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ABSTRACT 

a 

* 

The scattering of electromagnetic waves from impedance structures 

is investigated, and current work on antenna pattern calculation is 

presented. A general algorithm for determining radiation patterns from 

antennas mounted near or on polygonal plates is presented. These plates 

are assumed to be of a material which satisfies the Leontovich (or 

surface impedance) boundary condition. Calculated patterns including 

reflection and diffraction terms are presented for numerous geometries, 

and refinements are included for antennas mounted directly on impedance 

surfaces. For the case of a monopole mounted on a surface impedance 

ground plane, computed patterns are compared with experimental 

measurements. This work in antenna pattern prediction forms the basis 

of understanding of the complex scattering mechanisms from impedance 

surfaces. It provides the foundation for the analysis of backscattering 

patterns which, in general, are more problematic than calculation of 

antenna patterns. Further proposed study of related topics, including 

surface waves, corner diffractions, and multiple diffractions, is 

out1 ined. 
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I .  INTRODUCTION 

I *  

I. 

* 

During the semiannual period beginning February 1, 1987 and ending 

July 31, 1987, research on scattering from impedance structures has 

progressed under funding through Grant No. NAG-1-562 entitled 

"Electromagnetic Backscattering by Corner Reflectors". The research 

during this period concentrated on scattering from impedance surfaces 

and edges using extensions of the Uniform Theory of Diffraction (UTD). 

An impedance surface is a common and useful approximation to a lossy 

material or a dielectric coated conductor. A large portion of the 

research involved antenna pattern prediction for antennas mounted on o r  

near impedance surfaces. This work will provide the foundation for 

understanding backscattering from lossy or  dielectric coated bodies 

which can be represented by the Leontovich surface impedance boundary 

condition. Historically, in perfectly conducting UTD analyses, the 

antenna pattern analysis is approached first since it is generally less 

problematic than the backscattering analysis. Similarly in this 

imperfect conductor theory, it is expected that full understanding of 

the scattering mechanisms (including reflection, edge diffractions, 

surface waves and perhaps corner diffraction) can be derived from the 

antenna prediction problem, and such techniques will be amenable to the 

imperfect conductor backscatter problem. 

In addition to the progress in the current research, the 

publication of past research is  being pursued. Two papers related to 

research funded under this grant have been accepted during this 

reporting period for publication in a leading journal. The first, 
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entitled "Backscatter Analysis of Dihedral Corner Reflectors using the 

Physical Theory of Diffraction", is currently scheduled for publication 

in the September 1987 issue of the IEEE Transactions on Antennas and 

Propagation. The second, entitled "Dihedral Corner Reflector 

Backscatter using Higher-Order Reflections and Diffractions", is 

scheduled for publication in the November 1987 issue of the same 

journal. Both these papers are coauthored by T. Griesser and C. A. 

Balanis. The first is a PTD analysis and the second is a uniform GTD 

analysis of backscattering from a corner reflector. These papers 

represent major results from research funded under this grant and 

presented in earlier progress reports. 

In addition a paper entitled "Diffractions from a lossy polygonal 

plate in the presence of  an antenna" was presented and published at the 

IEEE APS/URSI Joint International Symposium in Blacksburg, VA during 

June 15-19, 1987. This conference paper presented results of research 

conducted during this and a portion of the preceding semiannual progress 

report. 

The current research utilizes the Uniform Geometrical Theory of 

Diffraction (UTD) for an imperfectly conducting ground plane, presented 

by Volakis [l] in 1986. This theory made available UTD coefficients for 

a half-plane for both normal and oblique incidence, and these 

coefficients revert to the perfectly conducting case [ 2 ]  as the 

normalized surface impedance, q ,  vanishes. The diffraction coefficients 

are written in the form of a 2 x 2  matrix which defines a dyadic 

diffraction coefficient consisting of four nonzero dyads. The 

coefficients are formulated by the UTD ansatz from Senior's Wiener-Hopf 
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solution [3] for oblique incidence on a half-plane and are calculated in 

terms of the Maliuzhinets [ 4 ]  9, function. The 9, function has been 

suitably approximated by Volakis and Senior 151. 

For completeness, the theory of imperfect conducting wedge 

diffraction needs to be extended to wedges of arbitrarily angle, to 

include corner diffraction mechanisms, to add extended spectral theory 

contributions for near grazing incidence, and to include surface wave 

effects. However the half-plane theory by itself can provide useful 

solutions to many classical problems involving structures composed of 

flat, imperfectly conducting plates. 

The problem which is studied here is that of radiation pattern 

prediction for an arbitrary antenna in the presence of an imperfectly 

conducting polygonal plate. The polygonal plate might be a first-order 

approximation to an actual structure the antenna is mounted on. The 

problem is fully specified by the antenna frequency, pattern, 

polarization, location, and orientation and the plate shape, size, 

orientation, and surface impedance. For any given observation point, 

the total field is calculated as the sum of direct and reflected fields, 

as well as one diffracted field per edge of the polygonal plate. 

I f  double diffraction between edges is included, then  OR^ double 

diffraction per pair of edges is needed, and if the polygonal plate has 

N edges, then N(N-1) double diffractions are possible. However if the 

double diffraction is calculated in the classical way, that is, by 

multiplying the field diffracted from one edge by the diffraction 

coefficient at the next edge, the theory predicts zero fields. This 

occurs because the UTD coefficients are zero when the observation point 
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is on the surface for either polarization and for any surface impedance 

except for the single special case of hard polarization and zero surface 

impedance; i.e., for the perfectly conducting hard polarization case. 

To calculate nonzero double diffraction fields, the extended 

spectral theory of diffraction [ 6 ]  is required. In this theory, the 

diffracted field is represented as a sum (or integral) of slowly varying 

inhomogeneous waves, each of which is multiplied by a diffraction 

coefficient at the diffracting edge. In this theory, the observation 

angles of these inhomogeneous waves are, in general, complex numbers, 

each consisting of a real angle (near the actual geometrical angle) and 

an imaginary angle. The diffraction coefficients, analytically 

continued into the complex plane, are then nonzero whenever the 

observation point lies on the surface. Hence it is possible to 

determine nonzero double diffraction terms as a sum (or integral) of 

these diffracted inhomogeneous waves. 

If the source is located on the surface of the plate, a similar 

problem is encountered. The diffraction coefficients at the edges are 

all zero and do not contribute to the total field leading to large 

discontinuities in the plane of the plate. This problem can be 

overcome by reevaluating the asymptotic UTD solution [ 7 ] ,  [8]. The UTD 

solution [ l ] ,  which predicts vanishing diffraction coefficients for 

grazing incidence, retains only the first term of an aymptotic 

expansion. By retaining the higher order nonzero term [ 7 ]  the 

diffraction coefficients correctly compensate for the pattern 

discontinuities. Comparisons of this technique with experimental 

measurements are presented in this report. 
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11. SCATTERING FROM POLYGONAL IMPEDANCE PLATES 

A. Geometry 

The goal of this work is to analyze the scattering pattern of an 

arbitrary antenna in the presence of an arbitrary polygonal plate. The 

formulation should be readily incorporated into a computer program and 

should produce computed patterns in arbitrary planes given the minimum 

physical information. This information, in this case, is the antenna 

frequency, pattern, polarization, location, and orientation and the 
0 

location of the polygonal plate vertices, as well as the surface 

impedance of the plate. The geometrical formulation is based on earlier 

work by Burnside [ 9 ]  for the perfectly conducting plate case, and 
0 

modifications are added to make the solution more general as well as to 

allow the analysis of imperfect conductors of relative surface impedance 

rl- 

If an origin is chosen at some arbitrary reference point, then the 

4 

source position is defined by the position vector s and the scattering 

1 

direction is defined by a unit direction vector ar. In the scattering 

direction (0 .0 )  the spherical unit vectors are 

.. ,. ,. 1 

ae = cosecosd a, + cosesid ay - sir@ a, 

1 1 1 

= -sin@ a, + COS@ % a0 

The far-field radiation pattern of the source is written as 
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d 

where r is the distance to an observation point and E , ( @ , # )  is the 

far-field pattern. 

d 

The polygonal plate is identified by defining a position vector vm 

to each vertex, where lrrnzN, for the N vertices. The ordering is chosen 

such that m increases in a counterclockwise direction when viewed from 
A 

the source. Unit edge vectors e, are defined by 

0 (3) 

where vector subscripts less than zero or greater than N are understood 

to be evaluated modulo N throughout this paper. A normal unit vector 

to the plate in the direction of the source is 

A .. A A 

e 
1 

where vertex m has an included angle less than n. A unit vector e; in 

the plane of the plate, perpendicular to the edge, and in the direction 

of  the finite plate is 

A A A  

e; = n x e,,, ( 5 )  

,. A L 

Two nonparallel unit vectors ei and e2 are chosen as basis vectors ti 

A 

and t2 for the plane of the polygonal plate. 

8 

An ejot time convention is assumed and suppressed throughout this 

report. 
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B. The Direct Field 

The direct field from the source in the observation direction is 

given by 

unless the observation direction is shadowed by the polygonal plate. 

To determine if the ray from the source is shadowed, the vector 

equation 

d A A d A 

vi + aiti + a2tz = s + a3ar ( 7 )  

is solved. This equation uses the plate basis vectors to determine the 

intersection point of the ray with the plate, and it represents three 

scalar equations in the three unknowns ai, a= and a3. I f  a3 is 

negative, then there is no intersection of the ray with the plate. If 

d A 

a is positive and the point s + a3ar lies within the finite plate 3 

boundaries, then there will be shadowing of the ray by the plate. 

To determine if this point lies within the plate boundary, a unit 

vector p, is defined for each vertex by 

d d A d d A 

p, = (vm - s - a a )/lvm - s - a3arl 3 r  

If the sum 

( 9 )  

is equal to 2n then the point lies within the boundary and if the sum 

is equal to 0 then the point lies outside the polygonal boundary. In 

the sum, the range of the inverse cosine is chosen as [ O , n )  i f  
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C .  The Reflected Field 

To determine the reflected field, the image location must be 

d 

found. The source image location si is found by solving the vector 

equation 

which represents three scalar equations in the three unknowns p , ,  p2, 

and 8,. Solving for 8,. the image location is 

d d 1 

si = s + 2p,n 

With the image location known, the specular reflection point 

d 

location sr is found by 

d d L L 4 1 

sr = vi + yltL + y,t2 = si + ?,ar 

after solving the set of three scalar equations for y , .  The reflection 

II 

exists only if y, is positive and the point sr lies within the finite 

polygonal plate. This can be determined by the method of the previous 

section. 

The relected field from the plate is found in terms of the 

incident field and the appropriate reflection coefficients for the 

principal polarizations. The angular direction (Qr,Or) from the source 

to the reflection point is given by 
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a 

r r l  rl 

where the value of the inverse tangent must be determined in the 

correct quadrant by the signs of the numerator and denominator. The 

spherical coordinate vectors at the reflection point are 

= sinercoserix + si~,sin$ i + cosera, 
1 

r Y  

The incident and reflected soft and hard polarization unit vectors at 0 
the specular reflection point are 

- -r ai = a, x a, 
L .  

*S ah = as x a, 
,. .. 

The soft and hard reflection coefficients are 

rs (9 = (qcosy-1 1 / (rlcosw 1 

where Y is the angle of incidence given by 

e 

The fiela ; I ?  The specular reflection point (suppressing the phase and 

spreading factor) is 

e 
- 
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The incident hard and soft polarization components are, respectively 

while the reflected hard and soft polarization components are, 

respectively 

a Then the 8 and 0 components of the total reflected field are 

The phase factor is reintroduced by multiplying the preceding 

expression by 

-jkr -jk[r + ar*(s-si)] = e-jk[ar'(s-si)] e 
r 

- d d  - d d  

1 - e  r 

D. The Singly Diffracted Field 

In determining the diffracted field associated with each edge, the 

diffraction point must be located on each edge, provided a diffraction 

point exists. The diffraction point is found using a binary search 
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technique described in [9]  to determine the unique point on the edge 

where the incidence and diffraction angles are identical (satisfying the 

4 d 

Keller cone requirement). For edge m, the endpoints are v, and v ~ + ~ .  A 

unit vector along the edge is e,,,. A general point on the edge is 

d d  4 4 

v = v + t(vm+l - Vm) O l t F l  in 

The angle of incidence is 0 
d d  

and the angle of diffraction is 

ad = ir em 

At the specular point, ai= ord. A binary search is used for t in the 

d 

range OctLl to find the appropriate point v which satisfies the Keller 

cone requirement. If no value of t in this range is found, then the 

diffraction does not exist. 

1 1 , .  ,. 
If a diffraction point is found, the unit vectors as, a;, %, a+, 

,. 1 

and a‘ are defined corresponding to the ray fixed coordinate system aB B 

at the point of diffraction. 

1 d d d d  

a; = (v - s)/lv - sl e 

,. 1 L 1 

iti) = (a; x e,,,)/(a; x: eml 
e 



-12- 

A A A 

e 

A A 

a; = a(9 x as 
a 

and 

0 r -  A 

9 = tan-'['.: 

Again, attention must be paid t o  the sign of the numerator and 

denominator of the argument of the inverse tangent function to 

determine the appropriate quadrant. The spherical coordinate angles at 

the diffraction point are 

The diffracted field is given in terms of  the 2x2 matrix 

diffraction coefficient of Volakis by 

e 

where 

a 
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a 

and the diffracted field is written in terms of its p and CP components 

Also the phase and spreading factor are 

- - 4  

e-jksd -- - e -jkr e -jk[a; ( s - v ) ]  
r - 

'd 

111. HIGHER ORDER MECHANISMS 

e 

* 

0 

(34 1 

(35) 

The formulation of the preceding section is adequate when higher 

order diffractions, corner diffractions and surface waves are 

negligible. In addition, the source must not be too close to the 

surface of the polygonal plate. When the source antenna is very close 

t o  the po!y,oor?al plate, the diffraction mechanisms of the UTD of [l] 

vanish and provide no contribution to the antenna pattern. This 

limitation has been overcome by Tiberio 171 for the normal incidence 

case. 

For an antenna on the surface of a imperfect conductor, the 

reflection coefficient at grazing incidence i s  -1 for both the soft and 

hard polarizations. Hence the geometrical optics field incident on the 
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diffracting edge is zero for both soft and hard polarizations. In 

addition, the diffraction coefficients for either polarization are zero 

for the grazing incidence case since the diffraction coefficients 

K ( # , 0 ' ;  po,q) of [ l ,  eq. ( 4 ) ]  are based on the K+(O,pO,q) split function 
a 

of the Wiener-Hopf solution and the K+(O,po,q) is zero at grazing (0=0)  

0 

e 

0 

a 

0 

[ l ,  eq. (11). Fig. 31. Hence there can be no diffraction mechanism by 

this technique for an antenna mounted on a imperfect conductor. Indeed 

the solution does not reduce uniformly to the perfectly conducting case 

as q approaches zero for the hard polarization. The imperfect conductor 

hard polarization has zero diffraction for q>O but the hard polarization 

perfect conductor case (q=O) can have nonzero diffractions. 

This practical limitation is demonstrated with the geometry of Fig. 

1 in which the problem of a quarter wave monopole on a finite ground 

plane is considered. The width of the strip w is 4 .064  A .  the 

conductivity 6 is lo4 S/m, the dielectric constant is 3, and the 

frequency f is 1 GHz. These parameters correspond to a highly 

conducting surface impedance q=0.00167 ( l + j ) .  To analyze the quarter 

wave monopole pattern, the monopole is subdivided into small segments 

which can be approximated by infinitesimal current elements. Each 

element has a current proportional to the actual current distribution on 

the monopole. The problem then is reduced to a summation of field 

components due to infinitesimal elements above a finite ground plane at 

heights of up to A / 4 .  

The patterns of current elements above a finite ground plane, as a 

function of height h, are shown in Fig. 2 .  It is evident from Fig. 2 

9 



-1 5- 

8 
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0 

0 

0 

U4 MONOPOLE 
ON A COMPOSITE GROUND PLANE 

I 

Graphite material 

CJ = 10 S/m 
4 

Er = €'/Eo = 3 

0 f = - =  1GHz 
2n: 

w = 1.22m = 4.064h 

,,=L J j UP 
qo o+ joe 

= 0.001668( 1. + j ) 

F i g .  1. Geometry and parameters f o r  a monopole mounted 
on a composite ground plane.  
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90 

a 

h = 0.001h 
h = 0.005A 
h = 0.01OA 
h = 0.0501 
h = 0.1OOX 
h = 0.200X 

--------- 180 
.................. 
-.-.-.-.- 
--.-..-..- ------ 

F i g .  2. Elevation plane amplitude pattern of a dipole 
above a composite ground plane of width w = 4.064 A. 

Vertical dipole at height h. 
Relative surface impedance g = O.O016678(1.+j) . 
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that the diffractions begin to deteriorate at dipole heights h below 

0.01 A .  In the limit as h+O there would be no diffracted field below 

the ground plane. The l o s s  of the diffraction mechanisms causes large 

discontinuities in the total antenna pattern near the incidence and 

reflection shadow boundaries when 8 = 90°. 

0 

0 

A formulation by Tiberio [7] remedies this situation by achieving a 

uniform asymptotic solution for the normal incidence case. In 171 the 

problem of plane wave incidence at the edge of an imperfect conductor 

wedge, with an observation point Po on the nn face is considered, and 

the solution is useful for the present problem of a source on an 

imperfect conductor by reciprocity. Uniform surface impedance boundary 

conditions on each face are assumed although the two face impedance are 

not necessarily the same. The reevaluation of the asymptotic solution 

is performed since the UTD asymptotic solution vanishes. The more 

accurate asymptotic solution retains the first nonvanishing term in the 

expansion of the exact integral representation. The asymptotic solution 

is uniformly valid at all incidence angles and for all impedance 

boundary conditions. In addition it provides a smooth transition 

between the two limiting cases of a hard and a soft perfectly conducting 

boundary condition. 

This formulation is applicable to the present problem which 

considers the specialized case of a half plane with identical impedances 

on each side. 

calculating the Maliuzhinets function M2(2n,P' ,eo ,e2)  [7, eq. ( 9 ) ]  is 

For the special case of the half plane the difficulty of 

considerably reduced. In fact, it can be easily determined in terms of 
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the Maliuzhinets V,(a) function which is approximated in terms of 

elementary functions in [5]. For the half plane, [7, eq. (911 reduces 

t o  

Ud(Po) - - exp rn - jn/4 

F[2kpcos2 (0'/2)] - F[2kpsi# (e2/2)] ,-jkp 

 COS'(^^/^) - sin2(e2/2) f i  

where all parameters are defined in [7] except Tn(a) defined in [5 ] .  

F(x] is the transition function of the UTD extended analytically for 

values of x in the complex plane. 8, and e2 are identical for the half 

plane problem considered here and are determined by the polarization 

and surface inipedance. The face on which the antenna is nounted is the 

tii=2n face in this representation. 

When this formulation is used for the problem of a vertical current 

element above the imperfectly conducting finite ground plane, the 

deterioration of the diffraction coefficients is corrected. Fig. 3 

shows the same radiation patterns as Fig. 2 with the use of this surface 

field diffraction term. The results illustrated show that the edge 
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90 
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h = 0.001A 
h = 0.005X 180 --------- 
h = 0.01OX 
h = 0.050X 
h = 0 .1OOX 
h = 0.200X 

.................. 
-.-.-.-.- - ..--.-..- 
------ 

Fig. 3 *  Elevation plane amplitude pattern of a dipole 
above a composite ground plane of width w - 4.084 A. 

Vertlcal dipole at height h. 
Relative surface impedance 71 = O.O016678(1.+j) 
With surface field correction (Tiberio. et.al. 8/85) '. 
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diffraction exists for an antenna mounted on the surface of an imperfect 

conductor, and the diffraction provides continuity to the geometrical 

optics fields. The surface field diffraction guarantees that the 

solution for the imperfect conductor reduces uniformly t o  the perfect 

conductor case. 

The pattern of the monopole over the ground plane can be completed 

using the corrected patterns of Fig. 3. The monopole is subdivided 

into 10 segments, each with a current proportional to the existing 

current on the monopole. The resulting pattern is displayed and 

compared with experimental measurements in Fig. 4 .  The experimental 

measurements were reported in [ lo ] .  The comparison of the theory with 

the measured pattern is quite good, and both major and minor lobes are 

accurately predicted. The measurements are slightly asymmetric, hence 

the theory may compare better on one side than on the other. 

A second contribution mechanism, the surface wave, is currently 

under study. The surface wave arises from the integral solution of the 

impedance boundary condition problem when an asymptotic expansion is 

performed. Conditions for the existence of surface waves has been 

reported in [ll]. If they exist, they are bounded in the angular 

sector 

o < g < -e, - cos-l[l/(cosh e2)]sgn ea (37 1 

where g is measured from the illuminated side of the edge and where 

es = e t  - je: = sin-' ( l / q )  

eh = e: - je,h = sin-i(q) 

( 38a 1 

(38b 1 

for the soft and hard polarizations, respectively. The surface waves 

e 
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90 

Theory 
180 --------- Experimental 

F i g .  4 -  Elevation plane amplitude pattern of a A/4 monopole 
mounted on a composite ground plane of width 4.064 A. 

Relative surface impedance .rl = O.O016678(1.+j) 
Monopole subdivided into 10 infinitesimal elements. 

e 
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e 
exist provided 1111 

+ cos-'[l/(cosh 0=) ]  < 0 (39) 

For a passive surface 0 5 0 ,  5 n / 2 ,  hence if v is real, no surface wave 

can exist. For capacitive surfaces, only the soft polarized surface 

wave can exist and for inductive surfaces only the hard polarized 

surface wave can exist. 

IV. COMPUTATIONAL RESULTS 

0 

0 

0 

0 

The algorithms of Sections I 1  and I11 have been used to calculate 

radiation patterns for a variety of configurations. While the polygonal 

plate geometry and the antenna pattern can be as complicated as desired, 

the cases illustrated here involve a simple square plate and a short 

dipole. The patterns are calculated for three values of normalized 

surface impedance q=O.OOl, q=O.25 and q=O.5 where the q=O.OOl case is 

essentially the same as a perfect conductor analysis. The figures show 

many of the effects expected for a antenna/plate system. These effects 

include blockage of the antenna pattern by the plate, large grating 

lobes in the specular reflection region, reduction of the lobing 

structure as the impedance approaches the free space value, and 

interference between the direct, reflected and diffracted components. 

In Fig. 5 ,  the pattern of a dipole near a square plate is 

presented. The inset figure in the upper right illustrates the geometry 

and shows the same orientation represented by the large polar pattern 

diagram. The square plate lies in the y-z plane and the dipole is 

parallel to the z axis at a distance of about 6X from the plate. 
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180 

0 

Fig. 5. 

I ,  300 
77 = 0.001 

270 --------- 7 = 0.250 
............ Y.... 71 = 0.500 

Amplitude pattern of a dipole near a square plate. 
Square plate vertices at (x.y,z)= (0.0,+5.2984X&5.2984X). 

Dipole parallel to z axis a t  (x.y.z)=(5.9607X.0.0,0.0). 
E, pattern in x-y plane. 

a 
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Approximate dimensions are shown in the inset figure while more exact 

dimensions are given in the lower caption. The pattern shown in the 

polar diagram represents the Ee field pattern in the x-y plane, and if 

the plate were absent the pattern would be a circle, indicative of the 

isotropic nature of the dipole in the x-y plane. The large grating 

lobes due to interference of the scattering mechanisms occur on the 

right side of the plate while blockage of the antenna pattern occurs on 

the left side of the plate. The lobing structure is diminished as the 

surface impedance increases toward the free space value. 

In Fig. 6 .  a similar configuration is presented. The dipole is 

now offset from the center of the plate by 4 . 9 A .  This causes the large 

grating lobes to move toward the specular direction at around 320°. In 

addition the pattern blockage due to the plate moves to around 210°. 

In Fig. 7 ,  a different pattern cut of the geometry of Fig. 5 is 

studied. In this figure, the Eo pattern in the x-z plane is shown. 

Without the plate the pattern of the dipole would be the classic,cut 

toroid or "figure-eight'' shape with nulls at Oo and 180° and lobes at 

90° on each side. 

of the plate with blockage occuring behind the plate on the left. The 

left lobe is largely destroyed. The reduction of the lobing pattern for 

increased impedance is evident. 

The large grating lobes again occur on the right side 

In Fig. 8 ,  the inset figure appears to be identical to the inset 

figure in Fig. 7 .  The dipole antenna, however, has been lifted off the 

x-z plane in the y direction to a height of 4.9A.  This is the same 

configuration as Fig. 6 and places the dipole closer to the edge of the 
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180 

7 = 0.001 
7) = 0.250 270 --------- 
q = 0.500 ” ........ ........ 

F i g .  6. Amplitude pattern of a dipole near a square plate. 
Square plate vertices at (x,y,~)=(0.0,+5.2984~.~5-2984h). 
Dipole parallel to z axis at (x.y.z)=(5.9607X,4.8569X.O.O). 

E, pattern in x-y plane. 
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0 

e 

Fig. 7.  Amplitude pattern of a dipole near a square plate. 

Dipole parallel to z axis at (x,y,z)=(5.9607X.0.0,0.0). 
Square plate vertices at (x,y,z)=(0.0,~5.2984X.+5.2984h). 

E. pattern in x--2 plane. 

4 x  

7 = 0.001 
7 = 0.250 180 --------- 
7 = 0.500 .................. 
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a 

e 

90 

a 

0 

0 Fig. 8. Amplitude pattern of a dipole near a square plate. 
Square plate vertices at (x,y,z)=(0.0.~5.2984X.~5.2984X). 
Dipole parallel to z axis at (x.y,z)=(5.9607X,4.6569X.O.O). 

E, pattern in x-z plane. 

7) = 0.001 
q = 0.250 100 --------- 
7 )  = 0.500 .................. 

a 
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plate. This case is of interest because it clearly illustrates 

discontinuities at 50° and 130° on the left side due to the lack of a 

corner diffraction component. The diffraction points move as the 

observation angle is varied and in this case they have moved off the 

finite edge of the plate. At this time, no corner diffraction 

coefficients are available for surfaces satisfying the impedance 

boundary condition and hence these refinements cannot be included. 

Similar discontinuities are expected whenever a diffraction point 

migrates off a finite edge. 

In Fig. 9 ,  the dipole is aligned along the z axis and the plate is 

placed in the x-y plane. In this case, the pattern of the dipole in the 

absence of the plate is the "figure-eight'' with nulls at Oo and 180° and 

major lobes at 90° on each side. In Fig. 10, the dipole is lifted out 

of the y-z plane and closer to the edge of the plate. The small 

discontinuities at 140° become apparent on each side due to the 

migration of the diffraction points off the finite edges. In Fig. 11, 

the configuration is identical to that shown in Fig. 10 but the pattern 

is shown in the x-z plane to show the asymmetries. 

V. CONCLUSION 

During the term of this semiannual progress report, research has 

been conducted on electromagnetic scattering from impedance structures 

specifically for antenna pattern calculations. 

conference paper was presented and published at an international 

In addition one 
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7) = 0.001 
7) = 0.250 180 --------- 
q = 0.500 .................. 

Fig.  9. Amplitude pattern of a dipole near a square plate. 
Square plate vertices at (x,y.z)= (&5.2984X,25.2984X,O.O). 

Dipole parallel to z axis at (x.y.z)=(0.0,0.0,5.9607X). 
El pattern in x-z plane. 
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F i g .  10. Amplitude pattern of a dipole near a square plate. 
Square plate vertices at (x.y.z)= ~5.2984h.~5.2984X.0.0). 
Dipole parallel to z axis at (x.y,z)=(4.8569X,0.0,5.960?A). 

E, pattern in y-z plane. 
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F i g .  11. Amplitude pattern of a dipole near a square plate. 
Square plate vertices at (x.y,~)-~5.2984X.~5.2984A,O.O . 
Dipole parallel to z axis at (x,y,z)=(4.8569h,0.0,5.9607A 3 . 

E, pattern in x-z plane. 



e 

0 

a 

e 

-32- 

symposium and two journal papers were accepted and scheduled for 

publication in the IEEE Transactions on Antennas and Propagation. 

The research in electromagnetic scattering involved analysis of 

reflection and diffraction mechanisms from flat plate structures which 

satisfied the Leontovich impedance boundary condition. General 

algorithms were developed for predicting radiation patterns from 

antennas mounted near plates. The computed patterns show many of the 

expected characteristics of antenna and plate configurations including 

the creation of grating lobes, blockage of the antenna pattern by the 

plate, and reductions in the reflected and diffracted fields with 

increasing surface impedance. 

For antennas mounted directly on flat plates, higher order terms in 

the asymptotic solution must be considered. Otherwise zero diffracted 

fields are predicted, which results in large discontinuities in the 

patterns. The higher order terms provide continuity as well as good 

agreement with experimental measurement for monopoles mounted on 

composite ground planes. 

Future work in this research will involve introduction of higher 

order mechanisms to refine the current algorithms. Surface waves, 

higher order edge diffractions and corner diffractions are example of 

additional mechanisms which are expected to enhance the predicted 

patterns. For the surface waves, both launching efficiencies and 

diffraction mechanisms are topics of study. Further work on the 

asymptotic expansions for the diffraction coefficients is a topic of 

interest for predicting scattering when the source is very near, yet not 

necessarily on, the impedance surface, and also for the oblique 
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incidence case. 

In addition, the theory will be further developed toward 

calculating backscattering from various structures including plates, 

disks, and corner reflectors. The reduction of the cross section of the 

corner reflector by using coated or composite materials is of interest 

because the dominant backscatter mechanisms is the double reflected 

field. The double reflected field would be reduced twice because of the 

double bounce when the corner reflector is an impedance structure rather 

than a perfectly conducting structure. 
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