Submitted to: National Aeronautics and Space Administration Langley Research Center Hampton, Va 23665

Institution: Hampton University Dept. of Physics

Title of Research: Direct Solar-Pumped Iodine Laser Amplifier

NASA Grant Number NAG-1-441

Period Covered Sept. 1, 1986 - Feb. 28, 1987

Principal Investigator Dr. Kwang S. Han

Research Associates Dr. K. H. Kim
Mr. L. V. Stock

Direct Solar-Pumped Iodine Laser Amplifier

Contents

Abstract i

I. Feasibility study of solar-pumped dye laser 1
 A. Introduction 1
 B. Experiment and Results 1
 C. References 10

II. Evaluation of the Solid State Laser Materials for the Solar-Pumping 11
 A. Introduction 11
 B. Historical Background of the Solar-Pumped Solid State Lasers 11
 (1) Ideal Laser Crystals 14
 (2) Characteristics of Various Laser Crystals 14
 (3) Absorption of the Solar Spectrum by the Laser Crystals 18
 (4) Threshold Input Power and Slope Efficiency 27
 D. Crystal Temperature and Coolant Flow Rate 27
 E. Spectral and Spatial Distribution of the Tarmarak Solar-Simulator Beam 34
 F. Laser System and Expected Laser Outputs 34
 G. Conclusion 44
 H. Appendix A Absorption of the Solar beam by various laser crystals 45
 I. Appendix B Temperature distribution in various laser crystals 54
 J. References 66

III. Kinetic Modeling of the Solar-Pumped Iodine Lasers 70
 Table 1 73
 List of Figures 74
Abstract

This semiannual progress report covers the period from September 1, 1986 to February 28, 1986 under NASA grant NAG-1-441 entitled "Direct Solar-pumped Iodine Laser Amplifier". During this period the improvement on the collection system of the Tarmarack Solar-Simulator beam has been attempted. On the other hand the basic study of evaluating the solid state laser materials for the solar-pumping and also the work to construct a kinetic model algorithm for the flashlamp-pumped iodine lasers have been carried out.

It was observed that the collector cone worked better than the lens assembly in order to collect the solar simulator beam and to focus it down to a strong power density. The study on the various laser materials and their lasing characteristics shows that the neodymium and chromium-co-doped gadolinium scandium gallium garnet (Nd:Cr:GSGG) may be a strong candidate for the high-power solar-pumped solid state laser crystal. On the other hand the improved kinetic modeling for the flashlamp-pumped iodine laser provides a good agreement between the theoretical model and the experimental data on the laser power output, and predicts the output parameters of a solar-pumped iodine laser.
I. Feasibility Study of the Solar-Pumped Dye Laser

A. Introduction

The parametric study of a dye laser amplifier pumped by a solar-simulator and a flashlamp, and the amplifier gain measurement at various pump-beam irradiances on a dye cell were reported in the previous semiannual report [Ref. 1]. From the previous work it has been shown that a solar concentration of 20,000 is required to reach the threshold of the rhodamine 6G dye laser. About maximum 5,000 solar constants was previously achieved at the focus of a cone-shaped collector of the front diameter of 9.6 cm with the Tarmarack solar simulator. Thus, a different approach to focus the solar-simulator beam has been carried out in this research period.

An assembly of a couple of lenses was used instead of the conical collector to place the focus of the solar simulator, which is located in the shutter position, into the work region where the laser or laser amplifier can be assembled [refer to Fig. 1]. Because of the reflection of the solar simulator beam on the lens surfaces, the solar simulator beam concentration, which was less than 1,000 solar constants, was not improved as compared to that obtained with the conical collector. Therefore, it was concluded that a solar simulator, which provides a higher power than the present Tarmarack solar-simulator does, or a larger solar furnace is necessary to provide an optical power density of at least 20,000 solar constants (=2,706 W/cm²) in order to attempt to make a solar-pumped dye laser.

B. Experiment and Results

Figure 1 shows the assembly of the several lenses to focus the solar simulator beam down to a small spot. The solar simulator beam at the focus of the lens assembly was reflected by the diffuse surface, which was made of a Teflon bar. The reflected beam was focused down by a f=12.5 cm lens onto the mochromator whose dial was set at 530 nm with a grating of 1180 grooves/mm and with a less than 5Å linewidth. Then, the spectral intensity was detected by a photomultiplier tube. A silicon photodiode was used to pick up a reference signal and to trigger the oscilloscope.

After the spectral irradiance of the solar simulator beam was measured,
Figure 1 Experimental setup to focus down the solar-simulator beam to a small cylindrical spot with the use of lenses. MC: monochrometer, PMT: photodiode.
the diffuse surface was turned by 180° and the standard lamp signal was observed in order to calibrate the solar simulator's intensity. Figures 2 and 3 show the typically observed signals of the standard lamp and the solar-simulator beams, respectively, on a Nicolet oscilloscope. The observed spectral irradiance of the standard source was 1.45×10^{-3} solar constants ($=0.268 \text{ w/cm}^2 \text{ nm}$), and those of the solar simulator at various input currents are shown in Graph 1. The maximum intensity at the input current 600 A was about 777 solar constants.

With an experimental setup as shown in Fig. 4 the intensity of the light at the focus (F3) of the three lens assembly was observed to be about 14% of that at F1. The light intensity at the focus (F2) of the first two lens assembly without the cylindrical lens was about 68% of that at F1. This results show that the more lens we use the more optical loss will be caused.

In Fig. 5 the solar simulator beam collection was tried without the cylindrical lens. The observed intensity at the focus was about 512 solar constants which is lower than that obtained with the cylindrical lens. The focusing of the solar simulator beam became poor without the cylindrical lens.

The spatial distribution of the solar-simulator beam along the focal line of the 9.6-cm conical collector was remeasured with the experimental setup shown in Fig. 6. The absolute intensity calibration was done in a two-step process. A sun-gun (UL model:SG-63A) was placed instead of the standard lamp in Fig. 6 at a distance of 43.2 cm from the diffuser. The intensity of the sun-gun was calibrated with the standard lamp and a small number of neutral density filter. Then, this sun-gun was used to calibrate the intensity of the solar-simulator beam instead of using the standard lamp, because the standard lamp intensity was very weak to directly calibrate the solar simulator beam intensity and required a large number of ND filter. Possibly this may cause a large error. The measured absolute spectral irradiance of the sun-gun at $\lambda = 530 \text{ nm}$ was 1.08 solar constants, and that of the solar simulator 5,204 solar constants at the maximum focus.

In conclusion, the conical collector provides the higher concentration of the solar simulator beam than any other lens assembly does. The observed maximum concentration is still much lower than the required threshold for the dye laser, which is 20,000 solar constants. The study on the solar-pumped dye laser will be closed at this point until a large solar furnace or a high power solar-simulator is available.
Figure 2 A typical oscillogram of the standard lamp signal observed with the experimental setup shown in Fig. 1 at the monochrometer dial setting at 530nm.
Figure 3: A typical oscillogram of the solar simulator signal observed with the experimental setup shown in Fig. 1 at the monochromator dial setting at 530nm. The ND filter used was 5.0, and the solar simulator input current was 600A.
Figure 4 Experimental setup to test the light transmission through the lenses which are used to collect the solar simulator beam.
Figure 6 Experimental setup for the intensity measurement of the solar-simulator beam at the focus of a conical collector. The conical collector's size = 9.6 cm front I.D. x 5.6 cm rear I.D. x 8.9 cm width.
Graph 1 The spectral irradiances at various solar-simulator input currents at the focus of the solar-simulator beam collecting system shown in Fig. 1.
C. References

1. K.S. Han, K.H. Kim and L.V. Stock
 "Direct Solar-Pumped Iodine Laser Amplifier"
II. Evaluation of the Solid State Laser Materials for the Solar-Pumping

A. Introduction

Since the first observation of the optical maser action with the CaF$_2$:Dy$^{2+}$ crystal by Kiss, Lewis and Duncan [Ref.1] in 1963, several kinds of the solid state materials, such as Nd$_2$O$_3$-doped barium crown glass, Nd:YAG, Nd:Cr:YAG, Ruby and Nd:CaWO$_4$, have been used for the solar-pumped lasers. Among them, the Nd:YAG crystal has been known as an efficient laser materials, so far. Its highest laser output power observed is 100W with a solar pumping [Ref. 10]. However, the laser output power of at least an order of 1kW cw is required for the space power transmission. In order to satisfy the demand, the improvement of the solar-pumped Nd:YAG laser or the search of new laser material has to be carried out. This report shows the evaluation of the laser crystals such as Ruby, Nd:YAG, Nd:Glass, Nd:YLF, Nd:Cr:GGG, Alexandrite and Emerald for the high power solar pumping.

Section B will describe the historical background of the solar-pumped solid state lasers. In section C, the characteristics of the various solid state materials will be summarized. The temperature distribution in the crystals and the coolant flowrate will be determined in section D. Section E will show the experimental setup and the results on the spectral and spatial distribution of the Tarmarack solar-simulator beam at the focus of a conical collector. Finally, the laser system and the expected laser output will be discussed in section F.

B. Historical Background of the Solar-Pumped Solid State Lasers.

1963: Z.J. Kiss, H.R. Lewis, and R.C. Duncan in RCA Laboratories. [Ref.1]
- Observed the first solar-pumped optical maser action with the CaF$_2$:Dy$^{2+}$ crystal at the liquid neon temperature of 27$^\circ$K and at the wavelength of 2.3um.

1964: G.R. Simpson in American Optical Company [Ref.2]
- Observed the laser action at the wavelength of 1.06μm and the temperature of 30$^\circ$C with a 6.25 wt% Nd$_5$O$_3$-doped barium crown glass of 0.1 mm diameter and 30 mm long.
- Pumping source = sun and carbon arc sun-simulator.
- Flashlamp threshold = 1 Joule
- Observed the laser oscillation at the input energies of
 1.15J (= 144 w/cm² = 1,062 solar constants) with sun-pumping and of
 1.50J (= 188 w/cm² = 1,386 solar constants) with the carbon arc
 sun-simulator pumping.

1966: C.W. Reno in RCA Defense Electronics Products [Ref. 3]
- Measured the threshold input power of 100 W (= 35 w/cm² = 259
 solar constants) for a solar-pumped Nd:YAG laser, and observed the
 laser output of 100 mW with a 25-W coupled power to the crystal.
- Observed the same results for the Nd:Cr:YAG laser as those for the
 Nd:YAG laser. The Cr-ions did not improve the laser action
 because of the slow Cr-Nd transfer time (=1 ms) compared to the
 fluorescence lifetime of the neodymium ions.

1966: C.G. Young in American Optical Company [Ref. 4]
- Observed that the threshold powers for the Ruby and Nd:CaWO₄
 crystals are larger than those for the Nd:YAG and Nd:Glass.
- Observed a 1-W cw laser output from a Nd:YAG crystal of 3-mm
 diameter and 30-mm long and of 1 at % doping density with a
 solar-pumping.
- Observed a 1.25-W pulse laser output from a sun-pumped Nd:Glass
 with a pulse width of 7 ms.

1972: L. Huff in GTE Sylvania Inc. [Ref. 5]
- Observed a 4.85 W multimode laser output from a Nd:YAG crystal
 with a 24-inch diameter solar collector.
- Used a conductive cooling of the laser rod with a copper heat
 sink.
- Observed a TEM₀₀ output of 0.8-W.

1976: J. Falk, L. Huff and J.D. Taynai in GTE Sylvania Inc. [Ref. 6]
- Observed the mode-locked and internally frequency-doubled laser
 output from a Nd:YAG crystal
<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>Multimode</th>
<th>TEM(_{\text{oo}}) CW</th>
<th>TEM(_{\text{oo}}) mode locked</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.06 (\mu \text{m})</td>
<td>5.6 W</td>
<td>2.05 W</td>
<td>0.4 W</td>
</tr>
<tr>
<td>0.53 (\mu \text{m})</td>
<td>--</td>
<td>0.5 W</td>
<td>0.16 W</td>
</tr>
</tbody>
</table>

- Used an end pumping on the crystal with a 24-inch diameter solar collector and with the use of a UV cut-off filter.

1978: D. Radick, E. Reed, and C. Chadwick in GTE Sylvania [Ref. 7]
- Developed a pulsed Nd:YAG laser for the space communication purpose with a 24-inch diameter collector.
- Observed a TEM\(_{\text{oo}}\) mode laser output of 400 mW.

- Theoretical study on the feasibility of a solar-pumped color-center crystal laser.
- The expected values for a waveguide-type crystal with a solar-pumping of \(\approx 10^2 \) solar constants:
 - Gain \(\approx 10^{-3} \text{ cm}^{-1} \)
 - Efficiency \(\approx 1-6\% \)
 - Output power \(\approx 10-60 \text{ W} \) from an 1-m active medium.

1984: H. Arashi, Y. Oka, and N. Sasahara in Japan [Ref. 9].
- Observed an 18-W cw laser output from a Nd:YAG crystal of 4-mm diameter and 75-mm long and of 0.9 at % doping density with a 10-m aperture solar collector.
- Effective pump power = 1.1 kW (\(\approx 117 \text{ W/cm}^2 \) = 863 solar constants).
- Conversion efficiency (pump power \(\rightarrow \) laser power) = 1.64%.

1986: M. Weksler, J. Shartz, and Weizmann in Israel [Ref. 10].
- Observed a 100-W laser output from a Nd:YAG crystal with a solar furnace.

1986: L. Zapata at NASA Langley Research Center [Ref. 11]
- Observed a 28-W laser output from a Nd:Glass fiber bundle with a solar-simulator pumping.

(1). Ideal Laser Crystals.

The characteristics which an ideal laser crystal for the high-power solar pumping should have are listed as below:
(a) Efficient pumping (or absorption) bands near the peak of the solar spectrum.
(b) Long fluorescent lifetime to lower the threshold input power for a cw operation and to provide a high energy storage.
(c) High operation temperature at least higher than the room temperature to facilitate the rejection of heat.
(d) Good thermal conductivity and high thermal resistance for a cw operation.
(e) Mechanically strong.

(2). Characteristics of various laser crystals.

Table 1 shows the list of the characteristics of the various crystals obtained from Refs. 12-35. The advantage and disadvantage of each crystal are discussed as follows:

Ruby
(i) Disadvantages
- 3-level laser system
 - requires a high threshold input power
 - gives a poor quantum efficiency
- Small gain coefficient

(ii) Advantages
- Broad absorption bands
- Visible laser output
- High thermal conductivity
- Long fluorescence lifetime
- The lowest doping concentration is possible.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>λ laser (nm)</td>
<td>694.5</td>
<td>1064.1</td>
<td>1062.3</td>
<td>1061.2</td>
<td>1053 (g)</td>
<td>700-800</td>
<td>720-842</td>
</tr>
<tr>
<td>Doping</td>
<td>.05 wt % Cr₂O₃</td>
<td>.725 wt%</td>
<td>3.1 wt%</td>
<td>Cr:1.18 at %</td>
<td>1.0 at %</td>
<td>0.1 at % Cr</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>1.58x10¹⁹ cm⁻³</td>
<td>1.38x10²⁰ cm⁻³</td>
<td>2.83x10²⁰ cm⁻³</td>
<td>1.8x10²⁰ cm⁻³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluorescence Lifetime (µs)</td>
<td>3000</td>
<td>240</td>
<td>300</td>
<td>256**</td>
<td>480</td>
<td>260</td>
<td>22</td>
</tr>
<tr>
<td>Fluorescence Linewidth</td>
<td>.55 nm</td>
<td>.40 nm</td>
<td>26.0 nm</td>
<td>1.38 nm</td>
<td>100 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linewidth</td>
<td>330 GH₂</td>
<td>120 GH₂</td>
<td>7500 GH₂</td>
<td>375 GH₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refractive Index at λ = 1.06 µm</td>
<td>1.7262 (E / c)</td>
<td>1.815</td>
<td>1.555</td>
<td>1.95</td>
<td>1.46</td>
<td>1.737 (E / a)</td>
<td>1.57</td>
</tr>
<tr>
<td></td>
<td>1.755 (E / c)</td>
<td></td>
<td></td>
<td></td>
<td>1.742 (E / b)</td>
<td>1.735 (E / c)</td>
<td></td>
</tr>
<tr>
<td>Thermal Conductivity (w/cm K)</td>
<td>.42</td>
<td>.14</td>
<td>.0135</td>
<td>.08</td>
<td>.06</td>
<td>.23</td>
<td>.055 (// c)</td>
</tr>
<tr>
<td>Stimulated Emission Cross Section (cm²)</td>
<td>2.5x10⁻²⁰</td>
<td>2.7-8.8x10⁻¹⁹</td>
<td>3.03x10⁻²⁰</td>
<td>4.2x10⁻¹⁹</td>
<td>1.2x10⁻¹⁹ (g)</td>
<td>1-5x10⁻²⁰</td>
<td>3.3x10⁻²⁰</td>
</tr>
<tr>
<td>Thermal Expansion Coeff. (x10⁻⁶/°C)</td>
<td>5.8</td>
<td>7.5</td>
<td>7.5</td>
<td>7.8</td>
<td>13 (A axis)</td>
<td>5.9 (// a)</td>
<td>1.35 (// c)</td>
</tr>
<tr>
<td></td>
<td>8 (C axis)</td>
<td></td>
<td></td>
<td></td>
<td>6.1 (// b)</td>
<td>6.7 (// c)</td>
<td></td>
</tr>
<tr>
<td>Heat Capacity (J/gK)</td>
<td>--</td>
<td>.59</td>
<td>.88</td>
<td>.40</td>
<td>.79</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Specific Heat (J/gK)</td>
<td>.18</td>
<td>.6</td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance Parameter (w/m)</td>
<td>3400</td>
<td>770-7700</td>
<td>230</td>
<td>660-6600</td>
<td>140</td>
<td>2360</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>--------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Density (g/cm³)</td>
<td>--</td>
<td>4.56</td>
<td>2.547</td>
<td>6.46</td>
<td>3.99</td>
<td>3.69</td>
<td>2.66</td>
</tr>
<tr>
<td>Scatter Losses at 1.06 μm (cm⁻¹)</td>
<td>0.001</td>
<td>0.002</td>
<td>0.005</td>
<td></td>
<td></td>
<td>0.033*</td>
<td></td>
</tr>
<tr>
<td>Breakage Strength (Kg/mm²)</td>
<td>~ 20</td>
<td></td>
<td></td>
<td>15-20</td>
<td></td>
<td>33500</td>
<td></td>
</tr>
<tr>
<td>Inversion for 1% gain/cm(ions/cm³)</td>
<td>4x10¹⁷</td>
<td>1.1x10¹⁶</td>
<td>3.3x10¹⁷</td>
<td></td>
<td></td>
<td></td>
<td>2 ~ 10x10¹⁷</td>
</tr>
<tr>
<td>Gain Coeff. for 1J stored energy (cm⁻¹)</td>
<td>0.087</td>
<td>4.73</td>
<td>0.160</td>
<td></td>
<td></td>
<td></td>
<td>0.038-0.19</td>
</tr>
<tr>
<td>Slope Efficiency (%)</td>
<td><0.51</td>
<td>3.7</td>
<td>7</td>
<td>2.0</td>
<td></td>
<td><1.4</td>
<td></td>
</tr>
</tbody>
</table>

* ED-2 Silicate Glass
** Cr + Nd transfer time = 17 μs (compared to 6.2 ms in Nd:Cr:YAG)
* This value is for 1.1% Nd concentration
 In the same paper α_sc = 0.030 cm⁻¹ for 0.9% Nd:YAG
Nd:YAG (Neodymium-doped Yttrium Aluminum Garnet)

(i) Advantages
- 4-level laser system
- Good thermal conductivity
- Good Quantum efficiency
- High gain coefficient
- Low threshold input power required
- Commercially well developed (600 Watts laser output)
- Relatively good slope efficiency
- 100 Watts cw laser operation with the solar-pumping has been achieved already

Nd:Glass

(i) Advantages
- 4-level laser system
- Cheap! easy to fabricate to a high doping density
- Relatively low threshold input power required
- Large absorption of the solar beam at high doping densities

(ii) Disadvantages
- Poor thermal conductivity
 : but still good for a short pulse laser operation at a low repetition rate
- Broad fluorescence line width
 : increases the laser threshold
 : permits a good energy storage and shorter light pulses

Nd:YLF (Neodymium-doped Yttrium Lithium Fluoride)

(i) Advantages
- 4-level laser system
- Long fluorescence lifetime (Twice of Nd:YAG)
 : requires a low threshold input power
 : provides a good energy storage
- Low emission cross section
 : provides a good energy storage
- Low thermal lensing effect. (smaller than Nd:YAG)
Nd:Cr:GSGG (Neodymium-and chromium-codoped Gadolinium Scandium Gallium Garnet)

(i) Advantages
- 4-level laser system
- Broad absorption bands over the solar spectrum due to the Cr$^{3+}$ ions
- Effective energy transfer from the Cr$^{3+}$-ions to the Nd$^{3+}$-ions
- Low threshold input power required
- High slope efficiency
- A strong candidate for the high power laser

Alexandrite

(i) Advantages
- Tunability (700-800 nm)
- Good thermal conductivity

(ii) Disadvantages
- Broad fluorescence linewidth
 - Require a high threshold input power

Emerald

(i) Advantage
- Tunability (720-842 nm)

(ii) Disadvantage
- Short fluorescence time and broad fluorescence linewidth
 - Requires a high threshold input power

(3) Absorption of the Solar Spectrum by the Laser Crystals

The absorption spectrum of various laser crystals are shown in Fig. 1 through 5, and compared with the spectral irradiance of the air-mass-zero solar spectrum. The amount of absorption of the solar beam per unit area by laser crystals has been calculated for the input solar spectrum of 1 solar constant
Figure 1 The absorption spectrum of the Nd:YAG crystal at a doping density of 1 at% compared to the spectral irradiance of the air-mass-zero solar spectrum.
Figure 2 The absorption spectrum of the Nd:YLF (τ-polarized) crystal with a doping density of 2 at% compared to the spectral irradiance of the air-mass-zero solar spectrum.
Figure 3 The absorption spectrum of the Nd:YLF (σ-polarized) crystal with a doping density of 2 atomic percent compared to the spectral irradiance of the air-mass-zero solar spectrum.
Figure 4. The absorption spectrum of a Nd:Glass compared to the air-mass-zero solar spectrum. The glass composition:

$SiO_2 = 66\text{wt}\%$, $Nd_2O_3 = 5\text{wt}\%$, $Na_2O = 16\text{wt}\%$, $BaO = 5\text{wt}\%$, $Al_2O_3 = 2\text{wt}\%$, and $Sb_2O_3 = 1\text{wt}\%$.

Spectral Irradiance, $\text{W/cm}^2\cdot\text{nm}$.
Figure 5 The absorption spectrum of the Nd:Cr:GSGG crystal at a doping density of Cr = 1×10^{20} ions/cm3 and Nd = 2×10^{20} ions/cm3 compared to the air-mass-zero solar spectrum.
with an incident angle of 45° as shown in Fig. 9. The absorbed solar beam intensity, \(I_{abs} \), in the crystal at a given spectral range from \(\lambda_1 \) to \(\lambda_2 \) is obtained from

\[
I_{abs} = \int_{\lambda_1}^{\lambda_2} I_0(\lambda) \left(1 - e^{-N\sigma(\lambda)\cdot d}\right) d\lambda
\]

or

\[
I_{abs} = \int_{\lambda_1}^{\lambda_2} I_0(\lambda) \left(1 - e^{-E_{abs}(\lambda) d}\right) d\lambda
\]

where

\[I_0(\lambda) \] : Spectral irradiance of the incident light (W/cm^2)

\[N \] : Absorbing molecules (or ions) per cm^3

\[\sigma(\lambda) \] : Molecular absorption cross section (cm^2)

\[d \] : Pass length of the pump beam in the crystal (cm)

\[E_{abs}(\lambda) \] : Absorption coefficient (cm^{-1}) = N\sigma(\lambda).

Then the ratio of the absorbed solar beam intensity to the total incident solar beam becomes

\[
R = \frac{\int_{\lambda_1}^{\lambda_2} I_0(\lambda)(1 - e^{-E_{abs}(\lambda)d}) d\lambda}{\int_{\lambda_1}^{\lambda_2} I_0(\lambda) d\lambda}
\]

The absorbed solar beam intensity in the central portion of the crystal rod within a 1.0-mm diameter is calculated from

\[
I_{center} = \int_{\lambda_1}^{\lambda_2} I_0(\lambda) e^{-N\sigma(\lambda)(d/2 - 0.5mm)(1 - e^{-N\sigma(\lambda)\cdot 1mm})} d\lambda.
\]

The sample data and calculated results are listed in appendix A, and Graph 1 shows the results on the absorbed solar beam intensity by the various crystals at the various doping densities according to Eq. (1). The amount of the solar beam absorption is the largest in the Nd:Cr:GSGG crystal. The absorption is larger in the Nd:YAG crystal than in the Nd:Glass at the same doping density. However, a Nd:glass of a high doping density can be easily fabricated compared to any other crystals, and the solar beam absorption can be increased with a high doping density. Nevertheless, the doping density can not be increased too high because of the collisional quenching effect which reduces the fluorescence lifetime at high doping densities.

Graph 2 shows the absorbed solar beam intensity at the rod center of the Nd:YAG within a 1.0-mm diameter for various doping densities and for various
Graph 1: The absorbed solar beam by various laser crystals in an absorption thickness of 4.2 mm as a function of the Nd-ion doping density for the input pump-power of 1 solar constant (= 135.3 mW/cm²).
Graph 2: The absorbed solar beam intensity within the 1-mm diameter center of the various sizes of the Nd:YAG crystal as a function of the Nd-ion doping density.
rod diameters. The amount of the solar beam absorption at the rod center decreases as the rod diameter increases. Thus, the rod size is limited by the threshold pump power requirement at the rod center.

(4) Threshold Input Power and Slope Efficiency

Table 2, which is cited from Ref. 31, shows the population inversion densities at the threshold and the threshold input-power densities of various laser crystals. The Nd:YAG has the lowest values among Ruby, Nd:Glass, Alexandrite and Emerald. However, it has been recently observed [Ref. 36] that the threshold of the Nd:Cr:GSGG is about one half of that of the Nd:YAG for a flashlamp pumping, and its slope efficiency is twice of the Nd:YAG's [Ref. 30].

In Ref. 17, the threshold of the Nd:YLF was observed to be 510W and that of the Nd:YAG to be 600W with a tungsten lamp pumping. These values correspond to 251 solar constants (=340W/cm²) and 295 solar constants (=40W/cm²), respectively. This means that the Nd:YLF laser crystal can be easily pumped with a low power solar simulator beam.

D. Crystal Temperature and Coolant Flowrate

For a cylindrical laser rod and cooling system as shown in figure 6, the radial temperature distribution can be determined by solving an one-dimensional heat conduction equation [Ref. 37]:

\[T(r) = T(r_o) + \frac{A_o}{4K}(r_o^2 - r^2) \]

where \(A_o = \frac{P_a}{r^2L} \): rate of heat generated per unit volume in the crystal rod.
\(P_a = \frac{I_{abs}}{r^2} \) (solar constant) (rod surface area) (1-rod surface reflectance): rate of heat dissipated by the rod.
\(k \): Thermal conductivity of rod.

In steady state,
\(P_a = (\text{Heat removed from the crystal surface by the coolant}). \)

Thus,
\(P_a = hD_1L(T_R - T_F) \)

where \(h \): Surface heat transfer coefficient,
\(D_1 \): Rod diameter.
\(T_R = T(r_o) \): Rod surface temperature.
\(T_F \): Mean fluid temperature.
Table 2. Population inversion densities and thresholds of various laser crystals.

<table>
<thead>
<tr>
<th>Lasing Material</th>
<th>(N_{th}^{(4)} = \frac{8\pi\tau_0\eta^3\Delta\nu}{c^2\alpha^2})</th>
<th>(P_c = \frac{N_{th}\nu}{\tau_0})</th>
<th>(E_{\text{min}} = \frac{N_{th}\nu}{\eta})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruby 3-level</td>
<td>(N_{th}^{(3)} = \frac{N_{th}}{2})</td>
<td>(\text{[W/cm}^3\text{]})</td>
<td>(\text{[J/cm}^3\text{]})</td>
</tr>
<tr>
<td>(\lambda = 694.3 \text{ nm})</td>
<td>(\Delta\nu = 11 \text{ cm}^{-1})</td>
<td>(\tau_0 = 3.10^{-3} \text{ sec})</td>
<td>(10^{19})</td>
</tr>
<tr>
<td>(\text{Nd}^{3+}:\text{glass} 4\text{-level})</td>
<td>(\lambda = 1.06)</td>
<td>(\Delta\nu = 200 \text{ cm}^{-1})</td>
<td>(\tau_0 = 3.10^{-4} \text{ sec})</td>
</tr>
<tr>
<td>(\text{Nd}^{3+}:\text{YAG} 4\text{-level})</td>
<td>(\lambda = 1.064)</td>
<td>(\Delta\nu = 6 \text{ cm}^{-1})</td>
<td>(\tau_0 = 5.5.10^{-4} \text{ sec})</td>
</tr>
<tr>
<td>Alexandrite 4-level</td>
<td>(\lambda \lambda_0 = 720 \text{ nm})</td>
<td>(\Delta\nu = 1000 \text{ cm}^{-1})</td>
<td>(\tau_0 = 3.2.10^{-4} \text{ sec})</td>
</tr>
<tr>
<td>Emerald 4-level</td>
<td>(\lambda \lambda_0 = 740 \text{ nm})</td>
<td>(\Delta\nu = 1500 \text{ cm}^{-1})</td>
<td>(\tau_0 = 6.5.10^{-5} \text{ sec})</td>
</tr>
</tbody>
</table>

\(N_{th}^{(4)} \) = population inversion density at threshold in the metastable state for a 4-level system.
\(N_{th}^{(3)} \) = population inversion density at threshold for a 3-level system.
\(\tau_0 \) = decay time associated with radiative laser transition.
\(\eta \) = refractive index.
\(\Delta\nu \) = the width of the gain linewidth at room temperature.
\(\tau_c \) = cavity lifetime — the time at which the energy is lost in the laser cavity.
\(c \) = speed of light.
\(\lambda \) = lasing wavelength.
Figure 6 A model diagram for a laser crystal rod and a coolant jacket for the calculation of the temperature distribution in the rod.
The surface heat transfer coefficient can be determined as follows:

(i) for a laminar flow \((900 \leq N_{Re} \leq 2,000) \)

\[
h_{e} = 0.02 \frac{K_{w}}{D_{2} - D_{1}} N_{Re}^{0.45} N_{Pr}^{0.5} N_{Gr}^{0.05} \left(\frac{D_{a} - D_{1}}{L} \right) \left(\frac{D_{2}}{D_{1}} \right)^{0.8}
\]

(ii) for a turbulent flow \((12,000 < N_{Re} < 220,000) \)

\[
h_{t} = 0.02 \frac{K_{w}}{D_{2} - D_{1}} N_{Re}^{0.8} N_{Pr}^{0.33} \left(\frac{D_{2}}{D_{1}} \right)^{0.53}
\]

where \(N_{Re} = \frac{4 \pi m^{*}}{\mu (D_{2} + D_{1})} \): Reynolds number,

\(N_{Pr} = \frac{C_{p} \mu}{K_{w}} \): Prandtl number,

\(N_{Gr} = \left[(D_{2} - D_{1})^{3} \rho_{w} g \gamma (T_{R} - T_{F}) \right] / \mu^{2} \): Grashof number,

\(K_{w} \): Thermal conductivity of the coolant,

\(D_{2} \): Inside diameter of the coolant jacket,

\(\mu \): Viscosity of the coolant,

\(C_{p} \): Specific heat of the coolant

\(m^{*} \): Mass flow rate

\(\rho_{w} \): Density of coolant,

\(\gamma \): Volumetric thermal expansion coefficient,

\(g \): Gravitational constant.

The axial temperature gradient along the laser crystal can be approximated as

\[
\Delta T_{R} = \Delta T_{F} = \frac{P_{a}}{m^{*} C_{p}}
\]

The sample data and calculations are listed in Appendix B. Graph 3 shows the radial temperature distribution of the various crystals with a rod shape of 3.2mm diameter x 75mm long for an input solar beam intensity of 4,000 solar constants and for a water flowrate of 0.5 gallon per minute. The rod temperature of the Nd:Cr:GSGG crystal is the highest among the four crystals because of its largest absorption of the solar spectrum. Since the thermal conductivity of the Nd:Cr:GSGG is higher than that of the Nd:YLF, the actual temperature of the GSGG crystal will be very low for the same laser output as the Nd:YAG's or Nd:YLF's. Graph 4 shows the radial temperature distribution of the Nd:YAG of an 1.0 atomic percent doping density for various coolant flowrates. There is not a significant temperature difference at the coolant flowrates above 0.5 gallon/minute. Graph 5 shows the axial temperature distribution of the Nd:YAG crystal of an 1.0 atomic percent doping density for various coolant flowrates. The flowrates below 0.5 gallon/minute are the laminar flows and those above 2.0 gallon/minute are the turbulent flows. The temperature difference is not significant at the flowrates above 0.5 gallon/minute.
Graph 3 Radial temperature distribution of various laser crystals at a water flowrate of 1.5 gal/min. The laser rod size considered was 3.2 mm (diameter) x 75 mm (long), and the input power density was 1 solar constant.
Graph 4 Radial temperature distribution of a Nd:YAG crystal at various water flowrates. The conditions considered were the same as those in Graph 3.
Graph 5 Axial temperature distribution of a Nd:YAG crystal at various water flowrates. The same conditions as shown in Graph 3 were considered.
E. Spectral and Spatial Distribution of the Tarmack Solar-Simulator Beam

The experimental setup used to measure the spatial distribution of the solar-simulator beam at the focus of a conical collector is shown in figure 7. The dimensions of the conical collector and the coordinates for the spatial distribution are shown in figure 8. Graphs 6, 7 and 8 show the three dimensional intensity distribution of the solar-simulator beam and the location of the laser crystal.

The experimental setup used to measure the spectral distribution of the solar-simulator beam at the focus of the conical collector is basically the same as the one shown in figure 7 except the use of a lens between the spectrometer and the diffuse surface instead of the fiber optics. A quartz lens was used for the UV transmission. Graph 9 shows the absolute intensity of the Tarmarack solar-simulator at the simulator input current of 200 A. The intensity at the focus of the conical collector is about 1,000 times higher than that of the air-mass-zero solar spectrum. At the wavelength of about 830nm there appear the line spectra of the xenon gas.

Graph 10 shows the spectral intensities of the solar-simulator beam at the various solar-simulator input currents. The peak intensity at \(I = 600 \) A is about 6 times higher than that at \(I = 200 \) A.

F. Laser System and Expected Laser Output

Figure 9 shows the schematic diagram of the experimental setup for the laser system, and figure 10 shows the detailed diagram of the laser crystal holder and the cooling water jacket. The mirror \(M_1 \) has a reflectivity of 99.5% at \(\lambda = 1.06 \) m and a curvature of 0.3 m. The reflectivity of the mirror \(M_2 \), which has a curvature of 0.3 m, is changed to several values for the maximum laser output.

The Tamarack solar-simulator provides 4-kW optical beam power [Ref. 38] at the electrical input power of 45 kW which is obtained with the input current of 600 A and the DC voltage of 75 volts. Assuming that there is no loss on the conical reflector and using the same optical conversion efficiency as the one achieved by H. Arash, et al [Ref. 9], the expected maximum laser output power can be calculated for a Nd:YAG crystal as follows:

\[
P_{\text{Nd:YAG}} = (0.0164)(4\text{kw}) = 65.6 \text{ W.}
\]

The slope efficiency of the Nd:Cr:GSGG crystal can be assumed to be twice
Figure 7 The systematic diagram for the spatial and spectral measurements of the solar-simulator beam at the focus of a conical collector.
Figure 8 Dimensions of the conical collector used to focus down the solar-simulator beam, and the coordinates for the spatial distribution measurement of the beam at its focus.
Graph 6. Spatial Distribution of the Solar-Simulator Beam at the Focus of the Collector Cone
Graph 7. Spatial Distribution of the Solar-Simulator Beam at the Focus of the Collector Cone.
Graph 8. Spatial Distribution of the Solar-Simulator Beam at the Focus of the Collector Cone.
Graph 9 The absolute intensity of the solar-simulator spectrum at the input current of 200 A compared with the air-mass-zero solar spectrum.
Graph 10 The spectral irradiances of the solar simulator beam measured with an OMA at various solar-simulator input currents.
Figure 9 Setup for the solid state laser experiments with a Tarmarack solar-simulator pumping.
higher than that of the Nd:YAG crystal according to Refs. 30 and 36. Then the expected laser output with a Nd:Cr:GSGG crystal will be

\[P_{\text{Nd:Cr:GSGG}} = 2 \times 65.6 \text{ W} = 131.2 \text{ W}. \]

G. Conclusion

Nd:YAG, Nd:Cr:GSGG and Nd:YLF crystals are good candidates for the solar-pumped CW laser material. Among them, Nd:Cr:GSGG has the largest absorption of the solar spectrum, and possibly can be scaled up to a high power laser. The thermal problem is not significant for the crystals except the Nd:Cr:GSGG up to 4,000 solar constants pump power with a flowrate less than 2 galon/minute. The detailed calculation and experimental measurements should be done during the next project period to determine the maximum pump power for each crystal before the thermal problem becomes significant.
Appendix A. Absorption of the solar beam by various laser crystals.

Nd:YAG

<table>
<thead>
<tr>
<th>INCIDENT ANGLE (in degree)</th>
<th>45</th>
</tr>
</thead>
</table>

SOLAR SPECTRUM

<table>
<thead>
<tr>
<th>RANGE (nm)</th>
<th>115.0 - 1000000.0</th>
</tr>
</thead>
</table>

ABSORPTION SPECTRUM OF LASANT

<table>
<thead>
<tr>
<th>RANGE (nm)</th>
<th>300.0 - 910.0</th>
</tr>
</thead>
</table>

INTEGRATED SOLAR INTENSITY (mW/cm²)

<table>
<thead>
<tr>
<th>DIA. LENGTH (cm)</th>
<th>ROD PUMPING DENSITY (ions/cm³)</th>
<th>ABSORBED SOLAR INTENSITY (mW/cm²)</th>
<th>ABSORBED RATIO (Abs. S.I./Integ. S.I.)</th>
<th>ABSORBED POWER AT CENTER (mW/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.10</td>
<td>6.50E+19</td>
<td>1.363</td>
<td>1.01</td>
<td>1.363</td>
</tr>
<tr>
<td></td>
<td>6.50E+20</td>
<td>2.597</td>
<td>1.93</td>
<td>2.597</td>
</tr>
<tr>
<td></td>
<td>1.43E+20</td>
<td>2.843</td>
<td>2.10</td>
<td>2.843</td>
</tr>
<tr>
<td></td>
<td>1.90E+20</td>
<td>3.668</td>
<td>2.71</td>
<td>3.668</td>
</tr>
<tr>
<td></td>
<td>2.60E+20</td>
<td>4.819</td>
<td>3.56</td>
<td>4.819</td>
</tr>
<tr>
<td></td>
<td>2.86E+20</td>
<td>5.825</td>
<td>3.86</td>
<td>5.825</td>
</tr>
<tr>
<td></td>
<td>3.25E+20</td>
<td>5.816</td>
<td>4.30</td>
<td>5.816</td>
</tr>
<tr>
<td></td>
<td>3.90E+20</td>
<td>6.753</td>
<td>4.99</td>
<td>6.753</td>
</tr>
<tr>
<td></td>
<td>5.20E+20</td>
<td>8.481</td>
<td>6.27</td>
<td>8.481</td>
</tr>
<tr>
<td></td>
<td>6.50E+20</td>
<td>10.047</td>
<td>7.43</td>
<td>10.047</td>
</tr>
<tr>
<td>.20</td>
<td>6.50E+19</td>
<td>2.607</td>
<td>1.93</td>
<td>1.300</td>
</tr>
<tr>
<td></td>
<td>6.50E+20</td>
<td>4.819</td>
<td>3.56</td>
<td>2.391</td>
</tr>
<tr>
<td></td>
<td>1.43E+20</td>
<td>5.225</td>
<td>3.86</td>
<td>2.589</td>
</tr>
<tr>
<td></td>
<td>1.90E+20</td>
<td>6.613</td>
<td>4.09</td>
<td>3.259</td>
</tr>
<tr>
<td></td>
<td>2.60E+20</td>
<td>8.481</td>
<td>6.27</td>
<td>4.146</td>
</tr>
<tr>
<td></td>
<td>2.86E+20</td>
<td>9.125</td>
<td>6.74</td>
<td>4.447</td>
</tr>
<tr>
<td></td>
<td>3.25E+20</td>
<td>10.047</td>
<td>7.43</td>
<td>4.874</td>
</tr>
<tr>
<td></td>
<td>3.90E+20</td>
<td>11.483</td>
<td>8.49</td>
<td>5.528</td>
</tr>
<tr>
<td></td>
<td>5.20E+20</td>
<td>14.050</td>
<td>10.38</td>
<td>6.664</td>
</tr>
<tr>
<td></td>
<td>6.50E+20</td>
<td>16.304</td>
<td>12.05</td>
<td>7.626</td>
</tr>
<tr>
<td>.30</td>
<td>6.50E+19</td>
<td>3.754</td>
<td>2.77</td>
<td>1.244</td>
</tr>
<tr>
<td></td>
<td>6.50E+20</td>
<td>7.291</td>
<td>5.39</td>
<td>2.362</td>
</tr>
<tr>
<td></td>
<td>1.43E+20</td>
<td>9.100</td>
<td>6.73</td>
<td>2.944</td>
</tr>
<tr>
<td></td>
<td>1.90E+20</td>
<td>11.483</td>
<td>8.49</td>
<td>3.662</td>
</tr>
<tr>
<td></td>
<td>2.60E+20</td>
<td>12.292</td>
<td>9.09</td>
<td>3.899</td>
</tr>
<tr>
<td></td>
<td>2.86E+20</td>
<td>13.441</td>
<td>9.93</td>
<td>4.231</td>
</tr>
<tr>
<td></td>
<td>3.25E+20</td>
<td>15.211</td>
<td>11.24</td>
<td>4.730</td>
</tr>
<tr>
<td></td>
<td>3.90E+20</td>
<td>18.320</td>
<td>13.54</td>
<td>5.569</td>
</tr>
<tr>
<td></td>
<td>5.20E+20</td>
<td>21.003</td>
<td>15.52</td>
<td>6.257</td>
</tr>
<tr>
<td>.50</td>
<td>6.50E+19</td>
<td>5.816</td>
<td>4.30</td>
<td>1.147</td>
</tr>
<tr>
<td></td>
<td>6.50E+20</td>
<td>10.047</td>
<td>7.43</td>
<td>1.934</td>
</tr>
<tr>
<td></td>
<td>1.43E+20</td>
<td>10.780</td>
<td>7.97</td>
<td>2.066</td>
</tr>
<tr>
<td></td>
<td>1.90E+20</td>
<td>13.202</td>
<td>9.76</td>
<td>2.488</td>
</tr>
<tr>
<td></td>
<td>2.60E+20</td>
<td>16.304</td>
<td>12.05</td>
<td>3.002</td>
</tr>
<tr>
<td></td>
<td>2.86E+20</td>
<td>17.338</td>
<td>12.81</td>
<td>3.167</td>
</tr>
<tr>
<td></td>
<td>3.25E+20</td>
<td>18.793</td>
<td>13.89</td>
<td>3.394</td>
</tr>
<tr>
<td></td>
<td>3.90E+20</td>
<td>21.003</td>
<td>15.52</td>
<td>3.727</td>
</tr>
<tr>
<td></td>
<td>5.20E+20</td>
<td>24.811</td>
<td>18.34</td>
<td>4.270</td>
</tr>
<tr>
<td></td>
<td>6.50E+20</td>
<td>28.025</td>
<td>20.71</td>
<td>4.699</td>
</tr>
<tr>
<td>.70</td>
<td>6.50E+19</td>
<td>7.640</td>
<td>5.65</td>
<td>1.065</td>
</tr>
</tbody>
</table>

45
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nd:YAG

SOLAR SPECTRUM: 115.0 - 1000000.0
ABSORPTION SPECTRUM OF LASANT: 300.0 - 900.0
INCIDENT ANGLE: 45°

INTEGRATED SOLAR INTENSITY (mW/cm²) = 135.3

<table>
<thead>
<tr>
<th>ROD DIA. (cm)</th>
<th>PUMPING LENGTH (cm)</th>
<th>DOPING DENSITY (ions/cm³)</th>
<th>ABSORBED SOLAR INTENSITY (mW/cm²)</th>
<th>RATIO (Abs. S.I./Integ. S.I.)(%)</th>
<th>ABSORBED POWER AT CENTER (mW/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.10</td>
<td>.14</td>
<td>1.30E+20</td>
<td>2.594</td>
<td>1.92</td>
<td>2.594</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.43E+20</td>
<td>2.829</td>
<td>2.09</td>
<td>2.829</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.95E+20</td>
<td>3.734</td>
<td>2.76</td>
<td>3.734</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.60E+20</td>
<td>4.793</td>
<td>3.54</td>
<td>4.793</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.90E+20</td>
<td>6.714</td>
<td>4.96</td>
<td>6.714</td>
</tr>
<tr>
<td>.20</td>
<td>.28</td>
<td>1.30E+20</td>
<td>4.793</td>
<td>3.54</td>
<td>2.378</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.43E+20</td>
<td>5.197</td>
<td>3.84</td>
<td>2.574</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.95E+20</td>
<td>6.714</td>
<td>4.96</td>
<td>3.308</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.60E+20</td>
<td>8.423</td>
<td>6.23</td>
<td>4.121</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.90E+20</td>
<td>11.407</td>
<td>8.43</td>
<td>5.490</td>
</tr>
<tr>
<td>.30</td>
<td>.42</td>
<td>1.30E+20</td>
<td>6.714</td>
<td>4.96</td>
<td>2.199</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.43E+20</td>
<td>7.248</td>
<td>5.36</td>
<td>2.368</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.95E+20</td>
<td>9.224</td>
<td>6.82</td>
<td>2.981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.60E+20</td>
<td>11.407</td>
<td>8.43</td>
<td>3.636</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.90E+20</td>
<td>15.099</td>
<td>11.16</td>
<td>4.693</td>
</tr>
<tr>
<td>.50</td>
<td>.71</td>
<td>1.30E+20</td>
<td>9.983</td>
<td>7.38</td>
<td>1.922</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.43E+20</td>
<td>10.710</td>
<td>7.92</td>
<td>2.052</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.95E+20</td>
<td>13.348</td>
<td>9.87</td>
<td>2.510</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.60E+20</td>
<td>16.181</td>
<td>11.96</td>
<td>2.978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.90E+20</td>
<td>20.826</td>
<td>15.39</td>
<td>3.692</td>
</tr>
<tr>
<td>.70</td>
<td>.99</td>
<td>1.30E+20</td>
<td>12.724</td>
<td>9.40</td>
<td>1.715</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.43E+20</td>
<td>13.591</td>
<td>10.05</td>
<td>1.820</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.95E+20</td>
<td>16.700</td>
<td>12.34</td>
<td>2.183</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.60E+20</td>
<td>19.982</td>
<td>14.77</td>
<td>2.543</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.90E+20</td>
<td>25.259</td>
<td>18.67</td>
<td>3.076</td>
</tr>
</tbody>
</table>

Nd:YLF (PHI_POLARIZED)

RANGE (nm)
SOLAR SPECTRUM 115.0 - 1000000.0
ABSORPTION SPECTRUM OF LASANT 300.0 - 900.0
INCIDENT ANGLE (in degree) = 45

INTEGRATED SOLAR INTENSITY (mW/cm²) = 135.3

<table>
<thead>
<tr>
<th>ROD DIA. (cm)</th>
<th>PUMPING LENGTH (cm)</th>
<th>DOPING DENSITY (ions/cm³)</th>
<th>ABSORBED SOLAR INTENSITY (mW/cm²)</th>
<th>RATIO (Abs. S.I./Integ. S.I.)(%)</th>
<th>ABSORBED POWER AT CENTER (mW/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.10</td>
<td>.14</td>
<td>1.30E+20</td>
<td>1.647</td>
<td>1.22</td>
<td>1.647</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.60E+20</td>
<td>3.165</td>
<td>2.34</td>
<td>3.165</td>
</tr>
<tr>
<td>.20</td>
<td>.28</td>
<td>1.30E+20</td>
<td>3.165</td>
<td>2.34</td>
<td>1.580</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.60E+20</td>
<td>5.869</td>
<td>4.34</td>
<td>2.921</td>
</tr>
<tr>
<td>.30</td>
<td>.42</td>
<td>1.30E+20</td>
<td>4.568</td>
<td>3.38</td>
<td>1.510</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.60E+20</td>
<td>8.208</td>
<td>6.07</td>
<td>2.705</td>
</tr>
<tr>
<td>.50</td>
<td>.71</td>
<td>1.30E+20</td>
<td>7.080</td>
<td>5.23</td>
<td>1.403</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.60E+20</td>
<td>12.053</td>
<td>8.91</td>
<td>2.338</td>
</tr>
<tr>
<td>.70</td>
<td>.99</td>
<td>1.30E+20</td>
<td>9.262</td>
<td>6.85</td>
<td>1.301</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.60E+20</td>
<td>15.095</td>
<td>11.16</td>
<td>2.043</td>
</tr>
<tr>
<td>1.00</td>
<td>1.41</td>
<td>1.30E+20</td>
<td>12.053</td>
<td>8.91</td>
<td>1.168</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.60E+20</td>
<td>18.662</td>
<td>13.79</td>
<td>1.698</td>
</tr>
<tr>
<td>1.50</td>
<td>2.12</td>
<td>1.30E+20</td>
<td>15.761</td>
<td>11.65</td>
<td>.988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.60E+20</td>
<td>22.992</td>
<td>16.99</td>
<td>1.300</td>
</tr>
<tr>
<td>2.00</td>
<td>2.33</td>
<td>1.30E+20</td>
<td>18.662</td>
<td>13.79</td>
<td>.849</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.60E+20</td>
<td>26.165</td>
<td>19.34</td>
<td>1.039</td>
</tr>
<tr>
<td>3.00</td>
<td>4.24</td>
<td>1.30E+20</td>
<td>22.992</td>
<td>16.99</td>
<td>.650</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.60E+20</td>
<td>30.733</td>
<td>22.71</td>
<td>.728</td>
</tr>
</tbody>
</table>
Nd:YLF (Sigma_Polarized)

RANGE (nm)

<table>
<thead>
<tr>
<th>Solar Spectrum</th>
<th>115.0 - 1000000.0</th>
</tr>
</thead>
</table>

Absorption Spectrum of Lasant

<table>
<thead>
<tr>
<th>Incident Angle (in degree) = 45</th>
</tr>
</thead>
</table>

Integrated Solar Intensity (mW/cm²) = 135.3

<table>
<thead>
<tr>
<th>Rod Dia. (cm)</th>
<th>Pumping Length (cm)</th>
<th>Doping Density (ions/cm³)</th>
<th>Absorbed Solar Intensity (mW/cm²)</th>
<th>Ratio (Abs. S.I./Integ. S.I.)</th>
<th>Absorbed Power at Center (mW/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.10</td>
<td>.14</td>
<td>6.50E+19</td>
<td>.618</td>
<td>.46</td>
<td>.618</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.30E+20</td>
<td>1.216</td>
<td>.90</td>
<td>1.216</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.95E+20</td>
<td>1.794</td>
<td>1.33</td>
<td>1.794</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.60E+20</td>
<td>2.355</td>
<td>1.74</td>
<td>2.355</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.86E+20</td>
<td>2.574</td>
<td>1.90</td>
<td>2.574</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.25E+20</td>
<td>2.897</td>
<td>2.14</td>
<td>2.897</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.90E+20</td>
<td>3.423</td>
<td>2.53</td>
<td>3.423</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.20E+20</td>
<td>4.427</td>
<td>3.27</td>
<td>4.427</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.50E+20</td>
<td>5.372</td>
<td>3.97</td>
<td>5.372</td>
</tr>
<tr>
<td>.20</td>
<td>.28</td>
<td>6.50E+19</td>
<td>1.216</td>
<td>.90</td>
<td>.608</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.30E+20</td>
<td>2.355</td>
<td>1.74</td>
<td>1.176</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.95E+20</td>
<td>3.423</td>
<td>2.53</td>
<td>1.709</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.60E+20</td>
<td>4.427</td>
<td>3.27</td>
<td>2.207</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.86E+20</td>
<td>4.811</td>
<td>3.56</td>
<td>2.397</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.25E+20</td>
<td>5.372</td>
<td>3.97</td>
<td>2.674</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.90E+20</td>
<td>6.263</td>
<td>4.63</td>
<td>3.112</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.20E+20</td>
<td>7.900</td>
<td>5.84</td>
<td>3.908</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.50E+20</td>
<td>9.371</td>
<td>6.93</td>
<td>4.611</td>
</tr>
<tr>
<td>.30</td>
<td>.42</td>
<td>6.50E+19</td>
<td>1.794</td>
<td>1.33</td>
<td>.598</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.30E+20</td>
<td>3.423</td>
<td>2.53</td>
<td>1.139</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.95E+20</td>
<td>4.906</td>
<td>3.63</td>
<td>1.628</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.60E+20</td>
<td>6.263</td>
<td>4.63</td>
<td>2.072</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.86E+20</td>
<td>6.773</td>
<td>5.01</td>
<td>2.238</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.25E+20</td>
<td>7.508</td>
<td>5.55</td>
<td>2.474</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.90E+20</td>
<td>8.655</td>
<td>6.40</td>
<td>2.840</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.20E+20</td>
<td>10.700</td>
<td>7.91</td>
<td>3.474</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.50E+20</td>
<td>12.473</td>
<td>9.22</td>
<td>4.000</td>
</tr>
<tr>
<td>.50</td>
<td>.71</td>
<td>6.50E+19</td>
<td>2.897</td>
<td>2.14</td>
<td>.579</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.30E+20</td>
<td>5.372</td>
<td>3.97</td>
<td>1.068</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.95E+20</td>
<td>7.508</td>
<td>5.55</td>
<td>1.483</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.60E+20</td>
<td>9.371</td>
<td>6.93</td>
<td>1.836</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.86E+20</td>
<td>10.052</td>
<td>7.43</td>
<td>1.962</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.25E+20</td>
<td>11.013</td>
<td>8.14</td>
<td>2.136</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.90E+20</td>
<td>12.473</td>
<td>9.22</td>
<td>2.392</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.20E+20</td>
<td>14.969</td>
<td>11.06</td>
<td>2.800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.50E+20</td>
<td>17.043</td>
<td>12.60</td>
<td>3.102</td>
</tr>
<tr>
<td>.70</td>
<td>.99</td>
<td>6.50E+19</td>
<td>3.932</td>
<td>2.91</td>
<td>.560</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.30E+20</td>
<td>7.104</td>
<td>5.25</td>
<td>1.094</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.95E+20</td>
<td>9.716</td>
<td>7.18</td>
<td>1.356</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.60E+20</td>
<td>11.909</td>
<td>8.60</td>
<td>1.638</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.86E+20</td>
<td>12.692</td>
<td>9.38</td>
<td>1.734</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.25E+20</td>
<td>13.784</td>
<td>10.19</td>
<td>1.863</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.90E+20</td>
<td>15.413</td>
<td>11.39</td>
<td>2.045</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.20E+20</td>
<td>18.135</td>
<td>13.40</td>
<td>2.314</td>
</tr>
<tr>
<td>1.00</td>
<td>1.41</td>
<td>6.50E+19</td>
<td>20.354</td>
<td>15.04</td>
<td>2.496</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.372</td>
<td>3.97</td>
<td>.534</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.371</td>
<td>6.93</td>
<td>.317</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>2.12</td>
<td>1.30E+20</td>
<td>12.473</td>
<td>9.22</td>
<td>1.195</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.989</td>
<td>11.06</td>
<td>1.397</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>2.83</td>
<td>2.06E+20</td>
<td>15.842</td>
<td>11.71</td>
<td>1.462</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.043</td>
<td>12.60</td>
<td>1.547</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>4.24</td>
<td>3.00E+20</td>
<td>18.811</td>
<td>13.90</td>
<td>1.659</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.723</td>
<td>16.06</td>
<td>1.812</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.00</th>
<th>1.41</th>
<th>6.50E+19</th>
<th>24.079</th>
<th>17.80</th>
<th>1.909</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>7.508</td>
<td>5.55</td>
<td>.494</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.473</td>
<td>9.22</td>
<td>.796</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>2.12</td>
<td>1.30E+20</td>
<td>16.050</td>
<td>11.86</td>
<td>.984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18.811</td>
<td>13.90</td>
<td>1.105</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>2.83</td>
<td>2.06E+20</td>
<td>19.760</td>
<td>14.60</td>
<td>1.141</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.057</td>
<td>15.56</td>
<td>1.186</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>4.24</td>
<td>3.00E+20</td>
<td>22.956</td>
<td>16.97</td>
<td>1.242</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26.071</td>
<td>19.27</td>
<td>1.317</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.00</th>
<th>1.41</th>
<th>6.50E+20</th>
<th>29.598</th>
<th>21.14</th>
<th>1.369</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>9.371</td>
<td>6.93</td>
<td>.459</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.989</td>
<td>11.06</td>
<td>.698</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>2.12</td>
<td>1.30E+20</td>
<td>18.811</td>
<td>13.90</td>
<td>.829</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.723</td>
<td>16.06</td>
<td>.905</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>2.83</td>
<td>2.06E+20</td>
<td>22.719</td>
<td>16.79</td>
<td>.926</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.079</td>
<td>17.80</td>
<td>.953</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>4.24</td>
<td>3.00E+20</td>
<td>26.071</td>
<td>19.27</td>
<td>.988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29.348</td>
<td>21.69</td>
<td>1.037</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.00</th>
<th>1.41</th>
<th>6.50E+20</th>
<th>32.012</th>
<th>23.66</th>
<th>1.077</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>12.473</td>
<td>9.22</td>
<td>.398</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18.811</td>
<td>13.90</td>
<td>.552</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>2.12</td>
<td>1.30E+20</td>
<td>22.956</td>
<td>16.97</td>
<td>.621</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26.071</td>
<td>19.27</td>
<td>.658</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>2.83</td>
<td>2.06E+20</td>
<td>27.138</td>
<td>20.06</td>
<td>.669</td>
</tr>
<tr>
<td>3.00</td>
<td>4.24</td>
<td>3.00E+20</td>
<td>30.740</td>
<td>22.72</td>
<td>.705</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.274</td>
<td>25.33</td>
<td>.740</td>
<td></td>
</tr>
</tbody>
</table>

| 1.00 | 1.41 | 6.50E+20 | 37.156 | 27.46 | .770 |
Nd:GLASS

SOLAR SPECTRUM: 115.0 - 1000000.0
ABSORPTION SPECTRUM OF LASANT: 300.0 - 900.0
INCIDENT ANGLE (in degree): 45

GLASS COMPOSITION:
- SiO2: 66 wt %
- Nd2O3: 5 wt %
- Na2O: 16 wt %
- BaO: 5 wt %
- Al2O3: 2 wt %
- Sb2O3: 1 wt %

INTEGRATED SOLAR INTENSITY (mW/cm^2): 135.3

<table>
<thead>
<tr>
<th>ROD DIAMETER (cm)</th>
<th>PUMPING LENGTH (cm)</th>
<th>DOPING DENSITY (wt % Nd2O3)</th>
<th>ABSORBED SOLAR INTENSITY (mW/cm^2)</th>
<th>RATIO (Abs. S. I. / Integ. S. I.)(%)</th>
<th>ABSORBED POWER AT CENTER (mW/cm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.10</td>
<td>.14</td>
<td>1.00</td>
<td>1.300</td>
<td>.961</td>
<td>1.300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.00</td>
<td>2.534</td>
<td>1.87</td>
<td>2.534</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.00</td>
<td>3.703</td>
<td>2.74</td>
<td>3.708</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.00</td>
<td>5.681</td>
<td>4.35</td>
<td>5.891</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.00</td>
<td>7.877</td>
<td>5.82</td>
<td>7.877</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.00</td>
<td>9.692</td>
<td>7.16</td>
<td>9.692</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.00</td>
<td>10.542</td>
<td>7.79</td>
<td>10.542</td>
</tr>
<tr>
<td>.20</td>
<td>.28</td>
<td>1.00</td>
<td>2.534</td>
<td>1.873</td>
<td>1.267</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.00</td>
<td>4.826</td>
<td>3.57</td>
<td>2.409</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.00</td>
<td>6.907</td>
<td>5.10</td>
<td>3.440</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.00</td>
<td>10.542</td>
<td>7.79</td>
<td>5.217</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.00</td>
<td>13.612</td>
<td>10.06</td>
<td>6.680</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.00</td>
<td>16.244</td>
<td>12.01</td>
<td>7.890</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.00</td>
<td>17.426</td>
<td>12.88</td>
<td>8.416</td>
</tr>
<tr>
<td>.30</td>
<td>.42</td>
<td>1.00</td>
<td>3.708</td>
<td>2.741</td>
<td>1.235</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.00</td>
<td>6.907</td>
<td>5.10</td>
<td>2.292</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.00</td>
<td>9.692</td>
<td>7.16</td>
<td>3.199</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.00</td>
<td>14.307</td>
<td>10.57</td>
<td>4.651</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.00</td>
<td>17.988</td>
<td>13.30</td>
<td>5.735</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.00</td>
<td>21.012</td>
<td>15.53</td>
<td>6.552</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.00</td>
<td>22.337</td>
<td>16.51</td>
<td>6.884</td>
</tr>
<tr>
<td>.50</td>
<td>.71</td>
<td>1.00</td>
<td>5.891</td>
<td>4.354</td>
<td>1.174</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.00</td>
<td>10.542</td>
<td>7.79</td>
<td>2.081</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.00</td>
<td>14.307</td>
<td>10.57</td>
<td>2.785</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.00</td>
<td>20.065</td>
<td>14.83</td>
<td>3.765</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.00</td>
<td>24.325</td>
<td>17.98</td>
<td>4.376</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.00</td>
<td>27.669</td>
<td>20.45</td>
<td>4.768</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.00</td>
<td>29.100</td>
<td>21.51</td>
<td>4.911</td>
</tr>
<tr>
<td>.70</td>
<td>.99</td>
<td>1.00</td>
<td>7.877</td>
<td>5.822</td>
<td>1.118</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.00</td>
<td>13.612</td>
<td>10.06</td>
<td>1.899</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.00</td>
<td>17.988</td>
<td>13.30</td>
<td>2.447</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.00</td>
<td>24.325</td>
<td>17.98</td>
<td>3.119</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.00</td>
<td>28.625</td>
<td>21.30</td>
<td>3.478</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.00</td>
<td>32.285</td>
<td>23.86</td>
<td>3.682</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.00</td>
<td>33.751</td>
<td>24.95</td>
<td>3.751</td>
</tr>
<tr>
<td>1.00</td>
<td>1.41</td>
<td>1.00</td>
<td>10.542</td>
<td>7.792</td>
<td>1.040</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.00</td>
<td>17.426</td>
<td>12.88</td>
<td>1.665</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.00</td>
<td>22.337</td>
<td>16.51</td>
<td>2.047</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.00</td>
<td>29.100</td>
<td>21.51</td>
<td>2.443</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.00</td>
<td>33.751</td>
<td>24.95</td>
<td>2.620</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>37.268</td>
<td>27.54</td>
<td>2.710</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>38.744</td>
<td>28.64</td>
<td>2.738</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>2.12</td>
<td>1.00</td>
<td>14.307</td>
<td>10.574</td>
<td>.927</td>
</tr>
<tr>
<td>2.00</td>
<td>22.337</td>
<td>16.51</td>
<td>1.364</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>27.669</td>
<td>20.45</td>
<td>1.581</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>34.715</td>
<td>25.66</td>
<td>1.763</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.00</td>
<td>39.427</td>
<td>29.14</td>
<td>1.830</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>42.927</td>
<td>31.73</td>
<td>1.860</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>44.380</td>
<td>32.80</td>
<td>1.867</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>2.83</td>
<td>1.00</td>
<td>17.426</td>
<td>12.880</td>
<td>.832</td>
</tr>
<tr>
<td>2.00</td>
<td>26.088</td>
<td>19.28</td>
<td>1.143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>31.608</td>
<td>23.36</td>
<td>1.272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>38.744</td>
<td>28.64</td>
<td>1.366</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.00</td>
<td>43.430</td>
<td>32.10</td>
<td>1.396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>46.864</td>
<td>34.64</td>
<td>1.403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>48.278</td>
<td>35.68</td>
<td>1.402</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nd:Cr:GSGG

SOLAR SPECTRUM
- RANGE: 115.0 - 1000000.0

ABSORPTION SPECTRUM OF LASANT
- RANGE: 300.0 - 920.0

INCIDENT ANGLE (in degree) = 45

DOPING DENSITY (ions/cm³):
- Cr = 1.0E+20
- Nd = 2.0E+20

INTEGRATED SOLAR INTENSITY (mW/cm²) = 135.3

<table>
<thead>
<tr>
<th>ROD DIA.</th>
<th>PUMPING LENGTH</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>.30</td>
<td>.42</td>
<td>1.00E+00</td>
</tr>
</tbody>
</table>

ROD PUMPING DOPING ABSORBED RATIO ABSORBED

<table>
<thead>
<tr>
<th>DIA.</th>
<th>LENGTH</th>
<th>DENSITY</th>
<th>SOLAR INTENSITY (Abs. S.I.)</th>
<th>POWER AT CENTER Integ. S.I. (%)</th>
<th>Dia=1mm (mW/cm²)</th>
</tr>
</thead>
</table>
| .30 | .42 | 1.00E+00| 34.282 | 25.34 | 10.774

Nd:Cr:GSGG

SOLAR SPECTRUM
- RANGE: 115.0 - 1000000.0

ABSORPTION SPECTRUM OF LASANT
- RANGE: 300.0 - 920.0

INCIDENT ANGLE (in degree) = 45

DOPING DENSITY (ions/cm³):
- Cr = 1.0E+20
- Nd = 2.0E+20

INTEGRATED SOLAR INTENSITY (mW/cm²) = 135.3

<table>
<thead>
<tr>
<th>ROD DIA.</th>
<th>PUMPING LENGTH</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>.30</td>
<td>.42</td>
<td>1.00E+00</td>
</tr>
</tbody>
</table>

ROD PUMPING DOPING ABSORBED RATIO ABSORBED

<table>
<thead>
<tr>
<th>DIA.</th>
<th>LENGTH</th>
<th>DENSITY</th>
<th>SOLAR INTENSITY (Abs. S.I.)</th>
<th>POWER AT CENTER Integ. S.I. (%)</th>
<th>Dia=1mm (mW/cm²)</th>
</tr>
</thead>
</table>
| .30 | .42 | 1.00E+00| 34.236 | 25.30 | 10.758

Nd:Cr:GSGG

SOLAR SPECTRUM
- RANGE: 115.0 - 1000000.0

ABSORPTION SPECTRUM OF LASANT
- RANGE: 300.0 - 920.0

INCIDENT ANGLE (in degree) = 45

DOPING DENSITY (ions/cm³):
- Cr = 1.0E+20
- Nd = 2.0E+20

INTEGRATED SOLAR INTENSITY (mW/cm²) = 135.3

<table>
<thead>
<tr>
<th>ROD DIA.</th>
<th>PUMPING LENGTH</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>.30</td>
<td>.42</td>
<td>1.00E+00</td>
</tr>
</tbody>
</table>

ROD PUMPING DOPING ABSORBED RATIO ABSORBED

<table>
<thead>
<tr>
<th>DIA.</th>
<th>LENGTH</th>
<th>DENSITY</th>
<th>SOLAR INTENSITY (Abs. S.I.)</th>
<th>POWER AT CENTER Integ. S.I. (%)</th>
<th>Dia=1mm (mW/cm²)</th>
</tr>
</thead>
</table>
| .30 | .42 | 1.00E+00| 34.236 | 25.30 | 10.758

Nd:Cr:GSGG

SOLAR SPECTRUM
- RANGE: 115.0 - 1000000.0

ABSORPTION SPECTRUM OF LASANT
- RANGE: 300.0 - 920.0

INCIDENT ANGLE (in degree) = 45

DOPING DENSITY (ions/cm³):
- Cr = 1.0E+20
- Nd = 2.0E+20

INTEGRATED SOLAR INTENSITY (mW/cm²) = 135.3

<table>
<thead>
<tr>
<th>ROD DIA.</th>
<th>PUMPING LENGTH</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>.30</td>
<td>.42</td>
<td>1.00E+00</td>
</tr>
</tbody>
</table>

ROD PUMPING DOPING ABSORBED RATIO ABSORBED

<table>
<thead>
<tr>
<th>DIA.</th>
<th>LENGTH</th>
<th>DENSITY</th>
<th>SOLAR INTENSITY (Abs. S.I.)</th>
<th>POWER AT CENTER Integ. S.I. (%)</th>
<th>Dia=1mm (mW/cm²)</th>
</tr>
</thead>
</table>
| .30 | .42 | 1.00E+00| 34.236 | 25.30 | 10.758

Nd:Cr:GSGG

SOLAR SPECTRUM
- RANGE: 115.0 - 1000000.0

ABSORPTION SPECTRUM OF LASANT
- RANGE: 300.0 - 920.0

INCIDENT ANGLE (in degree) = 45

DOPING DENSITY (ions/cm³):
- Cr = 1.0E+20
- Nd = 2.0E+20

INTEGRATED SOLAR INTENSITY (mW/cm²) = 135.3

<table>
<thead>
<tr>
<th>ROD DIA.</th>
<th>PUMPING LENGTH</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>.30</td>
<td>.42</td>
<td>1.00E+00</td>
</tr>
</tbody>
</table>

ROD PUMPING DOPING ABSORBED RATIO ABSORBED

<table>
<thead>
<tr>
<th>DIA.</th>
<th>LENGTH</th>
<th>DENSITY</th>
<th>SOLAR INTENSITY (Abs. S.I.)</th>
<th>POWER AT CENTER Integ. S.I. (%)</th>
<th>Dia=1mm (mW/cm²)</th>
</tr>
</thead>
</table>
| .30 | .42 | 1.00E+00| 34.236 | 25.30 | 10.758

Nd:Cr:GSGG

SOLAR SPECTRUM
- RANGE: 115.0 - 1000000.0

ABSORPTION SPECTRUM OF LASANT
- RANGE: 300.0 - 920.0

INCIDENT ANGLE (in degree) = 45

DOPING DENSITY (ions/cm³):
- Cr = 1.0E+20
- Nd = 2.0E+20

INTEGRATED SOLAR INTENSITY (mW/cm²) = 135.3

<table>
<thead>
<tr>
<th>ROD DIA.</th>
<th>PUMPING LENGTH</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>.30</td>
<td>.42</td>
<td>1.00E+00</td>
</tr>
</tbody>
</table>

ROD PUMPING DOPING ABSORBED RATIO ABSORBED

<table>
<thead>
<tr>
<th>DIA.</th>
<th>LENGTH</th>
<th>DENSITY</th>
<th>SOLAR INTENSITY (Abs. S.I.)</th>
<th>POWER AT CENTER Integ. S.I. (%)</th>
<th>Dia=1mm (mW/cm²)</th>
</tr>
</thead>
</table>
| .30 | .42 | 1.00E+00| 34.236 | 25.30 | 10.758

Nd:Cr:GSGG
Appendix B. Temperature distribution in various laser crystals.

<table>
<thead>
<tr>
<th>CRYSTAL</th>
<th>Nd:YAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROD DIAMETER (cm)</td>
<td>0.32</td>
</tr>
<tr>
<td>ROD LENGTH (cm)</td>
<td>7.5</td>
</tr>
<tr>
<td>EFFECTIVE PUMPING LENGTH (cm)</td>
<td>7</td>
</tr>
<tr>
<td>THERMAL CONDUCTIVITY (W/cm/degree C)</td>
<td>0.14</td>
</tr>
</tbody>
</table>

PUMPING SOURCE

TOTAL ABSORBED SOLAR INTENSITY (W/cm^2)	0.006753
SOLAR CONSTANT	4000
SURFACE ABSORPTION FACTOR	0.8

COOLING SYSTEM

NAME OF COOLANT	WATER
THERMAL CONDUCTIVITY (W/cm/degree C)	0.0569
VOLUMETRIC THERMAL EXPANSION COEFF. (1/degree)	6.43E-5
SPECIFIC HEAT (Cal/g/degree C)	1
(J/g/degree C) = 4.186	
DENSITY (g/cm^3)	1
VISCOSITY (g/cm/sec)	0.01
DIAMETER OF WATER JACKET (cm)	1.308
ENTERING TEMPERATURE OF COOLANT (degree C)	20
COOLANT MASS FLOW-RATE (Gal/min) = 0.5 (= 31.6 cm^3/sec)	

RATE OF TOTAL HEAT DESSIPATION BY THE ROD (W/cm²) = 152.07037576

RATE OF HEAT GENERATION PER UNIT VOLUME IN THE CRYSTAL (W/cm²) = 270.12

<table>
<thead>
<tr>
<th>Prendtl Number =</th>
<th>0.735676625659</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granshof Number without Temperature Term =</td>
<td>607.726091598</td>
</tr>
<tr>
<td>Reynold Number =</td>
<td>1480.49291043</td>
</tr>
<tr>
<td>COOLANT MASS FLOW-RATE(Gal/min) =</td>
<td>0.3 (= 18.9 cm³/min)</td>
</tr>
</tbody>
</table>

LAMINAR FLOW

HEAT TRANSFER COEFFICIENT = 2.61334646526
ROD TEMPERATURE AT THE COOLANT ENTRANCE (degree C) = 27.4775901055

AXIAL TEMPERATURE GRADIENT OF ROD & COOLANT = 1.91908751961

RADIAL TEMPERATURE DISTRIBUTION OF CRYSTAL

<table>
<thead>
<tr>
<th>RADIAL DISTANCE FROM ROD CENTER (mm)</th>
<th>TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>40.7854767224</td>
</tr>
<tr>
<td>0.160</td>
<td>40.661932939</td>
</tr>
<tr>
<td>0.320</td>
<td>40.291540081</td>
</tr>
<tr>
<td>0.480</td>
<td>39.6741258653</td>
</tr>
<tr>
<td>0.640</td>
<td>38.8097416653</td>
</tr>
<tr>
<td>0.800</td>
<td>37.6983910081</td>
</tr>
<tr>
<td>0.960</td>
<td>36.340732939</td>
</tr>
<tr>
<td>1.120</td>
<td>34.73487224</td>
</tr>
<tr>
<td>1.280</td>
<td>32.8825372939</td>
</tr>
<tr>
<td>1.440</td>
<td>30.7833190081</td>
</tr>
<tr>
<td>1.600</td>
<td>28.4371338653</td>
</tr>
</tbody>
</table>

TURBULANT FLOW

HEAT TRANSFER COEFFICIENT = 4.11570935606
ROD TEMPERATURE AT THE COOLANT ENTRANCE (degree C) = 25.2505165284

AXIAL TEMPERATURE GRADIENT OF ROD & COOLANT = 0.239290502353

RADIAL TEMPERATURE DISTRIBUTION OF CRYSTAL

<table>
<thead>
<tr>
<th>RADIAL DISTANCE FROM ROD CENTER (mm)</th>
<th>TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>37.714046367</td>
</tr>
<tr>
<td>0.160</td>
<td>37.5905212081</td>
</tr>
<tr>
<td>0.320</td>
<td>37.220070224</td>
</tr>
<tr>
<td>0.480</td>
<td>36.6026537796</td>
</tr>
<tr>
<td>0.640</td>
<td>35.7382697796</td>
</tr>
<tr>
<td>0.800</td>
<td>34.6269109224</td>
</tr>
<tr>
<td>0.960</td>
<td>33.268012081</td>
</tr>
<tr>
<td>1.120</td>
<td>31.6633166367</td>
</tr>
<tr>
<td>1.280</td>
<td>29.8110652081</td>
</tr>
</tbody>
</table>
RATE OF TOTAL HEAT DESSIPATION BY THE ROD (W/cm²) = 152.07037576

RATE OF HEAT GENERATION PER UNIT VOLUME IN THE CRYSTAL (W/cm²) = 270.12

Prandtl Number = 0.735676625659

Grashof Number without Temperature Term = 607.726091598

Reynold Number = 2467.48818405

COOLANT MASS FLOW-RATE(Gal/min) = 0.5 (= 31.6 cm³/sec)

BOUNDARY Between LAMINAR and TURBULENT flows

HEAT TRANSFER COEFF. (using LAMINAR flow equation) = 3.28873535843

ROD TEMPERATURE at COOLANT ENTRANCE (degree C) = 26.0073594604

HEAT TRANSFER COEFF. (using TURBULENT flow equation) = 1.1357132553

ROD TEMPERATURE at COOLANT ENTRANCE (degree C) = 39.0273380179

AXIAL TEMPERATURE GRADIENT OF ROD & COOLANT = 1.15145251177

RADIAL TEMPERATURE DISTRIBUTION OF CRYSTAL

<table>
<thead>
<tr>
<th>RADIAL DISTANCE FROM ROD CENTER (mm) (degree C)</th>
<th>TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>40.024069113</td>
</tr>
<tr>
<td>.160</td>
<td>39.90u5056845</td>
</tr>
<tr>
<td>.320</td>
<td>39.5301353987</td>
</tr>
<tr>
<td>.480</td>
<td>38.9127182559</td>
</tr>
<tr>
<td>.640</td>
<td>38.6483342559</td>
</tr>
<tr>
<td>.800</td>
<td>36.936833987</td>
</tr>
<tr>
<td>.960</td>
<td>35.5786656845</td>
</tr>
<tr>
<td>1.120</td>
<td>33.973381113</td>
</tr>
<tr>
<td>1.280</td>
<td>32.1211296845</td>
</tr>
<tr>
<td>1.440</td>
<td>30.0219113987</td>
</tr>
<tr>
<td>1.600</td>
<td>27.6757262559</td>
</tr>
</tbody>
</table>

TEMPERATURE DISTRIBUTION ALONG THE LENGTH OF THE CRYSTAL

<table>
<thead>
<tr>
<th>DISTANCE FROM ENTRANCE (cm) (degree C)</th>
<th>TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>27.1</td>
</tr>
<tr>
<td>.750</td>
<td>27.2151452512</td>
</tr>
<tr>
<td>1.500</td>
<td>27.3302905024</td>
</tr>
<tr>
<td>2.250</td>
<td>27.4454357535</td>
</tr>
<tr>
<td>3.000</td>
<td>27.5605810047</td>
</tr>
<tr>
<td>3.750</td>
<td>27.6757262559</td>
</tr>
<tr>
<td>4.500</td>
<td>27.7900715071</td>
</tr>
<tr>
<td>5.250</td>
<td>27.9060167582</td>
</tr>
<tr>
<td>6.000</td>
<td>28.0211620094</td>
</tr>
<tr>
<td>6.750</td>
<td>28.1363072606</td>
</tr>
<tr>
<td>7.500</td>
<td>28.2514525118</td>
</tr>
</tbody>
</table>
CRYSTAL: Nd:YLF (1 at % Nd)

ROD DIAMETER (cm) = 0.32
ROD LENGTH (cm) = 7.5
EFFECTIVE PUMPING LENGTH (cm) = 7
THERMAL CONDUCTIVITY (W/cm/degree C) = 0.06

PUMPING SOURCE
TOTAL ABSORBED SOLAR INTENSITY (W/cm^2) = 0.003996
SOLAR CONSTANT = 4000
SURFACE ABSORPTION FACTOR = 0.8

COOLING SYSTEM
NAME OF COOLANT = WATER
THERMAL CONDUCTIVITY (W/cm/degree C) = 0.0569
VOLUMETRIC THERMAL EXPANSION COEFF. (1/degree) = 6.43E-5
SPECIFIC HEAT (Cal/g/degree C) = 1.0
(Specific Heat J/g/degree C) = 4.186
DENSITY (g/cm^3) = 1.0
VISCOITY (g/cm/sec) = 0.01
DIAMETER OF WATER JACKET (cm) = 1.308
ENTERING TEMPERATURE OF COOLANT (degree C) = 20
COOLANT MASS FLOW-RATE (Gal/min) = 0.5 (= 31.6 cm^3/sec)
RATE OF TOTAL HEAT DESSIPATION BY THE ROD (W/cm²) = 89.9856688192
RATE OF HEAT GENERATION PER UNIT VOLUME IN THE CRYSTAL (W/cm³) = 159.04

Prandtl Number = .735676625659
Grashof Number without Temperature Term = 607.726091598
Reynold Number = 1480.49291043
COOLANT MASS FLOW-RATE(Gal/min) = .3 (≈ 18.9 cm³/sec)

LAMINAR FLOW

HEAT TRANSFER COEFFICIENT = 2.61334646526
ROD TEMPERATURE AT THE COOLANT ENTRANCE (degree C) = 24.5367139586

AXIAL TEMPERATURE GRADIENT OF ROD & COOLANT = 1.13559510267

RADIAL TEMPERATURE DISTRIBUTION OF CRYSTAL

<table>
<thead>
<tr>
<th>RADIAL DISTANCE FROM ROD CENTER (mm)</th>
<th>TEMPERATURE (degree C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>42.15411151</td>
</tr>
<tr>
<td>.160</td>
<td>41.98361551</td>
</tr>
<tr>
<td>.320</td>
<td>41.47212751</td>
</tr>
<tr>
<td>.480</td>
<td>40.61964751</td>
</tr>
<tr>
<td>.640</td>
<td>39.42617551</td>
</tr>
<tr>
<td>.800</td>
<td>37.89171151</td>
</tr>
<tr>
<td>.960</td>
<td>36.01625551</td>
</tr>
<tr>
<td>1.120</td>
<td>33.79980751</td>
</tr>
<tr>
<td>1.280</td>
<td>31.24236751</td>
</tr>
<tr>
<td>1.440</td>
<td>28.34393551</td>
</tr>
<tr>
<td>1.600</td>
<td>25.10451151</td>
</tr>
</tbody>
</table>

TURBULENT FLOW

HEAT TRANSFER COEFFICIENT = 4.11570935606
ROD TEMPERATURE AT THE COOLANT ENTRANCE (degree C) = 23.1069249293

AXIAL TEMPERATURE GRADIENT OF ROD & COOLANT = .136271412321

RADIAL TEMPERATURE DISTRIBUTION OF CRYSTAL

<table>
<thead>
<tr>
<th>RADIAL DISTANCE FROM ROD CENTER (mm)</th>
<th>TEMPERATURE (degree C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>40.2246606354</td>
</tr>
<tr>
<td>.160</td>
<td>40.051646354</td>
</tr>
<tr>
<td>.320</td>
<td>39.5426766354</td>
</tr>
<tr>
<td>.480</td>
<td>38.6901966354</td>
</tr>
<tr>
<td>.640</td>
<td>37.4967246354</td>
</tr>
<tr>
<td>.800</td>
<td>35.9622606354</td>
</tr>
<tr>
<td>.960</td>
<td>34.0868046354</td>
</tr>
<tr>
<td>1.120</td>
<td>31.8703566354</td>
</tr>
<tr>
<td>1.280</td>
<td>29.3129166354</td>
</tr>
</tbody>
</table>
RATE OF TOTAL HEAT DESSIPATION BY THE ROD (W/cm²) = 89.9856688192
RATE OF HEAT GENERATION PER UNIT VOLUME IN THE CRYSTAL (W/cm²) = 159.84

Prandtl Number = 0.735676625659
Grashof Number without Temperature Term = 607.726091598
Reynolds Number = 2467.48818405
COOLANT MASS FLOW-RATE (Gal/min) = 0.5 (= 31.6 cm³/sec)

BOUNDARY Between LAMINAR and TURBULENT flows
HEAT TRANSFER COEFF. (using LAMINAR flow equation) = 3.28873535843
ROD TEMPERATURE at COOLANT ENTRANCE (degree C) = 23.644713221
HEAT TRANSFER COEFF. (using TURBULENT flow equation) = 1.1357132553
ROD TEMPERATURE at COOLANT ENTRANCE (degree C) = 31.2591800266

AXIAL TEMPERATURE GRADIENT OF ROD & COOLANT = 0.681357061605

RADIAL TEMPERATURE DISTRIBUTION OF CRYSTAL

<table>
<thead>
<tr>
<th>RADIAL DISTANCE FROM ROD CENTER (mm)</th>
<th>TEMPERATURE (degree C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>41.7902785308</td>
</tr>
<tr>
<td>0.160</td>
<td>41.6197625308</td>
</tr>
<tr>
<td>0.320</td>
<td>41.1082945308</td>
</tr>
<tr>
<td>0.480</td>
<td>40.2558145308</td>
</tr>
<tr>
<td>0.640</td>
<td>39.0623425308</td>
</tr>
<tr>
<td>0.800</td>
<td>37.5278785308</td>
</tr>
<tr>
<td>0.960</td>
<td>35.6524225308</td>
</tr>
<tr>
<td>1.120</td>
<td>33.4359745308</td>
</tr>
<tr>
<td>1.280</td>
<td>30.8705345308</td>
</tr>
<tr>
<td>1.440</td>
<td>27.9801025308</td>
</tr>
<tr>
<td>1.600</td>
<td>24.7406785308</td>
</tr>
</tbody>
</table>

TEMPERATURE DISTRIBUTION ALONG THE LENGTH OF THE CRYSTAL AT CRYSTAL SURFACE

<table>
<thead>
<tr>
<th>DISTANCE FROM ENTRANCE (cm)</th>
<th>TEMPERATURE (degree C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>24.4</td>
</tr>
<tr>
<td>0.150</td>
<td>24.4681357062</td>
</tr>
<tr>
<td>0.500</td>
<td>24.5362714123</td>
</tr>
<tr>
<td>1.000</td>
<td>24.6044071185</td>
</tr>
<tr>
<td>1.500</td>
<td>24.6725428246</td>
</tr>
<tr>
<td>2.000</td>
<td>24.7406785308</td>
</tr>
<tr>
<td>2.500</td>
<td>24.808814237</td>
</tr>
<tr>
<td>3.000</td>
<td>24.8769499431</td>
</tr>
<tr>
<td>3.500</td>
<td>24.9450856493</td>
</tr>
<tr>
<td>4.000</td>
<td>25.0132213554</td>
</tr>
<tr>
<td>4.500</td>
<td>25.0813570616</td>
</tr>
</tbody>
</table>
CRYSTAL = Nd:GLASS (ABOUT 1.3 wt %)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROD DIAMETER (cm)</td>
<td>.32</td>
</tr>
<tr>
<td>ROD LENGTH (cm)</td>
<td>7.5</td>
</tr>
<tr>
<td>EFFECTIVE PUMPING LENGTH (cm)</td>
<td>7</td>
</tr>
<tr>
<td>THERMAL CONDUCTIVITY (W/cm/degree C)</td>
<td>.0135</td>
</tr>
</tbody>
</table>

PUMPING SOURCE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL ABSORBED SOLAR INTENSITY (W/cm^2)</td>
<td>.0045</td>
</tr>
<tr>
<td>SOLAR CONSTANT</td>
<td>4000</td>
</tr>
<tr>
<td>SURFACE ABSORPTION FACTOR</td>
<td>.8</td>
</tr>
</tbody>
</table>

COOLING SYSTEM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME OF COOLANT</td>
<td>WATER</td>
</tr>
<tr>
<td>THERMAL CONDUCTIVITY (W/cm/degree C)</td>
<td>.0569</td>
</tr>
<tr>
<td>VOLUMETRIC THERMAL EXPANSION COEFF. (1/degree)</td>
<td>6.43E-5</td>
</tr>
<tr>
<td>SPECIFIC HEAT (Cal/g/degree C)</td>
<td>1</td>
</tr>
<tr>
<td>(J/g/degree C)</td>
<td>4.186</td>
</tr>
<tr>
<td>DENSITY (g/cm^3)</td>
<td>1</td>
</tr>
<tr>
<td>VISCOSITY (g/cm/sec)</td>
<td>.01</td>
</tr>
<tr>
<td>DIAMETER OF WATER JACKET (cm)</td>
<td>1.308</td>
</tr>
<tr>
<td>ENTERING TEMPERATURE OF COOLANT (degree C)</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>COOLANT MASS FLOW-RATE (Gal/min)</td>
<td>.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RATE OF TOTAL HEAT DESSIPATION BY THE ROD (W/cm^2)</td>
<td>101.335212634</td>
</tr>
<tr>
<td>RATE OF HEAT GENERATION PER UNIT VOLUME IN THE CRYSTAL (W/cm^2)</td>
<td>180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prandtl Number</td>
<td>.735676625659</td>
</tr>
<tr>
<td>Grashof Number without Temperature Term</td>
<td>607.726091598</td>
</tr>
<tr>
<td>Reynolds Number</td>
<td>1480.49291043</td>
</tr>
<tr>
<td>COOLANT MASS FLOW-RATE (Gal/min)</td>
<td>.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAMINAR FLOW</td>
<td></td>
</tr>
<tr>
<td>HEAT TRANSFER COEFFICIENT</td>
<td>2.61334646526</td>
</tr>
<tr>
<td>ROD TEMPERATURE AT THE COOLANT ENTRANCE (degree C)</td>
<td>25.0800958497</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXIAL TEMPERATURE GRADIENT OF ROD & COOLANT</td>
<td>1.27882331382</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIAL TEMPERATURE DISTRIBUTION OF CRYSTAL</td>
<td></td>
</tr>
<tr>
<td>@ DISTANCE FROM ENTRANCE (cm)</td>
<td>3.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RADIAL DISTANCE FROM ROD CENTER (mm)</th>
<th>TEMPERATURE (degree C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>111.05284084</td>
</tr>
<tr>
<td>.160</td>
<td>110.199507507</td>
</tr>
<tr>
<td>.320</td>
<td>107.639507507</td>
</tr>
<tr>
<td>.480</td>
<td>103.37284084</td>
</tr>
<tr>
<td>.640</td>
<td>97.3995075066</td>
</tr>
<tr>
<td>.800</td>
<td>89.7195075066</td>
</tr>
<tr>
<td>.960</td>
<td>80.3328408399</td>
</tr>
<tr>
<td>1.120</td>
<td>69.2395075066</td>
</tr>
<tr>
<td>1.280</td>
<td>56.4395075066</td>
</tr>
<tr>
<td>1.440</td>
<td>41.9328408399</td>
</tr>
<tr>
<td>1.600</td>
<td>25.7195075066</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rate of Total Heat Dissipation by the Rod (W/cm²) = 101.335212634

Rate of Heat Generation Per Unit Volume in the Crystal (W/cm²) = 180

- **Prandtl Number = 0.735676625659**
- **Grashof Number without Temperature Term = 607.726091598**
- **Reynolds Number = 12337.4409203**
- **Coolant Mass Flow-Rate(Gal/min) = 2.5 (= 157.8 cm³/sec)**

Turbulent Flow

- **Heat Transfer Coefficient = 4.11570935606**
- **Rod Temperature at the Coolant Entrance (degree C) = 23.498793348**

Axial Temperature Gradient of Rod & Coolant = 0.153458797659

Radial Temperature Distribution of Crystal

<table>
<thead>
<tr>
<th>Radial Distance from Rod Center (cm)</th>
<th>Temperature (degree C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>108.908852067</td>
</tr>
<tr>
<td>.160</td>
<td>108.055518734</td>
</tr>
<tr>
<td>.320</td>
<td>105.495518734</td>
</tr>
<tr>
<td>.480</td>
<td>101.228852067</td>
</tr>
<tr>
<td>.640</td>
<td>95.2555187336</td>
</tr>
<tr>
<td>.800</td>
<td>87.5755187336</td>
</tr>
<tr>
<td>.960</td>
<td>78.1888520669</td>
</tr>
<tr>
<td>1.120</td>
<td>67.0955187336</td>
</tr>
<tr>
<td>1.280</td>
<td>54.2955187336</td>
</tr>
<tr>
<td>1.440</td>
<td>39.7888520669</td>
</tr>
<tr>
<td>1.600</td>
<td>23.5755187336</td>
</tr>
</tbody>
</table>

Radial Distance from Entrance to Distance from Entrance (cm) = 3.75
Rate of Total Heat Dissipation by the Rod (W/cm²): 101.335212634

Rate of Heat Generation Per Unit Volume in the Crystal (W/cm²): 180

- **Prandtl Number**: .735676625659
- **Grashof Number without Temperature Term**: 607.726091598
- **Reynold Number**: 2467.48818405
- **Coolant Mass Flow-Rate (Gal/min)**: .5 (= 31.6 cm³/sec)

Boundary Between Laminar and Turbulent Flows

- **Heat Transfer Coeff. (using Laminar flow equation)**: 3.28873535843
- **Rod Temperature at Coolant Entrance (degree C)**: 24.0812563181

- **Heat Transfer Coeff. (using Turbulent flow equation)**: 1.1357132553
- **Rod Temperature at Coolant Entrance (degree C)**: 32.6792567867

Axial Temperature Gradient of Rod & Coolant: .76729398829

Radial Temperature Distribution of Crystal

<table>
<thead>
<tr>
<th>Distance from Entrance (cm)</th>
<th>Temperature (degree C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>110.616980327</td>
</tr>
<tr>
<td>.160</td>
<td>109.763646994</td>
</tr>
<tr>
<td>.320</td>
<td>107.203646994</td>
</tr>
<tr>
<td>.480</td>
<td>102.936980327</td>
</tr>
<tr>
<td>.640</td>
<td>96.963646994</td>
</tr>
<tr>
<td>.800</td>
<td>90.283646994</td>
</tr>
<tr>
<td>.960</td>
<td>78.096980327</td>
</tr>
<tr>
<td>1.120</td>
<td>68.803646994</td>
</tr>
<tr>
<td>1.280</td>
<td>56.043646994</td>
</tr>
<tr>
<td>1.440</td>
<td>41.496980327</td>
</tr>
<tr>
<td>1.600</td>
<td>25.283646994</td>
</tr>
</tbody>
</table>

Temperature Distribution along the Length of the Crystal at Crystal Surface

<table>
<thead>
<tr>
<th>Distance from Entrance (cm)</th>
<th>Temperature (degree C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>24.9</td>
</tr>
<tr>
<td>.750</td>
<td>24.9767293988</td>
</tr>
<tr>
<td>1.500</td>
<td>25.0534587977</td>
</tr>
<tr>
<td>2.250</td>
<td>25.130181965</td>
</tr>
<tr>
<td>3.000</td>
<td>25.206915953</td>
</tr>
<tr>
<td>3.750</td>
<td>25.283646994</td>
</tr>
<tr>
<td>4.500</td>
<td>25.360376393</td>
</tr>
<tr>
<td>5.250</td>
<td>25.4371057918</td>
</tr>
<tr>
<td>6.000</td>
<td>25.5138351906</td>
</tr>
<tr>
<td>6.750</td>
<td>25.590545895</td>
</tr>
<tr>
<td>7.500</td>
<td>25.6672939883</td>
</tr>
</tbody>
</table>
CRYSTAL ** *** ** *
CRYSTAL = Nd:Cr:GSGG (Nd=2E20)
ROD DIAMETER (cm) = .32
ROD LENGTH (cm) = 7.5
EFFECTIVE PUMPING LENGTH (cm) = 7
THERMAL CONDUCTIVITY (W/cm/degree C) = .08

PUMPING SOURCE ** *** ** *
TOTAL ABSORBED SOLAR INTENSITY (W/cm^2) = .034282
SOLAR CONSTANT = 4000
SURFACE ABSORPTION FACTOR = .8

COOLING SYSTEM ** *** ** *
NAME OF COOLANT = WATER
THERMAL CONDUCTIVITY (W/cm/degree C) = .0569
VOLUMETRIC THERMAL EXPANSION COEFF. (1/degree) = 6.43E-5
SPECIFIC HEAT (Cal/g/degree C) = 1
(J/g/degree C) = 4.186
DENSITY (g/cm^3) = 1
VISCOILITY (g/cm/sec) = .01
DIAMETER OF WATER JACKET (cm) = 1.308
ENTERING TEMPERATURE OF COOLANT (degree C) = 20
COOLANT MASS FLOW-RATE (Gal/min) = 2.5 (= 157.8 cm^3/sec)
RATE OF TOTAL HEAT DESSIPATION BY THE ROD (W/cm²) = 771.994168783
RATE OF HEAT GENERATION PER UNIT VOLUME IN THE CRYSTAL (W/cm²) = 1371.28

Prandtl Number = .735676625659
Grashof Number without Temperature Term = 607.726091598
Reynold Number = 1480.49291043
COOLANT MASS FLOW-RATE (Gal/min) = .3 (= 18.9 cm³/sec)

LAMINAR FLOW
HEAT TRANSFER COEFFICIENT = 2.61334646526
ROD TEMPERATURE AT THE COOLANT ENTRANCE (degree C) = 55.134397703

AXIAL TEMPERATURE GRADIENT OF ROD & COOLANT = 9.74236018766

RADIAL TEMPERATURE DISTRIBUTION OF CRYSTAL
@ DISTANCE FROM ENTRANCE (cm) = 3.75

<table>
<thead>
<tr>
<th>RADIAL DISTANCE FROM ROD CENTER (mm)</th>
<th>TEMPERATURE (degree C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>169.707977797</td>
</tr>
<tr>
<td>.160</td>
<td>168.610953797</td>
</tr>
<tr>
<td>.320</td>
<td>165.319081797</td>
</tr>
<tr>
<td>.480</td>
<td>159.834761797</td>
</tr>
<tr>
<td>.640</td>
<td>152.155593797</td>
</tr>
<tr>
<td>.800</td>
<td>142.282377797</td>
</tr>
<tr>
<td>.960</td>
<td>130.21513797</td>
</tr>
<tr>
<td>1.120</td>
<td>115.953801797</td>
</tr>
<tr>
<td>1.280</td>
<td>99.4984417968</td>
</tr>
<tr>
<td>1.440</td>
<td>80.8490337968</td>
</tr>
<tr>
<td>1.600</td>
<td>60.0055777968</td>
</tr>
</tbody>
</table>

TURBULENT FLOW
HEAT TRANSFER COEFFICIENT = 4.11570935606
ROD TEMPERATURE AT THE COOLANT ENTRANCE (degree C) = 46.654554661

AXIAL TEMPERATURE GRADIENT OF ROD & COOLANT = 1.16908322252

RADIAL TEMPERATURE DISTRIBUTION OF CRYSTAL
@ DISTANCE FROM ENTRANCE (cm) = 3.75

<table>
<thead>
<tr>
<th>RADIAL DISTANCE FROM ROD CENTER (mm)</th>
<th>TEMPERATURE (degree C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>156.941496272</td>
</tr>
<tr>
<td>.160</td>
<td>155.844472272</td>
</tr>
<tr>
<td>.320</td>
<td>152.553400272</td>
</tr>
<tr>
<td>.480</td>
<td>147.068280272</td>
</tr>
<tr>
<td>.640</td>
<td>139.389112272</td>
</tr>
<tr>
<td>.800</td>
<td>129.51586272</td>
</tr>
<tr>
<td>.960</td>
<td>117.448632272</td>
</tr>
<tr>
<td>1.120</td>
<td>103.187320272</td>
</tr>
<tr>
<td>1.280</td>
<td>86.731960272</td>
</tr>
</tbody>
</table>
Rate of total heat dissipation by the rod (W/cm2) = 771.994168783
Rate of heat generation per unit volume in the crystal (W/cm2) = 1371.28

Prandtl Number = 0.735676625659
Graschof Number without Temperature Term = 607.726091598
Reynold Number = 2467.48918405
COOLANT MASS FLOW-RATE (Gal/min) = 0.5 (= 31.6 cm3/sec)

Boundary between Laminar and Turbulent flows

Heat transfer coeff. (using Laminar flow equation) = 3.28873535843
Rod temperature at Coolant Entrance (degree C) = 48.2263340796

Heat transfer coeff. (using Turbulent flow equation) = 1.1357132553
Rod temperature at Coolent Entrance (degree C) = 116.593395813

Axial temperature gradient of Rod & Coolant = 5.8454161126

Radial temperature distribution of crystal

<table>
<thead>
<tr>
<th>Distance from Entrance (cm)</th>
<th>Temperature (degree C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>167.025108056</td>
</tr>
<tr>
<td>0.160</td>
<td>165.928084056</td>
</tr>
<tr>
<td>0.320</td>
<td>162.637012056</td>
</tr>
<tr>
<td>0.480</td>
<td>157.151892056</td>
</tr>
<tr>
<td>0.640</td>
<td>149.472724056</td>
</tr>
<tr>
<td>0.800</td>
<td>139.599508056</td>
</tr>
<tr>
<td>0.960</td>
<td>127.532244056</td>
</tr>
<tr>
<td>1.120</td>
<td>113.270532056</td>
</tr>
<tr>
<td>1.280</td>
<td>96.8155720563</td>
</tr>
<tr>
<td>1.440</td>
<td>78.166140563</td>
</tr>
<tr>
<td>1.600</td>
<td>57.3227080563</td>
</tr>
</tbody>
</table>

Temperature distribution along the length of the crystal at crystal surface

<table>
<thead>
<tr>
<th>Distance from Entrance (cm)</th>
<th>Temperature (degree C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>54.4</td>
</tr>
<tr>
<td>0.750</td>
<td>54.9845416113</td>
</tr>
<tr>
<td>1.500</td>
<td>55.5690832225</td>
</tr>
<tr>
<td>2.250</td>
<td>56.1536248338</td>
</tr>
<tr>
<td>3.000</td>
<td>56.738166445</td>
</tr>
<tr>
<td>3.750</td>
<td>57.3227080563</td>
</tr>
<tr>
<td>4.500</td>
<td>57.9072496676</td>
</tr>
<tr>
<td>5.250</td>
<td>58.4917912788</td>
</tr>
<tr>
<td>6.000</td>
<td>59.0763320801</td>
</tr>
<tr>
<td>6.750</td>
<td>59.6608745013</td>
</tr>
<tr>
<td>7.500</td>
<td>60.2454161126</td>
</tr>
</tbody>
</table>
J. References

III. Kinetic Modeling of Solar-Pumped Iodine Laser

This report relates the work performed during the period of Sept. 1, 1986 through February 28, 1987. During this time, the work to construct a kinetic model algorithm which predicts the output parameters of a solar-pumped iodine laser (lasing time, time to threshold, and pulse energy) has progressed. To this date the kinetic model has improved such that there is good agreement between the theoretical model and the experimental data for the system, defined in the previous progress report as flashlamp-pumped iodine laser oscillator system (characterized by a cylindrical resonator cavity and pumping times of about one millisecond). The three experimental data sets given graphically in Fig. 1, 2, and 3 are for three iodides \textit{i-C}_3\textit{F}_7\textit{I}, \textit{n-C}_4\textit{F}_9\textit{I}, and \textit{t-C}_4\textit{F}_9\textit{I} used as lasants in this experimental setup. The subsequent kinetic rates found for the different gases are given in Table I. These kinetic rates are important to establish scalability for space to space power transmission. By introducing the heat equation, a diffusion time constant, the pumping rates, and the photodissociation cross-section for the three iodides (May 1986 Progress Report) into the kinetic model (NASA TP-2241); the model has been modified to incorporate a cylindrical laser cavity.

Of the three lasants the rate coefficients have been best identified for \textit{i-C}_3\textit{F}_7\textit{I}; and as reported previously with in experimentally found bounds for these coefficients, a best fit is found for the data given by this experiment. To find the best fit to the experimental data by the theoretical model an initial \textit{I}_2 density is introduced as a function of fill pressure (Oct. 1986 Progress Report) for the three lasants. In Fig. 2 and 3 for the gases \textit{n-C}_4\textit{F}_9\textit{I} and \textit{t-C}_4\textit{F}_9\textit{I}, the initial \textit{I}_2 density is retained and \textit{C}_3, \textit{C}_4, and \textit{Q}_2 (Table I) are kept constant in the theoretical model, thereby a best fit to the data using the information known about the two iodides is found by adjusting the rate coefficients. Therefore, the reaction rates are identified in the same system with similar initial conditions giving the comparative reaction rates which are tabulated in Table I.

Of the three iodides the least is known about the rate coefficients for \textit{n-C}_4\textit{F}_9\textit{I}. In spite of this, very good agreement has been obtained between the theoretical predictions and the experimental data (Fig. 2) for this gas. The predicted lasing times are shorter than that given by experiment, but Fig. 7, 8, and 9 show good agreement with the theoretical power output and the
experimental data for the power output, except very late in the pulse. The difference very late in the pulse implies a pumping mechanism which remains to be included in the model, wall effects are being investigated.

The iodide \(t - C_4F_9I \) has been identified as the preferable lasant material. As the reaction rates demonstrate (Table I), this lasant recycles easier since the recombination rate to the parent molecule is higher and the formation of the radical dymer is relatively small. In Fig. 3 the time to threshold predicted by the model is later than that of the experimental data for the gas \(t - C_4F_9I \). This implies that there is an omission in theoretical model using the rate coefficients found thus far. On the other hand, as shown in Fig. 10, 11 and 12, the power output as a function of time agrees with the experimental data as the pulse decays. This problem is being investigated and will be reported later. (Probably initial \(I_2 \) density is too large since the system maybe cleaner.)

To identify the relative contribution of a specific reaction upon the gain in the medium, the derivative of the inversion density as a function of pulse duration divided by the sum of the photodissociation rates is given in Fig. 13 through 21 for the three gases and or different fill pressure. For instance, for the reaction

\[
I^* + R \rightarrow \text{RI}
\]

\[
d I/dt = -K_1 [I^*] [R]
\]

Where the negative sign indicates a loss of inversion density, whereas a positive sign would have indicated a pumping reaction. The relative peak value for each rate is given in the key along with the reaction's sign (+ or -). If the contribution is below \(10^{-5} \), it is omitted from the graph. Also shown is the theoretical prediction for the power output normalized to one and given in the key is the peak power (W/cm\(^2\)). These graphs show explicitly that quenching by \(I_2 \) turns off the laser - a reaction that increases at higher pressures. Furthermore, the graphs give the relative size of the contribution of each of the reactions to the inversion density.

Upon examination of Fig. 1, 2 and 3, it can be seen that by adjusting the rate coefficients within the known bounds as reported previously in literature good agreement is found for the theoretical prediction of experimental data.
Therefore, a comparison of the important rate coefficients is accomplished (Table I) for these three iodides in the experiment design stated above. In addition, the theoretical model as found is used to indicate graphically the individual contribution by each of the chemical reactions to the inversion density of the lasant, showing the relative magnitudes and times the reaction contributes to the output power of the laser.

It remains to simulate multiple pumping pulses using the same gas fill for different pressures and comparing the theoretical results to the experimental data. This would further characterize the I_2 diffusion and the wall reactions in addition to be her understanding the kinetics. After this is accomplished and using the information about the kinetic rates, the model will be modified to predict data for other experimental systems. This will further define the reaction kinetics of three iodides ($i - \text{C}_3\text{F}_7\text{I}$, $t - \text{C}_4\text{F}_9\text{I}$, and $n - \text{C}_4\text{F}_9\text{I}$) and allow the establishment of scalability of the solar-pumped iodine laser for space-power applications.
Table 1 - Reaction rate coefficients found by fitting the data shown in figure 1, 2, and 3. The reaction rates found are within previously published values.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Reaction</th>
<th>$R = i$-C$_3$F$_7$</th>
<th>$R = n$-C$_4$F$_9$</th>
<th>$R = t$-C$_4$F$_9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_1</td>
<td>$R + I^* = RI$</td>
<td>3.48×10^{-12}</td>
<td>7.75×10^{-14}</td>
<td>1.66×10^{-12}</td>
</tr>
<tr>
<td>K_2</td>
<td>$R + I = RI$</td>
<td>1.38×10^{-11}</td>
<td>2.88×10^{-11}</td>
<td>1.49×10^{-11}</td>
</tr>
<tr>
<td>K_3</td>
<td>$R + R = R_2$</td>
<td>4.15×10^{-12}</td>
<td>6.05×10^{-12}</td>
<td>3.56×10^{-14}</td>
</tr>
<tr>
<td>K_4</td>
<td>$R + RI = R_2 + I$</td>
<td>7.66×10^{-17}</td>
<td>7.76×10^{-17}</td>
<td>7.58×10^{-17}</td>
</tr>
<tr>
<td>K_5</td>
<td>$I_2 + R = RI + I$</td>
<td>6.27×10^{-13}</td>
<td>1.94×10^{-13}</td>
<td>2.34×10^{-12}</td>
</tr>
<tr>
<td>C_1</td>
<td>$I^* + I + RI = I_2 + RI$</td>
<td>1.09×10^{-33}</td>
<td>1.11×10^{-33}</td>
<td>1.09×10^{-33}</td>
</tr>
<tr>
<td>C_2</td>
<td>$I + I + RI = I_2 + RI$</td>
<td>2.42×10^{-32}</td>
<td>2.76×10^{-32}</td>
<td>2.28×10^{-32}</td>
</tr>
<tr>
<td>C_3</td>
<td>$I^* + I + I_2 = I_2 + I_2$</td>
<td>8×10^{-32}</td>
<td>8×10^{-32}</td>
<td>8×10^{-32}</td>
</tr>
<tr>
<td>C_4</td>
<td>$I + I + I_2 = I_2 + I_2$</td>
<td>3.8×10^{-30}</td>
<td>3.8×10^{-30}</td>
<td>3.8×10^{-30}</td>
</tr>
<tr>
<td>Q_1</td>
<td>$I^* + RI = I + RI$</td>
<td>1.08×10^{-16}</td>
<td>1.17×10^{-15}</td>
<td>8.45×10^{-16}</td>
</tr>
<tr>
<td>Q_2</td>
<td>$I^* + I_2 = I + I_2$</td>
<td>4.96×10^{-11}</td>
<td>4.96×10^{-11}</td>
<td>4.96×10^{-11}</td>
</tr>
</tbody>
</table>
List of Figures

Figures 1, 2 and 3. Theoretical predictions compared with experimental data for a flashlamp pumped laser oscillator with cylindrical geometry.

Figures 4 through 12. Theoretical predictions compared with experimental data for the power output for a flashlamp pumped laser oscillator with cylindrical geometry for three different iodides and three pressures.

Figures 13 through 21 Using the kinetic rate coefficients given in Table I for different iodine gases. The derivative with respect to time of the inversion density versus time is plotted for the different reactions given in Table I. The derivatives are renormalized to the sum of the photodissociation rates for RI and I$_2$ and the pulse power output is normalized to its peak. The peaks of the derivatives and the power are given in the key for the different reactions.
Figure 3
GAS I-C3F7I
ALL PULSES NORMALIZED
TO THEIR PEAK VALUE

- LASER POWER THEORY
+ PULSE POWER DATA
* LASER POWER DATA

Figure 4
Figure 5
40 TORR

GAS N-C4F9I
ALL PULSES NORMALIZED TO THEIR PEAK VALUE

Laser Power Theory
Pulse Power Data
Laser Power Data

Figure 9
Figure 13
Figure 15
Figure 16
Figure 18
END DATE
OCT. 6, 1987

Figure 20