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. A NUMERICAL STUDY OF
TRANSITION CONTROL BY PERIODIC SUCTION-BLOWING

by
Sedat Biringen
Abstract

The applicability of active control of transition by periodic suction-
blowing is investigated via direct numerical simulations of the Navier-Stokes
equations. The time-evolution of finite-amplitude disturbances in plane channel
flow is compared in detail with and without control. The analysis indicates
that, for relatively small three-dimensional amplitudes, a two-dimensional
control effectively reduces disturbance growth rates even for linearly unstable
Reynolds numbers. After the flow goes through secondary instability, three-
dimensional control seems necessary to stabilize the flow. An investigation of
the temperature field suggests that passive temperature contamination is opera-

tive to reflect the flow dynamics during transition.

1. Introduction

The development of methods for laminar flow control (LFC) is of great
interest due to potential applications in drag reduction. The impiementation of
such techniques may prove effective to increase the propulsion efficiency of
aircraft, ships and submarines, thereby improving their performance. In wall-
bounded flows, the application of constant suction as a means of LFC has been
studied extensively. Experiments indicate a significant drag-reudction poten-
tial of this technique in airfoil technology for relatively Tow disturbance
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amplitudes, i.e. before non-linear effects dominate the flow.” In this method,

the evolving boundary layer is modified by suction through a porous wall, in-



creasing the velocity gradient near the boundary and creating a more stable flow.
As an alternative to this technique, more direct methods of flow control have
been devised in which wave cancellation is ut11ized.2’5 Further developments in
this direction were instigated by the experiments of Liepmann and Nosenchuck6, who
demonstrated the applicability of active control in water by surface heating.
However, due to different conductive-diffusive properties, this method has been
marginally feasible in air.7

As a method independent of the physical characteristics of the fluid,
transition control by periodic suction-blowing was investigated by Biringen8 in
a numerical study. It was shown that a single-pulse, two-dimensional control
wave of suitable amplitude and phase results in considerable reduction of disturbance

amplitudes in plane channel flow. More recently, Kleiser and Laurieng

numerically
investigated the applicability of a similar technique in the presence of subharmonic
instability in plane channel flow. Along similar lines, Zang and Hussaini]o
developed a novel spectral method for the solution of the incompressible Navier-
Stokes equations and applied three-dimensional control suppressing selected

modes in plane channel flow as well as in the periodic boundary layer. The
application of active wall forcing for flow stabilization was investigated by

Metcalfe et a].]]

and Kuhn et al.]z in tﬁe periodic boundary layer and in plane
channel flow, respectively. The potential usefulness of transition control by
wave superposition suggested by these numerical investigations was verified by
the wind-tunnel experiments of Strykowski and Sreem’vasan]3 demonstrating that
two-dimensional Tollimien-Schlichting waves can be effectively cancelled by anti-
phased twd—dimensiona] control waves.

Although these studies point to the inherent applicability of transition
control by periodic suction-blowing in the presence of two- and three-dimensional
periodic disturbances, the success of the method (even strictly from a theoreti-
cal perspective) depends on other factors as well. The applicability of the

method to broadband disturbance spectra and, as pointed out by Thomas3, the fate



of the residual field after interaction with the control wave remain as important
issues to be considered. In this work, these queries are addressed via direct
numerical simulations of the three-dimensional, time-dependent incompressible
Navier-Stokes equations in the periodic plane channel flow. Despite the Timiting
assumption of flow periodicity along the homogeneous directions, Navier-Stokes
simulations are gaining acceptance as a necessary supplement to experimental
investigations. Such studies are especially useful in studying the late transi-
tion process dominated by three-dimensional, nonlinear effects. Issues con-
cerning the effect of large suction amplitudes and a comparison of the present
method with constant suction are briefly discussed in section 3, wherein a non-
intrusive means of determining the phase of the control wave is also suggested.
Further, the effectiveness of tagging the velocity/vorticity field by temperature
is briefly investigated. In connection with this issue, some results from the

temperature field which is treated at a passive scalar are presented.

2. The Calculation Procedure

The calculation procedure uses the incompressible Navier-Stokes equations

in primitive-variable, energy-conserving.form along with the continuity equa-

14

tion. A semi-implicit, pseudo-spectral method ° is employed to numerically

integrate the governing equations. The computer code is vectorized for the

VPS32 vector processor at NASA/Langley Research Center. Details of the solution

15,16

procedure are provided elsewhere. Initial conditions are prescribed according

to
jox Tux,+i8x

B(X) = U(x,0,0) + gyp(xp) € |+ ygi(xyde 0 (1)

where U(x2,0,0) is the parabolic mean flow, HZD(XZ) and u3D(x2) are the two- and

v

three-dimensional eigen-solutions of the Orr-Sommerfeld equation, respectively.




A11 the cases were run at Re=7500, corresponding to a linearly unstable Reynolds
number for this flow; here, Re = Uoh/J, where Uo is the channel centerline
velocity, h is the channel half-thickness and v is kinematic viscosity. Note
that these initial conditions are of the Benney-Lin type and will result in the
Klebanoff type transition characterized by non-staggered peak-valley splitting

of the disturbance ve]dcity. The existence of subharmonic instability in plane
channel flow as a new mechanism for transition is now well documented. Herber‘t]7
has found that this type of instability will operate at low disturbance amplitudes,
whereas at higher amplitudes the type of instability depends on the background
disturbance. Since the present work is concerned with initial disturbance
amplitudes as high as 3%, we have not included subharmonic instability in our
study.

The solution procedure assumes the flow to be periodic along the stream-
wise, X1 and spanwise, X35 coordinates. The governing equations were numerically
integrated in a computational box with 0zx,<2n/a, -1<X,<1 and O<x,<2n/8, where
the wave numbers of the fundamental disturbances were set to «=1 and 8=1 for all
the cases; these wavenumbers were found to be adequate to provide a path to
flow instability. Because of the assumed periodicity of the computed flow
field, the x]-direction in the computatidn is interchangeable with the t (time)-
coordinate in the laboratory. Consequently the periodic suction-blowing bound-
ary conditions operated at the channel walls for one time step will have the
same effect as an infinitesimally thin suction-blowing slot in the spatially
evolving laboratory flow. For mass conservation, flow periodicity requires Up> =
constant where <Uy> is the p]ane-averaged‘ve1oc1ty along Xo s leading to equal-
amplitude periodic boundary conditions at the walls. Since, in this work, the
control wave is set 180° out of phase with Uy at the channel center, flow
symmetry also requires equal phase for the wall boundary conditions at x2=ij.

The temperature field is calculated from the "passive-scalar" equation
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where 6 is the initial bulk temperature minus the fluid temperature, normalized

by the difference between the initial bulk temperature and the wall temperature;
Pe is the Peclet number, Pe=(RePr). In this work, the value of the Prandtl number
was set to Pr=0.7, and constant surface heating was assumed. Note that, in this
analysis, the velocity field is uncoupled from the temperature field so that the
temperature equation can be solved independently. For this purpose, the same
numerical method as the velocity field was incorporated; the compiete analysis

of the temperature solution will be reported elsewhere.

3. Results and Discussion

In this section, the results for the three test cases presented in this

work are discussed; a more detailed account is available in Refs. 18 and 19. The
discussion centers on the time-e?o]ution of the important Fourier components of
Ug- The development of the flow-field variables via three-dimensional pictorial
representations is also investigated. Such illustrations are especially important
to depict primary and/or residual three-dimensionality in the flow field. A1l

the calculations were run on a 32x51x32 grid with time step aT=0.025. A\§ummary
of initial conditions and control wave amplitudes for each case is provided in

Table 1.

3.1 Case 1: Three-Dimensional Initial Conditions with

Low Background Noise (Random Field)

The cases reported by Biringen8 are essentially equivalient to controlling
transition at a very early stage in an environment with no background disturbances,
Here, consideration is given to a more complicated situation which contains more

realistic elements, e.g. three-dimensionality and background noise. For this



case, maximum amplitudes of the initial disturbance field were set to (ui)ggx =
Cymax o (ymax _ : ‘
0.03u, (uj)3p” = 0.0025U, (for each 3D wave) and (uj)pay = 0-0001U , with (ug)pay

corresponding to a random field (generated by a random number generator) representative
of background noise. The procedure outlined in Ref. 8 was utilized: no slip

boundary conditions were used on y at the channel walls and the flow was allowed

to develop for 0<T<20, where T is time non-dimensionalized by h/Uo and AT is

the time step. The control wave was then imposed for one time step at T=20 and

T=30 as a wave anti-phased with the 2D Fourier mode ué(],O) at the channel center,

with corresponding peak amplitudes of 0.023 Uo and 0.005 Uo‘ The drawback

caused by these large amplitudes was offset by the short pulse-duration of the

control wave. The temporal development of (ui) and its important 2D Fourier

max
modes (1,0), (2,0), (3,0), as well as the primary 3D mode (0,1), are displayed
in Fig. 1. The immediate benefits resulting from interference with the control
wave are clear: growth rates of the 2D harmonics (2,0) and (3,0) are completely
reversed, indicating energy cut-off up to high wave numbers. The amplitudes of
(u])

uncontrolled case, whereas the 3D primary mode (0,1) is unaffected by the co-

max and 2D primary mode (1,0) still grow but remain much lower than the

ntrol wave.

In Fig. 2, the distributions of (ui)RMS at T=40 reveal that the maximum
intensity amplitude remains considerably lower for the controlied flow. The

max
)

reduction in the intensity amplitude, (u, RMS * is an indication of the diminished

1
ability of the disturbance field to extract energy from the mean flow. Also in
this Figure, the latent but significant effect of the background disturbance on
the flow development is indicated by the cusp-iike distributions of (u]')RMS
around the channel center. Note that for both cases, i.e. with and without
control, strong viscous effects attenuate the random field in the near-wall

region, but close to the channel center and at later times the background noise

begins to amplify. Although interference with 2D control efficiently reduces




intensity amplitudes in the wall region, its effects seem negligible on the
random field containing a significant amount of energy i; the three-dimensional
modes. The outcome of the random field is investigated in greater detail in
Fig. 3, where plots of (ui)gag over two periods along X3 at T=40 are presented.
For the uncontrolled case, the sinusoidal initial peak-valley splitting is
retained, whereas for the controlled case the significant reduction in peak
amplitude is accompanied by wave-front distortions, resulting in maxima occurring
at the valleys and suggesting an 1ncfease in the number of spanwise vortex
structures. This is a surprising result suggesting a potential for "explosive"
growth provoked by the coupling of background noise on the residual field. This
effect is further illustrated in Fig. 4, where three-dimensional iso-surfaces of
streamwise vorticity, wx=0.]0, at T=40 are shown. A comparison of Figs. 4a and
4b unequivocally demonstrates that, while the elongated streamwise structures
close to the wall are reduced in size, the control wave has no perceptible
attenuating effect on flow three-dimensionality prevailing outside the wall

region and caused by the initial random field.

3.2 Case 2: Three-Dimensional Initial Conditions

With High Background Noise

The-potentia] explosiveness of low-amplitude initial background noise was
indicated in the preceding discussion. As an expansion on this idea, a situation
is investigated in case 2 in which the initial amplitude of the background noise is
increased to (“i)22§ = 0.005 Uo' In this case, the 2D control-pulse was applied
at T=20 with a peak amplitude equal to 0.034 Uo‘ The temporal development of
the significant Fourier modes for the controlled flow is shown in Fig. 5. In

accordance with the previous cases, the control wave leads to decaying 2D modes

(1,0) and (2,0) with no significant change in the 3D mode (0,1). The most
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striking aspect of this case is the sudden onset of an explosive instability
1eadﬁng to chaotic motion and an order of magnitude increase in the maximum
disturbance amplitude. Since the one-dimensional energy spectrum still indicates
energy éoncentration in the (1,0) wave-number implying no significant energy
transfer to 2D higher harmonics, the amplification of oblique modes must be

identified as the major contribution to this explosive growth of (u!)

1/max’

3.3 Case 3: Strongly Three-Dimensional Initial
Conditions with Three-Dimensional Control

In this case, attention is focused on the applicability of three-dimensional
control in the presence of a strongly three-dimensional initial field. In order
to isolate the effects of interference with a 3D wave on an initially 3D vorticity

field, no background disturbance was inciuded. The initial disturbance field

max
2D

= 0.01 for each component. A 3D control wave (pulse) with peak amplitudes

= 0.03 and (u')maX

contained two and three-dimensional disturbances with (ui) 13p

0.025Uo, O.O]ZUO, 0.006Uo was applied at T=20, T=30 and T=40, respectively; the
controlied flow was then allowed to develop until T=80. The control wave contained
all the 2D and 3D harmonics of the (ué)-ye1ocity at the channel center. In the
laboratory, this would be equivalent to applying suction-blowing based on the
ué-ve]ocity at a position (x1=const., x2=0, x3). The practical application of

3D control is, of course, a very difficult procedure but in this work we are

mainly interested in the computational aspects and limits of the concept. A
comparison of Figs. 6a and 6b indicates that, in the controlled flow, the amplitudes
of (”i)max’ (ui)ZD-primary and its first four harmonics, as well as the amplitude
of (ui)3D-primary are all significantly reduced. After the application of the
third control pulse at T=40, they all decay rapidly (Fig. 6b). Note that,

in the uncontrolled flow, amplitudes of all the higher harmonics undergo rapid

nonlinear growth and, when the 2D harmonics reach the level of the (1,0) mode,

the flow goes through breakdown (Fig. 6a). A similar pattern can be observed in




the time-development of the maximum plane-averaged velocities and turbulent
shear, the 3D control wave inhibits the growth of these quantities and, after

T>40, all the amplitudes decay r'apid]y.]8

The "oscilloscope" traces of ui are
shown in Fig. 7 at T=50, wherein the uncontrollied wave presents three negative
spikes characteristic of the final stage of transition indicating that the flow
is rapidly approaching breakdown. Note that during the final stage of transition,
the nonlinear distortions of the initially sinusoidal signal eventually degenerate
into spikes caused by the slow moving fluid uplifted from the wall region due to
the induced velocity of the counter-rotating streamwise vortices.]5 The spanwise
variations of (u])gag in Fig. 8 reveal that the amplitudes are significantly
reduced by the application of 3D control. However, the distribution remains in
phase with the uncontrolled case.

The three-dimensional representations of vorticity components give perhaps

18

the best display of the effectiveness of the control scheme. During transition,

the streamwise vorticity (wx) field rapidly develops due to tilting of 2D spanwise

vorticity (w_,) and to stretchingzo. The counterrotating vortex lobes strengthen

z

by several orders of magnitude, in turn, causing greater spanwise variations in

w, - This interaction evolves into a vor;ex loop extending towards the channel
center. The uplifting and the consequent development of a high shear layer is

one of the fundamental traits of transitional channel flow. Any effective

control scheme must prevent this process. In Figs. 10a and 10b the isosurfaces

of w, = 1.85 at T=50 are shown with and without control. In these figures, it can
be depicted that in the uncontrolled case (Fig. 10a), the three-dimensional
initial field has evolved into the characteristic vortex loop with evidence of
flow breakdown. The controlled flow presents a contrasting develiopment although
the vorticity field at this stage does exhibit strong three-dimensional variations
(Fig. 10b). It is clear from this figure that 3D control has prevented the

uplifting and formation of the vortex loop and the associated high-shear layer.

In the controlled flow, the spanwise structures completely disappear at later
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times and the absence of any streamwise variations in the residual flow suggests
that the flow may be locally 1aminarizing.]8 Note that in laminar flow, a )

surface of constant w, would be a plane parallel to the wall. Similar traits
18

can be observed from the development of the streamwise vorticity field
Finally, some results are presented from the temperature field that is
treated as a passive scalar and used to tag the velocity/vorticity field. In
Figs. 1la-11c, three-dimensional iso-temperature surfaces for 6=0.10 are displayed.
At T=50 the uncontrolled flow is characterized by vigorous mixing, resulting in
a highly convoluted constant temperature surface, while the controlled flow
remains more organized. The A-vortices depicted at T=50 slowly decay, and
finally at T=80, in accordance with the vorticity field, residual streamwise
structures completely disappear lending evidence to 1oéa1 laminarization of the
flow.
In order for this technique to be regarded as a potential candidate for
flow control, various additional issues must alsc be considered. The "upstream
influence" of the large-amplitude control pulse is one such question that is briefly
addressed. Various plots of instantaneous streamwise velocity, Uys revealed
that the effect of the control pulse manifests itself as a sharp kink very close
to the wall which is rapidly dissipated by the action of viscosity with no
residual effect on the flow development; similar smoothening action of strong
viscous effects were observed in u]-RMS and <ui ué>-profi1es in earlier work8.
The second query of interest is a comparison of high-amplitude constant suction
with the present method; a sample comparison is provided in Fig. 12. Here a constant
suction velocity of 0.021 UO (equal to the x]-averaged periodic suction velocity
of case 3 at T=20) is imposed for one time step at T=20; the peak amplitude of
the periodic control wave was 0.025 U0 for this case. As apparent from this
figure, interference with periodic suction-blowing has a considerably more

favorable effect on flow control than with constant suction for this strongly
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three-dimensional disthpance field. However, this inference is for the three-
dimensional case presented in this work and is not meant to be a general conclusion.
Finally, a non-intrusive way of determining the control-wave phase from the

surface pressure is proposed. For this purpose, a comparison of the respective
control wave with surface pressure (at the same spanwise location) for 2D control
(case 1) and 3D control (case 3) is presented. The relative phase angle of n/2
observed in Figs. 13 and 14 remains constant all through the flow development

for both cases. Consequently, surface pressure signals could be used to determine

the desired phase of the control pulse.

4, Concluding Remarks

In this computational study, the applicability of active control by periodic
suction-blowing on transitional plane channel flow has been investigated. For
two-dimensional finite-amplitude disturbances the metﬁod proved effective,
reducing all the important Fourier amplitudes, turbulent intensities, and turbulent
shear. In the presence of high-amplitude background noise, however, the gains
derived from control were offset by the rapidly increasing oblique mode amplitudes
which drive the flow to breakdown.

For strongly three-dimensional initial conditions with no background turbulence,
three-dimensional control reversed the growth rates and significantly reduced
disturbance amplitudes. By suppressing the streamwise vortex structure, the control
wave prevented the formation of vortex loops, the development of the high shear-
layer and the subsequent evolution to turbulent flow. The passive temperature field
revealed the characteristics of the velocity/vorticity field with considerable
accuracy.

The active control method studied in this work does show a potential for
controlling disturbance growth rates in transitional flows with finite-amplitude

disturbances. The feasibility of this concept and its usefulness as a viable tool
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awaits careful comparisons with other existing techniques and experimental

verification.
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TABLE I. Initial Conditions’

Case o g uggx uggx UEZE Tcii (u2)26x111
1 1 3 0.5 0.01 20,30 2.3, 0.5
1 1 3 0.5 0.5 20 3.4
1 1 3 2 - 20,30,40 2.5,1.5,0.6

(i) A1l velocities percent of Uys (iii) (u2)c is the control-wave peak amplitude.
(i) T. is time when control is applied
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