, the topic of this thesis was inspired by the recent work of Kuei-Chien

Chiang [1] who investigated the scattering from a cylinder.

From a more practical standpoint, the study of high-frequency scattering from

basic geometrical shapes has applications in the modeling of complex scatterers.

Due to the highly local nature of high-frequency scattering, the solution to complex

scatterers may be modeled approximately as a superposition of the scattered fields

from simpler shapes--such as cone frustums, cylinders, ellipsoids, plates, and oth-



ers. A fast and accurate solution for these basic geometries may lead to analytical

computer-generated scattering patterns for aircraft, ships, reflector antennas, or

even a space station. This can result in the computer design of scatterers to meet

various engineering specifications.

1.2 The Problem

This is an electromagnetic scattering problem. The objective is to find the

scattered electric and magnetic fields for a known incident illumination of the scat-

terer. The scattered fields consist of those fields that are reflected and diffracted

from the scatterer. For this problem let us specify the following conditions:

• Shape--elliptical right cone frustum (see Figure 1)

• Material--perfect conductor in free space

• Size--greater than a wavelength (high frequencies)

• Illumination--a plane wave polarized in either of the orthogonal polarizations

(vertical or horizontal)

• Observation--bistatic, in the far field with matched polarization

The variables in this problem are

• Frequency

• Polarization

• Positions of source and receiver

• Cone frustum dimensions
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Figure 1: An elliptical right cone frustum
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1.3 Solution Strategy

To solve our problem, we depend a great deal on the work which has been

done in the past. We mentioned previously that a techinique called the geomet-

rical theory of diffraction (GTD) would be used. It was originally developed by

Keller [2], and it has been improved by many others which include the work of

Kouyoumjian and Pathak [3]. The improved version of GTD, which corrects the

areas where Keller's original theory had failed, is usually referred to as the uniform

geometrical theory of diffraction (UTD). A brief background on UTD is provided

in Chapter 2.

In the past, GTD has been applied to the scattering from a circular cone frus-

tum by Bectel and Ross [4,5,6] and Ryan and Peters [7]. The GTD solution consists

of a superposition of high-frequency semi-infinite wedge solutions associated with

each local scattering center at the edges. The total scattered field is obtained by

summing the diffracted fields from each scattering center. (Chapter 3 provides a

more detailed explaination.) By considering only first-order edge diffraction, their

results show good agreement with experimental measurements (in the region where

GTD is valid).

The only drawback to the GTD solution for a cone frustum is that the edge

diffraction coefficients lack important information about the surface curvature and

about the presence of "rim caustics". The information dealing with the surface

is necessary to obtain the proper reflected field. The "rim caustics" are places

where the diffracted field contributions come from the entire rim rather than local

scattering centers. And to get the correct edge diffracted field, the behavior near

rim caustics must be known.

Due to this missing information, the original GTD solution fails in the rim-

4
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caustic regions and in the region associatedwith specular reflection(a reflection

caustic region) from the curved surface.Bectel and Ross had avoided these regions

by switching to the physical optics solutionfor both the specular region of the

curved surface and in the rim causticregions associated with specular scattering

off the endcaps. Ryan and Peters had also used physical optics for the specular

region of the curved surface,but for the rim-caustic regions the scattered fields

were evaluated by a technique calledthe "equivalentcurrent concept". This worked

fairlywell, however, itwould be more convienient ifwe could somehow preserve

the GTD edge-diffractionform of the solution in allregions--without having to

switch from one form to another. More recently,Chu [8I,based on similarwork by

Ryan [9],has modified the "caustic distance"in the GTD solution to provide the

physical optics resultin the specular directionfor the curved side of the frustum.

While sufficientfor cone frustums with small cone angles, it does not provide

a uniform solution. A uniform solution is one that provides the correct result

uniformly (from the regions where the GTD edge diffractionsolution is valid)

through the regionsof failure.

In thiswork, we willtry to retainthe GTD form of the solution,and yet have

a uniform solution. In our approach, we willdevelop "transitionfunctions" that

multiply terms in the GTD diffractioncoef_cients(thereby,generating a modified

UTD diffractioncoei_cient).These transitionfunctionswillcome intoeffectat the

caustic regions to correct the edge-diffractionsolution;outside the caustic regions

they will have no effect. This approach has certain advantages in a computer

code. The transitionfunctions willeliminate the need to decide when to switch

from one solution to another. The simplicityof the GTD edge diffractionsolution

ispreserved with only a slightrnodi_cationto the diffractioncoemcients.

In the followingchapters we willshow how the transitionfunctions can be



obtained. We willshow that by using _equivalent linecurrents" on the curved

surface of the cone frustum, a transitionfunction to correct the failurein the

specular region (ofthe curved surface) can be developed. In a similarway, the use

of equivalent edge currents on the rim willlead to transitionfunctions to correct

the failurein the rim caustic regions.

For the cylinder,Chiang [1]had obtained a uniform solution through the rim

caustic regions. Even though there are some differencesfor the cone frustum, her

work willbe applied (inaddition to the rim causticcorrectionof Ryan and Peters).

Basically,the approach used in obtaining our solution isas follows:

1. The theory is developed.

2. Using the theory, calculated results are generated for sample cases.

3. The calculated results are compared with measurements or other known so-

lutions.

4. If the match is good enough then this will be considered the approximate

solution. Otherwise, the theory will be refined, and the procedure repeated.

This approach is illustrated as a block diagram in Figure 2. It outlines the contents

of this report. Information about each block in the figure will be provided in the

following chapters. Chapter 3 discusses the diffraction-point method solution,

which provides the basic form of the solution. Chapters 4 and 5 deal with the

corrections to the diffraction-point method solution and the development of the

transition functions. A comparison with experimental measurements is made in

Chapter 6, and with the moment method solution in Chapter 7.
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A solution strategy for the cone frustum scatteringproblem using UTD.



1.4 Notation, Abbreviations, and Symbols

This section contains some information on the notation, abbreviations, and

symbols which may be encountered in this report. It is provided as a help to the

reader.

1.4.1 Notation

In this work, the e j_t time variation will be assumed, and it will be suppressed.

Numbers in parentheses ( ) refer to equations. Numbers in brackets [] refer to

references.

For quantities superscripted with a 5= or :]=, the top (bottom) sign corresponds

to the top (bottom) sign of similarly subscripted quantities in the expression. For

expressions containing quantities with subscripts like, Rs,h, the first (second) sub-

script corresponds to the first (second) subscripts of other quantities in the expres-

sion. Also for expressions like: Rs, h = :]=1 , the first (second) subscript corresponds

to the top (bottom) sign. A quantity with a named point in parentheses, such as

p(Q), means that it refers to the parameters at the point Q, or is a function of the

parameters at that point.

For most cases, however, (standard) notation usually found in the literature

is used. Vectors are indicated by an arrow ,4, and unit vectors are indicated by

a hat 5. A dyadic quantity is indicated by a double overline A. Coordinates and

vectors with a ! (prime) usually refer to the source, and unprimed coordinates will

usually refer to the receiver or observer.

1.4.2 Symbols

These are just a few of the symbols used. Most of them are defined more

specifically in the text.
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ac = cone (half) angle

/30 -- angle of diffraction

/3s = bistatic angle

E =

angle from cone surface

kze_. (_ + _')

permitivity, or a small angle

I ¢c = b/a = ellipticity

= _ = impedance of material

I 0 = theta coordinate, or azimuth angle

A = wavelength

/_ = permiability

7r = 3.1415...

pd =

pr --_

O --

caustic distance for the diffracted ray

caustic distance for the reflected ray

radar cross section

=

=

distance along cone surface

tangent vector

angle from wedge face

Cs --

¢ =

¢ for point on edge

¢ for shadow on rim

angle from wedge face

_Je kaefie" (_"+ ;.I)

9



w

al,2

_e

a

Aa_e

b

b

c

CA, CB, Cc

Ds,h

D

_d,#d

_,#_

_

_,/_, _,,/_,

_'_, 9"_, _,_, _m

f0,1,2

f¢0,c1,c2

F

FO,1,2

= angular frequency

: circular cone fustrum radii

= radius of edge curvature

: radius,semiminor axis

= average spread factor

: semimajor axis

: binormal vector

: speed of light

= partial half-rim corrections

= soft, hard diffraction coefficients

= the dyadic edge diffraction coefficient

= edge vector

= perpendicular direction to plane of incidence

= parallel direction to plane of incidence

= diffracted field

= incident field

= reflected field, radiated field

= field radiated by electric currents

= field radiated by magnetic currents

= equivalent-current half-rim integrals

= equivalent-current corrected half-rim integrals

= transition function

= equivalent-current rim integrals

10
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h

Ho =

H 1 =

-7"1,2 =

j =

Jo :

J1 =

k =

l =

M :

n =

fi :

^

n O :

Q 1,2,3,4 =

Qe =

Qr =

r =

r'1,2,3,4 =

_'_ :

_-_ :

cone frustum height

zero order Struve function

first order Struve function

electric, magnetic currents

equivalent line current integral

zero order Bessel function

first order Bessel function

length

confluent hypergeometric function

wedge angle parameter

normal vector

normal to cone surface

normal to o-face, endcap

normal edge curvature

diffraction points

point on edge, diffraction point

reflection point

distance from coordinate origin

vector from origin to Q1,2,3,4

vector from origin to edge

vector from origin to surface

11
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1.4.3

R1,2

R c
1,2

Rs, h =

R =

8 =

T =

Te,el,e 2 =

u =

U =

U =

U =

X =

Z =

Abbreviations

GO =

GTD =

MM =

PO =

PTD =

= vector from origin to cone surface

= principal radii of surface curvature

= principal radii of cone surface curvature

reflection coefficient, soft and hard case

dyadic reflection coefficient

distance from diffraction point to receiver

incident ray direction

reflected ray direction

transition function curved-side specular region

transition function rim-caustic region

u coordinate in elliptical cylindrical system

rim-caustic transition function argument

confluent hypergeometric function

v coordinate in elliptical cylindrical system

curved-side specular transition function argument

z coordinate, or a complex number

Geometrical Optics

Geometrical Theory of Diffraction

Moment Method

Physical Optics

Physical Theory of Diffraction
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RB -- Reflection Boundary

RCS = Radar Cross Section

SB = Shadow Boundary

UTD = Uniform Geometrical Theory of Diffraction
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CHAPTER II

Theoretical Background

2.1 Introduction.

This chapter contains a brief description of the techniques of Geometrical Op-

tics (GO), Physical Optics (PO), and the Uniform Geometrical Theory of Diffrac-

tion (UTD). It outlines (without proof) some of the key equations and concepts

which provide the foundations for this work. More information on these high-

frequency approximate-solution methods can be found in references [2,3,10,11].

In this report, emphasis is placed on the canonical problem of diffraction from

a curved wedge. For the cone frustum, edge diffraction is a dominant scattering

mechanism. The canonical problem is important because solutions to more com-

plex problems can be constructed by the principle of superposition. This will be

demonstrated in Chapter 3 when the diffraction-point method is discussed.

2.2 Geometrical Optics (GO)

The technique of geometrical optics provides a high-frequency approximate

solution to the incident, reflected, and refracted fields. In our problem, we will be

only concerned with the reflected field. GO can be obtained from an asymptotic

solution of Maxwell's equations, and it corresponds to the leading term of the

Luneberg-Kline asymptotic expansion for large values of angular frequency [3].

According to geometrical optics, electromagnetic waves can be seen as trav-
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eling along certain lines called rays. The ray path is determined by Fermat's

principle. It states that the ray path taken by the light from one point to another

is an extremum. This is usually a minimum, or the path that requires the least

amount of time, but not always. From Fermat's principle, the law of reflection

and the law of refraction can be obtained. Later we shall see that it can also be

extended to include the law of edge diffraction.

In geometrical optics, phase is proportional to the distance along the ray path

from some reference point, and the amplitude is governed by the conservation of

power in a tube of rays. Figure 3 shows one such tube of rays. The distances

Pl and P2 are from a fixed reference point to the "caustics", or places where rays

converge.

In geometrical optics, however, the fields can not directly be evaluated at the

caustics. At caustics, the approximation of power conservation in a tube of rays

is no longer valid. The field near a caustic appears to become infinite as a finite

amount of power gets squeezed into a vanishing area. The fields near caustics must

be found by other means.

2.2.1 GO Reflected Field

The GO expression for the reflected field [11] from a smooth conducting convex

surface with radius of curvature greater than A is (see Figure 4),

_/ _rplr

Pl 2

E_(_): E'(Q_)'_ (o_+ ,_)(o_+ ,r)_-yk,, (2.1)

where

Qr = reflection point

F,i(Qr) = incident field at Qr

s r = distance from Qr to receiver

15
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Figure 4: Reflection off a convex conducting surface.
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R

R

Rs,h

p rl,2

= the dyadic reflection coefficient

.. Ai _r . ^iAr
= _t_e± .l. + _hellell

= _1

= caustic distances for the reflected rays

(2.2)

(2.3)

where

F

Pl,2
+ , (p_ Pg(Q_)cos0_

. 1 1 P2(Or)COSOi 1 1

pi -4- f22

g cos 2ao (" Pg(Qr) sin 2ao sin 2Wo cos 0i /_11

4p2(Qr)c°s20i ½)+1 - f2R1R2
(2.4)

0i = angle of incidence = cos-l(-_ i • _,)

R1, 2 = principal radii of surface curvature at Qr

f = 1+ pg(Or______))¢os2¢
pt(Qr)

Pg(Q_) ¢
9 = 1 m(Q_)c°s2 "

Note that pg is the radius of surface curvature at Qr in the plane of incidence.

The plane of incidence contains _i, _t, and t. Further, Pt is the radius of surface

curvature at Qr in the plane containing fi and b where,

fi = normal to the surface at Qr

= tangent to the surface at Qr

= _x_
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I }s = direction of the incident ray

}r = direction of the reflected ray

I _l = direction of the source from Qr

i _ = direction of the receiver from Qr •

The direction of the reflected ray is defined by the law of reflection which is given

I by

| = (2.5)
The point of reflection, Qr, is a point on the surface such that the law of reflection

I is satisfied. At Qr, one finds that

I _._ = _._'. (2.6)

2.3 Physical Optics (PO)

I If the true currents on a scatterer were known, then we would be able to

I find the true scattered field. However, these currents are unknown. The tech-

nique of physical optics approximates the currents by using the geometrical optics

I currents. For an electrically large conducting scatterer, the surface currents are

i approximately . -. f 2_ x/_ on the lit surface, and

J _ JGO i (2.7)I 0 on the shadowed surface.

The PO scattered field is obtained by substituting these approximate currents into

the radiation integral.

In this work, PO is used only in an indirect manner. We will use the knowledge

that PO is known to give good results in the direction of specular scattering.

References [1,10] provide some discussion on this subject.
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2.4 Uniform Geometrical Theory of Diffraction (UTD)

Classical geometrical optics considers scattering due to reflection, but not

diffraction. Keller [2] extended GO to include diffraction into the approach known

as the geometrical theory of diffraction (GTD). With the knowledge that wave

propagation is a local phenomena at high frequencies, it was reasoned that the

diffracted field, like the reflected field, must also propagate along rays. GTD

assumes that diffracted rays are produced when incident rays encounter surface

discontinuites (edges, tips, vertices) or when they graze the surface of a scatterer.

It is found that various laws of diffraction can _esult by using these assumptions in

a generalized form of Fermat's principle. Experimental results confirm that these

assumptions are valid for electrically large scatterers.

In GTD, the initial value of the diffracted rays are obtained by multiplying

the incident field with a diffraction coefficient at the point of diffraction, analogous

to the reflection coefficient for a reflected ray. The expression for the diffraction

coefficient depends on the scattering mechanism (edge diffraction, tip diffraction,

etc.). The development of new valid diffraction coefficients is presently a major

area of investigation. The application of GTD is limited only by the availability

of accurate coefficients. The uniform geometrical theory of diffraction (UTD) is

an improved version of GTD that uses diffraction coefficients which remain valid

near the shadow boundaries--where Keller's original coefficients had failed.

Two major contributors to the diffracted field considered by UTD are diffrac-

tion from edges and diffraction from curved surfaces (or creeping wave diffraction).

In this report, only edge diffraction will be considered.
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2.4.1 UTD Edge Diffracted Field

The diffracted field from a semi-infinite perfectly-conducting curved wedge is

_-J_' (2.s)

given by the following expression:

=/ pd
_d(,)

= F'i(Qe)" Dvs(pd-+ s)

where

Qe = point of diffraction on edge

Ei(Qe) = incident field at Qe

s = distance from Qe to receiver

pd = caustic distance for the diffracted ray

D = the dyadic edge diffraction coefficient.

The dyadic edge diffraction coefficient is given by

= -_'o_oD.- 6'6Dh. (2.9)

The following is the form of the diffraction coefficient which was developed by

Kouyoumjian and Pathak [3]. The coefficients of a perfectly-conducting curved

wedge are

where

-e-J_ .{D in D i° (D rn Dr°)} (2.10)
Ds, h = 2nVf_sin/3 0 + q: +

Din = c°t (Tr + (_ - ¢t) ) F(kLina+(_ - _l))2n

Di° = c°t ( Tr - (_ - _') ) F(kLi° a-(_ - _'))2n

Drn = c°t (Tr +(_ + _') ) F(kLrna+{_ + _'}}2n

D r° : cot (Tr-((I)2n + (I)')) F(kLrOa_(¢ + _')).

(2.11)

(2.12)

(2.13)

(2.14)
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Figure 5: Edge geometry.
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The angles/_0, q_, and _t are shown in Figure 5, and n is a wedge angle parameter,

where the wedge angle is (2 - n)_. The cotangent terms in the diffraction coeffi-

cient become singular at various reflection and shadow boundaries of the surfaces.

Table 2.1 and Figure 6 show where each cotangent term becomes singular. The

function F is a transition function which is defined by

F(x) = 2jv_e jx /v_ e-jr2 dr. (2.15)

Figure 7 shows the magnitude and phase of this function. L is a distance parameter,

where
__ i,r _i,r

(p_,r + _]Pl P2
L i'r = s sin2/_0. (2.16)

i,r i,r i,rpt (pl + s)(p2 + s)
i_l r

The parameters _'e are the (incident,reflected) radii of curvature in the plane

containing the (incident,reflected) ray and 5; and P/I',_ are the principal radii of

curvature of the (incident,reflected) wavefront at Qt. The superscripts n,o on

L denote that the radii of curvature are determined at the respective reflection

boundaries (2n - 1)_r - q_t and _ - _t. The reflected field caustic distance in the

plane of the reflected ray and edge tangent is given by

1 1 2(fi fit _i
• )("fi) (2.17)

Pre -- Pie ae sin 2 80

where

fi = normal to the surface atQe

fie = normal to edge curvature atQe

_i = incident ray direction

at = radius of edge curvature

a+ (x) = 2 cos2 2 " (2.18)
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Figure 6: Shadow and reflection boundaries for different angles of incidence.
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Table 2.1: Table showing where cotangent terms are singular.

2n )J
cot

The cotangent is singular
when

¢, ¢' - =, a SB
surface ¢=0 is shadowed

¢= ¢' + _, a SB
surface ¢=n= is shadowed

¢ = (2n-1)_-¢', a RB
reflection from surface ¢=n_

¢=_ - ¢', a RB
reflection from surface ¢=0

value of N

at the boundary

N+= 0

N'= 0

N+ = I

N'= 0

I

I
I

I
I

I
I

i'
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And N e are integers which most nearly satisfy the equation,

27r nN :t: - x = -4-7r (2.19)

where x = • + _l. See Figure 8.

Law of Edge Diffraction

The direction of the diffracted rays are defined by the law of edge diffrac-

tion. This law arises from a generalized statement of Fermat's principle where the

diffracted ray path is the minimum distance from source to edge to observation

point. The law of edge diffraction is given by

¢. _ = _. _ (2.20)

where

= unit edge vector

_i = direction of the incident ray, and

= direction of the diffracted ray.

Note that an incident ray hitting a point on the edge gives rise to a cone of

diffracted rays (see Figure 5).

A diffraction point, Qe, is a point on the edge such that the law of diffraction

is satisfied, or

_ _t. _ = _.. _ (2.21)

where

_t = direction of the source from Qe

= direction of the receiver from Qe
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Figure 8: N + and N- as functions of 130 and n.
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Reasons to Use UTD

The following are some of the reasons why we choose UTD for our problem:

1. No exact solution is available for the cone frustum. Exact solutions exist only

for the most simple shapes (that fit a general coordinate frame). Therefore,

we have to use an approximate-solution technique.

2. UTD is accurate for high frequencies. Our problem deals with frequencies

at the high end of the resonance region and into the optical region. High-

frequency asymptotic methods, such as UTD, work well at these frequencies.

Past experiments have shown good agreement with measurements and other

solutions. The moment method can also provide solutions in the resonance

region, but computations can become costly with increasing frequency.

3. It complements low-frequency solutions, such as those obtained by the mo-

ment method.

4. It can yield bistatic solutions.

5. It is easy to apply. The local nature of high-frequency asymptotic approxi-

mations can resolve a complex scatterer into simpler components.

6. It is a ray method. Ray methods can provide physical insight into the scatter-

ing mechanisms. Also due to the continuous nature of physical phenomena,

the accuracy of a calculated scattering pattern can be readily determined.

The inaccuracies caused by missing scattering components appear as discon-

tinuites in the pattern.

In the next chapter we will show how a solution for the cone frustum can be

obtained using UTD, and the advantages mentioned above will be demonstrated.
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CHAPTER III

The Diffraction-Point Method

3.1 Introduction.

The previous chapter briefly discussed the UTD solution to a curved semi-

infinite wedge. This chapter applies those results to obtain an approximate solution

to the scattered fields from a cone frustum. The technique used to generate the

solution is called the "diffraction-point method".

3.2 How does the diffraction-point method work?

We recall that at high frequencies, wave propagation and scattering have a

very local nature. Ray techniques are therefore applicable. According to the

geometrical theory of diffraction, diffracted rays occur when incident rays hit geo-

metric discontinuities on a scatterer, such as the edges. For an edge, the direction

of these diffracted rays are determined by the law of edge diffraction.

In order to apply the diffraction-point method;one must first be able to isolate

the source of these diffracted rays to separate points. The points are sometimes

called "scattering centers" or "diffraction points". For the cone frustum, the scat-

tering centers are located on the edges forming the rim. The location and number

of points will change depending on the position of source and receiver. Note that

for the cone frustum, there can be as many as four diffraction points.

This local character--our ability to isolate points of diffraction, simplifies

3O

I
I

I
I
I
I

I
I

I

I
I

I
i

I
I
I

I
I
l



I

I
I

I
I

i

I
I
I

I
I

!
I

I
I

I
I

I

the solution to the problem greatly. Since diffraction is a local phenomena, only

the local geometry in the neighborhood of the scattering center is important in

determining how the incident energy gets scattered. The diffracted field from a

scattering center can be approximated with a known solution for a scatterer having

the same local geometry. The problem of finding the cone frustum's scattered field

is now reduced to the problem of finding the diffraction from curved wedges that

match the geometry at the diffraction points.

Therefore, the diffraction-point method involves a superposition of semi-infinite

wedge solutions. The total scattered field is approximated by summing the diffracted

field contributions from each wedge. This gives a solution that is both fast to com-

pute and aesthetically pleasing due to its simple form and physical insight of the

scattering components.

Again, however, it must be emphasized that the method only works well when

the local nature of the scattering centers is not violated. The spacing between

scattering centers should usually be greater than a wavelength. This is true for

most regions of observation, but in some places the diffraction-point method can

fail. These difficulties will be discussed later, but happily these problems can be

corrected using other techniques.

A short note on the wording: in this report, the "diffraction-point method

solution" will be defined as the "first-order edge diffraction solution without cor-

rections". Where "first-order" means that only the primary interaction of the

incident ray with the edge is considered.

Another item worth mentioning is that the previous condition about the

"wavelength spacing between scattering centers", should only be taken as a rule-of-

thumb. The diffraction-point method solution fails gracefully when this condition

is violated. The solution may be extended to lower frequncies by including higher

31
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order terms (multiple ray interactions).

3.3 History

The idea of the diffraction-point method is not new. Since exact solutions

are often difficult to obtain and apply, GTD techniques are usually the most con-

vienient way to get an approximate high-frequency solution. Some of the people

who have used this method in the past for the cone frustum include Bectel and

Ross [4,5,6] and Ryan and Peters [7]. The results of their work show good agree-

ment with measurement (in the region where the method is valid). Besides the cone

frustum, this method has been successfully applied to other scatterers, including

plates and cylinders.

3.4 Application of the Diffraction-Point Method to the Cone Frustum

Now let us proceed with how the diffraction-point method can be applied to

the cone frustum. The procedure consists of the following four steps:

1. A coordinate system for the scatterer is assigned.

2. The location of the diffraction points is determined.

3. The diffracted fields are calculated for each edge corresponding to the local

conditions at the point of diffraction. This involves finding the incident field

at the diffraction point, angles of incidence and observation, and the wedge

angle and curvature.

4. The diffracted fields from each diffraction point are summed to obtain the

approximate scattered field.
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These steps will be shown in greater detail on the following pages. Also given

are examples of calculated scattering patterns. To simplify things, the examples

are restricted to a circular cone frustum with source and receiver confined to the

a plane containing the axis of symmetry. This plane will be called the principal

plane. (But there is nothing in the theory that limits us to these specific cases.)

3.4.1 Coordinate System

For this example, the standard spherical polar coordinate system (r,0,¢) is

chosen. When determining the fields (incident or diffracted) for each diffraction

point, we will need to convert between their own ray-fixed coordinates to this

system.

The cone frustum is aligned with its axis along the z-axis and with its center

at the origin. Figure 9 shows the setup. Here we will define the principal plane

as being the x-z plane. Later, when considering the orthogonal polarizations of

incoming and scattered waves, "horizontal" (parallel to the axis) and "vertical"

(perpendicular to the axis) will be referred to this plane.

3.4.2 Diffraction Points

The location of the diffraction points on the frustum's rims can be found by

applying the law of edge diffraction. The law of edge diffraction states that

-¢. _(¢e) = _. a(¢_)

or

where

(¢ + _). _(¢e) = o

_l = _ sin 0 !cos ¢I + _tsin 01 sin ¢1 + _ cos 0l

= SsinOcos ¢ + _tsinOsin¢ + _, cos 0

(3.22)

(3.23)

(3.24)
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The cone frustum in the (z, y, z) coordinate system.
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and for a circular cone frustum,

_(¢e) =-_sinCe + _cosCe. (3.25)

The source and receiver positions are (0',¢') and (0,¢), respectively. The location

of the diffraction point on the edge is Ce. Substituting for _t, _, and 2, and solving

for Ce yields

[ +(sin 0' sin ¢' + sin 0 sin ¢)]
Ce = tan -1 [_g_os¢' + sin0cos¢)J (3.26)

We find that there are two possible diffraction points associated with each endcap

rim, or a total of four possible diffraction points for the frustum. In the principal

plane, the diffraction points are located at Ce = 0 and Ce = _r. These correspond

to the points Q1, Q2, Q3, and Q4 shown in Figure 10.

Note, however, that for certain cases all points on the rim satisfy the law of

edge diffraction (such as for 0 = 01 = 0). For these instances, we cannot locate

isolated diffraction points, and the diffraction-point method cannot be applied.

These are called "rim caustic regions" and other techniques will have to be used

to calculate the proper field. More will be said about this later.

3.4.3 Diffracted Fields from an Edge

From Chapter 2, the diffracted field from a curved edge corresponding to a

diffraction point Qe is

where

i pd -jks_de = _i(O.) . D(Qe) s(s + pd) e

__ ^IA n __(Qe) -_0_o s(Qe) _'_Dh(Qe)

Far Field Approximations

Several approximations can be made for the far field (see Figure 11).
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Figure 10: Cone frustum geometry in the principal plane.
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Figure 11: Far-zone approximation for the diffracted field from a point Qe on the
edge.
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i pa v_s(s + pa) _ ---r

e-J ks _ e-jkr eJk_ "_

(3.27)

(3.28)

and since F(kLa) _ 1 as L _ c¢,

-e 4 cot 7r+(¢-¢1)
Ds,h "_ 2n v_ s_--im30 2-n- _ - (¢ - ¢') )+ cot 2-n- +

+Rs'h[c°t(_r+(_P+_P')) + 2n )]} "2n cot (Tr -- (O + (I)I)

(3.29)

The far field expression becomes

. . t - D 7----- . . .e-)kr
E, de_" Ei(Qe) [-30 30 s(Oe) - _'_Dh(Qe)l_/pa(Oe)e3kre'r

r

Incident Field

(3.30)

Since we assume plane wave illumination, the magnitude of the incident field

is the same at each edge. However, we still must consider the phase and the

shadowing of the diffraction points by the structure. The incident field is given by

Ei(Qe) = E,o' (Qe) es'kr_'_''e-jkr' (3.31)

where

(

Eo'(Qe)4 : J Ei3o_O' + Ei¢_' if point is illuminated, and (3.32)

[ 0 if in shadow.

Depending on the position of the source, different diffraction points are shad-

owed. In the principal plane, six different regions must be considered. This is

shown in Figure 12.
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Figure 12: Regions where different diffraction points are considered.
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Geometry at Diffraction Points

The diffraction points for source and receiver in the principal plane are located

at Q1, Q2, Q3, and Q4 as shown in Figure 10. The values of pal,/_0, _, (I)l, and n

depend on which diffraction point is considered. The angles _ and _l are measured

from the o-face. For this problem we define the flat face (endcap) as the o-face.

See Figure 13.

For the principal plane,

ae sin 2/_0

h,. (_+ _')

a for Q1, Q3
ae = (3.33)

a 2 for Q2, Q4

_ forQ,,Q2
he : (3.34)

-_ for Q3, Q4

ff

f_0 = _ for Q1, Q2, Q3, and Q4. (3.35)

The value of the wedge angle parameter, n, can be related to the cone angle

ac. For a circular cone frustum,

_3__

2 Ir
n-----

_-+_ff

where the cone angle is defined as

for a 2 > a 1.

for Q1, Q3 (3.36)

for @2, Q4

(3.37)
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Figure 13: Cone frustum edge geometry.
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Transformation of Coordinates

The expression for the diffracted field from an edge uses the coordinates

(rJ30,¢) which is a ray-fixed coordinate system at the edge. In order to find

the incident fields and to sum the fields in the next step, it is necessary to convert

to a common set of coordinates which we defined as (r,0,¢)(see Figure 14).

Let

= ?or_ I

ho = unit normal to the endcap (o-face)

= unit binormal vector

= - (k cos Ce + _ sin Ce)

= unit edge vector, and

X no •

In the principal plane, one finds that

no ---
+3 for Q1, Q3 (3.38)

-3 for Q2, Q4

: _ +_ for Q3, Q4 (3.3g)

L-k for Q1, Q2

{ +_b for Q1, Q3
= (3.40)

-_b for Q2, Q4.

Since d is the same for both coordinate systems, we can set them equal such that

= _sin0cos¢+ _sin0sin¢+ _cos0

= bsinl30cos_ + fiosinl30sin_ + _cosl30. (3.41)
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Figure 14: The (d,O,_) and (dJ30,_) coordinate systems.
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Noting that

rio'd = sin_osin

b.d = sin_ocos

fi,o • _/
- tan+

(fio'd_ (3.42)
+ = tan-l\ g.d /

80 -- cos-l( _' d) (3.43)

and

(3.44)
lex_t

_0 = -+ x d. (3.45)

The above expressions are best carried out on the computer. Expanding them out

in terms of 0 and ¢ can become a trigonometric mess. But in the principal plane,

for ¢ = O,

_0

+

[

] +¢ for Q2, Q4

/ -$ for Q1, Q3

= / A-O forQ1, Q 4

[ -0 for Q2, Q3.

(3.46)

(3.47)

for _ = _i_
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_o
+_ for Q1, Q3

(3.48)
-_ for Q2, Q4

+0 for Q2, Q$
(3.49)

-_ for Q1, Q4.

3.4.4 The Diffraction-Point Method Solution

The diffraction-point method solution is obtained by summing the diffracted

fields from each edge. The scattered field is approximately

(3.50)

where

/_d = Ei(Q1)' _(Q1)_ ejk_'_e-jkr
T

___ f----------- . -. _--jkr

/_d =/_i(Q2)" D(Q2)_/pd(Q2) e3kr_'rc r

eJk_. f. e -jkr

r------- . _ _ _-jkr

gd _-- Ei(Q4)" D(Q4)_//pd(O4)e'kr4"rC •
T

(3.51)

(3.52)

(3.53)

(3.54)

Please keep in mind that/_d = 0 if the diffraction point is shadowed or not visible

(see Figure 12). As an example, the diffraction-point method solution for which

the source is in Region B and receiver in Region C is

g__ g_+g_ (3.55)

which can also be written as

_s _ _Eice-jkr 'e-jkr
7"

Ds (Q 1) _ ) ejkF1 '( _÷_')
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- Dh(Q2)_e jkF2"(_'+#) (3.56)

3.4.5 Calculated Principal Plane Patterns Using the Diffractlon-Point
Method

The patterns shown in Figure 15 and 16 are typical scattering patterns for

a circular cone frustum in the principal plane which were calculated using the

diffraction-point method. The horizontal axis is the aspect angle which is measured

from the z-axis. The vertical axis is the radar cross section in decibels above a

square meter.

The diffraction-point method solution provides a fairly good approximate so-

lution, but it doesn't work everywhere. It fails in the regions near the forward

scatter direction, the specular direction off the endcaps, and in the specular di-

rection off the curved side. Since these are directions of significant scattering, we

cannot ignore these problems.

The observed failure is due to elements which are missing in the present solu-

tion. We recall that for some regions, diffracted ray contributions come from the

entire rim. This is called a "rim caustic" (a system of parallel rays from the rim

creates a caustic at infinity), and it cannot be handled by the ordinary diffraction-

point method. From the law of edge diffraction, these caustics occur in the specular

direction off the endcap (which can involve both front and back rims) and in the

forward scatter direction. To correct the diffraction-point method solution, the

contributions from the rims must be considered and added to the solution. In

Chapter 5, we will show how this can be accomplished.
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Figure 15: The calculated pattern of a 15 ° cone frustum using the
diffraction-point method for backscatter.
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Figure 16: The calculated pattern of a 15 ° cone frustum using the
diffraction-point method for bistatic scatter with fixed axial incidence at 0

degrees.
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Next we need to explain why the solution fails near the specular direction off

the curved side. This direction also corresponds to a caustic--since reflected ray

contributions come from the entire side of the cone frustum. However this caustic

does not present quite the same problem as for the rim caustic. The diffraction-

point method solution, to some degree, does take care of some reflection caustics,

since the diffraction-point method solution does work for a cylinder [1]. Let us take

a closer look at the diffraction-point method solution near the specular direction

for the curved side. We note that in Eq. (3.50), as one approaches the specular

direction, the solution becomes dominated by the diffracted fields coming from the

two edges forming the reflecting surface. In the region near specular, one finds

that

and

r

+

I •

• e -jk(r+J) e jk_l(+++') (3.57)

The GTD diffraction coefficients for the two dominant edges become infinite in

the specular direction• "Infinite" because the diffraction coefficients arise from a

"semi-infinite" wedge solution --the reflected field from a semi-infinite wedge is

infinite in the far zone. The two dominant edge-diffracted fields have opposite

signs; each contains the (infinite) diffraction coefficient weighted by the spread

factor which contains the radius of edge curvature• We note that if the radius of
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curvature is equal for both edges, as in the case of a cylinder, the total field at

specular will be correct. The infinities will cancel each other, leaving the correct

bounded result. However, for the cone frustum, due to the difference in the radius

of curvature (spread factor) at each edge, this cancellation of infinities does not

occur, and the solution fails.

This failure is due to the missing information about the cone's surface. The

edge diffraction coefficients have no knowledge of the variation in curvature along

the cone's side. This information is necessary in order to determine the correct

reflected field. If one looks at the situation in terms of rays, there are reflected

ray contributions to the reflected field from the entire side of the cone (a caustic).

Each spreads energy differently depending on the radii of curvature at the point of

reflection. Since this information is not built into the diffraction coefficients, the

diffracted _ld is not able to go to the reflected field at the specular direction. In

the next cha_ter we will look at ways to correct for this failure.
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CHAPTER IV

Curved-Surface Specular-Region Corrections

4.1 Introduction.

In the preceding chapter, we discussed the failures of the diffraction-point

method solution. This chapter is devoted to fixing one of them--the failure in the

specular region for the curved surface.

As mentioned in Chapter 1, we want to avoid changing back and forth between

different forms of the solution, such as between GTD and PO. Instead, we would

like to preserve the GTD form of the solution in all regions. Corrections will be

accomplished through a modification to the present GTD solution. Two different

modifications will be presented. One we will call the "spread-factor modification"

which was shown in a Ph.D. dissertation by T.T. Chu [8] based on similar work by

Ryan [9]. And the other is a new way that we will call the "equivalent- line-current

correction".

4.2 Physical Optics Result

In the specular direction, the result based on physical optics gives a good

approximate value for the scattered field. We will use this result to check our

solution in later sections. The scattered field (expressed as a radar cross section)

is given by [4]
, 3/2 3/2,

a(atspecular)=87r(a29Asin 2 ac-alcosaclc°s(-_) (4.5s)
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where/3s is the azimuth bistatic angle (seeFigure 10).

4.3 Spread-Factor Modification

In Chapter 2, we showed that the diffraction-point solution failed in the spec-

ular direction due to an incomplete cancellation of infinities. This was caused by

a difference in the spread factors for the two edges forming the reflecting surface.

The spread factors contain the caustic distances which differ due to the different

radii of edge curvature. Chu has shown that by introducing a modified spread

factor, one can obtain a finite and valid result for the UTD solution in the spec-

ular direction. The modified spread factor is called the "average" spread factor;

it is used in place of the actual spread factors for the two edges forming the face

(n-face). The average spread factor is given by

Aave - P_ave

7"

1 fLI2 Cpd(Q2 )- L ,I-L�2

L

+ _--_[pd(Q1)- pd(Q2) ] dz

2 [pd(Q1)3/2 -- pd(Q2)3/2]

where

(4.59)

(4.60)

(4.61)

Note that the spread factor is no longer local for each edge of the frustum.

The scattered field with Chu's modified spread factor can be written in the

same form as the diffraction-point method solution, Equation (3.50), except that

the diffraction coefficient is now given by

-e -j_ . _ D i°

Ds'h = 2n_si---------n_o [ Din + =F-
(D"_ (4.62)
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where

Din = c°t ( _ + (_ - _l) )2n

Di° = c°t ( _ - (¢ - ¢1) )2n

Drn = c°t ( _r + ( ¢ + ¢l) )2n

Dr° = c°t ( _r - (_ + _') )2n

4.3.1 Calculated Patterns Using the Spread-Factor Modification

Figure 17 compares the patterns calculated by the original diffraction-point

method solution with the diffraction-point method solution using the spread-factor

modification. Note that the spike at the specular direction is now gone. It can be

verified that the solution using the spread-factor modification gives the physical

optics result, Eq. (4.58), at the specular direction. However, we can also see that

the modification has slightly affected the pattern outside of the specular region.

The modified solution does not exactly go to the diffraction-point method solution

outside the specular region--it is not a uniform solution.

The integral in Eq. (4.60) may be viewed as being related to the integral of the

in-phase currents that give rise to the PO scattered field in the specular direction.

The lack of a uniform solution is a result of the phase not being considered in the

integral for the calculation of the average spread factor.

Even though the solution is not uniform, the spread-factor modification is

sufficiently accurate for small cone angles. It has the advantages of being extremely

easy to apply and fast to compute. But for larger cone angles a better correction is

needed. Next we will investigate a correction that is based on the use of "equivalent

line currents".
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Figure 17: Bistatic 10 ° scatter from a 40 ° cone using (a) the diffraction-point
method, and (b) the diffraction-point method with spread-factor modification.
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4.4 GO Equivalent-Line-Current Correction

The "equivalent current concept" is a technique that can evaluate the fields

in a caustic region. Recall from Chapter 3 that we have a system of parallel re-

flected rays off the curved surface of the frustum which creates a caustic at infinity.

Ordinary GO expressions cannot be used to find this reflected field. However, by

using "GO equivalent line currents", the reflected field in the caustic region may

be determined [1,12].

Now one might ask, how can we correct the diffraction-point solution by using

this technique? This is not an easy question. The approach uses a great deal of

heuristic argument and physical intuition, but we will show later that it is possible.

The observations used by K.C. Chiang [1] for the cylinder give us an idea how this

may be accomplished.

Chiang had obtained an equivalent-line-current expression for the reflected

field from a cylinder. She also did an asymptotic evaluation of the physical optics

solution for an open (no endcaps) cylinder and found that it gave a similar result.

(And we recall that PO also provides an accurate result in the specular region.)

Chiang then observed the similarity of the cylinder's equivalent-line-current solu-

tion with the portion of the diffraction-point method solution that corresponds to

the reflection boundary (RB) of the curved surface. And it was then rationalized

by Chiang that they could be set equal.

For the cone frustum, we will assume a similar situation where the equivalent-

line-current solution will yield a PO-type result that is similar in form to the

RB portion of the diffraction-point method solution (except for the failure in the

specular region). We cannot justify a direct subsitution for the two solutions,

but this gives us some insight that it might be possible to provide a "modified"
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equivalent-line-currentsolution to replace the RB portion of the diffraction-point

method solution that fails in the specular region. We will return to the subject of

correcting the diffraction-point method solution after showing the formulation of

the equivalent-line-current solution.

4.4.1 Equivalent-Line-Current Solution Procedure

The following steps are used to find the equivalent-line-current solution for

the cone frustum:

1. First, the GO reflected field over an infinite cylinder is obtained (a two-

dimensional problem).

2. Next, the radiated fields from infinite traveling-wave line currents, [e and

ira, are determined. [e is an electric current and _m is a magnetic current.

3. The currents [e and _m are substituited for the cylinder's surface, and the

currents i e and [m are then adjusted so that they give the same field as the

GO reflected field. In the principal plane, _e gives a horizontally polarized

field, and irn gives a vertically polarized field. The currents [e and [m are

the "GO equivalent line currents" for the cylinder. These are "fictitious"

currents that vary with the observation position.

4. The cylinder's equivalent line currents are broken up into infinitesimal cur-

rent elements (see Figure 18). The current elements are placed at the equiv-

alent location of the cone's reflecting surface, and they are varied according

to the local radius of curvature for the "equivalent cylinder" at that point.

5. The radiated fields due to the above currents are evaluated. This involves a

line integral. The resulting expression is the equivalent-line-current solution.
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Figure 18: The GO reflected field off the curved side of the cone frustum
produced by (a) rays, and (b) equivalent currents.

57



It gives the correct value of the reflected field off the curved-side of the cone

frustum.

The preceding steps will be shown in greater detail on the following pages.

4.4.2 GO Reflected Field Over an Infinite Circular Cylinder

The GO reflected field can be obtained using Equations (2.1) and (2.4) in

Chapter 2. For a circular cylinder with plane-wave incidence, the expressions

simplify greatly. For a circular cylinder, R 1 = a and R2 = c_. The values for pg

and Pt can be determined by using Euler's equation (see Figure 19 and Figure 20)

such that

1 1 (4.63)N -- -- COS 20t

pg a

1 _ 1 sin2a. (4.64)
Pt a

Substituting for R1,2, f, pg, and Pt in the expressions for Pl,2r yields

1 2 (cos2a+cos28isin2a) (4.65)p_ - a cos0 i

1 _ 0 (4.66)
p[

If an angle fl is used, where

(4.67)

then

a _r .h
r

/91 --
2 sin 2

r

P2 = 00.

(4.68)

(4.69)

Approximations for the far field can be made (see Figure 21) such that
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Figure 21: Reflected ray off cylinder surface.
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e -jksr _ eJk_a "¢'e-3 "kr
V_ V_ (4.70)

e -:iksi _, eJk_a'C"e-'ikrl . (4.71)

And for a two-dimensional cylinder, the spread factor is

i prlpr2 _ P_r (4.72)or pr(p_+ )(2+_")

Therefore the far-zone GO reflected field is

_. E,i (o) _/ prl eJk¢8"(_'+¢')f--e-jkr (4.73)gr
v_

where the reflection caustic distance p_ is given in (4.68).

4.4.3 Far-Field Radiation of an Infinite Traveling-Wave Line Source

Let an infinite traveling-wave electric line current be given by

i e = fiI ee -jku¢°s3 . (4.74)

The current flows along the t2-axis where /3 is the angle measured between the

_-axis and the observation direction, }r (see Figure 22). The far-zone radiated

electric field [1] is

v_
By using duality we can replace

I e -_ I m

1
T1 --_ _

tl

k --- k

(4.75)

and we obtain

_, /--k-1 m-'_re-Jksr
(4.76)
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Figure 22: Geometry for line source.
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By useof the plane-waverelation, the fields are

_ = (_, × a)Vf_rd_ _'k_V_- (4.77)

r _ rn j'_ e'ilcsr
/_rn = (/_ x } )V_:_I e 4 _rsr • (4.78)

If the reference point is moved from the _-axis origin Q to some other point O,

adjustments will have to be made for the phase. In the far field, one obtains

(

s r_ _ r-Fs._ in phase, and

! r in amplitude

(4.79)

where F'8 is the position vector from the reference point to the u-axis origin. The

far-zone radiated fields with phase reference at 0 are as follows:

A f-k ._r e-J kr
ejk_'_ -- (4.8o)

^ k e j{ jk_s._e-jkr (4.81)

_,m = (3 x _)X/___s lm eJ._ ejkFs._e-jkrl--7-
v_¥ o71-

(4.82)

ffl m = a_t/--k l lmeJ{eJkFs'_ "e-'ikr
V 87r r/ x/7 . (4.83)

4.4.4 Cone Frustum Geometry

To keep the mathematical expressions relatively simple, it is important to

choose a good coordinate system. For expressions dealing with equivalent currents
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on the curved surface of an elliptical cone frustum, the elliptical cylindrical coor-

dinate system {u, v, z) is chosen. Details on elliptical cylindrical coordinates can

be found in Reference [13].

The cone frustum should be aligned properly to take full advantage of the

elliptical cylindrical coordinates. The cone axis is the z-axis; the elliptical endcaps

are surfaces of constant z. The major axis of the ellipse is oriented with the x-

axis, and the minor axis with the y-axis. The curved surface of the cone then

corresponds to a surface of constant u. And the equivalent line currents flow on

the cone surface, along a line of constant v.

For elliptical cylindrical coordinates,

x = ('Tcoshu) cosy

y = (-Tsinhu) sinv

Z _ Z.

(4.84)

(4.85)

(4.86)

Let a(z) be the semimajor axis, and b(z) be the semiminor axis. It can be shown

that

where

a = -Tcoshu (4.87)

b = -Tsinhu (4.88)

a _- a I + (z- Zl)tan c_c (4.89)

b = eta (4.90)

a 1 = a(zl) (4.91)

a 2 ---- a(z 2) (4.92)

b
¢c -- ellipticity =- (4.93)

a
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ac = coneangle=tan-1 /a_2--al )._Zl (4.94)

The following parameters are used in determining the equivalent line currents and

their radiated fields (see Figure 23):

_'c = position vector from the reference origin

to a point on the cone's surface.

= a(5:cosv + _tccsinv) + _z (4.95)

hc = unit vector in the direction of the normal

to the cone's curved surface.

_:ec cos v + _ sin v - z._c tan ac

V/e2 cos2 v + sin 2 v + _2 tan 2 ac

(4.96)

= unit vector tangent to the surface

in the direction along the cone's side.

tan ac (_ cos v + ._ec sin v) + _.

V/tan ac (cos 2 v + e2 sin 2 v) + 1

(4.97)

/3 = angle between _- and _.

fit = angle between _ and _t.
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Figure 23: Cone frustum surface geometry
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= (+x+)×e
J(+x _)xel (4.98)

R c
1,2 = principal radii of curvature for the cone.

R[ = a(z) (E2 tan2 ac + ¢2 cosy + sin 2 v)3/2 (4.99)
Sc[tan 2 ac(cos 2 v + ¢ 2 sin 2 v) + 11

n_ = oo. (4.100)

4.4.5 GO Equivalent Line Currents for the Cone Frustum

The equivalent line currents for a cylinder are obtained by setting the infinite

cylinder's GO reflected field equal to the field radiated by the infinite line currents.

We then solve for the unknown currents. The equivalent line currents for a cylinder

are

.ff

/e : 8.(_'(o). V _

Im = 8-(-0'(0) •R} _e-J_ e_kr'r . (4.102}

To determine the equivalent line currents for the cone, we replace the position

vector Fs with Fc for the cone frustum, and in p[ we replace the radius of curvature

a with R_ for the cone frustum. R_ may be viewed as being the equivalent cylinder

curvature at the reflection point located by Ft. The equivalent line currents for the

cone frustum are

.ff

_)' 8_-_e-3"_ _e jkrT"_'' (4.103)

I m : /_" (/_i(0)" _)_/_rle-J_l ejkFc'_'' (4.104)
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I where

I 2 sin 2/_

I

I

I

I

I

I

(4.105)

4.4.6 Location of Reflection Points on the Cone

It is necessary to determine the points of reflection on the surface of the cone

frustum, so that we will know where to place the equivalent line currents. Let Qr

be a point of reflection on the surface of the cone. At Qr, the law of reflection is

satisfied by

- hi . h = h r • h

where h- h i < 0 (a closed surface), or

,_. (_r + _,) = o.

(4.106)

(4.107)

The outward normal to the cone surface is given by

I

I

I

h = hc = _,cc cos v + _ sin v - $cc tan ac (4.108)

V/C_ cos 2 v + sin 2 v + cc2 tan z ac

Note that for a given cone, h is only a function of v. In the far zone, the directions

h r and _i are constant over the surface of the cone. Therefore, for a given _r and

A "

8t, the locus of reflection points is along a line of constant v on the cone's surface.

I

I

I

I

This is a straight line along the side of the cone. The value of v is determined by

the reflection point condition, such that

qxcc cos v + _y sin v - _zec tan ac = 0 (4.109)

where

(4.110)

69



4.4.7 Field Radiated by Equivalent Line Currents

The equivalent line currents willflow along a lineof constant coordinate v

where the reflectionoccurs. To find the radiated field,we firstuse the expression

for the fieldradiated by an infinitesimaldipole with uniform current distribution

I0 and orientation l (see Figure 24) which is given by

dE, = _jrlkI°dl sin _e -jks . (4.111)
41r8

The field radiated by a current distribution I(l)l is found by integration. For a

straight line source, one obtains

!2 --3'k8/_ =/_jrlk sin/_ I(l')_rsdl' (4.112)

and

s_ { rr-_'c.P

Therefore the far-zone radiated field is

e-Jkr

/_ =/_jr/ksin_ 4rr----_

in phase, and
(4.113)

in amplitude.

fl l I ( ll) eJ k_c "Pdl I •

The far-zone fields due to the equivalent line currents are

(4.114)

e-jkr fr r2/_e = _jr/ksin/_ Ie(r')eJkFC_dr' (4.115)
1

. e-J kr _2Ern : (/_ × _)jksm/_-_-_ r Im(r')eJk_c'Pdr ' • (4.116)
1

Now the problem is to evaluate the integral. We might be able to do it

numerically, but then we do not gain much insight into how the solution behaves;
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Figure 24: Geometry for radiating current element.
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besides, it is inefficient in calculation. We would like to get it in closed form--and

it turns out that we can.

With a closed form solution, the result is dependent on only the parameters at

the endpoints of the integration. And we note that the endpoints will correspond

to the same location as the two diffraction points forming the surface! This gives

us another clue that it might be possible to combine the equivalent-line-current

result with the diffraction-point method solution.

In the expressions for/_e and/_m, the only parameters that are functions of

the integration variable r are the radius of curvature R_ and the position vector

r'c (see Figure 25). The integral we want to solve is

fr r2I1 = _/_(r')eJk_c'(_+_'}dr' (4.117)
1

fr r2
"_1 = g(v) _a(_eJk_c'(_'+_")dT! (4.118)

1

where

/ (s2 tan 2 ac -t- _2 cos v -I- sin 2 v) 3/2

g{v) : V_n2_-_o_v-+_-c2si_-_v i +_.

By performing a change in the integration variable from r' to z',

dz !
dr t _

_.{-

and we obtain

zl - 9(y_)f/_ _ejk_c.(_+_,)dz,
_'_ 1

Vq_,,_{af+'--')dz'
£_'_ Yzl

(4.119)

(4.120)

(4.121)
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Figure 25: Surface geometry showing _, 3, and Ft.
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where

g = r + _t = xSz + 9dfy + _6z (4.122)

f = 8zcosv + 8yScsinv. (4.123)

Now we perform another change of variables from z t to a, such that

z' = acotac + (Zl-alcotac) (4.124)

dz I = cotacda (4.125)

_1 -- g(V)Â cot Otc e3"k6z(zl-al cot Ctc) fa a2 V/-_e3Xada (4.126)
Z'T 1

where

X = k(f + 6zCOt ac). (4.127)

Let

h = v_eJx°da • (4.128)
1

The integral J2 can be evaluated in a couple of different ways. Both give a result

that uses the confluent hypergeometric function M or U in which case

.72 = -foalv/aejXadaw_oa2_/aeJXada

_a! M (1, 2.5, -jXal )e3Xal

2 2 .

+_a_ e_Xa2M(1,2.5,-jXa2) . (4.129)

By using the knowledge that

v/-deJXada = 0 (4.130)
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and adding (4.130) to (4.129) gives

I

I
2

= a_leJXalu(1,2.5,-jXal)

2 .

-a2 _ eJXa2u(1, 2.5,-jXa2). (4.131)

Information about the functions M and U is provided in Appendix A.

The far-zone radiated fields due to the equivalent line currents can now be

written as

I

I

I

I

I

where

8e = /_[/_" (/_/(0). _)] { } (4.132)

8m = /_x_[/_.(S/(o) x_t)._]{ } (4.133)

v/Jk . e-Jkr{ } : _-_ (r' nc)g(v) cot CtCeJk6z(zl_al cot ac) _i 2 (4.134)_-_ r

• = E±Rse± + (4.135)

(_i x _l). _ = EiRh_r± _ E i ,-, ,r (4.136)±mell .

The total field radiated by the equivalent line currents is the sum of fields due to

both electric and magnetic equivalent currents. It can be separated into parallel

and perpendicular polarized components such that

I

I

I

8 r = .g',+ g',,,

8' = (g'._l_)_l_+ (8' ._'3)_.
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The following relations can be used in Eq. (4.132) and Eq. (4.133):

_.(_ × _) : /_.(_ X_[) (4.139)

× _ = el.^r (4.140)

We can show that

_r ._ : E[IR h{ } (4.141)

_r Ar i• e_L = E_LRs { }. (4.142)

There is no cross polarization. The total field that is radiated by the GO equivalent

line currents is

#r = #i(O ) _/jk (_ _ _.t.,_cotacojk6z(z,_alCotc_c)e-J kr• " ,_c]utv]-z---z-, ,- - 2"2 . (4.143)
V47r z • r r

It can be verified that this expression gives the physical optics result of Equa-

tion (4.58) in the specular direction. We will call this expression the "equivalent-

line-current solution" for the cone frustum.

The equivalent-line-current solution depends only on the conditions at the

edges of the cone frustum. We can then manipulate the expression into a form

that resembles a sum of diffracted fields from the two edges. After a great deal of

work, it can be written in the following form:

_r . _r " PO " _ e-jksl
l,II = E_,II(Q1)Ds,h-(Q1)_/prl(Q1) Sl

+ Ei_L,II(Q2)DPO+(Q2)_e-jks2 (4.144)
s2

The points (Q1 and Q2) correspond to the same location as the diffraction points

associated with that surface. The variables (s I and s2) are the distances from the

points (Q1 and Q2) to the observation point. The expression contains terms where
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the incident field at the edge is multiplied by a factor called the "physical-optics-

type" diffraction coefficient for that edge and a local reflection spread factor. We

call it a "physical-optics-type" diffraction coefficient because its form is similar to

the physical optics diffraction coefficient for a half-plane. The PO-type diffraction

coefficients are given by

DPO-
s,h

DPO+
s,h

where

e-]_ sine

= -Rs'h _ cos _ + cos _'T(+jXae)

e-i{ sin/3

= +R_,hv_V_cos_ +cos_,T(-J xa_)

x = _coto_cff.(_+ ¢))

and the function T is called a "transition function".

(4.145)

(4.146)

(4.147)

Transition Functions

The function T, that we isolated from the equivalent-line- current solution,

has different forms depending on how the integration in Equation (4.128) was

performed. If it was evaluated as in Equation (4.129), we obtain the transition

function,

2

T(z) = Tl(z)= _zM(1, 2.5, -z) .

Determining the integral as in Equation (4.131) results in

(4.148)

where

T(z) = T2(z ) = -zU(1, 2.5, -z) (4.149)

2 V/_ _3 -z

U(1, 2.5, -z) =-sM(1,2.5,-z)+-_--(-z) 2e . (4.150)

Physically, T 1 may be viewed as a result due to a finite cone frustum, and T 2 due

to a semi-infinite cone frustum. Mathematically, both give the same result when

both edges of the reflecting surface are considered.
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The confluent hypergeometric functions, M and U, have series and large ar-

gument forms which can be calculated rather quickly on a digital computer (see

Appendix A). By using the first few terms of the series and large argument forms,

the small and large argument forms of the transition function are the following:

for lzl << 1,

T,(z) _ e-z + --g-+ (4.151)

¢)T2(--) _ e-z 2--_ + 3- + -X-+ (4.152)

for I51>>1,

(4.153)
2 V_ 2z 4z 2

1 1 (4.154)
T2(z ) _ 1 2z 4z 2

The magnitude and phase of T 1 and T 2 are shown in Figures 26 and 27 for values

of the argument z = ix. The transition functions have their greatest effect in the

specular region (where the value of the argument is small). The transition functions

have little effect outside of the specular region. Both T1 and T2 approach unity

for large values of the argument.

4.4.8 Modified Equivalent-Line-Current Solution

Now we will return to the question of how to correct the diffraction-point

method solution in the specular region. In the equivalent-line- current solution,

we obtained a physical optics type diffraction coefficient which is given by

DPO: _ e-J_ sin_ T(+jXae)
s,h = =t=Rs'h ¢2¢_cos _ + cos_'
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Figure 26: Transition function T] (a) magnitude, and (b) phase.
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It resembles the PO diffraction coefficient of a half-plane multiplied by the function

T. We mentioned earlier that Chiang's asymptotic evaluation of the PO solution for

the open cylinder yielded the cylinder's equivalent-line-current solution. Therefore,

for the cone frustum, we shall assume that cone frustum's equivalent-line-current

solution is the asymptotic PO solution of an open cone frustum.

Let us now proceed with the following line of reasoning towards a "modified"

equivalent-line-current solution that may be used to correct the diffraction-point

method solution. If the exact currents on the cone frustum were known, we could

determine the exact scattered fields. But we do not know the exact currents, so

we must rely on the approximations provided by the methods of physical optics

and GTD. We know that physical optics provides an accurate representation of

the scattered fields in the specular region, but it does not work well outside the

specular region due to errors in the edge currents. GTD, on the other hand,

provides accurate edge currents, but it fails in the specular region (for the cone

frustum) due to the lack of information about the reflecting surface. Somehow

there must be a way to combine the desirable characteristics of both PO and GTD

to provide an overall accurate representation of the scattered field. This is similar

to the philosophy of the physical theory of diffraction (PTD) where a correction,

called the fringe current, is added to the PO solution.

Let us further investigate the PO-type diffraction coefficient in the equivalent-

line-current solution. We note that the information on the surface curvature is

contained within the transition function T. The transition function is active only

in the specular region. Outside the specular region, we have the PO diffraction

coefficient of a half-plane--which is known to be inacurrate.

Let us confine our observation to the plane perpendicular to the edge (see

Figure 28). The angle /3 is converted to _ which is measured from the curved
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Figure 28: Edge geometry showing the angles ¢, 13, and 4.

82

I

I

I

I

I

!

I

I

I

I

I

I

I

I

I

I

I

I

I



I

I surface. Outside the specular region, one finds that

I

I

i

I

i

I
I

I
I

T(outside specular region) --, 1

e-J_ sin ¢
D PO_ _ Rs, h

s,h _ cos ¢ + cos ¢1

Let's look at the following factor:

G(_,¢')=
- sin ¢

cos ¢ + cos ¢' "

(4.155)

(4.156)

(4.157)

By using the appropriate trigonometric identities, this factor can be rewritten in

the form

G(¢,¢1) = _{-cot _ +cot _ )

-c°t(Tr-(¢+¢'))+c°t(_r+(¢+¢'))}"4 4 (4.158)

This expression contains terms which indicate a sum of "difference currents" on a

flat plate, which is what one obtains using physical optics. Note the negative signs

associated with two of the cotangent terms. If the fringe current (the correction)

is added to the PO result, we obtain the GTD result. This can be accomplished

by replacing the negative cotangent terms with plus signs. Therefore the modified

I
I

I

expression is

1{ o,G(¢,¢')- 4 4 4

+ cot 4 4

If the edge (wedge angle parameter n = 2) is opened up to form a wedge, the

i cotangent terms are again modified such that

C(¢,_') = 2n cot 2-n +cot 2-n!
+cot(Tr-(¢+¢'))+cot(Tr÷(¢+¢'))}2. 2n "

I
83

i

(4.160)
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Note that this does not affect the result in the specular region, since it is relatively

insensitive to the wedge angle there. If only the outer curved surface information

is retained, one obtains

G(¢,¢ I)
= _n 2-n ] +cot 2n "

The dominant term is the reflection boundary term, so

1 (7r-(¢+¢')) (4.162)G(¢, ¢') _ 2n cot 2n "

The PO-type diffraction coefficient after these modifications is

-_-_ 1 (_-(_ +¢1)DroT
s,h = Rs, h _ 2n cot _ 2n

T(+jXae). (4.163)

Converting the angle ¢, which is measured from the curved surface, to the angle

(I), which is measured from the endcap face, gives

-e-J_ 1 (_r+(_+_t))DrnT
8,h = Rs, h _ 2n cot _ 2n

T(:kjXae). (4.164)

The expression is made three-dimensional again by inserting the factor sin _0. The

modified PO-type diffraction coefficient is

_,._ -_-J_ (_ +(, +_'))8,h = Rs'h 2n _ sin /_o cot 2n
T(:kjXae). (4.165)

Now we wilt make another change to the equivalent-line-current solution. The

reflection caustic distance, p_, is only valid at the specular angle. We will replace

this with the caustic distance for the diffracted ray, pd, which will give the correct

spreading of the rays. (At the specular angle, pr1 = pd.)

To summarize, we make the following substitutions in the equivalent-line-

current expression:

sin/_ -1 (Tr + (_ + _')) (4.166)cos _ + cos/31 ==_ q: 2n sin fl0 cot 2n
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and

pr1 ==_ pal. (4.167)

This converts the PO-type result to a UTD-type result. The modified equivalent-

line-current expression is

where

and

- E i _ XDrn - pd__l)e-Jksl
- -L,llt_lJ s,h (Q1) Sl

+ E i tf_ _Drn+ pd__2)e-Jks2
±,llt_2J _,h (Q2) s2 (4.168)

rn- --e-J_ (_r + (_ + _t) ) T(+jXae)
De, h = Rs,h 2nv/_-_sin l30 cot 2n

Drn+ -e-J_ (_r + (_ + _l) ) T(_jXae)
s,h = Rs,h2nv_-_sinBo cot 2n

(4.169)

(4.170)

X = kcotac[tan 2at(cos 2v + ¢2sinv) + 1]_

"sin_0c°s(_+_t) [2c°s(2nn'-(_+@t))]2 2 . (4.171)

Note that Equation (4.169) without the transition function is the far-field n-face

RB term of the edge diffraction coefficient given in Equation (2.13).

Figure 29 shows the curved surface RB portion of the diffraction-point method

solution, and the equivalent-line-current solution. The equivalent-line-current so-

lution provides a good result in the specular region which includes the main beam

and first sidelobe. Figure 30 compares the field radiated by the equivalent line

currents with the field radiated by the modified equivalent line currents. Note the

good agreement in the main beam and first sidelobe.

The modified equivalent-line-current result using different transition functions

is shown in Figure 31. Note that for observation points above the surface, where
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Figure 29: Backscatter pattern for a 15 ° cone frustum using (a) RB portion of

the diffraction-point method solution, and (b) equivalent-line-current solution.
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both edges are present, the pattern is identical. However, below the surface (angles

greater than 130 degrees), where only one edge contributes to the field, the pattern

is different. This difference is due to the different natures of the transition functions

used (see Figures 26 and 27). The transition function T1 oscillates and dampens

slowly to 1 outside the specular region, while the function T2 goes to 1 rather

quickly. In the modified equivalent-line-current solution, when both points on the

edge contribute to the field, the same result is obtained, but when only one point

is present the differences become apparent.

Which transition function should we use? For a finite cone frustum, we can

use either T 1 or T 2. The small differences in the scattered field below the surface

can be neglected, except at low frequencies where T2 should be used (since the

value of the function argument remains small). The transition region of T2 is much

narrower than T 1. Also for a semi-infinite cone frustum, T2 should be used, since

without the other edge, we would see a oscillatory nature if T 1 was used. Overall,

type" solution. However, from a practical standpoint, T 1 is better for calculations

on the computer, since we do not have to deal with an infinity when the argument

becomes zero.

4.4.0 The Diffraction-Point Method Solution with Equivalent-Line-
Current Correction

By replacing the curved-surface reflection boundary term of the original GTD

diffraction coefficient with Equation (4.169) from the modified equivalent-line-

current solution, we obtain a new diffraction coefficient. The new diffraction coef-

ficient is

_ = -/_/_oD_ - _'_D_:
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where

_e-J {2n_sin/_o cot 2n _ - (¢ - _'))+ cot 2n +

+Rs,h[c°t(lr+(_+¢')) T(=i=jXae)+c°t )]}_ - (0 + v')2n 2n

(4.172)

Re, h = T1 •

And the transition function is either

T(z) = Tl(z ) = _zM(1, 2.5, -z)

(4.173)

(4.174)

or

where

T(z) = T2(z ) =-zU(1,2.5,-z) (4.175)

T(outside specular region) --* 1. (4.176)

The diffraction-point method solution with the equivalent-line-current correction

for the curved-surface specular region is

(4.177)

where

/_d :_ /_i(01)" _+ (Q1) Pd__l) ejk_'_e-jkr (4.178)
r

/_d : Ei(Q2)" _-(02)_pd(02) ejkQ'_e-jkr (4.179)
r

-'d /_i =+ pd__3) (4.180)E3 (Q3)" D (Q3) eJkr3"ee-J/cr
T

~d= _i _pd( (4.181)E4 (04)" _- (Q4) 04) ejkr'4"_e-jkr
r
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Note how the original diffraction-point method form of the expression is preserved

by the use of the transition function in the diffraction coefficient.

Figures 32, 33, 34, and 35 demonstrate for various cone angles how the tran-

sition function can correct the original diffraction-point method solution in the

specular region. Note that it is a uniform solution. The diffraction-point method

solution remains unaffected outside the specular region. Additional information

on the calculated patterns is contained in the following section. One item that is

worth noting is the relative CPU times required to generate the patterns. The cor-

rected diffraction-point method solution takes longer to calculate, but it is roughly

of the same order of magnitude. For Figure 35, 0.04 minutes versus 0.07 minutes

on a VAX 11/780 computer with a floating point accelerator.

4.5 Background Information on Calculated Patterns.

This section contains information on the patterns for the scattered field calcu-

lated in this chapter. The patterns were generated using a VAX 11/780 computer.

All patterns are for a circular cone frustum in the principal plane for the horizontal

(hard) polarization case only (see Section 3.4.1). Only one polarization is studied,

since the plots in this section are for demonstration purposes only. Actual com-

parisons with measurments and the moment method calculations will be shown in

Chapters 6 and 7.

The vertical axis of the plot is the radar cross section in decibels above a square

meter. The horizonal axis is the angle 0 (azimuth) for the receiver position in the

principal plane (see Figure 10). Points were calculated every one degree. The

following table lists information about the cone frustum dimensions, frequency,

bistatic angle, and CPU times for each plot. The symbols used in the Table 4.1
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Figure 32: Backscatter from a 15 ° cone frustum using (a) the diffraction-point
method, and (b) the diffraction-point method with equivalent-line-current

correction.
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Figure 33: Backscatter from a 30 ° cone frustum using (a) the diffraction-point
method, and (b) the diffraction-point method with equivalent-line-current

correction.
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Figure 34: Backscatter from a 45 ° cone frustum using (a) the diffraction-point
method, and (b) the diffraction-point method with equivalent-line-current

correction.
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Figure 35: Bistatic 10 ° scatter from a 40 ° cone frustum using(a) the
diffraction-point method, and (b) the diffraction-point method with

equivalent-line-current correction.
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refer to the following:

f

h

al _ a2

Tcpu

= frequency (GHz)

= cone frustum height (inches)

= cone frustum radii (inches)

= cone angle (degress)

= bistatic angle (degrees)

= CPU time required (minutes)
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Table 4.1: Table of dimensions, angles, and CPU times for calculated patterns
shown in Chapter 4.

Figure

17(a) 6.05 3.75 1.00 4.15 40 I0 0.04

17(b) 6.05 3.75 1.00 4.15 40 I0 0.05

29(a) 6.05 3.75 1.00 2.00 15 0 0.04

29(b) 6.05 3.75 1.00 2.00 15 0 0.07

30(a) 6.05 3.75 1.00 2.00 15 0 0.07

30(b) 6.05 3.75 1.00 2.00 15 0 0.07

31(a) 6.05 3.75 1.00 4.15 40 I0 0.06

31(b) 6.05 3.75 1.00 4.15 40 I0 0.06

32(a) 6.05 3.75 1.00 2.00 15 0 0.04

32(b) 6.05 3.75 1.00 2.00 15 0 0.07

33(a) 6.05 3.75 1.00 3.17 30 0 0.04

33(b) 6.05 3.75 1.00 3.17 30 0 0.08

34(a) 6.05 3.75 1.00 4.75 45 0 0.04

34(b) 6.05 3.75 1.00 4.75 45 0 0.07

35(a) 6.05 3.75 1.00 4.15 40 I0 0.04

35(b) 6.05 3.75 1.00 4.15 40 I0 0.07
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CHAPTER V

Rim Caustic Corrections

5.1 Introduction.

In the last chapter, we developed a uniform correction to the diffraction-point

method solution for the frustum's curved-surface specular region. One can easily

appreciate the use of a transition function to preserve the original form of the

diffraction-point method solution. Numerical integrations are avoided, and the

transition functions have large argument forms which greatly reduce calculation

times.

In this chapter we will continue in the same tradition--to develop a uniform

correction using transition functions for the rim-caustic regions. Fortunately, a

great deal of the work on this problem has already been done. Ryan and Peters [7]

had developed a solution in the rim-caustic regions based on the fields radiated by

equivalent edge currents on the rim. Since this result goes to the diffraction-point

solution outside the caustic region, it is a uniform solution. Recently Chiang [1]

extended the work of Ryan and Peters by using equivalent currents that use the

"stripping concept" [15,8] in addition to using small-argument approximations in

the radiation integral. Chiang's solution provides an accurate result in the rim-

caustic regions that are associated with a specular or forward-scatter direction of

the endcaps. This solution is called the "Bessel-Struve function extension". It,

also, is a uniform solution.

98

!

I
I
I
I

I
I

I
I

I

I
I
I

I
i

I
I
I



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Uniform solutions for rim caustics are available. However, in the literature,

the solutions are not often expressed in the transition function form that we desire.

Also the partial illumination and partial observation of a rim, as in the case of the

cone frustum, is not considered. These details will be investigated in this chapter.

First we will look at the equivalent-edge-current solution of Ryan and Peters.

5.2 Ryan/Peters Equivalent-Edge-Current Solution

The formulation of the equivalent edge currents is similar to the concept used

in the last chapter. It will not be discussed here, since much is available in the

present literature. Some suggested references are [14] and [7]. The equivalent edge

currents used by Ryan and Peters are

]_e _ 2JGc
r/k sin 130 (_./_/(0))e jk_vP' (5.182)

where

and

im 2J Ge
- -- ksin/_or/(_" fti(O))e jk_e'P' (5.183)

a'(¢, ¢') - 1 (a - B) (5.184)
2n
1

Gm(¢' ¢') = 2"-n(A + B) (5.185)

_ (--,.
(_r + (' + "'))+ cot ("- (" + "')) (5.187)= cot 2n 2n "

The equivalent electric current is/e and the equivalent magnetic current is _/m

(see Figure 36). These currents are distributed on the illuminated edges of the
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cone frustum and the radiated fields axe evaluated. For simplicity, we will restict

ourselves to a circular cone frustum (of radius a) and observation in the principal

The far-zone radiated fields due to the electric and magnetic equivalent-

I

i

I plane.

I edge-current loops are

a cos 0 e-Jkr foZ_r G e

I E; = _ r s in--_0

_(_./_i(0)) sin(_b - 6¢)dk_'e'(t+¢)d_be

al7 e -jkr /02_r G m .,,I Eon- 2x r si-_o (e'fli(O))c°s(_-_e)e_k_e'(t+t')d_e

(5.188)

(5.189)

a e -ykr/O 2_ G e ..I E; - _ r si_o[e'gi(0))cos(_b- *e)eJk_e'(t+t')d_be (5.190)

I E_ = a_cose f02_ G =
e-jkr

I 27r r sin---_0(_ •/ti(O)) sin(_b -- _be)_k_e'(t+t')d_be.
(5.101)

I
I

I
I

I
I

I

The diffracted field is the sum of the fields radiated from both electric and magnetic

equivalent currents, such that

Er/m-'d = 0E 0 + _bE¢ (5.192)

E¢ - q + E_" (5.193)

Ee : E_÷ E_". (5.194)

To simplify the the integration in (5.188)-(5.191), Ryan and Peters used the

approximation that the diffraction coefficients remained relatively constant with

respect to the variable of integration, so that

GejFF_

sin---_0 _" constant in _be. (5.195)

Let

_e = kaa,(_,). (_+ t') (5.196)
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"y¢

= kalsinO'cos(¢'- ¢_) + sinOcos(_b - _bc)l

= kz_- (_ + _').

Using the previously mentioned approximation and the fact that

2_rsin CeeJCedCe = 0
COS

the expressions for the radiated fields become

a ej'ye e -jkr

E¢=_sin/30 r E_ {-Ge fo2_COSZ CeeJCedCe

+Grn cos Ocos O' /o2" Sin2 _beeJCe dCe }

a e j'ye e -jkr

E° = 27rsin/30 r -{ //"E_ G e cos O cos 01 sin 2 CeeJCedc_e

q-Grn fo2_r cos2 qbeeJCe dCe }

where

_¢ :-- U COS _¢.

Let the following integrals be defined by:

1rF 1(U) = COS2 _bve3'_bed_be

w

/_'cos 2 CeeJ¢"dCe
fl(u) =

3w

* /_ COS2CeeJCedce
fl (u) = T

f021rF2(U) = cos0cos0 r sinZOeeJCedoe
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(5.197)

(5.198)

(5.199)

(5.200)

(5.2oi)

(5.202)

(5.203)

(5.204)

(5205)

(5.206)
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i /:f_(U) = cosOcosO t sin2qb.eJ_'dqb.

"T

!
These integrals can be evaluated in closed form as follows:

I fl(U)

I
f_(u)

!

| f2(u) = cosOcosO,_(Jl__U)+jH___.U))

I
I
I

The expressions for the radiated fields are

!

I
I

E 0 =

a ej_te e-jkr

2_sin_0 r E_{-(A- B)F1 + (A + B)F2}

a eY'Ye e-J kr •

2_sin#0 r E_{(A-B)Fz+(A+B)F1}.

The above can be rearranged into

103

(5.207)

(5.208)

(5.209)

(5.21o)

(5.211)

(5.212)

(5.213)

(5.214)



E_

Eo

a ej_e e-jkr

21rsin/_o r
g'¢{A(F_- Fz) - B(F_+ F2)}

a e j_le e -jkr •

27rsin/_ 0 r El {A(F1 + F2) + B(F1 - F2)} •

(5.215)

(5.216)

I

I

I

Breaking the integrals apart into

F I(U) = fl(U) -{"f; (U) (5.217)

rz(U) = f2(u) + f_(u) (5.218)

and further manipulation gives

E¢

a ej'le e -jkr •

27rsin_0 r E_{A(f I - f2)-B(fl -k f2)

+A(f; -/_)- B(f; +/_)} (5.219)

a ei'Ye e-jkr " I
F,o = f_si--_o _ El (A(fl + f2)+ B(fl -/2)

+A(f_ + f_) + B(f_ - f_)) . (5.220) I

Now let us associate a half-rim integral with the points at _be = 0, _r which are the

stationary points for large _be. (These are the diffraction points on the rim for the

principal plane. See Section 3.4.2.) In the above equation, the field contributions

from the half-rim associated with 6e = 0 are

I

I

I

a ej_le e -jkr .

El6 - 2_rsin_o r E_ {A(fl - f2) - B(fl + f2)} (5.221)
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a d "'Is e-J kr

EIO = 2_rsin_o r _{A(fl+ f2) +B(fl- f2)} (5.222)

E1d - _EI_ b -t- 0E10. (5.223)

Comparing this with the expression for the edge-diffracted field from a point on

the rim,

--'-- • _ M m "

_d _ _i(Qe) "D(Qe)_e$kre re $kr (5.224)
r

we obtain the following new diffraction coefficients:

_(Qe) = -£'£Ds(Qe) - ¢'_Dh(Qe )

where

-e-J'{
Ds(Qe) = 2n_/_ksin_0(ATel(U)- BTe2(U)) (5.225)

-e-Y_
Dh(Qe) = 2nV/_sin/_ 0(ATe2(U) + BTel(U)) (5.226)

Tel(U) = l(fl(U) - f2(u))v_U2 e-Y(U-_ ) (5.227)

Te2(U) = l(fl(U)+ f2(U))V_U2e-Y(U-_ ) (5.228)

and

U(Qe) = kae_e . (_ + _') . (s.229)

The functions Tel and Te2 are the transition functions through the rim caustic

region based on the Ryan/Peters equivalent-edge-current solution. The transition

functions have small and large argument forms which were obtained using the
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series and asymptotic forms of the Bessel and Struve functions, such that

for ]U[ _ 1

I

I

Tel(U )

Te2(U)

fo_ IUI> 1

Tel(U)

Te2(U)

V_e-J(u-_).

• _ 1---_+_-cosOcosS' 1-

•2U[2(1 2U2'_ (1- 1_)] }+3 _ 15 ) - cos 0 cos 0 t

I [ 3U 2• _ 1 8

+.7_--_-

-_+_-+cosOcosO t 1-

15 / + cos cos

(s.23o)

I
I
I

I
i

I
I

j9 39 j4s
1---+

8U 128U 2 1024U 3

-cosOcosO t - +8U 2 128U s

-V_e-J(u-_) [cosOcosO' (l + _2 )

j9 39 j45

1 - _-_ + 128U 2 1024U3

+cosOcosO t -- + 8U 2 128U 3

2 ] (5.232)+_

!

I
I

!
!

i
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I

I The total field radiated by the equivalent edge currents on the rim may be

I written in the diffraction-point form.

I Er/m - E_ + E_ (5.234)

i where
_. _.. ___ _ . . _-jkr

E1d = E'(Q1). D(Q1)_/pd(Q,1)e'krl"P_ "- (5.235)

I .... = _ .... .-jkr
E_ = E'(Q3) . D(Q3)_/pd(Q3)e _zr3"r" . (5.236)

r

Note that Q1 and Q3 are the two diffraction points on the rim.

5.3 Bessel-Struve Function Extension

I

I

!

One problem associated with the Ryan/Peters result is that the approximation

(5.195) becomes invalid for a rim caustic associated with an endcap's specular or

forward-scatter direction. The diffraction coefficients can become infinite in the

specular or forward-scatter direction.

It was also discovered that by evaluating the integrals in (5.188)-(5.191) nu-

I

I

I

I

merically, the result is twice the expected result in the specular rim-caustic regions.

The explaination for this is that the reflecting surface is evaluated twice when the

integral is performed around the rim from 0 to 2_r: To overcome this difficulty, a

modified edge vector _* is used. It is defined by

_* = _(_. j_) (5.237)

where

(_l + _) x _o

'_ - I(e'+ e) x '%1 (5.238)

107



_,o = normal to the endcap (5.239)

pl = direction of source, and (5.240)

= direction of receiver. (5.241)

By using the modified edge vector, only the perpendicular components (to the

plane of incidence) of the equivalent edge currents are considered. This is called

the "stripping concept _. The equivalent edge currents with this modification are

given by

l_e = rlksin2jGe/30sin_ (_'" Ei(O))eJkFe'_' (5.242)

2jG m
lm = _7(e" " fli (O) )e jkFe'P' • (5.243)

k sin/_0 sin _

The modified equivalent-edge-current solution is obtain in the same way as

before. To simplify the evaluation of the integral, Chiang used the following small-

argument approximations:

0 _ 01 - e, in the specular region, or (5.244)

0 _ lr - 01 - _, in the forward scatter region. (5.245)

This resulted in

and the integral

G {_m 1

_, (5.246)
sin _0 sin _ c cos Ce

2_F0(U) = cos CeeYvco,¢'d¢e (5.247)
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which can be evaluated by using

,to(V)
f

= /___ cos_beeJUc°s_edCe (5.248)

"- IP [2 - HI(U) -t-jJI(U)] (5.249)

g(u)
3f

= f(cos _duc°'¢,d¢c (5.250)

[' ]- ,_ -- + H_(U)+ jJ_(U) (5.251)

The radiated fields using this approximation, give the physical optics (projected

area) result in both the specular and forward scatter directions. Associating a half-

rim with a diffraction point, the expression of the edge diffracted field becomes

•--e_d= gi. _ eJ'_ x/T_ sin floa fo(U) ejk.z, e-Jkr
2 _r r

(5.252)

Chaing's solution is a uniform solution. It can be written in the diffraction-point

form by using a transition function in the diffraction coefficient, such that

"d _d _dE_i m = + (5.253)

where

e-Jkr

Again, Q1 and Q3 are the two diffraction points on the rim.

coefficient is

_(Qe) = -_o'_oDa(Qe) - _'$Dh(Q,)

(5.254)

(5.255)

The diffraction
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I

where

-e-J'_ ]

D,,h = _-V_;_sin Z0(A(¢, ¢') - B(¢, #'))W, (S.2S6)

I
= 1 7rU .u__r

Te(U) _fo(U)v_U2e-3( 7i) (5.257) I

U(Q,) = I,,,,_, . (_+ _') (s.25s)

The transition function is Te(U). The following are the small and large argument

I

I
_rms: I

for ]U I << 1 I

Te(U)

• {2_. 2U2__ (1 - 1_)+ j2U-- (1 -- -_)} (5.259) I

for IUI >>1 I

2 1 "U 15 j105
j3 ,]f-2---e-" -_} + (5.260)

Te(U} -_ I-k 8---U- V _rU U 128U 2 I024U 3

!

I
The magnitude and phase of the the transition function T¢ as a function of the

argument U is shown in Figure 37.

5.4 Rim Shadowing

I

I

The previous equivalent edge current solutions assumed no shadowing or !
blockage of the rim from observation by the structure•
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however, we must consider partial rims--rims which are partially illuminated or

visible. In order to know the size of these partial rims, we must first determine

where the shadows are located.

The expressions for the surface normal and the direction of the source are

known. For a circular cone frustum with a 2 > al, these are given by

tic = _ cos ac cos Cs + _ cos ac sin ¢s + _ sin uc (5.261)

_l = _ sin 01 cos ¢1 + _ sin 0 ! sin ¢1 + _ cos 01 . (5.262)

At the boundary between the illuminated and shadowed portions of the cone frus-

tum (the terminator), one obtains

nc" _' = 0 (5.263)

or

where

AcosCs + BsinCs + C = 0 (5.264)

A = cos ac sin 01cos ¢1 (5.265)

B = cos ac sin 01sin Ct (5.266)

C = sinaccos0 t. (5.267)

The unknown that we want to find is Cs. Let us make the following substitution

for cos Cs and sin Cs:

x = ej¢" (5.268)

COS ¢8

eJ¢_ + e-J¢a
= (5.269)

2

_ x+ 1 (5.270)
2
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I

I

I

I

I

I

I

I

I

I

I

sin _bs
eJ¢.- e-J¢o

?j
1
X

2j "

Equation (5.264) becomes

(B + jA)x 2 + j2Cz + (-B + jA) -- O. (5.273)

We can then solve for z by using the quadratic formula. Solving for z yields

Re{z} = sin _c cos 6' cos 0' :V sin _'V/cos 2 ac - cos 2 0'
- cos ac sin 01 (5.274)

sin _c sin $1cos 01 :F cos _bl_/cos 2 uc - cos 2 0 I
I_{_} = - (5.275)

cos uc sin 01

The values of _bs that correspond to the boundary between shadowed and illumi-

nated portions on the cone frustum are

_bsl,s 2 = tan_ 1 (lrn{x}Re{x} ) (5.276)

: _ _,(_no_n_'co,_'_co_'_o._o_-co_'_
\ sin uc cos _' cos O' :F sin _b'_/cos 2 uc - cos 2 0-----_) " (5.277)

The above equation applies only for the case where cos 2 uc > cos 2 01; otherwise,

the rim would be completely illuminated or all in the shadow.

In order to know how the shadowed rim appears, we need to know the region

where the source is located (see Figures 12 and 38). The results of this section
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apply equally well to finding the portion of the rim that is blocked from view by

the cone structure.

5.5 Partial Rim Corrections

In the equivalent-edge-current solutions, we associated a half-rim with each

edge diffraction point. As a result, there are half-rim integrals in the transition

functions of the diffraction coefficients. If the shadowing of the rim is considered,

we will have partial half-rim integrals. In this section we will provide corrections

to the half-rim integrals by subtracting the portion that is shadowed or not visible.

Let

leo(U) - f__ cos_beeJ_'d_c - CA(U ) (5.278)

Ir

fcl(U) = f__ cos 2¢beejtbed_e -CB(U ) (5.279)

fc2(U) = cos0cos0 t f___ sin 2 OeeJ_edOe - Cc(U ) . (5.280)

The correction terms are given by CA, CB, and C C (see Figure 39). If the center

of the half-rim is missing the correction terms are

2
CA (U) = cos ¢_e j_ d_

1

CB(U ) = cos 2 4,eeJ_ed4,e

1

, f_ sin 2
Cc(U) = cosOcosO J_l

(5.281)

(5.282)

_eeJ_edq_e (5.283)
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where -_ < 4,1 < 0, 0 < 4,2 < _, and I_bll = I_=l.If the ends of the half-rim are

missing the correction terms axe

FlcA(u) = 2 cos_ei_'d_e (5.284)
½

cB(u) = 2-[÷_cos 2 4,_#'d_e (5.285)
J-_

Cc(U) = 2cosScosSi/_l sinZ_beeJ¢,d_be. (5.286)
.--_-

These integrals may be evaluated for small values of [U[ by the following series

form obtained by expanding the exponential. It converges rapidly due to the k! in

the denominator of each term. This is sufficient, since for [U I greater than about

8, we are out of the transition region, and the correction would not be necessary.

oo k

k=O

_" .k Uk / cosk+2 ¢_,d*e (5.288)c°s2 4ee]_ed4e = 2-, 3 -_.
k=O "

•k U k
/ sin2 _ee'_ed_e = 2...,3-_./cosk_edc_e-CB(U)

k=0
(5.289)

and

1 n-l/cos" _bed_be = -n c°s"-I _besin _e + _n cos "-2 _ed_be • (5.290)

The number of terms required in the series increases as IU[ increases.

Tables 5.1 and 5.2 show the diffraction points associated with a partial half-

rim, the type of partial half-rim, and operations to determine the limits of inte-

gration _1,2 for various regions of observation and illumination. The symbols used
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in the table refer to the following:

R i = illumination region

R r = observation region

I Q1 consideredLQI = 0 Q1 not considered

1 Q2 consideredLQ2 = 0 Q2 not considered

1 Q3 consideredLQ3 = 0 Q3 not considered

LQ4 =

Lcen =

Len d =

1 Q4 considered0 Q4 not considered

1 partial half-rim with center missing0 complete half-rim

1 partial half-rim with ends missing0 complete half-rim

1 Csl,s2 with greater I¢s2 - ¢81[ are ¢1,20 --

1 _81,s2 with smaller I¢s2 - _bsllare ¢1,20 m
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The following is a step-by-step procedure to find the correction terms:

1. Determine the regions of the source and receiver (see Figure 12).

2. Consult Tables 5.1 and 5.2. Check if a partial half-rim is present, and the

diffraction point associated with each partial half-rim. If no partial half-rim

is present or if IUI _ 8, then no correction is necessary.

3. If a partial half-rim is present, find the values of _bsl,s 2 given by Equa-

tion (5.277) for both the source and receiver.

4. Consult Tables 5.1 and 5.2 and perform the indicated operation and obtain

the limits of integration _bl, 2.

5. Depending on type of partial half-rim (whether the ends or the center of

the half-rim is missing), evaluate the appropriate integrals and obtain the

correction terms.

6.6 The Diffraction-Point Method Solution with Corrections for Rim-
Caustic Regions

The corrections for the rim-caustic regions are provided by the transition

functions in the diffraction coefficient. The transition function used depends on the

rim-caustic region considered. For rim-caustic regions associated with the specular
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Table 5.1: Table for evaluation of partial half-rim.

Region

R _ I R'

A A

A B

A C

A D

A E

A F

B A

B B

B C

B C

B D

B E

B E

B F

C A

C B

C B

C C

C D

C E

C F

C F

Point Partial Rim

Lc_I I L¢_2 I Lc_s I LQ, L.. I L.,_

0 0 0 0 0 0

0 0 0 1 1 0

1 0 0 0 0 1

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 0 0 1 1 0

0 0 0 1 1 0

1 0 0 0 0 1

0 0 0 1 1 0

0 0 0 1 1 0

0 0 1 0 0 1

0 0 0 1 1 0

0 1 0 1 1 0

1 0 0 0 0 1

1 0 0 0 0 1

0 0 0 1 1 0

1 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 1

0 1 0 0 1 0

Operation

0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 0

0 0 0 1

0 0 0 1

0 0 1 0

1 0 0 0

0 0 0 1

0 0 1 0

0 0 1 0

0 0 0 1

0 0 1 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1
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I

I

I Table 5.2: Table for evaluation of partial half-rim.

I

I

I Region
R _ I R"

D A

| D B
D C

| D DE

Point

z_, ILo,Iz_, IL_.

D

D F

I E AE B

E B

E C| E V
E E

E F| E F
F A

F B| r c
F C

| F V
F E

| F EF F

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0
0 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 1 0

0 0 1 0

0 1 0 0

0 1 0 0

0 l 0 1

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 1 0 0

0 1 0 0

Partial Rim

Lc.. I L_4

0 0

1 0

0 0

0 0

0 0

1 0

0 1

0 1

1 0

0 0

0 0

0 1

0 l

1 0

1 0

1 0

0 1

1 0

1 0

0 1

1 0

1 0
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Operation

>I<11,'I A"
0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 1 0

0 1 0 0

0 0 0 1

0 0 1 0

0 0 1 0

0 0 0 1

0 0 1 0

1 0 0 0



!

or forward-scatter direction of the endcap, we use the function Te. For the other
!

regions, the functions Tel and To2 are used. The new diffraction coefficient with

corrections for the rim-caustic region is

_(Qe) = -&'&Ds(Qe) - _'_Dh(Qe )

!

!

where

-e-i_ 1

D,(Qe) = 2n_-_sinflo(ATel(U) - BTe2(U)) (5.291)

-e-J'_

Dh(Qe ) = 2nv/_sin/3o(ATe2(U) + BTel(U)) (5.292)

!

!

-('+'° +-("(° i
.(oo, 2o a

The transition functions are 1

1 /"2-_r,

(fcl(V) fc2(V))_-e-J_J-_ ) (5.295)Tel(U) _r l
_¢f_iCU)+f_2Cu))v_--u2_-Jcu-_l ¢5.296)Te2 (U):

U(Qe) : kaere " (_ + _') (5.297) 1

if (ro._') > 0 or (rio'_) > 0 then

where

ho(U) =

Tel(U) = Te2(U)= Te(U)

Te(U) = I fco(U)v_U2 e-J(U-_)

ff

Ir[2 - HI(U) ÷ jJI(U)] -CA(U)

(5.298) 1

(5.299) I

(5.soo) I

I
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/cx(v)- _[(Jo(V) Jx(u))+j(Ho(U) H_-U))I

-cB(_) (5.301)

fez(U) = (fio'P')(,%o'P)_r (JI__U)+jH_U))

-Cc(U) (5.302)

and CA(U ), CB(U), and Cc(U ) are the correction factors for a partial half-rim.

Outside the rim-caustic regions the transition functions are unity.

The diffraction-point method solution with the rim-caustic correction, except

for the new diffraction coefficient, has the original form which is given by

where

= ,------- . . .--]kr

/_d = Ei(Q3)' D(O3)%/pd(O3) e,kr3"rc r

= ,------- . . _-j_r

E: =/_i(Q4)' D(O4)_/pd(O4) e3kr4'Pc •
r

(5.303)

(5.304)

(5.305)

(5.306)

(5.307)

Figure 40 shows how the calculated pattern, using the diffraction-point method

with rim-caustic corrections, compares with the original diffraction-point method

solution.

The curved-side specular-region correction of the previous chapter can be

introduced into this solution by multiplying the appropriate reflection-boundary

term of the diffraction coefficient by the transition function (T). This is shown in

the following diffraction coefficient with both the rim-caustic and curved-surface
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Figure 40: Backscatter from a 15 ° cone frustum using (a) the diffraction-point
method, and (b) the diffraction-point method with rim caustic correction.
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specular-region corrections:

D_(Qe) = 2nV/_-_sin#o(ATel(U) - B_Te2(U)) (5.308)

-e-J{

D:_(Qe) = 2nV_-ksin_0(ATe2(U) -t- B_Tel(U)) (5.309)

I where (_r + (¢-_'))(_r- (_- _')
A(_, _t) = cot + cot )I _ _n

(5.310)

BY(*'*') - cot(_r+(*+*'))T(_jXae'+c°t( _r-(*+*'))2n2n

(5.311)

The corrected diffraction-point method solution is

where

(5.312)

I _:= Ei(Q1)" _+ (QI)_ ejkr'l''e-_-kr
r

(5.313)

(5.314)

(5.315)

(5.316)

I The "corrected diffraction-point method solution" is the first-order UTD edge-

I
I

I

diffraction solution with uniform corrections for the rim-caustic regions and for

the curved-surface specular region. In Chapter 6, we will show how the corrected

diffraction-point method solution compares with experimental backscatter mea-

surements. And in Chapter 7, we will compare it against the moment method

solution.
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CHAPTER VI

Comparisons with Experimental Measurements

In order to verify our theoretical results and to provide confidence in our

computer-generated patterns, a comparison with experimental measurements will

be made. The measurements were performed in the Ohio State University Elec-

troScience Laboratory compact radar range.

Figure 41 shows the circular cone frustum that was used. It is constructed

out of rolled brass sheet for the surface and brass plates for the endcaps which

were soldered together. All seams were covered with metal tape. During the

measurement, the cone frustum is held by a styrofoam column on top of a low RCS

pedestal. The contributions from the mounting and background can be subtracted

out of the measurements.

Two types of measurements were performed on the cone frustum. One is

a backscatter measurement at a fixed frequency as the frustum is rotated 360

degreees--this generates a scattering pattern in the plane of rotation. The second

type of measurement generates an impulse response. Backscatter measurements

for a fixed aspect angle are taken, as the frequency is swept over a broad range.

Performing an inverse Fourier transform on the data produces a band-limited ver-

sion of the impulse response.

The principal plane backscatter measurements are shown in Figures 42 and 43

which are compared with the calculated UTD results. The measurements were
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Figure 41: Cone frustum used for measurements, f = 4.00 GHz.
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GHz obtained using UTD (solid line) and measurement (dashed line).
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performed at a frequency of 4 GHz for both horizontal and vertical polariztions.

Symmetry in the measured pattern gives a good indication of its reliability. There

is excellent correlation at most of the significant peaks (within 1 dB), and the

differences can be explained.

Higher-order diffractions are probably the best explaination for the differences

between the measured and calculated patterns. The effects of double edge diffrac-

tion are usually strongest at the surface boundaries and for the horizontal (hard)

polarization case. {The vertical polarized wave tends to get shorted out along the

conducting surface.) Looking at the pattern for horizontal polarization, we note

the discontinuities and the differences in the calculated result at 90 and 270 de-

grees. This indicates that multiple diffractions across the endcaps are significant

in this region. The discrepancies at 15 and 345 degrees are also probably due to a

higher order diffraction along the curved surface.

Higher-order terms in the UTD solution may also resolve the difference at 0

degrees a::ia] incidence. We notice that there is about a 5 dB difference. At 0

degrees, we are facing the frustum nose-on, and it is a very frequency sensitive

region due to the interference between the diffracted fields of back and front rims.

Let us see what happens when the frequency of the calculated pattern is shifted

slightly from 4.00 GHz to 4.05 GHz {see Figures 44 and 45). An increase of 5 dB

occurs at 0 degrees with very little change in the pattern elsewhere. The reason for

such a dramatic change will be clearer when we look at the backscatter frequency

scan plot.

Figure 46 shows the calculated UTD frequency scan plot for 0 degrees axial

incidence. (Polarization does not matter due to the symmetry.) The oscillation

observed in the plot is due to the interaction between the contributions from the

front endcap and the back rim. As the frequency decreases, the variation in the
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Figure 44: Cone frustum 6ackscatter pattern for horizontal polarization at 4.05
GHz obtained using UTD.
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magnitude becomesgreater due to the increasingdiffracted field from the back rim

over the specularreflection from the front endcap. Note that near 4 GHz wehave

a sharp null. This explains why we have a large changein magnitude with only a

slight changein frequency. Higher-order terms, which becomemore significant at

lower frequncies, might be responsible for slight phase differences that would shift

the actual backscatter frequency scan plot.

Next, let us look at the backscatter impulse responses at 0 degrees, or axial

incidence. The frequency was varied from 6 to 18 GHz. The calculated and

measured plots are shown in Figures 47 and 48. An inverse Fourier transform is

performed and the resulting band-limited impulse reponses are shown in Figure 49.

The phase references of measured and calculated patterns are not the same--which

results in a shift in time. The impulse response from the measured data shows a

dominant contribution from the from endcap followed by a contribution from the

back endcap rim. This is followed by a lesser contribution which is a double

diffraction across the back endcap. The calculated plot compares well, except of

course, there are no double diffractions.
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CHAPTER VII

Comparisons with the Moment Method Solution

In the last chapter comparisonswere made with backscatter measurements.

The good agreementgives us greater confidencethat the theory and computer

code are working as it should. However, the theory has not yet been tested for

bistatic angles.

In this chapter, the calculated UTD results will be compared with results

obtained by using the moment method. (We have a great deal of confidence in

the moment method solution which is regarded as an "exact_ solution for these

calculations.) We make our comparisons with the moment method solution because

accurate bistatic measurements are often difficult to obtain. This is especially true

for large bistatic angles where there might be significant coupling of the incident

field into the receiver.

For the cone frustum, the moment method solution presented in reference

[16] will be used. It can determine the plane-wave scattering for any rotationally

symmetric conducting body. Using this solution, C.W. Chuang [17] has developed

a computer code that can generate bistatic scattering patterns for fixed angles of

incidence.

The fixed incidence angles of 01 = 0, 15, and 30 degrees are chosen for the

cone frustum. Larger angles are possible, but due to the longer computer run

times required, they are avoided. The frustum dimensions will be the same as that
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used for the measurements (see Figure 41). Again, due to the amount of computer

time, larger dimensions were not chosen.

Now let's look at the calculated bistatic principal plane patterns. Figures 50

through 55 show the comparison between the results obtained using UTD and

the moment method solutions for both horizontal and vertical polarizations.

For most of the patterns, agreement is within 3 dB or better. In the specular

and forward-scatter regions, the match is within I dB or better. However, near

backscatter for the 0 degree axial incidence pattern, we have a significant difference.

This is a rim-caustic region which involves both front and back rims. We note that

this the same region where we had previous differences with the measurements. As

discussed in the last chapter, higher-order diffractions may need to be considered

to resolve this difference.

Higher-order diffractions probably account for the other differences between

the UTD and MM patterns. Double diffractions are significant along the surfaces

boundaries at 30, 150, 90, 210, 270, and 330 degrees due to interactions across the

endcaps and between front and back rims. The creeping-wave and creeping-wave

interactions with the edges are probably significant contributors in the forward-

scatter direction. But it is dangerous to speculate without further investigation.

Overall, the agreement is reasonable for engineering purposes. At higher frequen-

cies, the accuracy of the first-order UTD solution will get better, due to the greater

attenuation of surface waves that cause higher-order effects.

Finally, one might wonder why we need a UTD solution when a more accurate

moment method solution is availab]e. The relative calculation times might be

worth noting: the UTD result took 0.3 minutes of CPU time to generate the

pattern; the moment method result took 3 hours (on a VAX 11/780). The faster

calculation time seems to be s reasonable trade-off for accuracy.
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CHAPTER VIII

Summary and Conclusion

The objectiveof this work was to solvefor the high-frequencyscattered fields

from a cone frustum. The desired solution needed to be practical---suitable for

engineering applications. Thus, we chose a solution based on the methods of the

geometric theory of diffraction--for its accuracy, for the physical insight that ray

methods provide, and for its ease of application. The original GTD solution for the

frustum, which we called the "diffraction-point method solution", provided fairly

accurate results, but it failed in the specular region for the curved surface and in

the rim-caustic regions.

We wanted to correct the original GTD solution in these regions, but we

also wanted to avoid direct switching to alternate solution forms, such as the

physical optics solution. The diffraction-point method solution has a simple and

elegant form, and the virtues of a simple solution can be appreciated in applications

dealing with complicated systems and computer codes. Therefore, to retain the

original form, we developed correcting functions, called "transition functions", that

modified the terms in the diffraction coefficients. The transition functions provide

a uniform solution--in other words, they are modified so that they can be used

in all regions. And as demonstrated in the last two chapters, they provide results

that compare well with measurements and moment method results.

We have accomplished our objective, but many items still need further inves-
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tigation. The following are a few questions and items that need more study:

• Rim-caustic transition functions. A single more general function is needed

that works well for all regions, for elliptical as well as circular rims.

• Quasi-near-zone scattering. Can we model the behavior in the reflection

caustic r_gions from far-zone to near-zone? Would it be possible to develop

another transition function to do this?

• Scattering outside the principal plane. Do other mechanisms, such as creeping-

wave interactions with the edge, become important?

• Higher-order diffraction effects. The development of solutions that consider

muliply diffracted rays may extend the UTD solution to lower frequncies.

Scattering from structures using cone frustums. Some of the applications,

such as the scattering from multiple cone-frustum structures in combina-

tion with other geometries can be investigated. What shadowing and ray

interactions between structures need to be considered?

The author hopes that some of these questions will be answered in future work,

and hopefully this report will serve as a basis for that research.
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APPENDIX A

Confluent Hypergeometric Functions

The confluent hypergeometric functions (also called Kummer functions) are

solutions to the confluent hypergeometric equation,

zy" (z) + (b - z)y' (z) - ay = 0. (A.317)

The complete solution is given by,

y(z) = AM(a,b,z) + BU(a,b,z) (A.318)

where A and B are are arbitrary constants and a # -n, b # -m (m, n are positive

integers).

The confluent hypergeometric functions M and U have integral, series, and

large argument forms. References for this section are [13] and [18]. The integral

representation is given by

r(b) foleztta-l(1 -t)b-a-ldt (A.319)M(a,b,z) = r(b-a)r(a)

Re(b) >_ Re(a) > 0

_0 °°
1 e_Ztta_ t)b_a_ld t (A.320)

U(a,b,z) - r(a) 1(1 +

Re(x) > O,Re(a)>_0

The series form of the functions are

M(a,b,z) = _Z "{a)nzn

(b)n n[
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= ,(,+i)(_+2)...(_+ ,_-i)

-- 1

U(a,b,z)
_r _ M(a,b,z)

sinlrb _ r(1 +a-b)r(b)

_zl_bM(l + a-b,2- b,z)
r(.)r(2 -b) J

(A.322)

The large argument form, for Izl large, (a and b fixed) is

r(b) e±j,.z__.
M(a,b,z) = r(b-a)

• ,,! (-,)-" + o(i,l -R)
n----O

eZ za-b
+_
r(.)

• + o(I=1-s)
n,-----O

3_twherethe signis (+1if -½,_< arg, < _ .or (-I if -i_ < arg, < -½,_.

(A.323)

U(a'b'z)-"=z-aI_ l(a)n(l-l'a-b)" }t,,=o ,,! (-z)-".+ o(1=1-R)

where -_Ir < argz < _r.

(A.324)

The two confluent hypergeometric functions of interest in this work are M(1, 2.5, -z)

and U(1, 2.5, -z). For small values of the argument, the series form should be used.

The series form is given by

3 _. oo z" (A.325)
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v0,2.5,-_,)

For large arguments, Izl large,

M(1,2.5,-_)

U(1,2.5,-_)

= -_M(1,2.5,-z)+ V_ e-z (A.326)
2(-,)t

I
I
I
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8-1 I
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-z_-ffiffi0



I

I
I

I
I

I
I

I
I

I
I
I

I
I

I
I

I
I

APPENDIX B

Bessel and Struve Functions

In Chapter 5, we use the zero and first order Bessel and Struve functions.

These functions can be calculated by using a power series for small values of the

argument, or by using the asymptotic form for large values of the argument. The

references used are [18,19].

The power series expansions are given by the following:

oo (_1)k(X/2)2k+n (B.329)
Jn(x) = E k!F(k+l+n)

k=o

oo (_l)k(x/2)2k (B.330)
Jo(x)--- E (k!)2

k=0
oo

Jl(x ) = x_2k_o= (-1)k(x/2)2k(k+ 1)(k!) 2 (B.331)

00 (_l)k(x/2)2k (B.332)
Hn(x) = (x/2) n+l E r(k + 1.S)r(k + n + 1.5)

k=O

oo

H0(z) = _ [(2k)!J (B.333)
k=l

oo "2k+l(k + 1)[] 2_ 2__rE(-1)k+lxZk(2k + 1) (2(k + 1))!
k=l

HI(x) (B.334)
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In terms of the confluent hypergeometric function, the Bessel function is given by:
I

(zl2)ne-JZMCn+ .5,2n+ l,j2z). (B.335)
3.(=) = r(. + x)

The following are the asymptotic expansions for large Izl :

Jn(z) "_ _ [¢os_ (1 c_1t_22,+ al_3as°_74' - "")

(o, oio3o5)]-sin_ _ 3! +""

Y.(,) 2! + 4! .... )

+_o_(? OlO_O_• _, +..)]

(B.336)

(B.337)

I

I
I
I

I
where

and

.71" 7r
= z (B.338)

2 4

4. 2 - k 2
(B.339)ak -- 8z

I

I
I

H0(=) ~ ; =_+ =-g =7 +""

+yO(Z) (B.340) I

Hi(=) ~ ; =72 ;:_ + =e ....

+Yt(z). (B.341) I
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APPENDIX C

Computer Programs

th4

This appendix contains some of_computer subroutines and functions that were

used to calculate the confluent hypergeometric functions and the integrals used for

the partial rim corrections. The programs are written in FORTRAN 77. They are

based on the material found in Chapter 5 and Appendix A.
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C This function is the confluent
C hypergeometric function of
C U(1.,2.SeZ) in series form.
C Used with small values of the
C argument (magnitude of Z < 5 ). WE 8/9/85
C

COMPLEX FUNCTION UPS(Z)

Cm_m_emJm

C Z - function argument, complex

COMPLEX C3,MFS,Z,ZI,Z2

CJ-(O.,1.)
PI-3.14159265

ZI--(2./3.)*MFS(I.,2.5,Z)
Z2-.5*SQRT(PI)*CEXP(Z)/(Z**I.5)

C Z2 can become infinite if Z-0.

UFS-ZI+Z2
RETURN

END

This function is the confluent

hypergeometrlc function of
U(1.,2.5,Z) in asymptotic form.

Used with large values of
the argument (magnitude of Z >> I ).

C
C
C
C
C
C

COMPLEX FUNCTION UFL(Z)

C Z - function argument, complex
Ci--_--_m_

COMPLEX S,Z

S-(O.,O.)

C J is the number of terms.
J-3

DO I0 N'0,3-1
X-N

S'(PH(-.5,N)/(-Z)**X)+S
i0 CONTINUE

UFL'S/Z

RETURN
END
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Ce,e,ltet***t_**t,Qtt,e,ee*******Q******t*e*t_*t*t

C This function is used with functions _FL.
C (It is often represented by the
C Pochhammer symbol.)
C

10

C_

FUNCTION PH(A,N)
P-I.

IF(N.E0.0)THEN
PH-I.

ELSE IF(N.E0.1)THEN
PH-A

ELSE IF(N.GE.2)THEN

DO i0 K-0,N-I
P-(A+K)*P
CONTINUE
PH-P

ENDIF

RETURN
END

C
C
C
C
C
C

C_om

This function is the confluent

hypergeometrlc function of N(A,B,Z) in
series form. Used with small values of

the argument (magnitude of Z < 5 ).
WE 8/9/85

COMPLEX FUNCTION NFS(A,B,Z)

C
C
C
C-

A,B - parameters of the hypergeometric
function (contants)

Z - function argument, complex

C_o_l

DIMENSION CN(0z40)

COMPLEX SS,Z

Cow=

SS=(O.,O.)

_o

C
C

X-CABS(Z)

K - number of terms used in the series

K-$.*X+ll.
KMAX-40.

XF(K.GT.KKAX)K-KKAX
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C
C
C

C

Small argument.

IF(X.LT..01)MFS-(1.,0.)

C
C

10

Cmmm_m.

Series form.

IF(X.GE..01)THEN
CALL CS(A,B,K,CN)
J'K-I

DO I0 N'I,J
M'J-(N-I)
SS'Z*(CN(N)+SS)
CONTINUE

SS=I.÷SS

MFS'SS
ENDIF

C This subroutine calculates the constants
C used in the series form of the

C hypergeometric function M(a,b,JX).
C

C--_wm

SUBROUTINE CS(A,B,K,CN)

C A,B - parameters of the hypergeometric
C function
C K = number of terms in the series

C CN - array of constants to be returned

Cmm_w.

DIMENSION CN(0=40)

CN(0)-I.

DO 10 N-1,40
X-N

IF(N.LE.K)THEN
CN(N)-CN(N-I)*(A+X-I)/((B+X-I)*X)

ELSE

CN(N)=0.
ENDIF

I0 CONTINUE

RETURN
END
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_ This function is the confluenthypergeometrlc function of M(I.5,2.SeZ)
C in asymptotic form. Used with large
C values of the argument
C (magnitude of Z >> 1 ). WE 85
C

_

C
C"

m_m_

C

_mg

10

Cn_

I

I
i

I
I

I

l
I

I
I

COMPLEX FUNCTION MFL(Z)

Z - function argument, complex

COMPLEX CI,C2,CJ,S,Z

PI-3.14159265

CJ-(0.,I.)

Sm(0.,0.)

ZI-AINAG(Z)

ZM-CABS(Z)

IF(ZI.EQ.-ZM)CI=.75*SQRT(PI)
*CEXP(-CJ*I.5*PI)/(Z**I.5)

IF(ZI.EQ.ZM)CI-.75*SQRT(PI)
*CEXP(CJ*I.5*PI)/(Z**I.5}

J is the number of terms.
J-3

DO I0 N-0,J-I
X'N

S-(PH(-.5,N)/Z**X}+S
CONTINUE

C2-(I.5*CEXP(Z)/Z)*S
MFL'CI÷C2

RETURN
END
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C*******************e*******eee*******************

C This subroutine approximately computes
C the integrals used in the transition
C functions from Xl to X2, for small
C values of U.
C

SUBROUTINE INTGRL(XI,X2,U,NINT,FX,ECODE)

C XI,X2 - limits of integration
C U - variable in the exponential
C (a real number wlth mag. (8.)

C NINT - I cos(x) * exp(J U cos(x))
c 2 ( cos(x)**2 ) * exp(j u cos(x))
C 3 ( sin(x)**2 ) * exp(j U cos(x))
C FX - computed value of the integral
C ECODE - error code
C
C
C

The subroutines INCOS and INSINCOS are

used with this routine.

COMPLEX CJ,FX,SUM
DIMENSION FI(0:25),C(0:23),FACT(0:23)

C--

C

DATA PI,TPI,DR/3.14159265,6.28318537,
1 0.017453292/

DATA FACT/1.,1.,2.,6.,24.,120.,720.,5040.,
1 40320.,362880.,3628800.,39916800.,

2 479001600.,6227020800.,8.7178291E10,
3 1.3076743E12,2.0922789Ei3,3.5568742E14,
4 6.4023737EIS,1.2164510E17,2.4329020E18,

5 5.1090942E19,1.1240007E21,2.5852016E22/
CJ-(0.,I.)

XMIN-.001
NMAX-23

_mm_m_womm_o°

IF(ABS(U).GT.8.)THEN
ECODE-4.
GO TO 999

ENDIF

10

DO I0 K-0,23
C(K)-U**K/FACT(K)
IF(ABS(C(K)).LT.XMIN)THEN

NMAX-K

GO TO 20
ENDIF

CONTINUE
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_w

2O

3O

4O

.mmJmDin_m_

CONTINUE
SU_-(0.,0.)
IF(NINT.E0.1)THEN

CALL INCOS(XltX2,NNAX+lwFI)
DO 30 K-0,NI_,X
SU_=SU_+(CJ**K)*C(K)*FI(K+I)
CONTINUE

ELSE IF(NINT.EQ.2)THEN
CALL INCOS(Xl,X2eNNAX+2,FI)

DO 40 K=0tNNAX
SUN=SUN+(CJ**K)*C(K)*FI(K+2)
CONTINUE

ELSE IF(NINT.E0.3)THEN
CALL ZNSINCOS(XI,X2,NNAX,FI)

DO 50 K-0,NNAX
SUM-SUM+(CJ**K}*C(K)*FI(K)
CONTINUE

ENDIF

C
C
C
C
C
C

This subroutine computes the integral of
the cosine to the power N. It computes up
to a sp=cified value of N and returns
the result in an array where the array
subscript corresponds to the value of N.

SUBROUTINE INCOS(XI,X2,NNAX,FI)

C
C
C
C
C-.

Xl,X2 - limits of integration (radians)
NNAX = maximum value of power N

(an integer)

FI = the array of computed integrals

DIMENSION FI(0:25),F1(0:25),F2(0:25)

FI(0)=X1
F2(0)-X2
FI(0)-X2-X1
FI(1)-SIN(Xl)
F2(1)-SIN(X2)
FI(1)-F2(1)-F1(1)
F1(2)-SIN(2.*Xl)/4.+X1/2.
F2(2)-SIN(2.*X2)/4.+X2/2.
FI(2)-F2(2)-Fl(2)
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IF(NMAX.GT.2)THEN
DO i0 K'3,NMAX
A'R

FI(K)'(SIN(XI)*(COS(XI)**(K-I))/A)+

1 ((A-I.)*FI(K-2)/A)
F2(K)'(SIN(X2)*(COS(X2)**(K-I))/A)+

I ((A-I.)*F2(K-2)/A}
FI(K)'F2(K)-FI(K)

10 CONTINUE

ENDIF
RETURN

END
**************************************************

C Thls subroutine computes the integral of
C the cosine to the power N multiplied by

C the sine squared. It computes up to a
C specified value of N and returns the

C result in an array where the array
C subscript corresponds to the value of N.
C

SUBROUTINE INSINCOS(Xl,X2,NMAX,FI)

C X1,X2 - limits of integration (radians)

C NMAX - maximum value of power N
C (an integer)
C FI - the array of computed integrals

DIMENSION FI(0:25),Fl(0:25),F2(0:25),
I FCOS(0:25)

CALL INCOS(Xl,X2,NMAX,FCOS}
C

DO I0 K-0,NMAX
A-K

FI(K)--SIN(Xl)*COS(Xl)**(K+I)

F2(K)--SIN(X2)*COS(X2}**(K+I)
FI(K)-((F2(K)-FI(K))+FCOS(K)}/(A+2.)
CONTINUE10

C

RETURN
END
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