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Introduction

This report will provide a survey of recent research efforts in fiber optics at the Fiber and
Electrooptiés Research Center at Virginia Tech. With support during 1986, work has continued
toward the development of fiber optic sensors with major focus on the technique of modal
domain sensing (MDS) and its ‘application to vibration and acoustic emission analysis. New
work aimed at understanding some of the mechanisms of MDS is also underway. In addition,
imbedded interferometric fiber sensors capable of detecting temperature, strain and differen-
tial temperature levels in graphite epoxy composites have been studied along with imbedded
fiber arrays for the detection of impact damage. A related new program dedicated to the de-
velopment of acoustic fiber waveguides has been started with the addition of a new facuity
member, Dr. Ahmad Safaai-Jazi. Each of these areas will be addressed individually with ref-
erences to recent thesis topics, thechnical papers and conference proceedings. Since MDS
represents the major research thrust at this time, a brief theoretical background of single fiber
interferometric or modal domain sensors will be given to provide a foundation for the technical
survey of work being done in this area. Readers will be referenced to the appendices for the

specific articles and publications reviewed in this report.
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Current Research Areas

The Modal Domain Sensor

Presently, modal domain sensing represents the largest area of our fiber sen.sor re-
search. Modal domain sensing is a term which may be considered synonomous with single
fiber interferometric sensing. Traditional fiber optic sensors employing an interferometric
technique have taken the form of standard Mach-Zehnder type systems with single mode fi-
bers comprising the two arms of the interferometer. By exposing one arm of the system to
external stimuli (temperature or strain) induced phase changes in the light signal propagating
in this arm may be detected at the interferometer output and related to the applied temper-
ature or strain. Modal domain sensor systems seek to exploit a similar interferometric effect

between the modes of a low moded multimode fiber.

We first select a fiber which is designed to operate as single mode at a particular wave-
length. If we instead operate the fiber at a slightly shorter wavelength we effectively increase
the V number of the fiber and several low order modes are excited. Each of these modes may
be described by their specific propagation constant (wave number) B, For a fiber of length

L, the phase ¢ of the i th mode at the fiber end may be written as
¢ = BL ()

If an optical fiber is exposed to some level of strain, it is known that a phase change will be
induced in the propagating light. The change in phase of the i th mode, Ag,, can be described

as
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Just as the two arms of the Mach-Zehnder interferometer transmit signals of different relative
phase, the low order modes of the MDS propagate with different phase, this phase difference
being related to the applied strain. The fact.that each mode experiences a distinct phase
change suggests the existence of a potential interference mechanism between these different
modes analagous to the interference mechanism in the two fiber interferometer. This is in-
deed the case and has been demonstrated both theoretically and experimentally. As the
single, low-moded fiber is exposed to some time varying stress, the subsequent phase
changes in the various modes result in a phase modulation of the light at the fiber output. The
far field output pattern of the 6ptica| fiber consists of a collection of several biobs or lobes;
an interference pattern generated by the different modes of the fiber. The phase moduiation
induced through the perturbation of the fiber manifests itself as a movement and intensity
variation of this lobe pattern. Spatially filtering the pattern (placing a small aperture in the far
field of the fiber output) gives a sensor signal which is amplitude modulated at the frequency
of the time dependent strain applied to the fiber. Detecting the fiber output with a photodiode
allows one to demodulate the AM sensor signal thus detecting the applied strain. Earlier in-
vestigators of this technique perturbed the fiber by coupling it to a piezoelectric (PZT) device.
In this way a sinusoidaly time dependent strain could be excited in the fiber and subsequently
detected in the photodiode signal. Though this system has proved to be considerably less

sensitive than the traditional single mode interferometer it represents a much simpler sensor.

The Modal Domain Sensor in Vibration Analysis

Our work in MDS has concentrated on applying this sensor to somewhat more complex
systems. Specifically, we wish to demonstrate the use of this sensor in the monitoring of
structural vibration and acoustic emissions. This first application was the subject of a recent
masters thesis which may be referred to in Appendix A. Where previous workers relied on

PZT devices to initiate strain in the fiber, we coupled the fiber to some simple laboratory

Current Research Areas 3




vibrational systems with the hope of inducing strain, These included a vibrating string, a
clamped-free or cantileverd beam and finally a large free-free beam structure. The purpose
of this work was to investigate the sensors abilty to respond to the various harmonic fre-
quencies generated by a vibrating structure. By coupling the fiber to the structure’s surface,
time dependent strains, introduced into the fiber through the vibration, should occur at these
same frequencies and subsequently modulate the light signal. If so, then the predicted com-
ponent frequencies of the vibrating structure should appear in the frequency spectrum of the
demodulated fiber output. By performing fast Fourier transforms on digitized sensor signals
we were able to compare frequency spectra obtained from each structure with the structure’s
calculated harmonic frequencies. In each case, the fundamental component and sometimes
several higher order harmonics, depending on the structure, were available in the signal
spectrums. However, in addition to the expected structural frequencies the spectra also con-
tained several anomolous components not indicative of the structures’ motion. Often these
anomolies could be attributed to known effects within the sensor itself. Detailed studies of this

application are available in Appendix A.

The Modal Domain Sensor in Acoustic Emission Detection

In a second application of modal domain sensing, low-moded fiber was imbedded in
symmetric cross-ply graphite epoxy specimens. Failure of graphite fibers and matrix material
under tensile loads results in the release of acoustic energy. This phenomena, known as
acoustic emission, results in the propagation of a stress wave throughout the sample. Fail-
ures were generated by loading the composite specimen on an automated tension frame. As
a reference, PZT transducers were coupled to the sample’s surface. PZT and fiber sensor
responses were monitored simuitaneously. Excellent time correlation between the two sen-
sors was observed during the occurance of acoustic emissions. Where the PZT response was
characterized by very short, sharp pulses the fiber response was characterized by a rapid
reaction to the emission followed by a relatively long, damped response. This is due to the
fact that the acoustic stress wave propagates throughout the specimen and its influence is

distributed over the fiber length. A similar experiment was performed on a balsa wood lami-
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nate sample. Four rectangular balsa wood plys were bonded in an alternating 0° — 80° ori-
entation with a sirmgle optical fiber imbedded in the 0° direction. The specimen was set up as
a cantilevered beam and failures were initiated by loading the beam’s free end at its center.
Sensor response was similar to that seen during graphite composite failure monitoring: rapid,
sharp responses with long decay times. Details of these two studies are available in the

conference proceedings shown in Appendices B and C.

Effects of DC Strain on MDS

Although this technique has seen a range of applications in the laboratory with a fair
amount of success, there seems to be an inherent problem of reproducibilty with this sensor.
Sensor response seems to be a strong function of the state of the lobe pattern. Placement
of the aperture, shape of the lobe pattern and launching of light into the fiber all affect sensor
behaviour. It is known that the interference or lobe pattern which characterizes the fiber
output is related to the induced strain in the fiber. These strains cause rotation, redistribution
and intensity variations of these lobes. Precisely how strain and these observed reactions in
the speckle pattern are related is not understood. Work aimed at better defining the corre-
lation between applied strain, speckie pattern behaviour and subsequent sensor response is
currently underway. The effects of axial strain on speckle pattern and MDS behaviour was the
subject of recently complieted mésters thesis. The optical fiber was mounted in an automated
load frame capable of providing precisely controlled strain rates. As fiber axial load was
continually increased speckle pattern behaviour and sensor response were observed. The
slow, continuous stress caused a noticeable rotation of the output pattern. Spatial filtering
and detection of the fiber output during the continuous strain process yielded a sinusoidal
sensor signal. This type of behaviour would tend to indicate that there are ideal levels of
applied DC strain, strain biasing if you like, which could maximize the fiber’s sensitivity.
Perturbations around this constant strain level, induced through vibrations or acoustic emis-
sions, could be sensed more effectively due to the presence of this DC strain. This was ob-
served experimentally when the “DC strained” fiber was also coupled to a vibrating

clamped-free beam under constant, controlled strain. By adjusting the strain level via the load
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frame the sensor’s respones to the beam’s vibration could be maximized; the small strains
induced by the beam were augmented at particular levels of DC strain. A complete de-

scription of this work is given in Appendix D.

Additional Areas of Fiber Sensing

In addition to research utilizing modal domain methods we are also exploring techniques
which exploit the polarizing effects of single mode fibers under applied stress (vibration,
pressure). Strain induced birefringence in a single mode fiber causes modulation in the
polarization states of the modes orthogonal polarization components. By analyzing the
polarization state of the fiber otput we may detect this modulation. Moderate success has
been achieved in these early investigations while trying to detect simple structural vibrations
such as those encountered in a cantileverd beam. This work will be presented at an upcoming
IEEE conference and is referenced in Appendix E. Future work in this area will include appli-
cation of polarization preserving fiber as the sensor medium and systems which launch other

polarization schemes into the fiber.

A traditional Mach-Zehnder fiber optic interferometer sensor system has recently been
studied for use in monitoring stress, temperature and differential temperature gradients in
graphite epoxy laminate specimens. A potential application of this sensor could be accurate
and precise monitoring of cure level within the composite during the actual cure cycle. Using
single mode fiber, one arm of the interferometer is incorporated within the laminae. Exposing
the specimen to tem_perature or pressure results in a phase shift within the fiber sehsing arm,
This produces a movement of the characteristic fringe pattern at the interferometer output.
Fringe movements are then counted and can be related to the temperature or pressure
change in the sample. Sensitivity of this system is extremely high, about 20 dB above that of
the modal domain sensor discussed earlier. The obvious disadvantages of this sensor are
allignment requirements and the need to observe interference fringe movements. See Ap-

pendix F for details on this research.
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Fiber sensor arrays have been imbedded in graphite epoxy samples with the intention
of detecting inpact damage within the specimen. Light is coupled into the multimode fiber
array using two fused biconical taper couplers manufactured in our laboratory. Output inten-
sity of each fiber in the array is monitored, over controlled levels of impact, for any drop in
light transmission caused by impact damage to the optical fibers. Preliminary results show
promise for the location and characterization of impact and impact damage. This work is

referenced in Appendix G.

Acousfic Fiber Waveguides

Our newest area of reseérch, acoustic fiber technology, began in September of 1986.
Acoustic fibers have strong promise in the area of sensors due to the reduced signal velocities
in the fiber. Acoustic fibers differ from their optical counterparts in that they transmit a me-
chanical stress wave rather than an electromagnetic wave. They are however very similar in
construction: Two concentric cylinders of glass drawn from an initial fiber preform. Boundary
conditions determining the propagation of confined modes are a function of the sound veloci-

ties in, and densities of, the glasses which are used.

Preliminary work here at VP| has been concerned with simple attempts at drawing giass
rods into fibers. Simple systems for holding and heating the fiber as it is manually drawn have
been configured in the lab. Several attempts at producing rough acoustic fiber preforms have
been made with limited success. Air pockets between the concentric glass rods and incom-
patibility of the glasses were the sources of the difficulties. The ITT Corporation in Roanoke,
Virginia recently manufactured for us a fairly simple acoustic fiber preform from glass cylin-
ders supplied by our- laboratory. This preform will be used‘ in the new fiber draw facility cur-
rently under construction here at VPI to produce a first run of acoustic fiber waveguide. We

are now in the process of gathering sufficient transducers for the launching of acoustic energy

into the fiber itself. Appendix H gives the details of this work.
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Fiber Fabrication Facility

The beginning of January ‘87 was to mark the groundbreaking for the new fiber manu-
facturing fécility at VP!, Initial projections had the draw tower containment structure com-
pleted by mid January with delivery of the tower to follow immediately. Minor design
disagreements followed by ma.jor weather setbacks have forced delay in the construction of
the structure’s foundation. Recent fair weather may allow this construction to get underway
though over one month behind schedule. Delivery of the tower is now contingent only upon the
completion of the draw tower building. Following the completion of the structure it will be
necessary to erect a scafoiding around the draw tower itself to allow access to the different
system components. Several manufacturers have agreed to donate fiber preforms which will
be used in the first runs of the system and should be available immediately. Actual fiber

manufacture then should be underway as soon as construction is completed.
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Fiber Optic Modal Domain Sensing of Structural Vibrations
by
Paul A. Ehrenfcuchter
Richard O. Claus, Chairman
Electrical Engineering
(ABSTRACT)

This paper investigates the application of single, low-moded, fiber optic sensors to the de-
tection of structural vibration. Several laboratory vibration systems which demonstrate a range of
component frequencies and -dynamic range arc analyzed in an effort to characterize the sensor’s
behaviour. We compare frequency spectra of the sensor output with calculated frequency compo-
nents of the structures to determine if the sensor is responding to the various structural harmonics.
Specifically, we wish to demonstrate the dynamic range and frequency response of the sensing
technique. Expcrnimental results and observations are preceeded by a brief review of sensor mech-
anisms in optical fibers and presentation of a theory describing the operation of the modal domain

scnsor.
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1.0 Introduction

Scensors and communications exist as the two major thrusts in current fiber optic technology.
The past ten to fifteen years have given rise to max{y fiber optic sensor systems capable of detecting
temperature, pressure, acoustic stress waves and strain. The principle mechanism employed in the
majority of sensor systems is a strain induced change of refractive index resulting in phase shifts of
the propagating fiber modes. Mach-Zehnder interferometer systems which employ this effect have
been developed for the detection of acoustic stress waves' in solids and ambient water mediums.
This type of sensor utilizes single mode fibers in cach arm of the interferometer. The strain induced
photo-clastic effect in one arm results in a detectable shift of the interference fringes which can be
rclated to pressurc and frequency. .

Single fiber sensors have also been studied. These systems, known as modal domain sensors,
utilize fibers which propagate a small number of modes at the given operating wavelength. Strain
induced changes in refractive index affect the phase of each propagating mode differently giving rise
to an cffective phase and amplitude modulation of the detected hght Experiments investigating
these sensors have focused primarily on high frequency piezoeletrically induced strain. This paper
investigates the application of these low moded, single fiber sensors to the detection of low fre-

quency structural vibration.  Ultimately, we would like the ability to detect the component vi-

bration frequencics which describe the structure’s motion. We begin with a treatment of guided
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wave propagation in optical fibers and develop the concept of waveguide modes in cylindrical step
index diclectric waveguides. This is necessary background for chapter three which develops a simple
theorctical model for the operation of the single fiber sensor. An analysis of fiber modes in the
presence of strain and how these modes interact to develop an effective amplitude modulation of
the light is given. Ilere the term modal domain sensing is coined to define this type of sensor.
With an understanding of single fiber or modal domain sensor operation we proceed to chapter
feur which discusses the application of this sensor in monitoring the vibrations of structures. The
mechanisms of induced strain developed in the previous chapter arc related to the fiber-structure
system in describing how vibrations may actt\mlly be detected in the fiber. The actual sensor system
is also defined. Chapter ﬁvé describes the actual experiments and vibrational systems which were
studied: the vibrating string, the clamped-free beam and the free-free beam. The final chapter ad-
dresses overall obscrvations gleaned from the experiments along with results specific to each indi-
vidual system. Comparisons of these results to the predicted behaviour and to the results of other
workers who have investigated single fiber sensors are made. In this way the performance of the

modal domain sensor as a low frequency structural vibration monitor is evaluated.
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2.0 Fiber Optic Sensors

Two primary mechanisms may be considered responsible for fiber optic sensor operation: in-
duced strain and fiber bending [1]. Generally one of these mechanisms, through its respective effects
upon the propagating light, is isolated in the sensor detection scheme. To understand how strain
and bending may combine to affect guided light transmission we must first look at the operation

of a diclectric waveguide.

2.1 Waveguide Modes

In addressing this problem we will restrict our arguments to step index fibers as shown in Fig.
L. "This fiber consists of a central core of refractive index n; surrounded by a concentric‘ cladding
of index n, with n, > n,. Consider a light ray travelling in the core, incident on the n — n,
boundary. Since n, > m, at some critical angle, 0., all light will be reflected back into the core. In
this way the ray may propagate along the fiber core due to consecutive total internal reflections.
This is known as the gcometric or ray optic approach and is the most basic description of optical

fiber operation.
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If there exists a particular critical angle within the fiber which supports ray propagation then
there must be some external input condition describing which rays will meet the critical angle cri-
teria. ‘This defines the numerical apperture or NA of the fiber. The NA is a function of the fiber

parameters and is given by (2]
= 2 2
NA = \/nl -n . 2.1)

‘The final constraint which the ray optics technique predicts relates to the phase of the rays. Re-
ferring again to Fig. 1, if one considers the phase change of the ray due to propagation through n,
(path ABC) and the reflection at the core-cladding boundary we see that only those rays with a
phase shift of 2rn will propagate, all others will detructively interfere and damp out. This indicates
that only discrete ray paths corresponding to particular internal reflection angles at the boundary
arc allowed [2].

Although the ray optics approach gives an intuitive understanding of light transmission it does
not provide the information needed to develop a theory of fiber sensor behaviour. We require a
more quantitative description of the etfects discussed above. This is derived from the more realistic
electromagnetic approacﬁ [{3.4].  We start by charachterizing the light as a set of guided
clzctromagnctic waves within the fiber which repeat at intervals of A, the wavelength of the light.
As will be seen these guided waves exist as discrete modes within the fiber. Only specific modes
can propagate and a specific {initc number exist as determined by the fiber properties and light
wavelength. We begin with the wave equation for the E and H ficlds within the fiber as derived

from Maxwell’s equations

™y

E
v =

1&
gl ¢

2

G

Qs

lere 72 is the Laplacian operator in cylindrical coordinates, the assumed coordinate system within
the fiber. Ounly the £, and £/, components of the vector fields will assume a simple form since the

a Iy . .
0 and r componcnt vectors are not constant. Assuming an e~ dependence we obtain
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2 5 E(r,0,2)
(V" + k%) =0 : (2.3)
Hy(r, 0,2)

K= <02£p = (1)2r12/c2 .

where 72 is the index of refraction of the propagating medium (core or cladding). Since we are
considering the electromagnetic waves to be travelling along the fiber axis we assume a periodic field
dcpendence along the z direction
By applying Maxwell’s cquations

Vxﬁ=%_52_ (2.5

1
Y xE=—-"L
< at

Qs
E’Im

to equation (2.4) we may express the radial and azimuthal field components in terms of E, and H,.
Thus our goal is to solve for the E and IT components in the z direction. This will render a com-
plcte discription of the electromagnetic ficld within the fiber. We substitute the assumed solution

for £, and f/, into the wave equation. This results in the partial differential equation

A2 - .2 E,
o L 1é 1 0 +(/<2—32)] =0. (2.6)
[ ort  Tar P2t H,

The scparable solution to this equation may be written as

E, .
— |- e,

z

and gives Besscl’s cquation

(32\1! + 1 éw + (kl - Bz - _[_2_ (n=0 2.7
-2 r or 2 M (‘" )
ur r
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for the radial solution w(r). Besscl’s cquation has specific sets of solutions which depend upon the
sign of the quantity (k2 — B?). For (k? — f§) > 0 the sct of solutions to Bessel’s equation are
Bessel functions J,and ¥,. For (k* — B?) < 0 the solutions are modificd Bessel functions
l;and K, . The actual solutions arc dctermined from the boundary conditions. Specifically, these
boundary conditions require evanescent (decaying) fields in the region 7 > a and boundedness as
r approaches zcro. These  considerations give the Bessel function solutions
J; (corresponding to &} — B2 > 0) in the rcgion 7 < @ and modified Bessel function solutions
K, (corresponding to k} —B? < 0) for r > a. Here k, and k;, are wave numbers in the core and

~

cladding respectively and are defined as
ki =on/c , k= onlc.

This results in a range of allowable valucs for the z-component of the actual propagation constant

B for which guided core modes and evanescent clad modes exist:
mk, < B < mk,. (2.8)
ko = 0\/Boty

This condition correlates with the ray optics prediction of a critical cutoff angle 6.

Finally, the boundary conditions must be met at the boundary r = q, i.e. the tangential field
components must be continuous. These conditions lead to a homogeneous linear system for the
field components. In order to obtain a non-trivial solution the determinant of this system must
be zero. This generates a characteristic equation whose solution gives unique values for the propa-
gation constant . Statcd more exactly: the system yields the eigenvalues B,. Only discrete values
of B exist which_ will satisfy the n, — n, interface boundary condition. This correlates with the ray
optics prediction of distinct guided rays. In the electromagnetic approach we refer to the distinct

electromagnetic field solutions charachterized by the B, eigenvalues as modes.

The number of modes in the waveguide is related to a quantity known as the V number [2}:

V= ka/ni = n (2.9)
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The ¥ number determines which specific modes may propagate in the waveguide. Fig. 2 shows the
V" number as a function of the nonmalized propagation constant B/k for scveral waveguide modes.
‘Through equation (2.8) the quantity fi/k has definite limits which allow guided mode propagation.
Fig. 2 dcmonstrates the fact that below particular ¥ numbers certain modes will not propagate since

their propagation constant does not satisty equation (2.8).

2.2 Sensor Mechanisms -~

Strain and bending, as discusscd carlicr, are the primary mechanisms of fiber sensor operation.
The two may of coursc be considered related since bending-induced tension and compression resuit
in some form of strain within the fiber. Ilowever, we generally consider strain and bending
seperatcly when describing their effect upon the transmitted light. The simplest type of fiber optic
scnsor employs the effects of bending exclusively. The overall result of bending an optical fiber is
a drop in transmitted light intensity at the fiber output. This is due to an effect known as bend loss
whose causes will now be discussed.

To understand the properties of bend loss we must return to the electromagnetic analysis. In
general, bend loss results from the radiation of higher order modes out of the core and cladding due
to the physical bending of the fiber [5,6,7]. This can be witnessed as a glowing of the optical fiber
in a region local to the bending. The cause of this mode radiation is related to the electromagnetic
ficld distribution within the fiber core. Each wave or mode will have its own unique distribution
of £ and I7 field magnitudes across the fiber cross section. These can be determined by solving for
the various ficld components at a particular coordinate location. Fig. 3 shows the E field distrib-
ution across the core for the HE,, mode of a multimode fiber with V= 12.6. The central solid curve
represents the theoretical magnitude for a straight, unperturbed fiber. Bending will result in a per-
turbation of this curve. Marcuse has predicted the behaviour of the electromagnetic field within the

fiber as the fiber is bent through a circular arc of radius R. He has shown that fiber bending results
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in three distinet perturbations of the ficld intensity having distinet influences upon the bend loss.
Firstly, the peak intensity, located at at r/fa = 0 in Fig.A 3, tends to shift from its unperturbed posi-
tion towards the core-cladding interface as bending radius is decreased.  This causes some of the
power 'mitiul]&' confined to the corc to radiate into the cladding increasing the radiative loss of the
fiber. Sccondly, the width of the intensity distribution may either widen or narrow as the bending
radius is varied (narrowing in the case of Fig. 3). A narrowing of the distribution decreases radiative
bend loss while a widening serves to increase loss. Hence, this effect may tend to either augment
or dimninish that of the peak intensity shift.\ The third consideration is the slope of the intensity
distribution function at thc.boundary r = a. Stesper slopes indicate higher bend loss. Marcuse’s
theory, in accounting for the eflects of distribution widening and slope, predicts an increased low
mode loss and a decreased higher moede loss in comparison with previous theories. Bend loss is a
simple mechanism to apply since it requires only the monitoring of output light intensity. It has
been applicd predominately to the scnsing of applied pressure {!].

The second and most dominant mechanism employed in optical fiber sensing is that of in-
duced strain [8]. Strain may be introduced through various stimuli: temperature, acoustic stress
waves, pressure. The influence of strain on the refractive index » of the fiber material is responsible
for the perturbations of the transmitted light. Specifically, the vanation in refractive index will in-
troduce a phasc shift. If we define L as the length of the fiber and recall that B is the z-component
of the propagation constant, the phase of an electromagnetic field in the waveguide can be written

as

¢ =pL. (2.10)
The phase change, Ay, is related to an indulced change in L and §

Ao = LA + PAL. (2.11)

The sccond term represents the strain induced change in length of the fiber. [For a fiber under

isotropic stress due to pressure P we can write the stress components o, as a vector
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The resulting strain € is related to G via the clastic constants

(1 = 2n)/E
e=|(1-2)/E|T,
(1 = 2p)/E

where p is Poisson’s ratio and £ Young's modulus. ‘The second term of equation (2.11) can now

be defined
BAL = BeL = = B(1 — 2u)LP/E. (2.12)

‘The first term represents the change in phase ¢ due to a change in B and has two ongins: a
strain-optic effcct which causes a change in refractive index and a mode dispersion effect due to a

change in fiber diameter. This may be expressed as
Lap = LB an+ 1B ap. (2.13)
on aD

The diameter change defined by the second component of equation (2.12) can be shown to be
negligible rclative to the other effects and will not be considered. The propagation constant B can

be written as B = n,.k, for small diffcrences in 7, and 7, which gives

[«¥) (=1
X

>k, . (2.14)

We now need to define An. The change in index of refraction is related to induced strain through
the photo-clastic constants p, . In general p, is a tensor and appcars as a change in the components

of the optical index ellipsoid
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6
a( ),- = T pyr (2.15)
n J= :

We calculate An; from
= d 1 ]-1 1.
an [(7/1 ,,2] a(7 )

Then the general expression for the change in index of refraction is given by

N

6
An = -%,ﬁ Loy =16 (2.16)

J

For the casc of isotropic strain, no shear (g, = ¢, = g4 = 0) and an isotropic medium i, j = 1,2,3

1 3 1
= -—n A(_2)‘2
n (2.11'

= %rf (%)(1 -2 02, + o1y ]

this reduces to

Anl'z

This equation, and its more gencral form equation (2.12), relate the applied stress, or induced
strain € , to the shift in refractive index. In conjunction with equations (10) through (12) the total
phase shift in the fiber may be predicted.

The usual technique is to subject one arm of a single mode fiber optic interferometer to some
strain-inducing stunulus. The subsequent changes in ¢ duc to the photoelastic effect result in a
shifting of the characteristic intcrefcrence fringes when the output of the two arms are mixed. The
_ sensor is calibrated in terms of fringe displacements per unit of stress.

Although this effect is normally exploited in single mode fibers, modal phase changes also
occur in multimode fiber. In this circumstance each propagation constant eigenvalue, §, , will be
influenced differently by the photoelastic strain mechanism, equation (2.12). Hence each mode,
which is characterized by its respective B, , will experience a different phase shift. It is this phe-

nomena which forms the basis for single fiber interferometers and defines the operation of the
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modal domain scnsor. In the following chapter single fiber systems are expanded and a simple

model! for their operation is presented.
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3.0 Single Fiber Sensors

In the previous chapter, operation of the step index fiber was described in terms of the simple
ray optics approach and more quantitatively through an electromagnetic analysis employing
Maxwell’s equations to describe the electromagnetic fields in the fiber. The common result of the
two analyses was the existence of discrete waveguide modes defined by the z-component of of their
propagation constant, . Next, fiber optic sensors were analyzed by defining the response of these
waveguide modes to induced strain and bending.  In closing, the possibility of utilizing a single
multi-mode fiber as a phase dcpendent sensor was suggested. This sensor would employ phase
differences between modes to produce strain-dependent intramodal interference; similar to the in-
terference of the shifted and unshifted single modes in the two arms of a Mach-Zehnder
interferometer. Several authors [9,10] have investigated the response of low-moded muiti-mode fi-

.
bers to pressure-induced strain demonstrating interference between the phase shifted modes. This
chapter will review these investigations since it is this same effect which defines the operation of the
modal domain sensor in the detection of vibration.

The systems in which previous authors have applied this technique have typically isolated the
effect of induced strain and discounted that of bending. In exposing the fiber to acoustic stress
waves in water for example or wrapping the fiber around a piczo-clectric device, the effects of

bending can be ncglected. The fiber is exposed exclusively to high frequency (40-50 KHz), low
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amplitude stress. Ultimately, the reaction of the fiber is the same as that discussed in chapter two

and dcfined by equation (2.11)
Ap = LAB + BAL. 3.1

In the former case only one mode was considered to be present, hence only one B. Howeverin a
multimode fiber the various modes must be defined by their individual propagation constants, B, ,

thus modifying equation (3.1) [9].

¢ [(-i%— L+ B[(%)-)] P, sinon,t (32)

@; SN ©,ut

where P, is the applied pressure and ,, is the vibration frequency. Here the individual modes are
defined by B, and the phase change of each mode by ¢, . Since B; will vary among different modes
so will the respective phase shifts ¢, . It is the difference between the phase shifts of seperate modes,
(9: — @;) , which initiates the desired interference behaviour. Consider two modes propagating in

the fiber

E, = E(r,0) exp[z’(ﬁl‘ - o) + i\yl}

, (3.3)
E, = E5(r.9) exp[i(Bzz - of) + iy,

with similar equations for the H components. Here ® is the optical angular frequency, B, and B,
the propagation constants of each mode and v, and v, the initial phase components of the modes.
Exposing the fiber to a time-dependent stress induces the phase shift of equation (3.2) in each mode.

We may write for a generalized phase shifted field component
Afr, 0,0) = A(r,0)expi[ Bz — ot + v; + ¢;sinw,t 1. (3.4)

We wish to determine the intensity at z= L of the two modes, i= 1, 2, defined in equation (3.3).
This is given by the time average of the real part of the complex Poynting vector obtained from the

sum of the two modes
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S=(E +E)x (I, +H).
For small phasc diffcrences
Ap =9~ < <1,
the intensity at z= L can be reduced to an equation resembling

Kr,0,0) = I,(r, 0) + I,(r, 0)[ cos(Ay + LAB) —Ag sin(Ay + LAB)sin 0, t], (3.5

A

where Ay = y, — v, and AB = B, — B, . lence the intensity is effectively modulated at the fre-
quency of P with an amplitude modulation index of Ag (the cos and sin terms can be forced to zero

and one respectively) defined through equation (3.2)—as
do = | (B = B (G5 )+ LastB1 — B |Posinant. (3.6)
1 P 5P 1 2 o m
To maximize sensor sensitivity A@ must be maximized, the maximum phase differeace, A¢,,,
being limited by the range of B
nk, < B < mk,.

Then A, is given by

APrmax = ko [ (m — ) —Z:% + L';F(”\ - m) ]Po SIN Wyt . 3.7
In referring to Fig. 2 we see that choosing values of B, and §, to maximize A¢ is tantamount to
sclecting modes in the fiber which have a large difference in B. In addition we would like a simple
dependence of [, and [, in equation (3.5) on r and 8 and the phase of these terms invariant with
respect to 0. This limits the choice of waveguide modes to the family of HE,, modes or the
HE,, and TM,, modc combinations in calculating the resulting intensities at the fiber end face. The

intensity and phase relations are shown in Fig. 4 for the interference between the HE,; and TM,,
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modcs. Curve a of IFig. 4a shows the resultant intensity due to the combination of the constituent
modes. Also shown is the phase of the intensity as a function of position across the face of the fi-
ber. To detect the modulated intensity an cquiphase portion of the intensity pattern (the side lobe
in Fig. 4a for example) would be spatially filtered and monitored. Experiments have shown this
technique to be about 30 dB lower [9] in sensitivity than the single mode Mach-Zehnder technique.
This is due to the limited amount of phase difference achievablc between lower order modes.

A sccond approach has been developed by Kingsley [10] to describe the two mode single fiber
sensor. Though Kingsley’s mcthod arrives at a result similar to that of Bucaro it also predicts se-
veral other cffects which have a definite impa::t upon the sensor’s performance. Consider the simple
modcl of the two mode scns;)r shown in Fig. 5. The amplitude modulation effects of bending are
again disregarded, a rcasonable assumption considering the application of this sensor (acoustic wave
and low amplitude stress detection). Assume an equal excitation of the two modes in the fiber re-
presented by the two paths of Fig. 5. As in the former analysis, each mode will experience different
phase shifts defined as ¢, and @,. In addition consider a group delay 1 in one mode of the fiber due
to dispersion and a phase term v introduced by the carrier (laser). Now, if the fiber is again per-
turbed by a sinusoidal isotropic pressure field sin ©,¢ a phase modulation is introduced into the

carricr signal. The phase-modulated ficlds in each mode may be written [10]

-—L—-Ec sin[ . + @ sinwp! ]
] . (3.8)
?/:'c sin[ @yt + @ysinp,(t = 1) + v ]

These two fields combine to give the composite electric field in the fiber. Assuming negligible

dispersion (1 = 0) this field may be wntten as

L. sin{ o+ %[(w! + @) sin @l +y ]} cos %[ (g = 93) sln®,t — Yy ] . (3.9)

The first term is a phase modulated carrier with a modulation index ‘l—(«pl + ¢,) while the second
term represents an amplitude modulation. Square-law detection of the signal at the photodetector

will result in demodulation of the AM component and is given by
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i(t) = cosz—;-[ (@, — 9y)sinont — v ]. (3.10)
Expanding the cos? term this equation can be written as
i) = —21-{ 1 + cos[ (¢, = @,) sin ot Jcos @ + sin (¢; — @) sin ¢ ] sing } .

This cquation may now be expanded in terms of Bessel functions to give the result

it = .é_[ 1+ J,(@, — ¢y) cos y
' + 2/,(9) — ;) sin y sin @t . (3.11)

+ 2/5(9; — 9,) cOs y cOS 2wt + - ]

The second term of this equation is proportional to the modulation signal sin o, . To recover an
undistorted version of this signal we require cosy = 0 and (¢, — ¢,) < < 1. If one considers the

very special case of carrier phase y = = n/2 and small (¢, — ¢,) then
()= = %((pl — 9,) sin @t (3.12)

a result similar to that of Bucaro’s. The sign ambiguity accounts for the phase ambiguity in y.
Unlike the previous analysis however, equation (3.11) predicts several additional effects. 1)
Higher order harmonics of the modulating frequency ®, now become possible. The random carrier
phase ,y, of the laser cause thcse higher harmonics to surface in i(t). 2) The effect of dispersion,
assumed zero when derving equation (3.9), tends to introduce a second phase to amplitude mod-
ulation conversion mechanism which could interfere with the primary diffcrential phase mec‘ha.nism
of cquation (3.12). 3) Random polarizations of the different modes caused by the strain induced
birefringence in the fiber may result in dcst;uctivc interference between the modes. 4) The detection
scheme assumed that radiation pattemns of the two modes mixed and interfered at the detector. This
may or may not be the casc and is dependent upon various factors such as the launching of the light

into the fiber and the transmission properties of the fiber endface.
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Finally, phase to amplitude modulation may occur in the fiber endface reflections which have
made multiple transits of the fiber [10,11]. These modes, which have already experienced phasc
modulation on their first pass through the fiber, will undergo additional phase changes on their
multiple transits and interfere with the single pass signal. Kingsley refers to this phenomenon as
optical homodyning and has observed its effects experimen.tally. We can write the field equations
for the multiplc transit signal by accounting for the additional phase change and the reflections at
the fiber endfaces. The first echo will experience a phase change of 3¢, and two reflections, one

at each end, characterized by the amplitude reflection coefficients 7, and r;

~

%Ec\/r‘rzlo—hl‘ sinf o2 + 3@, sin ot + v ]. (3.13)

Here the attenuation of the additional passes has been included. Assuming the propagation time
is much smaller than the modulation period, 2n/w,, We can ignore any phase difference betwesn
the single and triple transit signals. Treating this signal similar to that of equation (3.9) the ex-

pansion in terms of Bessel functions yiclds

i) = .;_\/r,rzlo-zal'[ I+ J,(20;) cos
+ 2/,(29,) sin v sin @,,! (3.14)

+ 2/5(2¢,) cos v sin 2w@,,¢ + - ].

This equation is similar to equation (3.11) except for its amplitude terms. However, where squation
(3.11) represented the sensor signal, equation (3.14) represents an undesirable interference term. In
its multiple transitions over the (iber this signal interferes or homodynes with the phase mociulated
ficld described by equation (3.9) disturbing the baseband signal i(t). Circumstances may arise
where this interference mechanism combines with other detrimental effects to severely disrupt the
sensor performance.  Typically this problem is resolved by using an index matching fluid between
the fiber and detector.

‘I'his approach demonstrates several key elements relating to the performance of the single fiber

sensor. The appearance of harmonics in the detected signal caused by the random sourcs phase v
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added a degree of ambiguity to the frequency spectrum of the detected modulating signal.
Dispersion of the modes adds a second phase to amplitude modulation conversion mechanism
which may interfere with that of the dilterential phase mechanism. This model considered only two
modes in the fiber.  Realistically this cannot occur since each mode may have two poésiblc
polarizations. Strain will effect each polarization through the change in refractive index disturbing
the predicted amplitude modulation. We also assumed the modes would mix at the detector gen-
erating the modulation, a condition which cannot be guaranteed. And finally the generation of
multiplc transit signals in the fiber by end face reflections added another source of potential inter-
fercnce with the desired signal. )

Several workers have iﬁvcstigalcd this scnsor experimentally and have observed behaviour in-
dicative of these anomolous effects.  The majority of these experiments have focused on the de-
tection of very small amplitude, high frequency stress. The remainder of this paper will deal with
the application of this technique to the detection of structural vibrations; excitations large in am-
plitude and much lower in frequency relative to these previous applications. Experimental results
will be compared to determine if similar effects are present in the two applications. This method

will hereinafter be referred to as modal domain sensing.
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4.0 The Modal Domain Sensor

With the operation of the single fiber modal domain sensor outlined its use in vibration sensing
can now be discussed. The applications considered in this paper concern the detection of vibrations
induced in straight beams and beam-like structurcs (strings) excited through some initial displace-
ment. Excitations and boundary conditions were selected which would generate simple periodic
vibrations easily described in terms of their frequency components and structural equations of
motion. The theoretical treatment of the actual structures is considered in the appendices. The
previous section showed that a fiber subjected to stress experiences a refractive index change and a
subsequent phase shift of the fiber modes. This phase difference between the modes was found to
be responsible for the dctected amplitude modulation of the light. Demonstrations of this effect
have primarily focused on exposing the fiber to very small amplitude, high frequency strains; those
that can be induced either through an acoustic interaction or through directly coupling the fiber to
a source of time varying stress - a piezoelectric (PZT) cylinder for example [12,13]. The impetus
for subjecting the fiber to these limited sources of stress is of course their inherent controlability.
Time-varying acoustic pressure waves and PZT responses are very consistent and model the the-
orctical assumption of sinusoidal stress fairly closely. The types of excitations studied in these in-
vestigations, however, are not typical of those experienced in structural vibrations. Structural

vibration, although often very periodic, is characterized by frequencies much lower (1-300 Hz) and
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by displacements tuch greater than those generated piezoelectrically. In addition, complex struc-

tural vibrations are composed of several constituent frequencies whereas PZT excitations can be .

tuncd to a dominant resonant frequency. Nevertheless, the structure still has the ability to induce
strain in the fiber giving rise to the same reactions as thosc considered in chapters 2 and 3. Referring
to the appendices we sec that beam vibrations are described in terms of a superposition of specific
mode shapes, determined from the boundary conditions at the beam ends, and vibrational fre-
quencies whose magnitudes depend upon the initial excitation. If we expect the structure to initiate
strain m the fiber we may also expect that the resultant time-dependent strain is a superposition of
“the frequency components of the structure itself. In other words, the vibrational frequencies which
combine to describe the stru.cture’s motion induce a time-dependent strain which is a superposition
of those same frequencics. Referring to equation (3.2), this sinusoidal stress now becomes a super-
position of stresses whose frequencies are those of the vibrating structure. Through the mechanisms
described in the previous chapter this will result in a modulation of the sensor signal which can be
demodulated to give the vibrational frequency components of the structure itself. This defines the
workings of the modal domain sensor in vibration detection.

A principle difference between structural and PZT excitation arises due to the increased pres-
ence of fiber bending. Where previously, the bending stress amplitude was small enough to ignore,
structural vibrations may involve large flexural amplitudes which couple to the fiber creating mode
loss. This periodic fiber bending results in an amplitude modulation of the light signal which co-
exists with that produced by strain induced phase modulation. In chapter two it was shown that
bend loss is a strong function of the fiber bend radius: small radii result in a large loss. It is then
a question of the structural dimensions and the type of vibration which determines the amount of
bend loss present.  For example, a very long beam with few higher order frequency components,
would inflict little small radius bending in a fiber. Thus bend loss would have a negligible effect on
the sensor in this case. A small structure, however, or a structure with substantial higher frequency
components would induce small bending radii causing bend loss modulation. Bending-induced
amplitude modulation has been observed in low-moded multi-mode fibers [14]. Fibers with small

radius bends (4 cm) were mechanically vibrated in a region local to the bending at amplitudes small
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(0.39D) compared to the fiber diameter . Vibrations ranging from 150 Hz to 1500 Hz were ex-
cited at the bend and amplitude modulation of the light at the resonant frequencies of the fiber
section was observed. A modulation index on the order of five percent was measured. However
the conditions under which bend loss was observed were made ideal through small bending radius
and preferred excitation of higher order waveguide modes at the fiber input. Increased bend radius
and enhanced excitation of the HE ,, mode reduced bend loss modulation significantly. Losses on
the order of the fiber attenuation were observed in single mode fibers at a bending radius of about
ten centimeters [15]. The degree then, to which bend loss has an effect upon the sensor’s behaviour
will be determined by the characteristics of the particular vibration system. Smaller stru[:tures with
large vibration amnplitude or large structures with appreciable higher mode content could initiate
bending of small enough radius to result in bend loss modulation.

Fig. 6 shows the modal domain sensing system. Each section of the system will be discussed
with .the exception of the signal processing which will be addressed in the next chapter. The most
vital component is of course the optical fiber itself. The fiber chosen for these experiments was
single mode at a wavelength of 850 nm. The source was a linearly polarized helium-neon laser (633
nm wavelength). From the manufacturers specifications of core radius (@ = 4 um) we may com-
pute the V number from equations (2.1) and (2.9) and a measured value of the VA. The N4 was
found to be approximately 0.097 for this fiber giving a ¥ of 3.83. This gives a total of seven modes
propagating in the fiber {16], each with two possible polarization states. This is only an approxi-
mate calculation bascd on nominal values of the fiber pararmeters and should not be used to es-
tablish a theorctical prediction of the sensor behaviour. However it does give an indication that
we are dealing with a low-moded fiber as required by the theory of chapter three. Light was
launched into the fiber using a 0.1 N4 microscope objective which provided good matching to the
fiber N, The distance from the lens to the fiber end was adjusted to give a maximum fiber output
intensity. This distance was found to be about 3.5 cm. The fiber was positioned using a standard
adjustable fiber mount to again give maximum DC output intensity. No consideration was given

to what possible modes were being excited in the fiber; output intcnsity was the only critenon.
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The output pattern of this fiber is illustrated in Fig. 7. This pattern results from the interfer-
ence of the phase shifted propagating modes in the fiber diffracted at the fiber endface. This three
lobe structure with variations on the shapes and positions of the three lobes was typical of the fiber
output throughout the experiment and is indicative of a low modced fiber output. As the fiber is
perturbed this diffraction pattern exhibits two effects: 1) a change in intensity of the lobes and 2) a
physical movement of the observed pattern. The first effect is caused by bend loss modulation and
more predominately by phase-to-amplitude modulation conversion. The second effect is the result
of the ;;hasc changes in the modes causing an effective rotational movement of the intensity pattern
in the far field of the fiber. In chapter threc t\he intensity pattern at the fiber end face was calculated.
[t was suggested [9] that a si-n‘_.'lc phase modulated intensity lobe could be spatially filtered and de-
modulated to obtain the perturbation signal. Ilowever the effects of diffraction at the fiber end face
for a fiber propagating seven modes will most likely distort this intensity pattern giving a transmitted
pattern which is entirely different in the far ficld. Even if one could reasonably predict a field in-
tensity distribution at the fiber end due to several fiber modes the effects of diffraction at the
boundary must be described to predict the projected fiber output. Stated differently, which of the
projected lobes are carrying the desired amplitude modulation? This question was resolved some-
what arbitranly by sclecting a lobe which when demodulated gave a strong amplitude modulation
in the detector signal. As will be scen, this method faired reasonably well if only for the lack of a
better method. The sclected lobe was spatially filtered using a small square aperture, approximately
2 mm by 2 mm in dimension, placed a distance from the fiber such that the aperture was completely
covered by the selected lobe. The detector (refer to IFig. 6) was placed a distance beyond the filter
such that the squarc illuminated image of the apcrture covered the detector surface area. Aperture
distance from the fiber had little rclation to the sensor signal other than a decreased amplitude due
to a dimninished DC level. The detector was a standard PIN photodiode with suitable speed and
bandividth for these measurements. Diode signals were amplified 10 dB uvsing a simple 741 op-amp
bascd inverting amplificr. Processing of the sensor output will be discussed in the following chapter.

Finally, the perturbation region of the sensor will be addressed. This is the segment of the

scnsor system in which the actual detection of the vibration takes place. The fiber must first be
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coupled by some means to the structure in a manner which will not perturb its motion but at the
samne time will allow the sensor to faithfully follow the structure’s movement. Ultimately we are
trying to convert the motion of the structure into a resultant strain and bending of the fiber. As the
fiber cxperiences the flexural bending movement of the structure, like the structure itself, the fiber
will experience tension and compression along its length. This tension and compression will work
to impart a strain in the fiber. A second mechanism of strain coupling can be realized if the fiber
is adhesively bonded to the structure’s surface. The local tension and compression at the surface
are then coupled to the fiber as a direct longitudinal strain component. In each of these mech-
anisms the amplitude of the vibration and l‘aend'mg curvature will determine the level of induced
strain. Previous cxpcrimcm.s [12.13] have demonstrated that very small stress amplitudes (on the
order of what can be gencrated piezoelectrically) are detectable using this single fiber modal domain
technique. Hence we would expect very good dynamic range in the detection of structural vi-
brations if strong strain coupling can be achieved. This is demonstrated in the following exper-
iments where varying amplitudes are excited in an effort to determine minimum sensor responses.
The scnsor’s frequency response will also be addressed. There is some question as to whether the
low frcquency oscillations inherent in structures can be monitored with fidelity in the presence of
noise sources, temperature for example. The following experiments show, for the cases considered,
the scnsor responds well at all frequency ranges. It is also important that movement in the fiber be
isolated to the area of the perturbation region. Any fiber movement outside of this region will be
responsible {or unwanted perturbations which are not relavent to the actual structural vibration.
This poses a problem in cases where one end of the beam is not secured preventing excess fiber
movement. In the study of the frce-free beam for example, since the beam ends were not con-
strained, -the fiber had to be connccted to the beam in a way that would prohibit excess fiber
movement. This will be considered in the next chapter where the coupling of the fiber to the
structures s considered.

The following chapter will describe the application of this sensor to several simple vibrational
systems. Since each system required a slight modification of the sensor application (how the fiber

was coupled to the structure, the recording of the sensor signal) the individual configuration of each
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experiment will also be addressed. After discussing these procedures, chapter six will present an

analysis of the results and observations.
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5.0 Experiments

The modal domain sensor will be applied to three simple mechanical vibration systems: the
linear stretched string, the clamped-free (CF) beam and the free-free (FF) beam. The theoretical
analyses of each of these structures can be found in the appendices. We saw in the previous chapter
how the single fiber sensor analysis of chapter three could be addressed in speculating the sensor’s
reaction to structural vibration. These speculations will now be investigated through the above
mechanical systems.

We wish to demonstrate the scnsors ability to respond to structural frequency components and
evaluate its actual frequency response and dynamic range. This will be done by exposing the sensor
to a range of vibrational frequencies and amplitudes and by comparing the frequency spectra of the
demodulated sensor signal with the calculated frequency components of the structure. The system
described in chapter four represents what may be considered the vibration sensor. The output of
this sensor “unif” is the modulated photodetector signal which carries the actual vibration infor-
mation. Although the application of this unit to a particular structure differs with the structure’s
gecometry, the processing of the output is the same regardless. The general procedure used in in-
vestigating structural behaviour with this sensor and a description of its application to the proposed

vibrational systems will be the subject of this chapter.
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The coupling of the fiber to the structure, again, depended largely on the geometry and will
be discussed individualy for cach structure considered. For now it is only necessary to keep in mind
the ideas of in chapter four (strong strain coupling). With the fiber coupled to the beam, light was
launched into the fiber and adjusted to give a maximum DC output intensity. Now the output
pattern of the fiber was obscrved in the far field simply by holding a screen (an index card) at some
distance from the fiber end. The lobe pattern referred to in chapter four was identificd and a lobe
selected for spatial filtering. It was sometimes necessary to physicallybbend >or somehow stress the
fiber in order to achieve a desireable lobe structure which had strong amplitude modulation. Ex-
periments showed the more distinct and sy;nmctric the intcrference pattern the cleaner the time
domain signal. To be more precise, the signal seemed to show better periodicity with less high
frequency. The interfcrence pattern was filtered and detected as described in chapter four. Lobes
other than the strongest of the pattern were also investigated. Responses generated from these
different interference patterns will be addressed latér.

The sensor was now ready for operation. Controlled excitations of the structures were per-
formed to initiate the vibrations. These excitations consisted of measured initial displacements
which could be descriped theoretically to determine the structure’s expected response. These
excitations will also be discussed with the individual structures. Dynamic range information was .
obtained by measuring the physical displacements of the excitations and the subsequent sensor re-
sponse. For each excitation the interference pattern and DC level of the filtered and detected lobe
were recorded to determine if there was any comelation with the sensor signal. The lobe pattem
would often undergo changes in its shape with the different structural excitations and it sometimes
became necessary to realign the filter ana dctector or perturb the iioer in some way to maintamn
consistent detections of the lobe pattern.

The sensor signals were recorded on a Nicolet model 204-A digital oscilloscope. This device
digitized the analog detector outputs for later digital signal processing. All waveforms were recorded
using 2048 (2K) sampling points. this was the limit specified by the PC program which reads the
digitized waveforms [rom the scope Since numerical fast Fourier transforms (FFT) were to be

performed on the time domain waveforms the Nyquist sampling {requency of the digitizer had to
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be considered. This was determined by the time per point sctting of the oscilloscope. Sampling
rates which gave Nyquist frequencies high enough to include the component frequencies of the
structure had to be used. Thus a knowledge of the vibrational frequencics was required a prior to
insure proper FI'I' bandwidths which offcred sufficient resolution at lower frequencies where the
majority of the vibration spectrum resided yet still included the higher structural modes. Generally
a sampling rate was sclected which would give an FFT bandwidth capable of including three to
seven vibration modes depending on the structure and its prcdictcd‘ frequency spectrum, i.e. its
excitation. If higher order modes were expected to be highly attenuated then fewer modes could
be considered. )

Triggering of the oscilloscope could usually be performed internally in the normal triggering
mode. The level was simply sct such that the scope triggered as the structure was released from its
initial displacement. This worked well for the string and CF beam cases however an external trigger
became necessary in the FF case and will be described along with that experiment. This
6scilloscope also had a pretrigger option. The trigeer could be delayed a preselected amount so that
signal prior to the trigger could be observed. In this way the noise level could be directly compared
with the signal level. Waveforms were recorded with a pretrigger of about 15 to 20 percent of the
towd sweep length. The vertical sensitivity was usually determined by the vibration amplitude or
the detector signal level generated by the given lobe pattern. Signal levels ranged anywhere from
20 mV to 1V throughout the expenments.

Once waveforms were recorded they were passed to an IBM PC for formatted disk storage.
This was accomplished using a specialized ILEE 438 interface between the PC and oscilloscope.
This interface was a hardware addition to the PC, programmable through BASIC to control data
transfers with peripherals on the comrnunications bus. The program transferred the 2K digitized
waveform points from oscilloscope to PC memory and reproduced the waveform on the PC screen.
It could also storc the waveform points and additional waveform documentation on disk for even-
tual IFTT analysis.

The final step of the procedure was to perform a frequency component analysis on the time

domain sensor signals. This was accomplished using an FFT algorithm on the university’s VM
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computer system [17). As described in chapter four, the frequency components of the analyzed
structure should induce modulations in the scnsor signal. These same frequencies should be present
in the spectrum of the demodulated signal generated by the FFT routine. Digital waveform data
stored on disk at the PC was uploaded to the VM system for signal processing and the generated
frequency data plotted to give the frequency spectrums of the demodulated sensor signals. Again,
the bandwidth of the FFT was determincd by the sampling rate selected at the time the waveform
was recorded. The FFT algorithm was modified to allow windqwing of the time domain data.
That pﬁrt of the waveform which included the pretriggered signal (signal existing earlier than the
actual vibration signal due to sclected pretri\ggcring) was discarded by setting these points to zero
before performing the FFT. Also, the scgment of the waveform just after excitation representing
transients induced by the excitation itsclf, the plucking of the string for example, was removed. In
this way only the steady state vibrations of the structure influenced the frequency spectrum of the
demodulated sensor response. Generally either the first 512' or 1024 points of the (2K) point
waveform were sct to zero. Since it was still a 2K point FFT no resolution in the FFT was lost,
only the unwanted frequency information. Windowing of course has no effect on the bandwidth
of the FFT. It was also necessary to low pass filter the resulting FFT waveform. The high DC
component of the signal reduced the vertical resolution of the FFT plots. This was rectified by
filtering (setting to zero) the first few points of the FFT which carned the DC component.

This describes the general procedures used in the experiments for analyzing the sensors re-
sponse to vibration. These methods were common to each vibration system studied. The specifics

of cach system will now be addressed individually.

5.1 The Vibrating String

The first vibration system considered was the linear stretched string. This is the easiest

vibrational system to describe, in its lincar first order case, and its analysis is given in Appendix A.
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String vibrations will account for frequencies ranging from 165 Hz to 390 Hz. Fig. 8 shows the
laboratory system used in studying the ?ibrating string. An aluminum base mounted with grooved
string supports, a tension scale calibrated in pounds and a tuning machine identical to that used
on a guitar. The distance between mounts was set at 63.5 cm - a distance typical of the. string length
found on guitars. The string was a standard steel wound guitar string. The mass per unit length
was mcasured as 0.004 g/cm with a diameter of 0.08 cm. The string was tuned to its prescribed
frcqucx‘lcy of 220 11z corresponding to the note of A three half steps below middle C. The required
tension was attained by comparing the audible tone of the string to a tuning fork oscillating at 220
11z - much the same way a guitar would be \tuned.

As discussed in chapter four the bonding of the fiber to the structure is critical in determining
the level of induced strain. Since adhesively bonding the fiber would further perturb the string’s
natural motion, the fiber was simply wrapped around the string in a helical fashion fourteen to fif-
teen times and sccured at the string’s supports with tape. This also increased the length of the fiber
(the sensor area) over the structure which should serve to increase sensitivity. It was necessary to
keep the fiber tightly wrapped around the string as it vibrated since any slack in the fiber caused
excess movement; the fiber would tend to loosely flap on the string if not held taut at each end.
This could be seen in the sensor signal as a reduction in the periodicity and an increase in the higher
frequency components. As the fiber was pulled tighter around the string the signal became much
cleaner with a distinct periodié structure.

With the fiber satisfactorly coupled the string was now ready to be excited. There are two

string excitations which are easily described theorotically: the plucked string and the struck string.

The plucked string represents an initial displacement while the struck string represents an initial

velocity imparted on the string. Since displaccment is much simpler to characterize than initial .

velocity the plucked string was selected. Fig. 9 shows the device which was used to measure the
string’s initial displacement. The thin horizontal bar was placed under the string at some specific
location along the string’s length, its distance below the string adjusted with the micrometer. The
string would simply be pressed down to the bar, usually with my fingernail, and released. There

was enough damping in the string to prevent it from double striking the bar as it vibrated. The
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trigger level of the oscilloscope was adjusted such that triggering was initiated as the string was re-
leased; no external triggering was necessary. When triggering occured the device would initiate one
full sweep then capture the next. This option is referred to as the Hold Next storage mode. This
also allowed some of the transient signal, introduced when the string was first released, to subside.
Sampling rates of iOO ps or S0 us per point were used to digitize the waveforms depending upon
the fundamental frequency of the vibration. At 2K data points this gave a total sweep length of
200 ms (100 ms).

Scveral excitations were performed in order to generate a range of vibrating frequencies and
amplitudces. As mentioned earlier, fundamental frequencies ranging from 165 11z to 390 Hz were
obtained by adjusting the string tension and length to achieve the desired frequency. String tension
was adjusted with the tuning mechanism. Length was varied by placing a third grooved support
undcr the string at a position calculated to give the desired frequency. The actual frequencies were
then tuned by comparing the tones to those of a tuned guitar. A total of five frequencies were ex-
cited: 164.8, 196, 220, 293.6, and 392 11z. At each of these frequencies the string was excited at two
positions: a point mid-length on the string and a point close to the end (a distance of 5/6 of the total
string length). In this way vibrations with different modal contents could be achieved; the end
excitation induces more high order frequency components in the strings vibration. We could then
determine if the sensor was responsive 1o an increase in higher modes by comparing the resopnses
at the two cxcitations. Each of these frequencies were excited at only one initial displacement: 0.1
in (0.254 ¢cm). To characterize the dynamic range, displacements ranging from 0.05 in to 0.5 cm
were initiated. These were performed at mid-length and at two fundamental frequencies (164.8 and

220 112) to determine if the dynamic range varied with frequency.
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5.2 The Clamped-Free Beam

The experimental considerations described for the string will now be applied to the second
vibration system, the clamped-free (CF) or cantilever beam. This structure represents fundamental
frequencics more than an order of magnitude below those seen in the string ( = 6Hz) for the length
and material considercd. The theoretical description of the CF beam is given in Appendix B.
Unlike the ideal string the CF beam does not possess harmonics which are integer multiples of the
fundamental. Beam harmonics occur at non-linear multiples due to the nature of the characteristic
cigenvalue equation describing the beam modes. Fig. 10 shows the CF beam used in the exper-
iment. The actual beam was simply a steel hack saw blade measuring approximatly 30.5 x 1.3 x
0.064 cm. One end of the beam. about a 2.5 cm length, was clamped between aluminum blocks
as shown in Fig. 10. This gave an active beam length of 28 cm. The fiber was ran onto the beam
at its clamped end, ran up and back the top side of the beam and adhesively bonded with rubber
cement to insure strong strain coupling. '

The beamn was excited in much the same way as the string, through an initial displacement.
The beamn end was displaced through some initial distance by pressing the beam tip downward,
meusured with the device used in the string experiment. Only one beam length was considered,
hence only one beam frequency. However, this experiment now investigated the effect of the in-
terference pattern on the sensor signal. The lobe patiern was varied by randomly bending and
moving a scction of the fiber which was not bonded to the structure. A short coil of excess fiber
was left between the laser and the beam for this purpose. It was observed that by filtering different
parts of various i_ntcrfercnce patterns, different time domain waveforms were obtained. This was
somewhat disheartening since this implied an inate inconsistency with the sensor. This however
was to be expected from the discussions of chapter four where it was concluded that an inherent
ambiguity existed in the detection of the fiber output. Scveral signals were recorded for the various
interference patterns and filter positions all performed at the same beam excitation of 0.635 cm

displacement at the beam tip.
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Dynamic —rangc mcasurcments were also performed on this structure.  Displacements in the
range of 0.005 cm to 2.50 cm were performed to demonstrate the sensors sensitivity. Response at
amplitudes as low as 0.015 cm displacement were observed. The oscilloscope was again configured
to trigger at the release of the structure in the llold Next storage mode. A sampling period of either
5 ms or | ms per point was uscd in sampling the waveforms. Thesc left sufficient bandwidth for

the processing of several higher order modes.

~

5.3 The Free-Free Beam

The free-free (FF) beam is a becam structure which has no constraints at its ends, they are free
to move. Appendix B considers the analysis of this structure also. How one may go about actually
obtaining this structure is difficult to imagine, however in certain limits models may be assumed
which give a reasonable approximation to a FF structure. A very long beam, suspended by thin
wire like supports from above and connected at only a few points along the beams length can be
considered to model a FIF beam fairly closely [18]. The beam was to be excited by physically pulling
it at its center in a pendulum fashion and then releasing. This would result in two motions of the
beam: 1) the desired flexural vibration and 2) a pendulum motion. In order to insure that the
flexural vibration and pendulum motion were uncoupled one final constraint had to be met: The
pendulum frequency of the beam as it swings from the overhead support should be lower than the
fundamental flexural vibration frequency of the beam itself. An order of magnitude difference is
more than sufficicnt. Fig. 11 shows the model used in the experiment. The beam itself was a 610
cm length of cylixldrical PVC drainpipe with an outer-diameter of 2.857 cm and an inner-diameter
of 2.54 cm. The beam was suspended by three 150 cm lengths of thin nylon string spaced along
the becam as shown. The pendulum frequency is given by

1 g

2T
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where [ is the support length and g the acceleration due to gravity giving a pendulum frequency of
0.4 llz. From Appendix B the fundamental frequency of the beam is found to be 1.5 liz. The
factor of four between the two frequencies should be enough to insure isolation of ‘the two motions.
Since the plane of motion for the flexural vibrations was normal to the support strings the fiber
was run up and back the length of the bcam bonded to its side. This would assure maximum strain
in the fiber as the beam was bending. Unlike the previous structures the FF beam had no supports
:;t cither end hence no way of connecting the fiber to the beam without allowing the excess fiber
movement discussed in chapter four. This was overcome by running the fiber up and down the
support string at one end of the beam, ove\rhead and finally down to the laser and detector. An
independent cxperiment showed that pendulum motion initiated little or no strain in the fiber suf-
ficient to produce sensor output. Thus any signal produced should have been due exclusively to
the flexural vibration. This turned out not to be entirely true since the beam movement induced
a time varying longitudinal strain in the support strings which coupled to the fiber.

As described above, the beam was excited by pulling it back from its center in a pendulum
fashion then releasing it to induce a flexural vibration. A small string was tied at the beams mid-
point which was drawn and clamped as shown in Fig. 11. As the clamp was released the scope
was extcrnally triggered and the signal waveform captured. External triggering was much simpler
since setting of the trigger level was difficult in this experiment. Two initial amplitudes were im-
parted corresponding to displacements of 13 and 25 cm from the equilibrium position.

Strong air currents in the room vibrated sections of the fiber not connected to the beam giving
excessive higher frequency noise (relative to the beam frequencies). A low pass filter with a cutoff
frequency of 30 11z was placed at the detector output to reduce the noise component of the sensor
signal. This cutoff is about 10 Iz above the sixth order frequency component of the beam vi-
bration. Very little signal is expected above the fourth order mode (7.86 Hz) so the filter did not
attenuate any meaningful signal. Dynamic range measurements were not done on this structure
however the effects of varying interference patterns were studied. In fact, changing of the interfer-
ence pattern between excitations became somewhat of a problem. Due to the longitudinal strain

induced in the fiber at the support string and the eratic fiber movement caused by the gale force
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winds in our luI)oratory the output lobe pattern changed regularly. This had a noticeable effect on
the time domain waveforms between excitations and it was often necessary to perturb the fiber to
generate a clean, distiguishable lobe pattern which would give a reasonable signal. Sampling periods
of S ms per point werc used for each waveform giving an FFT bandwidth of 100 Ili, well above
the fourth and fifth order modes of the beam.

This describes the experiments which were performed in analyzing the sensor’s response to
vibrations. Observations and analyscs were withheld until the following chapter where they will
be prcséntcd for each structure. Thesc indcpendent observations will then be considered on a whole

and conclusions concerning the sensors performance will be developed.
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6.0 Observations and Analysis

The results of the prececding experiments will be outlined and discussed. General observations
common throughout the experiments will first be reviewed followed by results of the individual
experiments. We will begin however with a brief review of previous work done by other investi-
gators who have also studicd the modal domain sensor. Results may then be compared for simi-
laritics in sensor behaviour between the different applications.

As mentioned earlier, previous investigators have traditionally subjected the sensor to either
acoustic or PZT excitations. Kingsiey wrapped the fiber around a cylindrical PZT device [12,10]
operating at a resonance of 45 kl1z while Bucaro (9] insonified a circular loop of fiber approximately
26 m in length and S ¢m in diameter with acoustic energy at 23.3 kHz in an ambient water medium.
In each experiment the frequency structures of the photodetector signals were analyzed on a spec-
trum analyzer. The predicted phcnomena of chapter three were observed in each case and will be
reviewed here. The transducer frequency initiating the stress ficld was able to be demodualted and
detected in the fiber signal. In addition, the muitiple harmonics predicted by equation (3.11) were
also visible in the spectrum of the demodulated sensor output. Somctimes odd fundamental har-
monics would be augmented while even harmonics attenuated, or vice versa. This was due to the
random carrier phase w acting to cancell harmonics generated by the differential phase modulation

of chapter three. At other times all harmonics were observable indicating a carncr phase of n/4 .
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‘These cffects were witnessed in the real time frequency spectrum as a slow fading of the harmonic
components. The cffects of the interference with the phase modulated triple tra;xsit reflection signal
were also apparent. For cases where all of the harmonic components were attenuated a strong in-
terference between differential and reflection phase modulation was assumed. IHigher components
in the frcquency spectrum could be attributed to the demodulated reflection signals. The fading
of these components was also caused by random carrier phase but was much more rapid due to the
increascci transit length of the reflection signal.

lﬁ studying the results of the vibration experiments we will be looking for much these same
kinds of behaviour. Before addressing each :/ibration system individually, observations which were
common to each cxpcrimcni will first be discussed. Fig. 12 shows a time domain sensor response
for the vibrating string. The type of periodic behaviour shown here was typical in practically all
of the vibration mcasurements. The transicnt portion at the start of the waveform was caused by
the initial relcase of the structure. This scgment of ﬂthe waveform was not included in the frequency
analysis since only the steady state portion of the signal was of interest. The lobe structure shown
in Fig. 7 was not constant throughout each experiment but rather varied with temperature, fiber
movement and structural excitations. It was possible to achieve different lobe patterns by stressing
or moving a portion of the fiber not on the structurc. This was somectimes necessary to maintain
consistency in the interference pattern over a scrcs of measurements. This brings up the point
made earlier that different lobe patterns tend to give varying sensor signals Even different areas of
the same pattern would give diifering responses. (We could compare signals generated from dif-
fecrent patterns by displaying different portions of the oscilloscope memory.) However by returning
to a particular lobe in a given pattern the orgnal signal could be recovered within some phase
variation. This observation lndisatcs that each lobe is carrying a unique phase modulation; which
lobe is correct, if any, is indcx:tcrminable. However an FFT analysis of the time domain signals
from diffcrent lobes indicates that common frequency components exist throughout their signal
spectrums.  Only the magnitudes of these common frequencies vary. Figs. 22 and 23 for example

show frequency spectrums of the FF vibrating beam obtained from lobe patterns that gave different

time domain responses.  We sce that their spectrums exhibit similar frequency peaks but with dif-
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ferent component magnitudes. This same behaviour was also observed in the other structures
studied. ‘Thercfore, although the resulting interference patterns at the fiber output may carry dif-
fering amplitude modulations for a given vibration, the phase modulation responsible for the AM
scems to be initiated by unique frequency components.

The DC level of the detector output from different interfernce lobes showed no correlation
with the signal amplitude between the respective lobes. Higher output intensity was not necessarily
indicative of strong amplitude modulation. Iligh intensity lobes often gave modulation signals with
much smaller amplitudes than lower intensity lobes. Light intensity within a particular lobe how-
ever did affect the signal amplitude. Diminish‘ing the intensity, by moving the apperture further from
the fiber output for examplé, reduccd the modulation amplitude of the sensor output. Intuitively
these obscrvations seem rcasonable since in comparing DC intensity we are really only comparing
the relative carrier levels, not the degree of modulation in the different lobes. These observations
will now be carried over and related to thosc made on the individual structures which will provide

a more detailed characterization of the sensor’s behaviour.

6.1 The Vibrating String

Three of the five string excitations studicd will be discussed in terms of their individual sensor
responses. Discussing each of the six trials individualy would be redundant since similar behaviour
was observed throughout the experiments. Therefore the results of these other excitations will
simply be incorporated in the present discussions. The six excitations were performed at both
mid-string and end-string locations and correspond to fundamental frequencies of 196, 294 and 392
I1z. Figs. 13 through 18 show the FFT frequency components for these six excitations respectively.
Also listed are the theoretical Fourier seres components as derived in Appendix A. The peaks of
the spectrum marked by the circles represent expected frequency components while those marked

by the boxes represent anomolous components. This convention will be adopted throughout all
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of the discussions. l'requencies were determined by identifying the peaks in the actual FFT nu-
merical data. The minimum and maximum resolution of all FIFT’s is 2.5 1z and 0.05 Hz respec-
tively and is given simply by the FFT bandwidth divided by 2000, the number of sample points.
Figs. 13,15 and 17 represent spectrums of mid-string excitations for the corresponding fundamental
frequency. Theory predicts that only odd harmonics of the fundamental should occur for this
cxcitation. Although the expected odd harmonics are visible there are many anomolous compo-
nents also produced. In Fig. 13 for example the fundamental 196 Iz and fifth order 587 Hz peaks
can be seen but arc accompanicd by several other evenly spaced peaks as well. Inspection shows
that the first visible peak of the spectrum i; at a frequency equal to one half of the fundamental
(97.6 11z). The remaining a'nomolous components are located at odd multiples of this subharmonic
(292 1z, 483 11z and 683 Hz). This same behaviour can also be seen in the other spectrums with
the exception of Fig. 17 which does not contain a subharmonic. In Fig. 15 the subharmonic

component is actually greater than the fundamental. For excitations near the string end (5/6 L)

Figs. 14 and 18 show the expected increase in the higher frequency components characteristic of

" end excitation with harmonics occuring at the predicted integer muitiples of the fundamental. Fig.

14 shows this very clearly but again the muitiples of the fundamental subharmonic (f;/2) are ap-
parent. In Figs. 16 and 18 this subharmonic is again greater than the fundamental. So although
these spectrums show the expected increase in higher order components they are still plagued by
the existence of a f;/2 subharmonic and its related multiples. The theoretical amplitudes of the
harmonics are normalized to the experimental and theoretical fundamental components. We also
sec then that there is no absolute agrecment between experimental and predicted amplitudes of the
frequency commponents.

Some possible explanations for the obscrved sensor performance will now be discussed. To
begin, we may consider the nature of the structure itself. We are assuming a first order, linear model
of the strings behaviour. This is indeed an oversimplification since we are dealing with a massy bass
string which in addition is loaded with the optical fiber. More than likely this is a nonlinear
vibrational system. Nonlinear string analysis predicts the existence of additional vibrational fre-

quencies not predicted by the ideal string modet [19,20,21]. Other investigators have in fact detected
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frequencics in vibrating strings microphonically at mulli.ples of one half the expected fundamental
[22]. The £;/2 subharmonic however was not detected. The non-ideal end supports and the pres-
cnce of the tension scale at the string end also contribute to non-linear perturabtions [23].

‘Though these deviations from ideal string behaviour are likely to have some effect upon the
scnsor response a good part of the anomolous behaviour must be attributed to the sensor itself.
The same mechanisms dcscribed by other authors and discusse.d earlicr can be applied here to ac-
count for these anomolies. Multiples of low order fundamental frequencie;.s were predicted in
chapter three and reported by these other investigators {12,13]. Random carrier phase is responsible
for the variations in harmonic amplitudes hence their lack of agreement with predicted amplitude
values as can be scen in Figs. 13-18. Coupling of phase modulated reflection signals to the f£/2
harmonics could reenforce these components. The existence of the actual f;/2 subharmonic is dif-
ficult to explain. The fact that more than two fiber modes exist may be responsible but this sub-
harmonic was not obscrved in the other vibration systems. Thus it could be related to the fiber
coupling or the higher frequencies of the string. It may be that the sensor is not responding at all
to the fundamental frequencies but only to this subharmonic and higher modes are merely a result
of carrier phase and reflection effects. 1lowever the increase in higher harmonics at the end string
excitation shows the scnsor is responsive to higher frequency vibration modes. Also, Fig. 17 shows
no existence of this subharmonic at 392 1z, the highest frequency studied. These observations lead
us to belicve that this subhammonic is an artifact of the sensors operation peculiar to this exper-
iment; that the sensor is in fact detecting the expected frequencies but at the same time manufac-
turing these related anomolous components. The type of strain induced by the string simply seems
to support this m_cchzmism moreso than the other systems.

Response up to almost 400 Hz was demnonstrated by the string without any modification of
the scnsor itself. The sensor showed good response at displacements as low as 0.05 cm however
these very small displacements were accompanied by a strong increase in the subharmonic magn-

tude.
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6.2 lec: Clamped-Free Beam

The clamped-frec (CF) beam structure represented the simplest and most consistent of the
three structurces studicd. Only one beam length was considered hence only one fundamental vi-
bration frequency. Figs. 19 through 21 show the frequency spectrums for several beam excitations.
Figs. 19 and 20 show spectrums resulting from two beam excititions of different initial displace-
mcnts.. The spectrum of Fig. 19 was gencrated by a 0.076 cm displacement while that of Fig. 20
by a 0.50 cm displacement. Both spcctmm; show frequencies at 6.8 Hz and 41 Hz with no other
major peaks visible. These ;falucs are almost exactly equal to the predicted fundamental and second
mode frequencies derived in Appendix B. Since the beam modes do not reside at integer multiples
of the fundamental this sccond peak cannot be due to random carrier phase or modulation of re-
flected signals. These spectrums were also obtained from waveforms taken at two different times
but with very similar lobe structures. Fig. 21 shows another spectrum generated by the same 0.5
cm displacement. The graph clearly shows the effects of reflected signal intcrference and carrier
phase randomness. ‘Each peak occurs at a multiple of the fundamental 6.8 Hz component. The
increased amplitudes in the higher harmonics is problably due to strong constructive interference
in the reflection signals. It is intercsting to note that this waveform was obtained directly after that
of Fig. 19, the only difference being the sampling period of the scope. This then clearly shows the
influence of random interference between the modulated reflection signal and the differential phase
modulated single transit signal with random carrier phase. Vibrations measured in other trials from
different interference patterns and filtered lobes showed very similar behaviour. In these other cases
the higher order harmonics were often attcnuated but the lower sccond and third order harmonics
of the fundamental at 13.2 Hz and 20 11z were stronger, with the peak at 41 Hz still present. Thus
the different interference patterns seem to contain the same frequency information but differing
component magnitudes. Note that none of these spectrums exhibit the f,;2 subharmonic seen
previously as was the case in all of the CF frequency spectrums generated. Reasons for this are not

clear but examining the differences between experiments may provide some insight. Perhaps the
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diffcrent fiber coupling had some effect. The coupling in the CF beam experiment provided an ideal
longitudinal stress in the fiber whereas the helical winding of the fiber around the string resulted in
a morc complicated stress field. The increascd length of the fiber over the string may have been
responsible however the subharmonic was not detected in the FF beam experiments.  The exact
sources of the anomolous subharmonic are difficult to determine from these broad studies. How-
ever, this experiment demonstrated the potential ability of the sensor to detect extremely small

mechanical vibrations with excellent fidelity as indicated by the results shown in Figs. 19 and 20.

6.3 The Free-Free Beam

The final analysis to be considered is that of the free-free (FF) beam. The single excitation
mechanism described in chapter five is responsible for the frequency spectrums of Figs. 22 through
24. These spectrums were generated from different displacement amplitudes and interference pat-
terns. Maintaining a constant interference pattern was very difficult due to the strain induced in the
fiber at the support string. Interference patterns with more symmetric three lobe structures seemed
to give cleaner morc periodic time domain waveforms. However FFTs again indicated the existence
of common frequency components between the varying patterns despite their different time domain
signals with only the magnitudes of the harmonics varying. Figs. 22 and 23 for example show
similar frequency components but with differing relative magnitudes.

The predicted vibrational frequencies of this structure are at 1.5, 4.0, 7.86, and 13.05 Hz from
Appendix B. Figs. 22, 23 and 24 all show strong fundamentals at 1.66 Hz just slightly, greater than
the predicted 1.5 1z fundamental. There are several possible reasons for this slight discrepancy.
The pendulum motion may not be totally isolated from the flexural motion resulting in a distortion
of the frequency components of an ideal FFF beam. The presence of damping in a structure acts
to distort the expected undamped frequency components [24]. The apparent frequency differences

may be due in part to the high degres of damping in this material. The third possibilty is the sus-
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pected reliabilty of the nominal elastic constant and density valucs used in calculating the theoritical
frequency modes.
Fig. 24 shows the presence of several fundamental harmonics at 3.3 Hz and 5.02 [fz. Like the
CI’ beam, the ['FF bcam possescs no frequency components at integer multiples of the fundamental.
The componcats at 3.3 and 5.02 Iz represent second and third order multiples of the 1.66 Hz
fundamental. The frcquencics of 13.2 Hz and 15 Hz correspond to the eighth and ninth harmonics,
all within the resolution of the FFT (0.05 Hz). The 8.8 Hz peak is at approximately the fifth har-
mom’c; Other spectrums showed peaks at 10 11z, the sixth harmonic, and 8.4 Hz the fifth harmonic.
These harmonics arc due to demodulation of the triple transit reflection signals. The increased
magnitude at the higher ordérs, compared to the other experiments, is due to the increased fiber
sensor length. Equation (3.14) tells us that the demodulated detector current contains harmonic
multiples of the modulating frequency o, which are weighted by the Bessel functions Ji(29,), where
@, is the phase change in the reflected triple transit echo mode. Equation (3.2) then shows that an
increase in fiber length serves to increasc ¢,. This, coupled with the factor of 2, tends to increase
the argument of J,. By increasing the argument it may be that the weighting of the lower order
Bessel functions is diminished while that of the higher order functions is increased due to the
behaviour of the Bessel functions themsclves. Hence higher order harmonics (5 throgh 9) can be
of greater magnitude than the lower order harmonics (2 through 4). It appears that none of the
predicted higher order modes of the actual beam vibration are present in the spectrums. All fre-
quency structure above the 1.66 11z fundamental is due to reflected mode demodulation. This is
not ail that surprising considering the structures material and the induced vibration. Higher order
vibration modes will most likely be severely attenuated in this materal and for ‘the applied
excitation. The subharmonics below 1.66 Hz do not exist at 0.83 Hz, one half of the fundamental,
but rather at 0.488 Hz, close to the pendulum frequency of the swinging beam which problably
accounts for this subharmonic.
The frequency spectrums shown for each of the structural systems studied have been discussed.
In most circumstances the theoretical models together with the obscrvations of other investigators

could be applicd to explain the behaviour of each system. The effects of random carrier phase and
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trple transit rcﬂcction signals, described in (3.11) and (3.14), worked well to account for unexpected
spectral components not indicative of the structures vibration. The obscerved behaviour was in fact
very similar to that of the other investigators. The effects of amplitude modulation due to bend loss
or polarization have not been addressed. It is believed that bend loss had a negligible effect due to
the nature of the structures studied and the cxcitation of low order frequency modes. Polarization
modulation was most likcly present and responsible for some of the observed anomolous response.
The major anomoly which could not be explained was the existcnce of the one half fundamental
subharmonic. The fact that this anomally was peculiar to only the string structure leads to two
possible conclusions: 1) the sensor is simply not capable of detecting structural vibrations at these
frequencies or 2) the subharmonic and its resulting harmonic muitiples are an artifact of the
string-fiber coupling; the fiber is scnsitized to a frequency exactly one half the fundamental fre-
quency. Since the fiber responded favorably to end string excitations and the subharmonic is not
always present (Fig. 17) we arc led to believe that the sensor is in fact capable of responding to these
high frequency vibrations.

The dynamic range and frequency response of the sensor have then been demonstrated. Re-
sponses to frequencics ranging from 1.6 to 392 Hz have been shown with no modification of the
sensor itself. Beam vibrations at amplitudces as low as 0.015 cm have been analyzed in terms of their
first and second vibrational modes. There still exists however this inate mconsistcncy with the

sensor brought about by the predicted effects of carrier phase and mode reflection.
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7.0 Conclusions

The operation of the modal domain vibration sensor has been demonstrated in several simple
vibrational systems. Two apparent advantages are the sensors bandwidth and sensitivity. An in-
herent drawback of standard vibration detcction devices is their rapid cost increase with high fre-
quency bandwidth. This sensor showed consistent response in the frequency range of 1.5 to 400
Hz. By imparting very small but measurable excitations in the structures we were able to establish
the sensors ability to respond to very low order vibration induced strain. Dynamic ranges on the
order of 18 to 22 dB for the CF beam and string systems respectively were observed. The sensor
itself represcnts a very simple system: a cohcrent source, a single fiber and a low bandwidth detector.
The inherent advantages of ruggedness and immunity to external radiation can also be added.
Finally, the sensor minimally impairs structural motion through loading, an advantage in moni-
toring small vibrations or lizhtweight structures.

Of course the scnsor was not without its own drawbacks. It is true we were able to detect
structural frcquex;cics however the sensor introduced its own anomolous frequency information as
well. The primary sources of these inherent anomolies were thought to be the effects of random
carrier phasc and multiple transit endface reflections. Endface reflections have been reduced by

index matching the fiber to the source and detector, however the effect of carner phase has no im-

mediate  solution.  Additional problems may have been encountered with strain induced
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polanization and potential bending induced amplitude modulation. Polarizations of the individual
modes are changed duc to strain induced birefringence. This will result in some level of amplitude
modulation at the detector. Phase differences between the various amplitude modulations will
provide a source of interference.

The scnsor was exposed to vibrations with only one degree of frcedom in order to provide
simple, defineable vibration systems. However normal structural vibrations may consist of oscil-
lations with multiple degrees of freedom. This will impart a much more complicated stress on the
fiber »;'ith dimensional components that behave differently in time. The strain induced phase
modulation will then be caused by the resultant of these complicated stress components. Resolving
the frequency componcnts‘ of the resulting amplitude modulation into the xy,z component
vibrational modes would problably prove to be impossible. A fiber sensitized specifically to strain
in one direction would be a possible solution (polanzation preserving fiber). This very problem
may have been exhibited in the study of the vibrating string. The non-linearity of the string causes
vibration to occur in not just one but two dimensions {19]. The string actually precesses in a cir-
cular fashion as it vibrates, with a precessional frequency much lower than the strings fundamental.
Ilence the string has equations of motion in two dimensions which are coupled in such a way as
to produce the precessional motion. The movement of the string in two dimensions may be the
source of the subharmonic and its multiples observed in the vibration spectrums.

The investigations performed here certainly established the potential of the modal domain
sensor however further experimentation is necessary to genuinely quantify its behaviour. For ex-
ample, the dynamic range of the sensor was demonstrated through various excitation amplitudes.
Essentially what this qualifies is the strain in the {iber necessary to generate a recognizable response.
A more quantitative approach to dynamic range would be to specify this actual s(r:ﬁn. It may be
that the scnsor has a limited range of linearity. Pcrhaps large non-linear strains are induced in
structural vibrations and the assumed lincar model {8] is not valid. Response at large frequencies
was demonstrated but in a structure with questionable characteristics (the string). Structures with
better experimental integrity (beams) could be forced to vibrate at higher frequencics heiping to

establish the sensors ability to detect higher order modes. The behaviour of the fiber modes could
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also be further addressed. A fiber with fewer modes or preferred excitation of different modes in
the fiber studied here may prove uscful.  Polarization modulation in single mode fibers has been
studicd by scveral others in acoustic stress wave detection [31]. This may provide an entircly dif-
ferent approach to vibration sensing. I believe the perforinance of the modal domain sensor dem-

onstrated in these experiments warrants these further investigations.
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Appendix A. The Vibrating String

One of the sunplest and most fundamental problems in the study of vibration is that of the
stretched string. This problem provides insight to the solution of more complicated vibration sys-
tems as well as many similar problems in mathematical physics. Consider first a stretched string
of length L fixed at its endpoints. Our goal is to determine an equation of motion for the string,
u(x,t), which characterizes the position of each point x on the string at time ¢ after some given
initial disturbance. Several assumptions must first be made about the system in order to obtain a

simple equation |26}

. The magnitude of the tension t in the string is constant and always in a direction tangent to

the existing string profile.

2. The angle which the string makes with respect to the x axis is small.

3. Only movement of the string in a single transverse direction s allowed.

With these assumptions we may now consider the differential string element of Fig. 25. Let t be
the magnitude of the tension at either end of the element. The forces on the string in the vertical

direction are {25]
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tsinf —tsina ,

which must be equal to the acceleration of the clement times its mass. If As represents the arc
length of the element and p its mass per unit length we may write a differential equation of motion

as
Uy(x,t)pAs = tsinf — tsina , (4.1)

where u,, denotes a sccond derivative with tespect to time. This equation may be simplified by
considering the previous assumptions. Since the slope of the string is small, from assumption 2

we may consider
As = Ax
and also
sina = tana , sinP =tanP .
Then equation (A.1) becomes

3

tan B — tana = 2oy (x) . (4.2)

However the tangents of the angles @ and P at points x and x + Ax respectively can simply be de-

fined as

.8

tana = w,(xt),, , anf = ulaeiae, -

Rewriting equation (A.2) we get
1 p
——ud = ud = —u, .
'_\.':[ x'X x'x A_x] T
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In the limit as Ax goes to zcro the term on the left is simply the definition of sccond denvative.

This equation becomes

Py) 2
Ly = ¢ —57 ux,1) . (4.3)
ot 0x

where ¢? = t/p. This equation has the form of the one dimensional wave equation which defines
the motion of a string.
To completely describe the system we require initial and boundary conditions on the wave

equation (A.3). For the described string these may be written as

uxh=flx) , 0sxs!,t>0
u(x0)=gx) , 0<xx!

(4.4)
u0,n=0 |, t=20

ulhH=0 , t20,

where /{x) and g(x) represent the initial displacement and velocity respectively. By the method of

scperation of variables we assume a solution to cquation (A.3) of the form
u(x.) = X(x) T() . (4.5)
This gives the two ordinary differential equations

X =Ax=0

(4.6)
77 = 2T =0,

where A is the seperation constant. Applying the boundary conditions to equation (A.5) leads to

the cigenvalue problem

X +3=0
X(0)=0 (4.7
X(L)=0.
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The only non-trivial solution to this equation is of the form
X(x) = Acosix + Bsinix .
The condition X(0) = 0 implies 4 = 0. Applying the sccond boundary condition X(L) = 0 gives
BsinAL=0 .

For non-trivial solutions (B8 # 0) we require solutions to the equation sin AL = 0. These solutions

are the eigenvalues of the problem and are given by

Ap = nn/L .
Then the solutions to equation (A.7) are
Xp(x) = B,sin nmx/L . (4.8)
We now consider the equation
T =A% T=0.

This equation takes the general solution, assuming the discrete values for A derived above,

T,(t) = C,cos ﬂLc-l + D, sin nzc{ . (4.9)

The general solution for the string’s equation of motion is a superposition of these seperable sol-
utions, equations (A.8) and (A.9). Combining this fact with the product solution of equation (A.5)

we get

WiAAg

ulx,t) =

[an cos ¢ + by s ﬂf] sin T (4.10)
n

! L L
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This equation represents the Fourier scries solution to the partial duferential equation. Hence the
scrics components represent orthogonal functions from which we can derive the constants

a,and b,. Given the initial conditions of equations (A.4) the orthogonality relation gives

L .
a, = -%L SIx) sin ﬂZ—xdx il
L . )
b, = ﬁgfo g(x) sin l’tLidx .

The two components of the solution rcpresented by X{(x) and TY(() are the spatial and temporal
descriptions of the string’s motion respectively. The .X(x) solution tells us the possible mode shapes
of the string while the 7Y(¢) solution gives the harmonic behaviour of each mode shape in time.
Ience 7(¢), through the frcquency eigenvalue ©, = nnc/L, defines the actual frequencies of oscil-
lation of the string; each mode shape oscillating with a respective frequency. The possible fre-

quencies are a function of the initial conditions which impart the actual motion.

A.l1 The Plucked String

The case of initial displacement with no initial velocity will be considered. Referring to
equations (A.4) this will give g{x) = 0. Now f{x), the initial position of each point on the plucked

string, must be defined. These initial conditions can be wntten as {25]

hxja , 0<x<a
- x) = u(x,0) = — , A.12
Slx) = u(x,0) {hu' serel (4.12)
(L—a)

where A and a dcfine the initial displacement height of the string and distance from the end x=0
respectively.  These initial conditions are substituted into equations (A.11) to give the constants

a,and b, from which we get
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bll = 0
(4.13)

2
a = 2hL, A g ma

nla (L — a) n’ L
The final solution for the plucked string then becomes
2hL? < 1 . nna . nnx nmc
ux,t) = ———=—— 3 ——sin sin cos t. (A.14
' rt2a(L—a)"=ln2 L L L )
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Appendix B. Simple Vibrating Beams

The transversely vibrating beam represents a slightly more complicated vibration system. In
the casc of a vibrating string, the string’s stiffness is ignored and only the tenston gives rise to the
restoring force. TFor a beam however, it is the stilfness itself which provides this restoring force.
The analysis will consider only transverse motion of a slender beam ignoring the effect of gravity
and the action of the beam supports. Consider a beam of cross sectional area 4 to be loaded with
a continuous, static load per unit length w(x) across the length of the beam. The bending moment
M(x) acting on the beam can be related to the distributed load by {26]

d*M(x)

S
&

= w(x) . (8.1)
dx
If there exists a bending moment M(x) initiating a bend of curvature R(x) (Fig. 26), the two can

be related through the equation

Ll

=R e

/W(.X) =

where £ is the materals Young’s modulus and / is the section moment. This is defined as the

sccond moment of the area about a transverse axis through the beam’s neutral surface {Fig. 26)
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1= {ydd . (B.3)

However, we would like to relate the displacement of a point on the beam to M(x). If we designate
u(x) as a point on the beam’s ncutral surface then for small displacements, u(x) can be related to

thc beam'’s radius of curvature due to bending, R(x), as

2
d ”(f) =1 (B.4)
dx R(x)
Then cquation (13.2) can be used to obtain
2
M(x) = EI&(ZX)- . (B.5)
dx

This equation relatcs an applied bending moment to the actual beam displacement. By solving this
equation for an applied M(x) the resulting shape of the bent beam could be detcrmined.

We may also relate w(x) to an applied load w(x) through equation (B.1). This gives

d"u(x) _

El =22 = wi(x) (B.6)

It is from this equation that we may approach the subject of beam vibration. As a beam vibrates
due to the pressence of a transverse wave, the applied load w(x) can be considered a kinetic reaction
of the beam in opposing the acceleration imparted by the wave [26]. This acceleration is responsible
for the transverse motion of the beamn, hence a force w(x,t) exists due to the wave acceleration and
the beam mass. Defining p as the beam’s density and A as the cross sectional area we can write this

force as

wx,t) = pdZE (B.7)
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Now we may consider the opposing torce of (B.6) cquivalent to the accelerating force of equation
(B.7) along the bcam. Ilowever, since these forces oppose one another a sign difference must be

introduced. Equating (1B.6) and (B.7) accordingly we get
.4 2
J pd 4
— UX0) T T = — Jd) . .
T utx) = = G ) (83)

This is the differential equation which describes beam vibration. In deriving this equation we have
disregarded the fact that each element of the beam, Ax, has an associated moment of inertia. As
the beam vibrates a torque is required to generate a rotary acceleration of this moment through
some small angle. This effect, known as rotary inertia, is usually negligible in the treatment of low
order beam vibrations.

Solutions to the differential equation (B.8) are required. Applying the technique of seperation

of vanables a solution of the form
u(x,) = X(x) T(¢) , (B.9)

is assurncd. Substitution into equation (B.8) and defining the scperation constant w? gives two

ordinary differential equations of the form

2
4T L 3T =0 (B.10)
de?
LX iy, (B.11)
dx* '

where k4 = w¥(p-A/EN. We first consider solutions of the fourth order equation (B.11) since it is
these solutions which provide the nccessary eigenvalues describing the vibration system. The gen-

eral solution to this equation is of the form [27]

X(x) = Asinkx + Bsinkx + Csinh kx + D cosh kx. (B.12)

Appendix B. Simple Vibrating Beams 82




We must now apply the necessary boundary conditions. There arc three possible classical boundary
conditions which describe the state of the bearn ends: free, hinged and clamped, and any combina-
tion of these three conditions may appear. The two which will be discussed here are the clamped-

free and free-free combinations.

B.1 Clamped-Free Boundary Conditions

AN

Each end of the beam is considered independently. At the clamped end (x = 0) securing the

beam causcs the displacement and slope of the beam to be zero [26]
() =g = 0 -a%-u(x,t) l,eg=0 (B.13)

At the free end of the beam (x = L) the bending moment and shearing force both vanish. This is

described by

-2 ~3
L —u(x,) x=p = 0 -_i?u(x,z)IFL =0. (B.14)

cX ux

Substituting these boundary conditions into equation (B.12) will yield the characteristic equation

(28]

coshf cosp+1=20

(B.15)
B=kL .

The solutions of this cquation are the eigenvalues, B,. The first three eigenvalues are found to be

127]

By = 1.875, 4.694, 7.355 .
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From this the beam’s frcquencics are given by
fn=_=_n_ﬂ, (B.16)

Equation (B.16) is applicable to any beam system for which the eigenvalues, B., are known. Hence
to determine the modal frequencies of a beam we need only to solve for these eigenvalues by ap-
plyving the particularA boundary conditions to equation (B.12).

Iowever, this does not tell us the contribution of each frequency mode to the actual vibration.
In other words, we do not yet know the magnitudes of the individual frequency components. This

is a function of the beam’s initial conditions which may be expressed as

u(x,0) = filx)y 0<x<L
(B.17)

a =
R u(x,0) = g(x) .
The general solution to the vibrating beam is given by equation (B.9). Since there are an infinite

number of solutions this product becomes a superposition, hence

[= o]
ux,0) = El[A,, COS Wpt + By sin @yt ] Xp(x) -
n:

The mode shapes X,(x) arc derived from the boundary conditions and equation (B.12)., given the

eigenvalues B,. Tor the clamped-free beam X (x) is given by [27]

Xa(x) = Co{ sin kpx — sinh kyx = 1L cos kyx — cosh k,x1}
sin B, + sinh B,

cos B, + cosh B,

k, = Ba/L

(B8.18)

v =

where C, is a constant. Absorbing this constant in A4,and B, we solve for these constants by

orthogonality of the series functions as
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-L
X)X, d
A, = le_.l . (B.19)

]OL X} dx

L
B, = !0 8(x)X, dx '

joL X2 dx

where f{x) and g(x) are the initial conditions of equation (B.17). We now need to characterize these
initial conditions. For our purposcs we will\considcr the specific case of a downward displacement
by a force P at the beam tip. This will make g(x) = 0. To determine flx) we must solve equation
(B.5) for u(x) = flx) with the applied moment M(x). By summing the moments around the bearn

and sctting them cqual to Zero (static casc) we obtain
M(x)=Px—-1L).
Substituting this in equation (B.5) and intcgrating with the initial conditions

g

o u(x) y=g =0,

u(x) =

we get for f{x), the displacement of the beam at t = 0,

3 2
fix) = u(x.0) = 'EPT [YT - LT‘] . (8.20)

Substitution of equations (B.18) and (B.20) into (B.19) will give the expansion coefficient

A, (B, = 0) for the corresponding eigenmode X (x). The first three coefficients are found to be [29]

L3
= 2 =
Ay = 323560
Ji 3
dy = 00824P
3

Ay = 00105PE
Ll
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Since the pressure P could not be readily measured, equation (B.20) was utilized to solve for P.

The displacement at the beam tip, x = L, was mcasured and P derived accordingly.

B.2 Free-Free Boundary Conditions

Determination of the free-free beam modal frequencies is identical to that of the clamped-fres
beam. To bégin. the boundary conditions must be defined. We have already seen the interpretation
of the free end boundary condition and nced now only to apply it to both ends of the beam. The

free-free boundary conditions are written as

d*u(; &
X

Application of these conditions to equation (B.12) yields the eigenvalue equation [28]

cosh B cosPB =1
B=kL .

(B.22)

Solving this equation for § gives the frec-free beam eigenvalues. This equation has a double root
at § = 0. These two cigenvalues correspond to the lowest order pendulum modes of the free-free
beam; the first to the transverse motion of the beam and the second to a rigid rotation about its

center

its center of mass [27]. The first non-zero roots are at

Byys = 4.73, 7.853, 10.99 .
With the use of equation (B.16) the actual beam frequencies may be calculated.
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Figure 26.

NEUTRAL SURFACE

Differential beam clement showing bending radius and neutral surface
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Appendix C. Experimental Measurement of Young’s

Modulus .

The use of equation (B.16) to calculate beam eigenfrequencies is precluded by a knowledge
of E, the Young's modulus. Rather than use reported nominal values for the modulus of the beam
materials, steel and PYC, an independent experiment was performed to determine £. This exper-
iment measures the fundamental {requency of a cantilever beam then uses the computed first order
cigenvalue (Appendix B) to solve for the product £/ knowing p and 4. In the case of the steel hack
saw blade used in the clamped-free beam vibration studies it was only necessary to perform the
experiment on the existing beam to calculate £/. In the case of the PVC cylindrical beam however
a second sample of PVC was obtained for the experiment: a rectangular slab measuring 41 x 5.64
x 0.33 cm. This specimen could be set up as a cantilever beam in order to measure its £/ value.
From this, and a knowledge of [ for the rectangular and cylindrical PVC beams, the £/ product of
the cylindrical fre_e-free beam could be deterrnined.

The experiment used the cantilever bearn system of Fig. 10. A laser was focused on the long
edge of the beam such that the laser light was blocked. A detector was then placed in line with the

lascr light on the beam'’s opposite side. As the bcam vibrated the laser was periodically biocked

giving a serics of spikes in the inverted detector output. The period of these spikes was then half
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the fundamcn;al beam period. Thus, by mcasuring the period of this signal we had an independent
method of measuring fundamental clamped-free beam frequencies. This experiment was performed
on both the steel and PVC rectangular beams.

In the casc of the stecl beam it was not nceessary to calculate / since the same beam was to
be used in the modal domain sensor experiments. [lence the product E/ derived from equation
(B.16) using the measured fundamental was sufficient. Howcver the actual value of E was needed
in the casc of the PVC rectangular beam for use in the cylindrical free-free beam calculations. It
was thvcrefore necessary to compute the section moments of both the PVC rectangular and cylin-

drical beamns. These are designated by [, and /. respectively and are given by [30]

3
IR = _1.).!.!3_.
k2 (C.1)
Ic= %[b‘ -a'l.

In the first equation b and A4 represent the rectangular beam’s base and height respectively while in
the second equation a and & are the inner and outer radii of the cylindrical beam, respectively.
From beam dimensions [, was found to be 3.97x107* and /,, 4.95x10~2. The resulting value of
Young's modulus for PVC obtained from the experiment was 3.65x10° giving an £/, product of
1.8x10*. The measured E/ product for the stcel beam was found to be 19.49. These values were

employed in equation (B.16) in the determination of theoretical beam frequencies.
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DETECTION OF ACOUSTIC EMISSION IN PLYWOOD USING IMBEDDED
- OPTICAL FIBER SENSORS

OBJECTIVE

The objective of the research presented in this report is to
determine whether or not acoustic emission in plywood can be
detected using imbedded optical fiber sensors.

INTRODUCTION

The monitoring of acoustic emission is an important
technique in the nondestructive characterization of strained
materials because time and frequency domain analyses of AE events
vield information about the type, geometry and location of
defects,as well as how a material may fail. The quantative
interpretation of AE event signatures is critically dependant
upon the faithfullness of the acoustic transduction and signal
processing system in reproducing localized stress wave amplitude
as a function of time. Although the usual sensor for acoustic
emission is the piezoelectric transducer, several investigators
have considered the application of interferometric optical
sensing techniques which offer good spatial resolution and
frequency response [1,2]. These techniques typically focus one
beam of a modified Michelson interferometer to a small spot on
the surface of a specimen and measure the time-dependant normal
component of surface displacement at the location of that spot.

This report describes the self-referenced interferometric
optical detection of acoustic emission in plywood using an

optical fiber waveguide imbedded directly within the composite
matrix.

EXPERIMENT

Multimode optical fiber was imbedded between the two center
plys in a four-ply symmetric cross-ply balsa wood composite.
Common wood glue was used to bond the laminae together, and the
overall dimensions of the laminate were 15.24cm x 15.24cm X
1.27cm.

As seen in Figure 1, the plywood specimen was clamped to an
optical table in a cantilever beam comfiguration. The plywood
was then loaded in the center of the free end, and using mecdal
domain sensing techniques, the output of the imbedded fiber




sensor was monitored [3]. The output waveforms were then
recorded on a self-triggerable digital storage oscilloscope.
This detection system recorded burst events at the same time as
audible acoustic events were noted.

RESULTS & OBSERVATIONS

Typical events recorded for the specimen at different times
during loading are shown in Figures 2, 3 and 4. These event
signatures show remarkable similarity to the signatures of
acoustic emission due to composite fiber breakage found by
Bennett [3] in a similar experiment using graphite-epoxy
composites. Note that in Figures 3 and 4 two separate events
were recorded.

Additional interesting observations were made prior to
loading the plywood as described above. After initially setting
up the experiment, the free end of the clamped plywood was -
impacted with the eraser end of an ordinary pencil. The output
corresponding to this impact is shown in Figure 5. The damped
oscillation is approximately 195.0 Hz with a 16.3 Hz envelope
superimposed upon it. The 195 Hz oscillation is suspected to be’
at a frequency corresponding to a plate mode vibration of the
plywood specimen. To check this, a speaker from a transistor
radio was mounted on the free end of the plywood beam and
connected to a signal generator. The signal generator was then
swept in frequency from 180 Hz to 210 Hz. A sharp rise in output
amplitude was seen when the speaker was driven at 195 Hz. The
output of the imbedded optical fiber sensor when the plywood beam
was forced to vibrate at 195 Hz is shown in Figure 6. We were
unable to cause a forced vibration of large enough amplitude at
16.3 Hz to be detected. Further investigation will be

required to determine the cause of this lower frequency
vibration.

CONCLUSION

The results presented in this report show that acoustic
emission in plywood can be observed using imbedded optical fibers
employed in_a mdédal domain sensing system which is simple and
inexpensive. Extensions of this method include the location of
the emission source in the two planar dimensions of the composite
by triangulation and improvement in the spatial resolution of the
sensor by selectively coating sections of the fiber. Also, it
has been shown that imbedded optical fiber sensors can be used to
collect information on the plate mode vibrations of plywood.
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OPTICAL FIBER MODAL DOMAIN DETECTION OF STRESS HAVES

N.K.Sharkaranarayanan, K.D.Bernett, and R.0.Claus

Fiber and Electro-Optics Research Center
Virginia Tech
Blacksburg, VA 24061

ABSTRACT

Modal domain methods utilizing mode-mode inter-
ference have been used to detect acoustic emis-
sion, stress waves and vibration in composite
specimens. Experiments have been conducted to
imvestigate the modal domain method using few-mode
fibers as well as multi-mode fibers. These results
and a generalized theory of modal sensing phenom-
ena are presented. Observations about medal domain
techniques are also discussed.

INTROBUCTION

Fiber optic scoustic and strain sensors based on

 interferometric methods have been reported in the
literature [1,2]1. Aside from analysis of conven-
tional dual-beam interferometers, interfarence
baetween different modes in the same fiber has also
been studied by various authors. "Modal domain®
modulation mechanisms have been used to datect
acoustic waves [3,4), vibration in structures
[5,6) and acoustic emissions from graphite-epoxy
composite laminae [71.

Modal domain techniques are based on the inter-
farence between modes in an optical fiber, prima-
rily dua to phase modulation effects. Unlike
dual-beam interferometric sensors, modal domain
sensors ara very simple to implement because all
of the participating modes are in the same fiber.
Complex mathods of stabilizing the reference arm
are not neccessary and such sensors are amenable
to rugged sensor designs. Their sensitivity to
strain is about 20 dB lower than conventional
interferometers (3.

This paper reports the datection of acoustic
emission and related stress waves in composites
using modal domain methods and includes results
from the sensing of vibrational components of
simple beam structures. A generalized analysis
and model based on phase modulation due to strain
is also presented.

MODAL DOMAIN SENSING: THEORY AND TECHNIGUES

If wo consider tha operation of cual-beam
intorferomatry in torms of intorference between
two difforentially modulated light waves, it is

reasonable to expect similar affects from the in-
terference between modes in the same fiber.

He shall first review the mechanism of phase mod-
ulation in optical fibers. The phase of a mode is
given by ¢ = BL . A phase modulating effect such
as strain in the axial direction will change the
phase and this is described by

Ap = BAL + LAB.

Note that the changes in L and B could arise from
many different effects. Such phase modulations
have been analysed by others [2,10). HKe reproduce
from the latter the following expression giving
the change in phase due to longitudinal strain g
and radial strain g.. Thus

2
= L n
Ap = 2| & = 5Py + Pya)er + Pu‘l]-

where L is the length of interaction, n is the
index of the core, and P,; snd P,, are photoelastic
constants for the optical fiber material.

To see how this phase modulation dua to strain
results in & modal domain sensing signal, we focus
our attention on two modes propagating in tha fi-
ber. Ke hava for modes m and n,

Em(p.8,2) = Epo(p,6) expliBpz + i) and
Ep(p.8,2) = Epy(p,9) exp(iBpz + lop).

Afiar phase modulation we have

Ep(p.9,2) = Epolp,0) expliBpz + lopy + 1)), and
Ep(p,0,2) = Epy(p,0) exp(iBy2 + iy + M)

The above expressions illustrate the fact that
different modes have different f§, phases, and
phase changes. Different modulation schemes can
be considered to represent the different mech-
snisms involved in mode-mode interference (4] . The
three primary factors are diffarential phase mod-
ulation, group dalay demodulation dus to different
group delay times and a triple transit echo due
to multiply reflected waves. This analysis pre-
dicts the occurrence of harmonic multiples in the
modulation and also indicates optimimum conditions
for greater change in the intensity distribution.

Another approach is to consider the field inten-
sity distribution at the ondface by calculating
the real part of the z componant of the complex
Poynting vector (3} . Here, all possible inter-
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Fig. 1. Optical fiber modal domain
sensing: Modal domain sensing

itilizes the mode-mode interference
in optical fibers due to perturba-
tions. The far-field output pattern
is spatially filtered and local in-
tensity responses are detected by an
cptical detector.

actions must be considered and this approach is
impractical beyond a few modes. This spproach
reveals spacific optimm conditions. Ideal combi~
nations are modes having large differences in f
and modulation. HEy,, HE,, are good candidates and
so are HE,, TMy.

The technique used by us at Virginia Tech for modal
domain sensing is spatial filtering of the (far-
field) output pattern to cbtain a region that re-
produces mode-moda interferenca effects. Ha have
used fow-mode fibers as well as multi-mode fibers
to observe these mode-mode interference effects.
In both cases, we have observed a redistribution
of the far-field pattern dua to perturbations.
The few-mode fiber (V=4) of course has fewer
speckles in the output pattern. Far-field
diffraction patterns of particular mode combina-
tions have been analysed before (9).

Our hypothesis is that the re-distribution of the
speckle pattern is due to the phase changes in the
components of the fields at the fiber endface. A
speckle pattern (with aither a few large speckles
or numerous small ‘spackles) is the far-field
diffraction pattern of the field distribution at
the fiber endface and specifically, speckles arise
from mode-mode interference effects analagous to
tha fringe patterns from dual beam single-mode
interferometers. The spackle pattern redistrib-
ution is much like a two-dimensional fringe shift
and can be related direcctly to phasa modulation
in the fiber. The intrinsic amplitude mocdulation
cffect due to bond loss and other mechanisms are
negligible whon considering the morae scnsitive
phase modulation.

IN GRAPHKITE -EPOXY COMPOSITE

Because the mode components are in the same fiber,
there is a reduction of absolute sensitivity since
the modos ara affocted by marginal differential
phase modulation. Moreover, the optimum mode com-
binations roferrod to above carnot always be
launched. This is a more important problem in the
few mode fiber bacause the placement of the de-
toctor and spatial filter becomes difficult. For
patterns with numaerous small speckles, this is not
so critical because of the random effaects in the
phases of the many carriers.

EXPERIMENT

Several experimental systems were used for ver-
ification of the modal domain stress wave and
strain mechanisms. First, optical fibers of
core/clad diameters 8/125 U with V=4 were imbedded
in 25.4 x 2.54 cm, symmetric cross-ply graphite-
epoxy composite specimens. The specimens had eight
1.02 mm plies and were laid up by hand using

EMISSION DUE TO
MATRIX CRACK

EMISSION DUE TO
COMPOSITE FIBER

b o]

t e O3me

Fig. 2. Optical fiber response to acoustic
emission: The sharp rise in the
first emission is characteristic of
matrix failure. The slow decay in the
second is characteristic of graphite

fiber failure.
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propreg tapes. This provided a convenient way of
bonding optical fibers inside a medium.

It is woell known that failure of the matrix mate-
rial as well as the graphite fibors occurs in
graphite-epoxy composites under tensila loads.
This releases acoustic energy as acoustic emis-
sions. An acoustic emission is a relecase of a burst
of bonding energy vihich propagates as a stress wave
in the sample. For our applications, it is a
convenient stress wave genarator.

Cohorent light of 633 nm wavelength was injected
into the fiber and a spaeckle pattern monitored at
the output. To observe mode-mode interferenco,
the speckle pattern was spatially filtered such
that a small part of the pattern fell on the de-
tector. It was found by experionce that it was best
to select a small region on the edge of one of the
large speckles for such datection. This posi-
tioning turned out to be quite critical as ex-
pected. The composite specimen was loaded slowly
on an automated tension frame and audible acoustic
emissions were generated during the process.

Fiber detected acoustic emission signals are shown
in Fig. 2. The sharp peak in the first signal is
characteristic of matrix failure whereas the sec-
ond sigmal is characterisitc of graphite fiber
failure because of the slow decay. Just after an
acoustic emission, the point on the fiber nearest
to the failure is first affected by the stress wave
resulting in phase modulation. An  AET
piezoelectric transducer on tha surface was used
as a raefererce in some of tha tests and excellent
correlation in time between the AET and fiber
‘sensor signals is evident in Fig. 3. These events
also occurred at times when the events were noted
as audible acoustic emissions. Note the damped
nature of the optical fiber response. This is due

Sms

PIBEOELECTRIC
TRANSDUCER
SISNAL

—_ senson

SIGNAL

ACOUSTIC EMISSION
IN GRAPHITE - EPOXY COMPOSITES
Fig. 3. Acoustic transducer and optical fiber
responses to acoustic emission: Thae
acoustic transducer was placed on the
surfaca of the specimen whereas the
fiber was imbedded in tho centor.

to the fact that ss the stress wave propagatos
through the spocimen, it influonces tho optical
fiber over its longth and we sce a cumulative of-
fect. This effect could be advantageous in devel-
oping a distributed sensor.

After the initial burst of energy, we axpect vi-
brations as dictated by the mechanics of the
structura. Optical fibers imbeddad in a structure
experience strain when the structurae vibrates. To
study strain and vibration in beams, further ex-
pariments wore done.

A cantilever {clamped-free) beam as well as a
clamped-clamped beam were set-up with optical fi-
bers imbedded in them. These spccimens were 4-ply,
symmatric cross-ply, 25.4 x 10.16 cm composites.
To study the modal domain mochanisms with multi-
moda fibers, we imbedded 50/125 U, 0.2 NA multi-
mode fibers between the center two plies. As
expected, the speckle pattern had mmerous small
speckles and the placement of the detector was not
as critical as the few-mode fiber and coupling
efficiency was higher because of the larger cora
and NA. Ha feel that it would be more practical
to usae multi-mode fiber to develop sensors for ease
of design and production.

He obtained vibration signals for the cantilaever
beam with an initial lateral displacement as well
as the clamped-clamped beam with an initial im-
pact. The fregquency spectra for the two cases are
shown in Fig. 4.

The average strain in 8 cantilever beam is (2]

3da
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where a is the distance from the axis, L is the
length and d the initial displacement. To observe
this strain effect batter a cantilever was set wp
with an optical fiber imbedded in the center with
a return path on the top surface. Thus, in the
second case, there was a cumilative influence from
the two layers. The frequency spectrum is shown
in Fig. 5. He note a perfect correlation with
theory for the frequemcy of the second harmonic.
It is very interesting that the fiber displays
faithfully the second harmonic of vibration in the
beam. The reponse from the fiber in the center only
is probably due to non-idealities in the system.
The response from tha surface is however more
faithful to the vibrational characteristics of the
beam. The observed multiples of the fundamental
frequency arae predicted from the phase modulation
analysis and are components arising from carrier
modulation phenomema. These results reveal the
fidelity of the modal domain sensing mechanism to
strain and vibration.

£ =

CONCLUSION

Ne have used the modal domain sensing mechanism
to detect acoustic emission, stress waves, and
vibration in composites. A genaral analysis of
the problem has been presented. Current and future
work include additional quantitative tests and
mathematical analyses. The sensitivity of such
sensors is about two ordars lower than MZI sensors
{3}. Dymamic ranga is limited because only a 27
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phase change is available and fringe counting is
not applicable. However, this is not a drawback
as the range of applications of this method is
intended to be different. Thesa sensors are simple
to set up and quite sensitive, but not easily
calibrated. They are excellent for non-exacting,
simplas rugged, low-cost applications.
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- Axial Strain Effccts On Optical Fiber Mode Patterns
by
K.T.Srinivas
R. O. Claus, Chairman
Electrical Engineering
(ABSTRACT)

Axial strain effects in multimode fibers are studied. A few-mode fiber is mounted on a tensile
testing machine and strained at various speeds. The output of a monochromatic light source
passing through it is monitored and recorded. Relations are noted between the light output the
magnitude of tension and the rate of the applied axial strain. Flexural behaviour of the optical fiber
at various tensions is also studied by monitoring the modal output pattern. Relations are compiled
to scrve as a beginning to model these and other related modal effects. A theoretical background is

also suggested to explain the observed effects.
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1.0 Introduction

The potential of optical fibers as passive non-intrusive sensors of a wide range of physical
observables has been well recognized and exploited for more than ten years. The main advantages
of optical fibers for sensor appiications are their inirinsic dieieciric naiure, geomeinc iexibiiliy and
small size, providing considerable design versatility particularly suited for certain remote sensing

applications.

The development of optical fiber sensors began in 1977 with the development of optical fiber
acoustic sensors [1] The following few paragraphs describe some of the past and more recent

applications of optical fibers as sensors.

The operation of all-fiber optic sensors is based upon the modulation of the propagation parameters
of light which travels through the fibers. These parameters are intensity, phase, polarization,

wavelength and mode.

Intensity modulation is the simplest sensing mechanism to implement. The usual measurand is the
relative displacement one or two parts attached to the fiber. The sensor is configured as a microbend

transducer, either a reflection type or simple butt coupling type {2]. Of these the microbend sensor
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is thc most sensitive with resolution of fractions of Angstroms. In general this varicty of sensors

has a dynamic range of 50-70 dB [2].

By comparision, optical phase modulators have a remarkable sensitivity. Dynamic ranges of 107
are quite easily obtained even for quasi static measurements. These are used in the form of
interferometers in most cases. It should be noted that other kinds of modulations also manifest
themselves as some form of phase modulation. The most useful application of these devices is the

monitoring of temperature, pressure and strains.

Polarization is potentially another powerful modulation mechanism. In most polarization-based
devices the fiber itself is the seasor. Monomode fibers are used in most cases and depend on the
ability of the measurand to alter the polarization state of the light propagating through the fiber.

The principal application has been in the sensing of large electric currents.

Wavelength based sensors are usually in the form of color probes. Here the fiber simply serves to
feed light from a source to the monitoring region and to return the modulated light for analysis.

Usually large core, high NA fiber is used.

The effect of mechanical perturbations on the various modes propagating in a muitimode fiber is
yet another method of exploiting the usefulness of fibers as sensors. This a relatively new area of
research and applications of this method include the monitoring of vibrations, acoustic emussion,

etc. [3,4].

Given below are some of the specific applications of fibers as sensors which have been available for

the past few years. [1]

Acoustic Scnsors
Most work in this arca was cocaducted at the Naval Rescarch Laboratories for underwater acoustic

detection via hydrophones in the late 1970°s. These generally employ the two arm phase modulated
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Mach-Zchnder interferometer or the single fiber, polarimetric type. The former consists of a
reference arm and a sensing arm (sce Figurc 1).

In the reference arm some means is provided to either shift the optical frequency or for phase
modulation. The two beams arc usually recombined on the surface of a photodetector and suitably
demodulated. Modulation of light in the fibers is dependent upon the frequency and amplitude of
the impressed acoustic signal. Alternatively, such sensors may be configured as a gradient type in
which both arms of the interferometer encounter the signal. Here what is sensed is the gradient and
the direction of a pressure wave. In the polarimetric version of this sensor, a single mode fiber has
the polarization states of its cross polarized components modulated due to differential birefringence
effects produced by the ultrasonic signals. In these applications the fiber .is generally configured as

a coil. Varying the winding density of such coil structures allows us configure arrays of such sensors.

Magnetic Sensors The measurement of magnetic fields is based on principally two effects; the
araday cffect and the magne\.cstric’.ive effect. The former requires special kinds of fibers to be able
to be sufficiently sensitive. Sensitivities of 10-4G/m seem possible in rare earth doped optical fibers.
Most magnetic sensors generally work on the second principle as it is more sensitve and does not
require the use of any specially doped fiber. Here the fiber is placed in close contact with a
magnetostrictive material which changes physical dimension in the presence of a magnetic field.
This causes a proportional strain in the attached fiber which results in an optical phase change in
an interferometric set-up. The key research in this application is in identifying approprate

magnetostrictive materials to be bonded or coated on to the fibers. Magnetic fields from

10-5 — 10-9G/m are predicted to be detectable by this method {1].

Fiber Optic Gyros Passive ring interfrometers have shown promise as inertial rotation sensors .
Here a single mode fiber is arranged in a ring to form a Sagnac interferometer. Two
counterpropagating beams of light are injected into the rotating fiber loop which causcs a phase
difference between them. When these two beams are recombinced on a detetctor we get a rotation
dependent intensity modulation of the light. Sensitivitics of as small as 1 deg/hr have been

announced.
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Scveral other kinds of amplitude sensors are also available{l]. These include microbend type
sensors, displacement type scnsors and others. The former is based on the principle that a fiber
subjected to a spatially periodic bending causes coupling between modes having a propagation
constant diffcrence which is proportional to this periodicity. This kind of transducer has been
assembled both as a strain and as a dynamic acoustic sensor . Displacement sensors include
reflection types that depend upon the movement of a reflecting surface to modulate light being
coupled into an adjacent fiber, and the simpler position dependent variety which alters the coupling

between two fibers butted together but free to move independently.

1.1 Motivations and Overview

A particularly attractive application of optical fiber sensors is for the monitoring of stress and strain
because they have the potential of offering a highly competitive method of nondestructive
evaluation in certain hostile or harsh environments. Related applications include the measurement
of pressure, temperature, acoustic emission in materials as well as the vibrational modes of strings,
beams and similar structures [3]. All these perturbations affect the transmission of light through
physically straining the fiber. As a strain sensor, optical fiber is robust. Although the fiber is made

of glass its very high elastic modulus makes it remarkably resilient to damage.

There are principally two mechanisms of light modulations that are important in the detection of
stress fields, namcly polarimetric and interferometric. This is due to the fact that it is the phase and
the polarization states of the light transmitted through the fiber that are most sensitive to its

variations in refractive index and physical gcometry which are modulated by the stress field.

A novel venture in some of these applications is the use of multimode single fiber sensors either

imbedded in or firmly attached to the structure being monitored. Ilere the fiber itsclf directly
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cxperiences the mechanical perturbations of the structure. Thus, it is certain that there exists a very
intimate rclation betwceen stresses and strains acting on the fiber and those acting within or on the

structurcs, as the case may be.

From the theory of the mechanics of materials, linear or nearly linear relations should exist for the
way the intrinsic material properties and the physical dimensions of the glass fiber are modulated
by the mechanical perturbations. Using these relations it should therefore be possible to interpret
the varation in the parameters of light output from the fibers using a combination of the
electromagnetic theory of propagation in dielectric waveguides and the photoelastic effect, which
relates the change in optical propertics (refractive index) of a material and an impressed strain.
Equations of this nature exist in various publications on specific topics and applications. What has
been attempted here is to bring all of these considerations together and to compile those that would
specifically serve our purpose of understanding the performance of mechanical perturbation sensors,
tailoring those that do not fit our purpose and suggesting some which are not available. This is
included in the third chapter of this report. No extensive explanations of the nature and
mechanisms of optical transmission through fibers is given. Some of the concepts of stress, strain
and the photoelastic effects are however introduced in the second chapter. This forms the first

section of this report.

The second section is a report on experiments conducted to establish some basic ideas about the
modal domain sensing techniques for strain measurements, being pursued at the Fiber and
Elctro-Optics Research Center here at Virginia Tech. These include the work done by
Ehrenfeuchter {3} and Shankaranarayanan [4]. In both cases a single multimode fiber was used to
monitor stress, specifically vibrations of certain structures [3] and monitoring of acoustic emission
in graphite-epoxy coupons [4]. It is evident from thesc works that the fiber was subjected to a
variety of strains. So it was nccessary that cffects due to specific strains be studied independently
so as to be able to model the effects duc the combination of strains morc thoroughly. So as a

prelude to this effort experiments were conducted to subject the fiber to axial strain alone. The
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expcrimental results are presented and the preliminary conclusions are stated. This compriscs the

fourth and fifth chapters.

1.2 Fundamentals of Optical Transmission in Fibers

Optical fibers are structured as two concentric glass cylinders having slightly different refractive
indices. Light waves propagating through a fiber may be visualised as being-guided along by
sucsessive total internal reflection. The resulting incident and reflected waves then set up interfering
standing waves along the transverse direction of the waveguide. The field distribution in the
transverse direction remains unchanged as the wave propagates along the axis. This kind of stable
standing wave field distribution is called a mode. Such a mode may also be defined as an allowable
field configuration for a given waveguide geometry, that satisfies Maxwell’s equations and all of the
boundary conditions. It is the difference in the two indices and the fiber diameter that determine
if a particular mode will be guided or not. The quantities of interest here are the V number of the

fiber given by,

V=k0a\/n12—nzz,

and the propagation constant for a mode N

BN = /(VvN)v

where a is the core diameter and n; and n; are the corc and clad refractive indices, respectively.
The V number is a dimensionless quantity which determines how many modes a fiber can support.
Note that it is dependent upon the fiber dimension and the refractive index. This is a particularly
important paramecter in the single fiber multimode sensor applications, to be considered later, as

these arc preciscly the paramcters of the fiber that are modulated. B is dependent upon the V

Introduction 7



number and is-modulated in both polarimetric and interferometric sensors, the two main varictics
of sensors. The differences in the propagation constants of the modes causc them to interfere with

onc another which is an important effect as will beccome clearer later on.

1.3 Polarimetric Sensing

All such sensors are single mode types supporting the lowest order mode, the HE,, ;node. From
the theory of diclectric waveguides it is known that in actuality a second orthogonal mode is also
guided simultaneously. Ideally these orthogonal modes have the same propagation constants due
to the isotropic nature of glass. But any anisotropy induced due to an external (or internal) stress
field causes these to vary via a change in the circular symmetry of the fiber and a change in refractive
index due to the photoelastic effect. This induces a differential phase change between the two guided

modes resulting in a birefringence. Monitoring this variation in phase helps us sense the perturbing

mechanical field.

1.4 Introduction to 'Modal Domain’ Sensing

Modal domain sensing is a method of interferometric sensing. Here the fact that different modes in
a fiber have different propagation constants, which arc modulated by differeat amounts by
mechanical perturbations, forms the basis of a single multimode fiber acting as an interferometric

scnsor.
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In the convenfional Mach-Zender type of interferometer it is the phase difference between the light
arriving from two diffcrent arms that causes the interference fringe patten, and the variation in
physical length which is mainly responsible for the shift in fringes. By comparison, the far field
output pattern of any multimode fiber is observed to be a speckle pattern. It is felt [4] that this

speckle pattern is an interference phenomenon between the various modes.

Various experiments involving such multimodal sensors [3,4] have proven that there is a definite
rearrangement of this pattern, and a comparison of the experimental observations shows a unique
relationship between the mechanical perturbations and the spatial rearrangement of the far field
speckle pattern of the output light. This immediately suggests a relationship between the mechanical
forces acting on the fiber and the variations in the optical transmission parameters of the fiber
undergoing these perturbations. It is therefore necessary that these relations be available to help
better quantify the modal domain sensing phenomenon. As a beginning to this end some

elementary relations between the mechanical and optical parameters of have been presented.

However a major stumbling block is that the speckle forming mechanism is not too well understood
at this moment. Principally due to the complex nature the of mode-mode interaction, it is not
possible, in the present work, to also give a proven model for the the speckle rearrangement effect.
A practical difficulty is the control of the launching of specific modes in order to know the modes
existiﬁg in the fiber to be able to model the phenomenon. A more theoretical explanation of this

phenomenon may be found in the works of Kapany [5].

But so much is clear that the analysis given in chapter 3 would definitely figure in any further work
on this matter, perhaps in some modified form. Therefore, a compilation of this analysis is seen as

a helpful supplement in that effort.
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2.0 Theoretical Background

2.1 Introduction to Stress and Strain in Solids

-

The following paragraphs briefly introduce some basic definitions and equations conceming stress

and strain in solids. Also stated are optical effects due to these and related equations {7,8}.

2.1.1 Stress

A body subjected to external forces has intemal forces induced through the matenial bulk. The

average stress g, is defined as

Om = FIA, 2.1

where F is the resultant force acting a section of area A. Stress at a point within a bedy is defined

over an area DA as the limit

dIBA. 2.2
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8F may be coriponcnts 3N acting normal to 3A and 8S acting in the planc of the scction. In Figure
2 3N/SA and 3S/3A are, respectively, the normal and shear stress components. Also 8S may be

replaced by 8S; and 8S; where in the limiting case
381134 = 1,,, 23
and

The stress components are completely characterized by the forces shown in Figure 2. Here the ¢’s

are the normal stresses and s are the shear stresses.

Let us now consider the deformations or strains produced due to the stresses. We start with a
spherical element in an unstressed body. If now a uniaxial stress, say tensile, acts on the spere all
chords will be changed by amounts proportional to their original lengths. In this way the sphere is
transformed into an ellipsoid. The shape of the ellipsoid completely characterizes the state of the
stress on the element and can be specified by the independent lengths of the three mutually

perpendicular principal axes and their directions.

Displacement of points on the surface of the sphere, in the directions of the axes of the ellipsoid,
are purely radial while those of all other points are partly radial and partly tangential. Since radial
displacements result from normal stresses and tan.gential displacements result from shear stresses,
it follow§ '1hat tl;e stresses are purely normal at points in the direction of the principal axes while
at all other points both normal and shear stresscs are produced. If now the sphere is imagined to
be indefinitely reduced and concentrated about a point in a stressed material, there exist thres

mutually perpendicular directions in which stresses are purcly normal. These are referred to as the

principal stresses 04, 62 and 03.
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2.1.2 Strain

To determine the strains at a point O parallel to one of the co-ordinate plane let us consider, as
shown in Figure 3, two infinitesimal line elements OA and OB in a rectangular coordinate system.
Let these elements be displaced in the strained body to O’, A’ and B’. If O is displaced by u and v

to O, as shown, we write the corrosponding displacements of A’ and B’ as

—S—de v+ ‘—8— 2.5

One way of understanding the above expressions is recognizing them as the first two terms of a
Taylor series expansion. We define the linear or normal strain as the change in length per unit
length. Now the change in the length of element OA in the x direction is given by (5u/8x)dx. Strain

therefore is given by (3u/3x)dx/dx, or normal strain in the x dirsction is given as

g, = %% 2.6

The shear strain is defined as the sum of the angles a+ . By considering the two right-angled
triangles which include the angles a and f, assuming these angles to be small, we write the shear

stresses as

Yy = o+ b= (fh)+ (3L, 27

In this way we can relate all six components of strain at a point as

&y = du/dx + dv/By y,, = (Bwldy) + (8v/82) v = (Buidz) + (3v/8x), 29

where u, v, and w arc the components of displacements of the point parallel to the x, y and z axes.
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2.1.3 Relation Between Stress and Strain

All bodies are deformed when loaded. An elastic material is one in which all deformations vanish
when load is removed. In the theory of elasticity it is usual to postulate also that in an elastic
materal the strains are proportional to the applied load and the elastic properties are the same in
all directions. Such a material is said to be isotropic. These properties hold over a certain stress

range known as the elastic limit.

Consider a long prismatic bar under uniaxial stress 3, along the x axis. Within the elastic range the

longitudinal strain is
£x = O4/E, 2.10

which is the well known Hooke’s law reiating siress and strain. Here E 15 a consiant called the

modulus of elasticity. The lateral strains €, +¢, due to G, are given by
£, T €= TVEy, 2.11
where v is Poisson’s ratio. The generalized expression for the three dimensional case is given by

£ = [0z = v(o, +0,)], 2.12

and similarly for the other two directions. Applying these results to shear strains produced by shear

stresses we have
ny = Txy/G‘sz = 1yz/G'YzJ: = sz/Gv 2.13

where G is called the shear modulus or modulus of nigdity.

As a final equation given below arc the relations between the polar stresses and their associated

strains.
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0’£ = si(l’ + 2;,1') + 5'27»', and

2.14
cf) = sf).l + 86(7&' + 20 + sill,o'z = ef}.’ + 567\' + e'z(k' + 2u)
where i= 1,2 refers to the core and clad region of an optical fiber, respectively, and
!
Al = :’El T p’ = —E—‘{l + v‘). 2.15
(1 + vH = 2 2

Thus it is easily seen from the above equations that the stress-strain relations are essentially linear

(in the elastic range).

2.2 Optics of Photoelasticity

Many non-crystalline transparent materials which are ordinarily optically isotropic become
anisotropic temporarily when subjected to a stress. This usually vanishes as soon as the stress is
removed. The mechanically-induced stress or strain cause intermolecular variations in the structure
of the body which alters its optical isotropic character. There exist linear relations between the
variations of the refractive index, which is treated here as tensor, and the stresses. These relations

are

- n—n= CXO'X + C2(0'2 + 0'3),
np—n= Clc'.’ + Cz(ox + 63), 2.16

ny — n= Co3 + o + 0y).

This is known as the stress optical law. Here C ; and C ; are called the stress-optic coefficients and

have the tnverse units of stress.
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Another asseciated effect is the strain optic cffect which gives the relation between change in

refractive index and the strain and is given as [9],

1 6
M — )= Z pE 2.17
(nz)l J=lp'”

Here P, is the strain optic coefficient. With no shear strain g, = g5 = £ = 0. We need consider

only the i,j=1,2,3 elements and for an isotropic homogeneous material it is given as

Py P12 P2

Pg/ = [Pu P P12]

P12 P12 P

W have therefore seen in this chapter the relations between the stress and strain and also introduced
the basic equations relating variation of refractive index of isotropic materials with stress and also

the associated strains.
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3.0 Mechanisms of Modulation

Described below are the two main mechanisms of light modulation that occur in optical fibers
under the influence of mechanical perturbations. Relations are given between the stress or strain

and the resulting variations in the optical transmission parameiers of ihe Gbers.

3.1 Phase modulation mechanisms in fibers

Phase modulation is intrinsically one of the most sensitive measures of environmental changes using
optical fibers. There are basically two configurations of fiber sensors that may be used to monitor
the phase effects. The first is as the two arms of a Mach-Zehnder interferometer using single mode

fibers. The second is the single fiber configuration using multimede fibers which exploits the

variation of phase between the different modes in the fiber.

Phase modulation cffccts are basically due to vanations in
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physical length of the fiber due to axial strain,
radial dimensions of the fiber due to radial strain, and

refractive index via the photoelsatic effect.

Let us first consider the phase modulation effects in the Mach-Zehnder configuration. Here the

basic equation for the phase ¢ of the output of the fiber is given by [9].

o=BxL, 3.1

where B is the single mode propagation constant of light in the fiber and L the length of the fiber.

Also let n be the refractive index of the core, ko the free space propagation constant and a the core

diameter.

Let the fiber be under isotropic stress due to some external condition with no shear components.

The change in phase due to strain may be written as [9]

Ao = BAL + LAB. 3.2

Here the first term accounts for the physical change in length due to the strain. Here AL may be

simply written as

AL = g,L. 33

The second term involves change in phase due to change in B which occurs mainly due to two

effects

the variation in refractive index via photoelastic effects

the change in radial dimensions.
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It may be represented by

= é& <+ L{&
LA = LS An + L-IAa. 3.4

The first term in the above expression is due to the variation in the refractive index in the 2z

direction, due to the photoelastic effects. This is given as {9]

An = %’ﬁ%’xz + ex(p12 P11} 3.5

Here it should be remembered thate, = ¢,

Now B is given by B = k1, where n, lies between the core and cladding indices. But as these differ

only by 1% or so we can write it as § = kgn and therefore

0T
apjan =

1.
I\O-

The second term gives the change in B due to change in diameter of the core. Here the change in

diameter Aa is simply

Aa = gqa.
df/da is evaluated as
dB_ _ (130,390
B - ey, 36

212 — pn2
where V is v-number given as V = kja(m, — m)'? , b = E,—k"—,ﬁ-—’—l’- — n} and db/dV is the slope

of the b - V curve(9].
Thercfore LAB may be written as

LAB = Lign®e.Piy + 2Py + Py + Lo 2802 3.7
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Therefore charige in phasc per unit length of fiber due to the various strain componcents may be

written as

3
AL = e (B + LnhoPra) + e kon’(Pry + PYTL S 3.8
L 2 262 4V

We now take up the case of the multimode single fiber configuration. For this the key relation is
the one given in Eqn. 3.4. But here as both the ‘arms’ of the interferometer are the same fiber,
change in length effects all the modes in the sarﬁe manner. So we will consider the effect duc to
change in B only. This is because each mode has a different propagation constant and the n,, is
given as [10].

alh = a1 - AL,
W Ny + 1

where

>
U
iR

Nmz____.

|4
n/2

where V is the v-number of the fiber.

It has been shown [11] that in such mode-mode interactions effect of change in fiber diameter on
change in B for a mode may be neglected for the case of a circularly symmetric plane strain. Using

this result we may derve for change in phase for given mode, an expression, as follows.

Ao
=== A
T B
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Note that as this expression contains variations due only onc term alone compared to the three
terms in Eqn. 3.4 it could well be expected that the scnsitivity of the single fiber ‘interferometer” to
be less than the conventiontional Mach-Zehnder type which is indeed verificd in practice. In the
development of Eqn 3.8 we assumed that 7,, was the same as n the core index. But in this case it
is the difference in the varation in the of refractive indices that causes phase difference between

modes. So to account for this we derive the relation d B/dn using the expression for n,, So

B = konyy ‘
I TR
= =
(4a Jnlz - nzz + 7&.)2 }

where N is the mode number. So as P is a function of the core diameter a, the core and cladding

indexes n, and n,, we may derive the total derivative of B

. n

>

o

.

)

}.

o

i)

"

Y
(K]
St
[hen]

8 S N 1]
-S—U T -8-;12—“"2 ¥ -'."a—uu.

We use the expressions derived by [12] for the dn’s, which is 7 = n’ + Cj(o}, + of) where i=1.2
refer to the core and clad regions respectively , C; the transverse photoelastic constant and #, the
index of refraction along the z axis in the stressed state. Also we write da as 0 ,/E where E is the

Youngs modulus. By partial ¢iiferentiaion of Eqn. 3.9 we obtain the following expression for

change B for a mode N

My = e — 7 = (el = ) + Ay =]

Jm-m

[C; ’(G”) + 0“)) C(‘)(O.(z) + 0,82))]} —

(Sag(n, — r3in CG + ol) = mCPeF + ofh) +

0‘77
[=aq(n - ":)(”\2 -m L.': ' 3.11
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where /= (da/nf —nf + Ay and ¢ = (N — DAL

Here the expression is in the cylindrical coordinates and unlike the others it has terms for stress an
the corrospondding stress-optic coefficicnts. These may be converted to strain terms using Hookes
law and the relation between stress and strain optic coefficients P, = —2EC,/n® and
P, = —2EC,/n* It should however be mentioned that this expression holds only if all the quantities

involved are known precisely and the assumed conditions of uniform radial pressure is satisfied.

3.2 Mechanisms of Polarization Modulation

Polarimetric fiber-optic sensors detect the presence of a physical field via a change in state of
polarization of light propagating through a single mode fiber. It must be noted that even in a single
mode fiber two ‘modes’ perpendicularly polarized to each cther may propagate. It is the differential
change between these that form the mechanism of sensing. The physical field to be sensed causes
an asymmetric stress in the fiber cross section thus unequally changing the phase velocities of the
orthogonal palarization modes. The mechanism may therefore be analysed similar to the phase

modulation.

The following discussion follows that of [13] for a step index fiber under radial pressure which is

acting alona diameter.

For this purpose we limit our ecxamination around the center of the fiber as most of the energy in
a step index fiber is almost entircly confined to the core. We may therefore write the change in

rcfractive indices as that involving only n; as

ne=m + (Cio + C,0,)
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ne = m + (Cioy + G,0,).

Now writing the §’s as
x _ n.xkO, B}' = nka'

we can write the birefringence as

8B=P - §°
3.12
= c)',v(cl -G+ oG- CG)
The components of principal stress around the center may be approximated as
- —% _Jf
ST YT
where fo is the external force per unit length. Therefore Eqn 3.12 may be written as
8
AB = -x;(cl - C2)f<.). 3.13
This is also equal to
4n? 1 +
ap=TLlivp, - Py 314
where v is the Poisson’s ratio.
The induced linear birefringence may also given by.
P - P -
AB = ABy - ABX = - /\Ongl—_——'—( 1 2_) (51 - Ez) 3.15

2

where €'s are the principal strains given as
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g, +tE
Gi) = {——2—% (= )3l — s0) + 4»:301}. 3.16

where €,,, £, £, arc the strains in cylindrical coordinates. The P’s are the strain optic coefficicents.
Eqn. 3.14 may easily be got from Eqn. 3.12 by replacing the stress by the strain terms. Eqn 3.14
then becomes

Py — P -
ap = —tgrgifu= P 5 12 (e~ el 3.17

The change in two orthogonal modes is given as

AB* = ko3 (Pyjey + Ppyeg)i2

, 3.18
AR = = komyl(Py &) + Piogg)f2.

Twisting a fiber around its axis with a uniform rate 2 aN rad/m where N is the number of turns
per meter will induce will induce a circular birefringence unlike in the other cases where the
birefringence was linear. The induced birefringence is given by [13].

2

AB = "7‘(131, — Pp)2nN 3.19

We have also for a bend induced birefringence a normalized value.

2
ABB_ = _’2_(1:“ - Po)(1 + v)(a/RY, 3.20

where R is the bend radius and B the mean of B, B, For bending under tension, an additional
normalized birefringence is given as
3B

2
m
L“=T(Pn_/’12)

B

1+ ;’)(_2: Y (b RyYe s 321
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Thus we have-achieved upto a fair degree of completeness the derivation of equations relating the
various optical transmission paramcters like refractive index, phase, propagation constant and
bircfringence to the mcchanical perturbation paramecters stress or strain.  Given below is a

compilation of the all the important relations that have been derived earlier.
Recfractive Index
n, = ny + (Cy0,, + G;00p)

ng = ny + (C,0gg + C,0,,)

n, = ny + G(0, + Ogg)

Phase

_AZQ_ =¢g,,B+ —” MoPg) + £dgn®(Pyg + Pn)——ﬁ02 db

Propagation constant

ABy = ———k—o——{fJn - n; - {q[-’ia(nl an) + lJnf‘ -—n,;z ] x
Sni =

() + o) - U + o)) -

(8ag(n, — m)m CEet + of) — mCPeP + o)) +

{agtn, = mla} =~ m}=E])

Birefringence

8 =2 - oL

this 1s also equal to
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4”! l+v

AB = —

(P12 — Pn)—[-

where v is the Poisson’s ratio of Silica. It may also be given as

3,(P1y — P13)
AB = —kory A_n_(grr ~ tgq)’
J
Twist induced birefringence is given by
2

AB = 221—(1’11 — Pp)2nN
We have also for a bend induced birefringence a normalized value.

2
n
£ = P = P+ V@R
where R is the bend radius and B the mean of §, and B, For a bending under tension an additional
normalized birefringence is given as

(1 + v)}(2—3V)

5= ——(Pn‘Pm UL

It may be mentioned here that following the development of these relations it is realized that these
equations may appear in any theory relating to the ‘modal domain’ sensing techniques perhaps in

some modified form without, however, any drastic changes.
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4.0 Experiment and Observations

4.1 Motivation and Reasons

Modal domain methods involving mode-mode interference effects are being actively investigated
at the Fiber and Electro-Optics Research Center at Virginia Tech for applications in the sensing
of vibration in structures and acoustic emission in composites [3,4]. In the above applications fibers

are firmly bonded to the specimen and experience a combination of strains when the specimens are

subjected to perturbations.

A question that arises in these applications is if the observed signals are a function of the well
documented bend loss effects. To ascertain this it was necessary to conduct experiments which
would not involve any bend loss effects, or at least be limited to only some non-varying kinds.
Research on these applications also suggested that the axial strain to be a major factor contributing
to observed effects. For example, it has also been noted that ability of the fiber to extubit the
‘modal’ sensing cffccts duc to both vibrations of structures and due to acoustic emission was more

pronounced when the sensing fiber was bonded in a state of slight tension. For both these reasons

29
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it was felt that it may be pertinent to monitor the ‘modal” effects created by subjecting a bare fiber

to quasi-static tensile loads.

4.2 Apparatus

A few-mode optical fiber (core diameter 8 microns; clad diameter 125 microns; NA=0.10, V=4)
was chosen as the most suitable candidate for this purpose as it was the same kind of fiber used in
[3,4] and also the output pattern was such that it was well defined and could be easily reproduced.

The pattern was a four lobed configuration as shown in Figure S.

conveaticnal tensile testing ma

-
oo aiias vwasvanw o

chine - the 1.J.Lloyd T20000
model. The machine applies a tensile load to a specimen held between two grips. The applied
tension and extension from a set position is displayed by a microprocessor unit. The rate at which
the tension is applied may be adjusted as required between 0.1 and 50 mm/m in steps of 0.1 mm.
The grips may also be driven back to release the applied tension also adjustable between the same

range. For our purpose special grips were used to enable the fiber to be axially strained without

slipping and without excessive concentration of stress at the grips.

A 5.0 cm section of the fiber was mounted on the tensile testing machine, as shown in Figure $.
Another section of the fiber was bonded to the surface of a steel cantilever beam (t=0.65 mm,
L= 16.0< <;m). This was similar to the one used by [3]. The fiber was fixed as a loop as shown in
the figure to eliminate a dangling end and increase the length of interaction. This provided a
mechanism to subject the fiber to low frequency strain varations of the order of 1074, That is to
say that the fiber could be subjected to an oscillatory tension around the relatively larger magnitudes

of tension provided by the machine.
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The tensile testing machine range of 0-50 mm/min displaccment (in steps of 0.1 mm/min)
corresponds to a lower limit of 10~%/sec strain for a 20 cm interaction length. A Nicolet digjtal

storage oscilloscope was uscd to monitor and store the detector output.

4.3 Experiment and Observations

The tensile testing machine was operated at speeds of 0.5, 1.0 and 2.0 mm/min to simulate
quasi-static loading conditions. A redistribution of the mode pattern was observed. The lobes

rotated with speeds proportional to the pulling speeds.

The intensity of the spatially filtered pattern (i.c. the intensity of a small fixed segment of the
pattern) was observed to vary in a sinusoidal manner. Because of the known strain rate, the
intensity signal could be related directly to the axial strain in the fiber. Output signals for
displacement rates of 0.5 and 1.0 mm/min are shown in Figures 6 and 7 respectively. Note that the
average time period of the signals is inversely proportional to the displacement rates. This confirms
that the change in the intensity mode pattern is due to strain. Note that the time period for the

faster strain rate of 1.0 mm/min is almost exactly half the period for the slower case.

To study reversability and repeatability, the strain was applied and removed twice at the same rates.
The output signals during tension and release are shown in Figures 8 and 9. Note the excellent
reciprocity indicated by the inverted waveforms. The excellent tracking of the strain in both
‘directions’ reveals the linear relation between the change in the mode pattern and smail axial

strains.

Note that the intensity is periodic for strains of the order of 107 and the rate of change of intensity

with strain is lowest at the “peaks’ and highest in the middle. A low-{requency varying strain of the
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order of 10-¢ was gencrated in the fiber by vibrating the cantilever bcam. This was donc for two
diffcrent strain conditions, onc slightly above ‘peak’ and the other in the ‘middle’ of the sinusoidal
variation of the output of the detector monitoring the far field speckle pattern rotation. The output
signals are shown in Fig. 10. Note the higher amplitude for the middle case where the rate of change
of intensity with strain was highest. The phenomenon reported by [3] was also confirmed as the

variation of the signal was at vibrating frequency of the beam.

Expcriment and Obscrvations

32




| TENSILE
! TESTING
! ' MACHINE

VIBRATING BeAM

2)

===

SPATIAL
FILTER

Figure S, Experimental set-up,
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5.0 Conclusions

A modal modulation effect due to axial strain in an optical fiber been observed. The relation
between the effect of prestressing the fiber axially and the sensitivity of this ‘modal’ mechanism to
monitor flexural deflections is reported. We are now in a position to offer some preliminary models

for the further exploitation of this sensing technique.

5.1 Discussion

For V=4, we have seven modes HE,,, TE,, TM,,, HE,;, HE,;, EH,,, and HE,, [10]. The mode
pattern used by us with four nodal lines is probably due to the mode combination of
HE;,, and EH,, and this mode combination rotates along the fiber [5]. Due to the phase modulation
[5] and polarization modulation resulting from strain, there is a change in the mode pattern. A
rotation in the modc pattern is observed at the detector if a spatial filter is located on the nodal line.
[S] (A nodal linc may simply be understood as the dark regions between the lobes’ of the output
pattern.) We could rclate the sinusoidal varation of the intensity to the rotation of the nodal line

past the spatial filter. A combination of modes should result in a symmetric pattern and the varying

37
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intensitics of-the quadrants results from non-circularitics of the fiber. It is intcresting that the

rotation of the nodal line corresponds well to the strain rate as was observed.

The rotation of the mode pattern is also reversible and rotates in the opposite direction when the
strain is released. The tensile testing machine docs take a finite time to reverse the strain and though
we could observe the effect of strain on the fiber, our timing capabilities do not allow a

measurement of any hysteresis effects in the reversal.

For small a.c. excitations at an existent “d.c.” strain, we have observed sinilarities to typical biasing
and load-line situations in. a transistor. That is, there seems to be a certain prestressed condition of
the the optical fiber which makes it more seasitive to such modal methods of sensing. More
importantly the required stress condition seems to be indicated by the rotation of the mode pattern.
Just as setting the Q point is important in the operation of a transistor it seems necessary to bias
the fiber by prestressing it to be able to monitor such vibrational phenomenon as indicated above.
The response to small strains can be tailored by controlling a quasi-static strain elsewhere on the

fiber. This could very well be a piezoelectric cylinder in sensor applications.

This principle could be used in a sensor with one region of the fiber exposed to axial strain and
another exposed to a controlled strain (e.g. bonded to PVDF cable or wound on a PZT cylinder).
If the controlled strain is increased to some value, then by release or enhancement of strain we could
nullify the strain changes in the sensing region. This gives us a convenient electrical signal from the
control loop as the sensor output. We have an advantage of not having to deal with varying

intensities between nodal lines.
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5.2 Conclusion

e  We have observed a sinusoidal variation of the detector output from a modal domain detection
set-up for small, slowly increasing axial strain. This signal shows reciprocity when the strain
is applied and removed.

e This observation indicates that the strain produces a simple rotation in the far field output
pattern of te fiber.

e We have subjected the fiber to small a.c. strains under different d.c. strains and have noted the
conditions of bias required for such applications.

e We have been able to identify , on the modal pattern, a region of most sensitivity for sensing
of flexural vibrations.

e We have indicated a simple model to explain the mode pattern and axiai strain effects.

5.3 Suggestions

As has been mentioned earlier the observed effect of pattern ‘rotation” could be combination of
phase and polarization effects [S]. To confirm this, further experiments of a similar nature would
be useful. The same experiment could be performed, but this time seperating the far field output
of the ﬁb.c.r into —the two orthogonal eigen modes by passing it through a polarizing element such
as a polarizing beamsplitter. A comparative study of the behaviour of these orthogonal
componants should indicate the contribution of cach of these eizenmodes to the total effect of
rotation that has been observed. Indeed even more signifcant it would check out the validity of this

effect being dependent on polarization at all.
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Another variation to the set up uscd in this study would be to use coupler at the output so as to
scperate out the higher order modes and the lower order ones and the obscrve varations, if any, in
the two outputs. This should give us an indication of the contributions of the lower and higher
order modes to the effects described in this report. In fact using the information from the mode
patterns in [5] we may also be able to understand how the modes get transferred at the coupler as

axial tension is being applied to it.

Indeed it would be worthwhile performing all the experiments of [3,4] to be able to quantify the
required pre-stress conditions on the sensing fiber to tailor the sensitivity of this method for these
specific applications. A result of significance would be to be able to quantify specific pattern
variations and relate them to existing conditions of tension in the optical fiber. A specific
experiment suggested is to vibrate the portion of the fiber under teasion at a known frequency by
using, for example, a tuning fork. This should also simulate the acoustic emission phenomenon of

141
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A related experiment would be to verify if similar phenomenon are observed if the same or similar
fiber is attached to a magnetostrictive material and exposed to a magnetic field. As the materal

expands the optical fiber should also experience the same strain.
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‘ Abstract

A single mode optical fiber is used as a
vibration sensor. It is used to detect
the vibration of a structure. The
vibrating motion of the structure
modulates the optical propagation prop-
erties of the attached optical fiber.

The resulting modulation has been
detected to yield mode shape amplitude
information about the vibrating structure.

Introduction

There has been increased interest
recently in optical fiber modal domain
A sensing system using this
approach has an optical fiber attached
to a vibrating structure to detect the
frequencies of oscillation, or an embedded
fiber in a composite to detect acoustic
emission. This type of detection is
sometimes preferred to the traditional
use of interferometers, because the
optical fiber is attached to the-
structure in question, and the infor-
mation about the vibrating structure is
contained in the modulated output of the
optical fiber. The work in the past has
been done with multi-mode optical fibers.
This work lcoked at the filtered speckle
pattern output of the optical fiber, and
analyzed this modulated detected
output [1]. This has been done with only
2 few excited modes in the fiber, and
with several excited modes in the fiber.

sensing.

In this paper we lock at the similiar
excitation of one mode in the coptical
fiber, and thus the information contained
in the optical fiber's modulated detected
output signal. ‘e

Theory
Discrete modes propagate in optical

fibers. These modes of propagation are
found by applying the boundary conditions

Proceedings, IEEE Region 3 Conference

to the optical fiber and then by solving
Maxwell's equations. The number of modes
that can propagate in an optical fiber is-.
determined by the operational wavelength,
and by the characteristics of the optical
fiber; these can be related to a parameter
called the V-number [2].

Ve (2ma/A)* (n2 - n,t) (1)
where, a = core radius '

A = wavelength

n, = index of refraction, core

n, = index of refraction, cladding

For a single mode fiber to be operational,
V must be less than 2.405.

Even though only one spatial mode
exists in a single mode optical fiber,
this spatial mode consists of two linear
orthogonal polarized modes (3,4]. When
the fiber is introduced to stress,
birefringence is introduced, which causes
a difference in phase velocities and thus
a difference in the group velocities of
these two medes {5). This birefringence
also introduces an exchange of power
between these two modes (6]. Therefore,
this power exchange has introduced a
coupling of the two modes, which in itself
is a change of polarization. This
birefringence can be an internal function
of the material characteristics of the
waveguide, and an external function of
stresses applied to the optical fiber.

Changes of the birefringence due to
external stress on the optical fiber
results in an amplitude modulated signal
(7]. This resulting signal is due to the
coupling of the two linear polarized
modes. This phenomenon of amplitude
modulation in the communications industry
is called polarization noise. However,
the sensor industry can exploit this
phenomenon to analyze external stresses on
optical fibers.

(Tampa, FL), April 1987.




POOR QUALITY:

To investigate modal domain sensing
in a single mode optical fiber, an optical
fiber was attached to a cantilever beam.
The input to the optical fiber was an He-
Ne laser operational at a wavelength of
633 nm. This particular optical fiber
supports only one mode at 633 nm and
the output is one bright spot.

In the following experiments we are
trying to detect the frequencies of
oscillation of the cantilever beam. The
cantilever beam is described by the fol-
lowing differential equation {8].

d*n/dx* = -x(a* ns/dat*(2)

The solution to this equation can be
represented as a fourier series, and the
harmonics of oscillation are described in
the following equation.

VR o ! :
n(t) = 1/2&1}‘,+§‘l (apcos(nw,t) +

” bpsin(nw,t)) (3)

——

In the first experimental set-up of
Figure 1, we are trying to find infor-
mation contained in polarization changes
of the optical fiber. We placed a polar-
izing lens at the output of the single
mode optical fiber. Then, we found the
‘maximum and minimum points of polarization
at the output, while the cantilever beam
remained at rest. Then, we connected a
detector to the output, which in turn was
connected to a optical power meter.

PERTURBED CANTILEVER BEAM

r"—-:::jmfii? }' L. W . =

OSTECTOR

\G_}___ ~

. LINEAR
POLARI®ING LENS
WHICH ROTATES
O° 10 360°

OBGILLOKOPR OR
.. OPTICAL POWER METER

/

FIGURER 1. EAPERIMENTAL SET-UD FOR MGASURING
POLARIZATION CHANGES DUE TO

MECHANICAL PGRTURDATIONS

As we bent the beam up and down, we saw
variations on the optical power meter.
Next, we connected the detector to a
digital oscilloscope. As we vibrated

the cantilever beam, we saw jumps

of the voltage on the oscilloscope that
corresponded to variations in the

position of the cantilever beam. Next,

we removed the polarizing lens to see if
we could see any variations in the bean;
we did not. However, these results were
not totally reliable because the detector
that we used had a low amplification and a
slow response time, and the polarizing
lens caused a great loss of power. This
systen was not conducive to the quick = -—,

oscillations of the the cantileve¥ beam. /

Therefore, in the experimental set-up
in Figure 2, we used a faster detector
with nore amplification. Also, we used a
polarizing beam splitter that separates
the linearly polarized modes of the single
mode fiber., This system also reduces

the power loss that was seen with the
polarizing lens.

fBeR
ALIGNER

_— D..U L S —

DETRCTOR

POLARIEING T
BEAM SPLTTER

CLTECTOR

CHANNEL A

Q3CILLOSCOP

FIGURE 2, EXPERIMENTAL SET-UP TO EXAMINE
AMPLITUDE CHANGES IN GACH LINEARLY
POLARIZED MODE Due TO

. MECMANICAL PERTURBATIONS

At first, we ran the experiment with
the polarizing beam splitter in place. As
we vibrated the cantilever beam, we saw
that one linearly polarized mode increased
in amplitude while the other mode
decreased in anplitude (Figure 3). More
importantly, each of these modes contained
information about the mechanical
oscillations of the cantilever beam.
Specifically, the period of the waveform
was the sane as the fundametal harmonic

of the cantilever beam.




sense other external induced changes such
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1.0 Introduction

The nondestructive inspection (NDI) of materials has experienced an explosive growth in the past
fifteen years due to the increased need for reliable material structures. Advanced composite mate-
rals in particular have progressed from trial applications in secondary structures to primary struc-
tural applications during that time. The materials technology has expanded in this area from glass
fiber/polymer resin composites, to the current availability of metals, ceramics, and polymers in a
variety of forms for both reinforcing fiber and matrix applications {46]. A commonly used preform
material is graphite fiber reinforced epoxy tape, which can be stacked and cured to form laminates
as shown in Appendix B. The directional mechanical properties of the finished laminate depends

upon the fiber orientations in the layup.

Use of fiber reinforced composite structures in military aerospace vehicles is now rapidly expanding
to meet performance requirements at minimum structural weight. In order to maintain the struc-
tural integrity of a structurs, engineers utilize fracture mechanics theory, modelling, stress analysis,

and periodic nondestructive inspection.

One promising answer to the near term need for a workable approach to composite structural in-

tegrity maintenance is an onboard sensor system which can identify situations requiring mainte-
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nance or other corrective action. Sensors are nceded which can monitor important paramecters,

such as strain and temperature in selected critical structural elements.

Fiber optic sensors have specifically been applied to the quantitative nondestructive characterization
of materials for several years [1-3]. Due to the inherent similarity of unjacketed glass-on-glass op-
tical fibers to graphite fibers in graphite-epoxy composites in particular, a number of investigators
have considered the use of optical fibers as sensor; which may be embedded directly within the
composite laminae. The effects of temperature and strain integrated along the length of the sensor
fiber in a composite specimen can be determined using a variety of simple methods. Spatial resol-
ution of such quantities along the embedded fiber in length may be obtained using several more
complicated distibuted fiber sensing techniques. Strain tensor quantites may be determined by
both presuming accurate models of the applied stress and knowing the photoelastic and mechanical

properties of the embedded fiber.

In this thesis, a novel optical fiber sensor for the measurement of strain, temperature in graphite-
epoxy composite materials using differential interferometry is described. Chapter 1 introduces the
reader to the development of such a sensor. Chapter 2 presents an overview of the basic sensing
concepts, providing a few examples of how each concept has been applied. The third chapter de-
tails the theory of interferometric sensing, optical detection and analyzes the specific theory of an
optical fiber Mach-Zehnder interferometer, the type used in the experiments discussed in Chapter
4. Experimental details of the optical interferometer are discussed in Chapter 4. In particular, the
detection of strain and temperature in graphite-epoxy composites is also reported. Chapter 5
summarizes the experimental results, highlights the important aspects of the system, indicates some

problems and limitations, and suggests possible improvements to the system.

Finally, the appendices contain a brief introduction to the basics of optical fibers, preparation of

single mode fibers for experiments, and fabrication of graphite-epoxy composite laminates.
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2.0 Fiber Optic Sensor Overview

There are two generic classes of fiber optic sensors; intrinsic sensors and extrinsic sensors. In the
case of the intrinsic sensor, the parameter being measured interacts with a property of the fiber so
as to modulate the intensity, the phase, or the polarization of the internally transmitted light.
Extrinsic sensors utilize optical fiber as a transmission medium to carry light to and from a region
which is external to the fiber and in which the light is modulated. The range of possible interactions
include intensity modulation, phase (interferometric) modulation, polarization, and spectral
(wavelength) modulation. In the following sections, each of these sensing interactions will be briefly

described and a few examples of measurement in each category will be discussed.

2.1 Intensity Modulated Sensors

Sensors based on a wide range of transduction mechanisms can be characterized as intensity mod-
ulated sensors or "amplitude” sensors. Any transduction technique which produces a change in

optical intensity in response to an applied signal can be classified as such a sensor.

Fiber Optic Sensor Overview 3
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One class of infensity modulated sensors depends upon the effects of microbending on a multimode
fiber. The essence of this sensor is depicted in Figure 1. As the fiber is bent in response to a dis-
placement of the plates, some light is transferred from the core into the cladding, i.e. propagating
modes are converted into radiation modes. A linear relationship between displacement and such
mode-induced intensity is shown in Figure 1 for small displacements under ideal conditions. Since
the range of displacements indicated here is small, this sensor is better configured as a force

transducer.

This sensor has the advantages of being immune to the effects of contamination and of having
potentially low cost. The major disadvantage of this sensor is that any changes in intensity
produced by changes in the source, fiber, or connections result as effective noise and affect the ac-

curacy of measurement.

Figure 2 shows an example of a microbend sensor that has been designed to measure pressure. In
this configuration, a more dimensionally stable fused silica diaphragm is used in lieu of a metallic
diaphragm to circumvent the problem of creep at elevated temperatures. Repeatable operation at

430°C with better than 1 % measurement accuracy was reported for this device [33].

Another class of intensity modulated but extrinsic sensors depend on the proportional reflection
principle. This type of sensor uses a fiber to transmit light to a reflecting surface and to retumn a
fraction of that light to a detector. The intensity of the light coupled into the return fiber is de-
pendent upon the distance of the fiber from the reflecting surface. This is shown in Figure 3.

As is the case with other intensity-based sensors, the accuracy of these devices is aﬁ'eqted by changes

in source output and fiber attenuation.

This simple type of sensor can be configured, for example as a tachometer. In this case, the input
fiber is located at a fixed distance from a rotating shaft and light is returned to a nearby receiving
fiber from reflective arcas on the shaft. The output of the optical detector connected to the retumn

fiber is a train of pulscs, the frequency of which is proportional to the shaft speed. As long as an

Fiber Optic Sensor Overview 5
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adequate modulation ratio is maintained, intensity variations resulting from source or fiber degra-

dation does not affect the accuracy of the speed data.

2.2 Phase (Interferometric) Sensors

Optical interferometry is the basis for all types of phase sensors. Figure 4 shows the four different
types of interferometric configuration, namely Michelson, Mach-Zchnder, Sagnac and Fabry-Perot,
in terms of a conventional schematic arrangement using airpaths and bulk optical components.
Figure 5 shows how the same four systems can be constructed instead with optical fiber elements.

Sensors employing the Mach-Zehnder configuration are the most widely used.

During the past several years, the customary configuration of the all-fiber Mach-Zehnder
interferometer has undergone a number of modifications in an effort to enhance performance. In
early designs, launching light into two optical fibers from a single source required a beamsplitter
and two microscope objective lenses. A similar recombining scheme was used to image the output
on the detector. The use of these macroscope optics produces two problems. First, the two arms
of the interferometer are physically separated by a relatively large distance, making it difficult to
control differential perturbations that are not part of the signal to be sensed. Second, dielectric
beamsplitters are subject to microphonics, which can prove to be a limiting noise source. To
eleminate problems, Sheem and Giallorenzi pioneered an encapsulated etching technique to
produce a single-mode fiber optic divider which operates on the following principles [40]. Each
mode of a light wave propagating along a fiber has an evanescent field which extends beyond the
waveguide core. If two fiber cores can be brought into close contact, the ficld in one can penetrate
into the other and excite a light wave in it. Excessive scattering will occur during this crossover if
the change in refractive index in the area between the cores is not kept very small. This can be

accomplished by twisting together two fibers that have their polymer coatings removed, and ctching

Fiber Optic Sensor Overview 8
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away the cladding glass. The fibers are then surrounded by a medium that matches as nearly as
possible the index of the core glass. The splitting ratio of such a device can be controlled by ad-
justing the proximity of the two cores and their interaction length. This "bottle coupler” can be used

to replace the beam splitter and one lens for both launching and recombining the optical beams.

Detection of the phase shift in a fiber interferometer also presents some interesting problems. If the
two beams are recombined via a bottle coupler or beamsplitter, the result is an intensity modulated
optical field in the coupler output. Alternatively, the output ends of the fibers may simply be
brought into close proximity to one another. In this case, the fibers act as a pair of slits or pinhole
apertures, as in the classic interference experiment performed by Young in 1802. If the resulting
expanding spherical wavefronts from the ﬁl;er are allowed to fall on a screen, an interference pattem
results. The pattern will have a constant integrated intensity, but will move back and forth across
the image plane as the phase relationship between the signals in the two interferometer arms is al-
tered. Regardless of the output orientation, the intensity of the signal falling on the detector will
vary sinusoidally either in time or space, or both. This means that the detector will have a variable
sensitivity to phase shift, determined by the phase of the two beams at any given time or relative
detector position. Because of this, various feedback methods have been developed to hold the
output of the interferometer at maximum sensitivity (in quadrature). These methods include in-
corporating a phase modulator (such as a piezoelectric fiber stretcher in the reference arm), and
frequency modulating the light source (laser diode) to maintain the output phase relationship
[41,42]. An alternative to these approaches is to incorporate a sophisticated signal processing
technique to obtain the requisite phase compensation {43]. One very novel way to eliminate the
quadrature drift problem was recently reported by Willsen and Jones in their paper descnbing a
fiber-optic sensor for the detection of static magnetic fields [44]. The output of a Mach-Zehnder
interferometer, with the output {ibers adjacent to one another, was allowed to fall on a detector that
consisted of a lincar photodic<e array. Since the quadrature position was always somewhere on the

array, they were able to determnine the phase shift by simply subtracting a zero magnetic field scan

Fiber Optic Sensor Overview 1l




from a non-zero field scan. For small phase shifts the rms value of this difference is directly pro-

portional to the change in phase.

The fiber optic interferometric sensor generally features an extremely high degree of sensitivity be-
cause it utilizes interference of light waves (wavelengths on order of 1 um). For the same reason,
the use of polarization-maintaining fibers is preferable, since the matching between the polarization

planes of the sensing and the reference paths is essential for stable interferometry.

A novel interferometric sensor was recently reported by Rowe, Rausch, and Dean in their paper
describing an interferometric approach using the optical signal as a carrier, with radio frequency
(RF) modulation [45]. The system was s.imple, low-cost and not as sensitive as conventional
interferometric sensors; see Figure 6. Radio frequency signal modulation was achieved using
standard electronic circuitry. Multimode fibers were used as sensors and a coherent optical source
(i.e. laser) was not required. This system was used to demonstrate strain measurement with em-

bedded fibers in graphite/epoxy test specimens.

As another example the fiber optic gyro, which has received the most attention in the fiber optic
sensor field, uses a Sagnac interferometer. Figure 5is the basic arrangement. Light from a coherent
source is divided and launched into both ends of a coiled single-mode fiber. The rotation of the
coil can be determined from the phase difference between the two counter-propagating optical
fields, which experience different phase shifts corresponding to their directions of propagation. The
stability of polarizz}tion states is critical for ultrahigh sensitivity and accuracy (for example, the de-
tection of the rotation rate of the earth). Polarization-maintaining fibers have been employed

widely in this field.

Fiber Optic Sensor Overview 2
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2.3 Pola-rization Modulated Sensors

Polarization sensors detect the presence of some physical ficld via a change in .thc state of
polarization of the light propagating through a fiber. This polarization state change is the result
of the phase velocities of the two polarization components of the single-mode fiber field being al-
tered unequally by the action of the applied physical field. Consequently the sensor can be viewed
as a diffemntial interferometer; the two light beams travel within the same fiber but with orthogonal
polaﬁzations. This sensor configuration is simpler than that of the conventional Mach-Zehnder
interferometric sensors but, because they operate in a differential mode, a 3dB loss in sensitivity
usually results. Polarization sensors for dete-:cting various fields, for example, acoustic and magnetic

[34,35], temperature [36], and electric current [37], have been demonstrated.

Polarization sensors fall into two categories. In the first, the fiber is attached in some way to a
material which is sensitive to the field to be detected and arranged in such a manner that a response
of this material asymmetrically stresses the fiber cross-section. This unequally changes the phase
velocities of the two orthogonally polarized modes {34]. Alternatively, the physical field directly
changes the birefringence in the fiber, for example, via the Faraday effect or the temperature de-

pendence of the internal transverse stress asymmetry, to result in a polarization change.

An example of a polarization based sensor was demonstrated at the Naval Research Laboratory
[35]. In this device, light of a known polarization is launched into a single-mode fiber which is
attached to a piece of magnetostrictive material. Typically the fiber is wound around, and bonded
to, a nickel cylinder. An analysing polarizer is arranged at the other end of the fiber such that in
the zero applied field conditions, no light reaches the detector behind it. Application of a magnetic
field strains the fiber bonded to the stretcher, and the éonscquent induced birefringence modifies
the state of polarization of light at the output of the fiber and resuits in a signal at the detector (see

Figure 7).
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ploits the relationship between the axial stress and the transverse stress asymmetry in high-

|
An alternative configuration for polarization sensors has been proposed and demonstrated. It ex-
|
birefringence fibers. Axially straining the fiber induces a large change in the fiber birefringence. ‘

\

Polarization sensors are finding applications in distributed sensing due to their large dynamic range.
For example they have been used for the monitoring of temperature distributions in large structures,

and hot spots in transformers and cables.

2.4 Wavelength Modulated Sensors -

Wavelength modulated sensors are based mainly on the numerous physical phenomena which in-

fluence the variation of reflected or transmitted light intensity with wavelength. Four principle areas

\
\
in which wavelength modulation may be exploited are, in chemical analysis using indicator sol- ‘
utions, in the analysis of phosphorescence and luminescence, in the analysis of blackbody radiation,
and in the use of Fabry-Perot, Lyot (polarization based) or similar optical filters. Chemical indi- |
cator used for monitoring pH and optical pyrometers used for temperature measurement are a few

\

of the sensors belonging to this category.

|
Figure 8 for example illustrates an optical pyrometer; this sensor consists of a sapphire fiber con- }
nected to miniature blackbody cavity {38]. When the cavity is immersed in the temperature field |
to be monitored, a continuous distribution of wavelengths is injected into the fiber. The intensity
versus wavelength distribution of this radiation is given by Planck’s blackbody radiation law. Since
the intensity associated with each wavelength is a function of temperature , a ratio of intensity at
different wavelengths being radiated by the blackbody can be compared with known curves and the
temperature accurately determined. Optical filters can be used to select desired wavelengths to form

the ratio, but a multiple channel all-fiber wavelength division multiplexer placed on the end of the

Fiber Optic Sensor Overview 16
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fiber eliminates the need for such splitter and filters. Such devices typically have a temperature
operation range of 500 to 2000°C and an accuracy of 0.005 %. Current interest in this device is to

replace chromel-alumel thermocouples for measurement of turbine inlet temperatures.

A fiber optic temperature sensor system based on the temperature dependent absorption of a rare
earth doped fiber element was demonstrated as shown in Figure 9 by the United Technologies
Research Center [39]. The temperature measurement reported here was designed to be independent
of the magnitude of the sensing signal and reference wavelengths were taken before and after passage
through the rare earth-doped ﬁbe;r. To avoid dnfts in the detector sensitivity, the same detector
measured the signal and reference wavelengths after passing through the fiber, but with the two

sources alternately pulsed.

Fiber Optic Sensor Overview 18
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3.0 Interferometric Optical Fiber Sensing

Interferometric optical fiber sensor systems measure changes in the phase of an optical field which
propagates in a fiber. This phase is a function of the length of the fiber, the index of refraction of
the fiber core and the cross-sectional dimensions of the fiber. Each of these factors is in turn de-
pendent upon the mechanical interactions between applied temperature, pressure, or strain pertur-
bations and the fiber. Length variations, for example, are caused either directly by thermal
expansion or by the application of longitudinal strain and indirectly by the Poisson effect. Index
variations are caused either by changes in temperature or by changes in strain via the photoelastic
effect. Fiber dimension variations are caused by changes in radial strain produced by a pressure

field, longitudinal strain via Poisson’s ratio, or by thermal expansion.

3.1 Analytical Model

The absolute phase of light traveling in a single mode optical fiber of length, L, is

o =2l —p, (3.1)

Interferometric Optical Fiber Sensing 20



where P is the propagation constant for the mode in the fiber core, n is the effective index of re-
fraction of the fiber, and A the optical guide free space wavelength. The effective refractive index
must lie somewhere between that of the cladding and the core for a mode at cutoff. In a single
mode fiber this is typically less than 1 % diffcrence in these indices, therefore n can be considered
to be the core refractive index.

AL

If the fiber is stressed to produce an axial strain € = = phase change

AD = BAL + LAB (3.2)
= Bel + LAB

results.

The first term in equation (3.2) represents the change in fiber length. The second term represents
change in the optical waveguide properties due to strain. It has been argued by Butter and Hocker
[5] that the most significant of these effects is the change in effective index of refraction along the

length.

In the simple case of a pure Silica fiber, the length change can be easily related to the matenal
properties of the guide [6]. If the fiber is subjected to a change in temperature (A7) then the optical

phase of the light going through it (A®) undergoes two effects :

1. The change in fiber length due to thermal expansion or contraction

2. The temperature induced change in the index of refraction.

Thus, since ¢ = 2nnl , we can write :

Ad n dL
—_— = + 33
ATL 2% (L ar dT) (3-9)
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Where the effects of the fiber diameter changes are neglected as small.

By assuming the temperature variations to be negligible, the strain measurements can be obtained.

The total phase change produced by stress alone may then be written in general as :

2
80 = Blie, — 2Py + Pie, + Puel, (34

where L is length of the sensing section of the fiber, €, and €, are the longitudinal and radial strain,
respectively, n is the core index, and Py, and P, are the photoelastic constants of the Silica fiber
[4]. This relationship indicates that longitudinal and radial strain contributions cannot be resolved
from a single phase measurement. Moreover, if the strain varies along the length of the fiber, the
total phase change can be calculated from equation (3.4) by integrating individual contributions

along this length.

Phase measurements may be represented in terms of strain components if the geometry of the strain

field is known. For example, in the case of pure axial strain the radial strain is

£ = — £V, (3.5)

where v is Poisson’s ratio, the ratio of strain in the lateral direction to that in the axial direction,

and equation (3.4) simplifies to :

2
82 = T+ Pyt + P+ 1) (36)

Poisson’s ratio ranges from 0.17 to 0.32.

Substituting values of pure silica (n=1.458, P;; = 0.126, P;; = 0.274, and v = 0.17 ) and the
Helium-neon laser light freespace wavelength 633 nm, the phase change per meter of standard fiber

is 2.2*107 radians, or 0.22 radians per centimeter of fiber per microstrain.
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3.2 Optical Signal Detection

The instantaneous amplitudes of the light propagating in the sample and the reference are £, and

E, respectively
E, = Egexpilogt — k(xsin @ + zcos® + ¢)], . (3.7

E, = Ejexpillwgt — k( —xsin @ + zcos 6 — 9)], (3.8)

where E, is the maximum amplitude, k the propagation constant, w, the optical radian frequency
and 20 is the phase difference between the fields in the sample and the reference arms and 6 the

angle of incidence of the optical beam measured from a line normal to the surface of the detector.

The beamns when superimposed give a total field E,

E=E + E,. 3.9
Simplifying using trigonometric identites yields,

E = 2Ey{expi(wgt — kz cos )] cos(kx sin § + @). (3.10)

The total optical irradiance is given by the product of the complex conjugates of the total output

field,
H = EE’ - (3.11)
= 4E¢ cos’(kxsin 6 + @) (3.12)

Since 0 is very small, sin® = 0 and

H = 4F, cos’(kxd + ). (3.13)
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The above equation represents the straight line interfcrence pattern. From this equation it can be
deduced that H is a maximum when cos*(kx0 + ¢) is a maximum. The cosine term is maximum

for cos?(kxf + @) is a maximum. The cosine term is a maximum when

kx6 + ¢ = mm, m = 0,1,2,3, and (3.19)

o= =9

70 (3.15)

The values of x give the positions of intensity maxima, or constructive interference. The changing
phase of the beam results in a fringe shift in the x direction, and the amount of light transmitted

by a suitably placed Ronchi grid with line spacing

A
d=Ax == (3.16)
will vary (see Figure 10).
The light flux transmitted by any one slit is
o 4
¢ = [, TH(x)dx (3.17)

where x, is one edge of the slit and x; + in. the other edge. By straight forward integration we ob-

tain

0, = EXd - (25&%) sin[(2ni:1‘—) + 4ZaLl. (3.18)

For m slits the total flux ® = mog,.

Using the small signal approximation AL < <} and neglecting the terms of the resulting expan-

sion which are independent of optical path length change, equation (3.18) becomes :
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® = mEd — Eo*d(84Ly]. (3.19)

Equation (3.19) shows that the total signal is composed of a dc light flux which depends on the
phase shift. The dc term is the major source of shot noise in the detector. If the laser has a total

incident power P, , then the incident power transmitted to the detector is given by :

P = (22) - Py HLy. (3.20)

Since the Ronchi ruling transmits only half the power, the detector receives -%O—OC mE}d. The signal

current at the detector is proportional to the incident power and is given by :

= wapL G2

where a is the sensitivity of the optical detector {7,8].
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4.0 Experiment

A form of Mach-Zehnder interferometer was constructed using single-mode fibers for the two arms
as shown in Figure 10. If the optical pathlengths-of the two arms are nearly equal ( to within the
coherence length of the source ), the light from the two fibers interferes to form a series of bright
and dark fringes. A change in the relative phase of the light of one fiber with respect to the other
is observed as a displacement of the fringe pattern, a phase change of 2n radians causing a dis-

placement the width of one fringe.

The phase of light leaving a fiber can be changed, as detailed in section 3.1, by dimensional and/or
index of refraction changes in the fiber. Thus, if one fiber is subjected to a different strain, pressure
or temperature, than the other, this difference results in as a displacement of the fringes at the out-

put. These effects can thus be measured by this displacement.

The fiber-optic interferometer implemented used a He-Ne laser light source ( A = 0.633um) and
two lengths of Newport Corporation F-SV step-index optical fiber, single-mode at the laser wave-
length. The laser output was expanded, divided by a beamsplitter, and the resulting two beams
coupled into two fibers by a pair of SX microscope objectives with NA = 0.1. The output ends
of the fibers were placed side by side, so that their axes were parallel, separated by one fiver diam-

eter, and their expanding output beams overlapped. Fiber pairs of two to three meter lengths each

Experiment 26
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were used with lengths matched to within a few centimeters. The overlapping output beams were

observed on a screen, where they formed parallel bright and dark interference fringes.

The experiments which were performed using the generic Mach-Zehnder interferometer system are

as follows :

—
.

Fiber optic interferometer used for temperature sensitivity measurement.

2. Fiber optic interferometer used for strain and temperature measurement in a graphite-

epoxy composite laminate.

3. Differential interferometric measurement of temperature in a 0¢ and 90° unidirectional

graphite-epoxy laminates.

Experiment 28




A temperature sensitivity measurement was made by placing a 0.09 m section of one of the fibers
on an aluminu;n plate. The plate was heated using heating elements which were connected to a
digital temperature controller, as shown in Figure 11 The reference fiber was taped to the optical
bench to remain at room temperature ( 20 — 25° ¢ ). The slight variation was due to the air flow
in the laboratory. The temperature was varied and the finge displacements were recox"ded on video

tape for repeated playback and measurement. The average of the readings were recorded as shown

in Table 1.

Taking the case of He-Ne laser source and fused silica fiber, we use the values [46-48]

__d£= *107/9
T 5*10° /e,

dn__ 10%10%)%,

daT
L = 0.09,
n=1.456,

A = 0.6328*10%m

AD
ATL
ently, this implies a fringe displacement of 29 fringes per degree centigrade per meter.

so that equation (3.3) yields = 180.6 radians per degree centigrade per meter. Stated differ-

The value for the thermal expansion coefficient and the temperature dependent refractive index can
¥

dn

vary greatly for multi-component glasses. T can actually be positive or negative around room

temperature. Morover, _;fn? is itself a function of temperature and wavelength, and most tabulated

values are averaged over a rather large temperature range and given for only a few wavelengths.

AD
ATL

Therefore, the value of could be different from that given in equation (3.3) for other glass

compositions.
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The average fringe displacement measured was 36 fringes /°C — m. Taking into account the drift

in room temperature and the region in which the thermocouples were placed to monitor the tem-

perature, we consider the experimental results obtained to be good.

Expcriment



4.1 Fiber optic interferometer used for strain and
temperature measurement in a graphite-epoxy composite

laminate.

Optical fibers which were single-mode at 633 nm were imbedded between adjacent plies of
graphite-epoxy prepreg as shown in Figure 13 (ses Figure 28 also). Once the symmetric cross-ply
(see appendix B) laminate of dimensions, 17.78 by 5.08 cm was fabricated and cured, the specimen
was subjected compressive force in a 15 cm by 15 cm plate press and the resulting strain at the lo-
cation of the fiber measured by monitoring optical phase modulation as shown in Figure 14. The
fringe displacement was again recorded on video tape for repeated measurement. The results are
shown in Table 2 and plotted in Figure 1S5. The theoretical results were calculated from equation
(3.6). The experimental results obtained correlate well with those of the theoretical analysis.

Hence, we consider the experimental results obtained to be good.

An uncured composite sample of dimensions 17.78 by 5.08 cm was fabricated (ses Appendix B)
with a single mode fiber imbedded between adjacent plies of the graphite-epoxy prepreg. The
sample was used in the sensing arm of the interferometer as shown in Figure 16. The specimen
was then placed between the press plates and heated. The resulting temperature at the location of
the fiber measured by monitoring the temperature using thermocouples placed close to the im-
bedded optical fiber. The fringe displacement was again recorded on video tape for repeated
measurement. The results are shown in Table 3 and plotted in Figure 17. The resuits indicate a
nonlinear relationship. The optical fiber seems to be very sensitive at higher temperatures, partic-
ularly above 65°C. The above results can be used as a preliminary cure cycle monitoring of

graphite-cpoxy laminates.
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Strain Phase Phase

Theoretical Experimental
(rads) (rads)

0.0 0.0 0.0

0.38 165 19.0

1.65 34.0 435

2.48 50.0 6.5

3.30 675 76.9

4.11 850 94.0

Table |. Strain Messurement Data.
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4.2 Differential Interferometric Measurement of

Temperature in 0 ° and 90 ° unidirectional laminates.

The experiments thus far, considered a fiber sensing system similar to that shown in the latter ex-
periments. Here, the sensor fiber is imbedded inside the specimen to be studied and a second ref-
erence fiber shunts the specimen. By interferometrically observing the difference between the
stationary phase of the signal in the reference fiber and the varying phase of the signal in the sensing
fiber, temperature and strain were determined. As in most interferometric systems, the seasitivity
of such an arrangement is very high and thus subject to the random effects of environmeatal con-
ditions which independently pcnurb'thc fibers. If, instead, the two fibers are both imbedded in the
specimen, the difference in the phase between the ficlds in the two may be measured and such
common mode noise reduced. Two such systerns were considered for the measurement of differ-

ential temperature in composites.

1. Single-mode fibers placed perpendicular to the direction of the graphite-epoxy fibers, as

shown in Figure 18.

2. Single-mode fibers placed parallel to the direction of the graphite-epoxy fibers, as shown

in Figure 19.

Experiments consisted of heating and cooling the individual graphite-epoxy composite lamihatcs,
the differential temperature change at the location of the fibers was then measured via
thermocouples which were imbedded while curing the prepreg composite laminate. The fringe dis-
placement was again recorded on video tape for repeated measurement. The results for the 900 and
09 unidirectional differential temperature measurements were recorded in Tables 4 and 5, respec-

tively. Data was recorded every 60 seconds. Various combination of the results are plotted in Fig-
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ures 20-23 and Figures 24-27 respectively. Theory predicts that heat is transferrd much faster when
it flows along th-e graphite fiber orentation. This is confirmed by the experimental results as shown
in Figures 19-22 compared with Figures 23-26. But notc, when the heat flow comes in contact
with the optical fiber, the temperature flow rate for the 90° unidirectional specimen apparently re-
duced from that of the 0° unidirectional specimen. This indicates that the optical fiber is slowing
the heat transfer through the 90° unidirectional sample. From Figure 22 and Figu;'e 26 we conclude
that the 90° unidirectional graphite-epoxy composi.tc specimen can be used for larger differential
temperéture measurement than the 0° specimen. The 90° unidirectional system can monitor a
maximum differential temperature of 35°C while the 0° unidirectional system can monitor a maxi-

mum differential temperature of 27°C. Both the systems depart from a linear trend during the

cooling cycle.
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5.0 Conclusions

It has been shown that a single mode interferometer can be used to detect and measure temperature
changes. The sensitivity of such an interferometer measurement is high, experimentally 36 fringes/°
C.. Optical phase changes produced by strain have been recorded using imbedded optical fibers in
graphite-epoxy composite specimen. Analyses of this data correlates well with those calculated
from theory. Optical phase changes produced by temperature have also been recorded using im-
bedded fibers in graphite-epoxy composite specimens, the results indicate a nonlinear relationship.

This data can be utilized for preliminary cure cycle monitoring of graphite-epoxy laminates.

Differential temperature measurements have also been obtained. This was achieved by imbedding
both the fibers in the specimen of the different graphite-fiber orientations. The results predict that
the 90° unidirectional specimen can monitor a larger differential temperature range than the 0o

unidirectional composite laminate.

The problems encountered during the research emphasize several points to be considered in any
research. Simple physical problems are not always simple mathematical problems. Therefore, de-
tailed theoretical analysis should be outlined prior to experimentation so that the initial exper-
imental conditions may be chosen to obtain a solution that is mathematically and physically

meaningful.
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The disadvantages of the single-mode Mach-Zehnder system used in this research include the
alignment requirements for the interferometer, and the nccd to observe the motion of optical
fringes. Before this system can be implemented in an industrial environment, simple rcpeatable
methods for cutting the fibers to achieve a flat surface perpendicular to the fiber axis must be de-

veloped.

The results demonstrate the potential use of imbedded optical fibers as process control sensors in
graphite-epoxy composite manufacturing systems, and will serve as the basis for further investi-
gation and refinement of integral/instrumentation systems for aerospace structures in test and ser-

vice environments.
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70 APPENDIX A

7.1 Composite Material Overview

The use of composites in aerospace structural applications has been growing for more than thirty
years. Their high specific strength and specific modulus, excellent corrosion and fatigue resistance,
and design flexibility make composites ideally suited to numerous aerospace primary and secondary

structures.

Graphite fibers, together with epoxy and other organic matrix resins, allow the designer to tailor
structures to meet applied loads more effectively through deliberate fiber orientation, and more ef-
ficiently by reducing fiber content where loads are moderate. Thus weight may_be decreased in
certain structures an average of 20 to 30 % relative to metals, with some reductions running as high

as 50 %.

This is vitally important in aerospace applications, where weight reduction is often more important
than price. For example, aircraft designers estimate that based on fuel and cargo-capacity consid-

erations, they can afford between $80 and $300 to reduce weight by one pound in a transport plane.
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Weight is even more important in military aircraft, where reduced structural weights translates di-

rectly into increased armament, armor, ammunication, and fucl.

7.2 Composite Sample Fabrication

The fabrication of the composite sample consists of several stages.
1. Formation of fiber tows (buﬁdl§:§).
2. Formation of tow sheet.
3. Compression of pre-preg sheet (single ply matenal).
4. Lay-up of laminae.

5. Compression of pre-preg sheets (plys), i.e. forming an uncured composite laminate

(specimen).
6. Curing of the laminate.

The first step, the development of tows, consists of bundling a few thousand graphite filaments
(threads) together and adding resin (glue) to fill in the matrix as the tows are compressed. The
second step, forming tow sheets, is done on non-stick siliconized sheets. Next, this sheet is com-
pressed together until the squashed tows are barely touching, forming a pre-preg sheet (single ply
material). Pre-preg sheets are then stacked in different orientations (see Figure 28) as desired, with
the 633 nm optical fiber imbedded inbetween these pre-preg sheets (plys), and the sample is then

finally pressed and cured.
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Figure 28.
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Different types of composite specimens (laminates) exist depending on ply orientations; they in-

clude uniaxial, cross-ply, symmetric, balanced, angle-ply and quasi-isotropic [50].

7.3 Graphite| Epoxy Curing Cycle

The heat and pressure cure cycle......

1. 2750F e 15 minutes at 0 psi
2. 2750F s 45 minutes at 85 psi
3. 3500F ... 120 minutes at 85 psi

4. Cool at 85 psi to 150°F in not less than 120 minutes

5.  Remove pressure

APPENDIX A

64



7.4 Composite Terminology

Lamina A single reinforced composite ply or layer ( plural, laminae).
Laminate A series of laminae stacked to form a single composite specimen.

Tow An untwisted bundle of continuous fibers or filaments. Filaments measure 5-15 um in
cross-section. Individual tows lose their identity during the pressurized cure of a lami-

nate.

Pre-preg  Short for “Pre-impregnated” referring to the fact that single-ply material comes with fi-

ber tows already set in uncured epoxy.

7.5 Specimen (Laminate) Types

Uniaxial Fibers in all plies are aligned in a single direction, for test specimens, the 09, long,

tensile-loaded direction.

Cross-Ply One in which ply orientations are perpendicular to each other, usually 0° and 90°.

Symmetric One whose stacking sequency above its midplane is the mirror image of that below the

midplane.

Balanced  Any laminate which contains a ply with a — 6 orientation ( with respect to the principal

axis ) for every ply with a + 0 orientation.

APPENDIX A 65




Angle-Ply Any_balanced laminate containing only ? 0 oriented plies, where 6 # 09 or 90°.

Quasi-Iso. Quasi-Isotropic: Any symmetric laminate containing equal numbers of identical plics

360i

n

with n orientations ( 2 2 3) such that the angles between plies are degrees, where

i=01l,...,n1l
Examples: n = 3:[0, -60, +60 ]s, where s means symmetric

n = 8:[0, 45,90, -45 |2

APPENDIX A 66




8.0 APPENDIX B

8.1 Preparation of Single-Mode Fibers for use in an

Interferometer

Optical fibers are dielectric waveguides which may be used to transmit electromagnetic energy at
optical wavelengths. In optical fibers, the basic optical parameter is the index of refraction which

classically is defined as :
- €
n= 7 (bl)

where ¢ is the speed of light in vacuum and v its speed within the material. There are three basic
types of optical fibers : step-index muitimode, graded-index multimode, and step-index single-mode

fibers.

The step-index fibers consists of two circularly symmetrical coaxial elements of homogeneous but
differing refractive indices where the outer element (cladding) is of lower refractive index than the

inner element (core). Within the step-index fiber, optical energy propagation occurs through total
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internal reflection at the core-cladding interface. In this type of fiber the mode rays may be thought
to propagate along a zig-zag path at greatly varying grazing angles, so that some reach fhe end of
the fiber by longer and others by shorter routes. This leads to a difference in transit times which
limits the bandwidth of such fibers. In a single-mode fiber only one mode will propagate so this

bandwidth limitation does not occur.

In graded-index fibers there is a variation of refractive index across the fiber core. The purpose of
this variation is to equalize the group velocities of the various propagating modes, improving

communication bandwidth.

One important parameter for evaluating fiber optics is the numerical aperture (NA), which is a
measure of the light power which can be coupled into a fiber. When light enters a fiber from air,

NA is computed as :
NA = /ni = n} =sin§, (6.2)

where n, is the core refractive index, ; is the cladding refractive index, and © is haif the pianar angic

of acceptance.

The propagation of light in an optical fiber is govemed by Mazxwell’s electromagnetic field
equations, which may be used to predict the number of modes that will propagate through a given
fiber. The parameter which determines how many modes a fiber can support is the normalized

frequency V, given by

v = (EL/ni -, (63)
where X is the wavelength of the light being transmitted and a is the radius of the core of the fiber.

[t can be shown that the number of propagating modes is approximately equal to M where,
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M=2 (b.4)

This is valid for step index fibers only. Thus, it can be seen from Figure 29 and above equations
that single-mode propagation in a step-index fiber takes place when the value of V is below 2.405.
Below this value all other modes are forced into cutoff, i.c. only the HE); (fundamental) mode

propagates in the fiber.

In any optical interferometer experiment, the most critical part of experimental preparation is the
preparation of the optical ﬁﬁers. Incident light will not propagate down the fiber if the end faces
are not perpendicular to the fiber axis and free of debris such as dust or dirt. There are several
techniques used to strip and cleave the fibers, but the conventional razor blade and the diamond
scribe was used in this work. Stripping and cleaving of the single-mode fiber was done in stages

as follows :

Tapc approdimately 2 inches of the &b
2. Hold the fiber near the taped end so that it is under tension.

3.  Remove the jacket using a sharp razor blade.

4. Nick the fiber with a diamond scribe while maintaining tension on the fiber.

5. Holding the fiber at the end, gently pull.

6. Examine the end under a microscope to be sure that no splinters are left on the sides and

that the cut is perpendicular to the fiber axis
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.l.\IBEDDF,D OPTICAL FIBER SENSOR OF DIFFERENTIAL STRAIN
AND TEMPERATURE IN GRAPHITE/EPOXY COMPOSITES
by
Mahesh Reddy
Dr. Richard O. Claus, Chairman
Electrical Engincering
(ABSTRAC’D

A novel optical fiber sensor for the measurement of strain and temperature in graphite-epoxy
composite materials using differential interferometry is described. The sensor ues two single-mode
optical fiber waveguides imbedded within the composite during prepreg ply lay-up. Strain and
temperature changes are obtained as a motion of an optical interference pattern. Valucs are calcu-
lated for the strain and temperature dependence of the fringe motion. The results of measurement
which attempt to duplicate modelled loading conditions are reported and compared with analytical
resuits. Anaiytical and experimenial cxicnsicas of the technique 1o the measurement of the differ-
ential temperature in graphite-epoxy composite specimens during cure cycle processing are also

considered.
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FIBECR OPTIC COMPOSITE IMPACT .

MONITOR

R. Kuhlman, B. Duncan, ana R.O. Ciaus

Department of Electrical Engineering
Virginia Polytechnic Institute and State
University Blacksburg, VA 24061

ABSTRACT

An optical fiber sensing systen is
used to monitor impact and resulting
damage in graphite-epoxy composite
materials. The monitor systen consists of
an array of nultinode optical fiber
waveguides imbedded within the composite.
The internal damage location and severity
is deternined by either observing the
changes in optical fiber output power
after the material is subjected to
1echan1ca1 impact loads, or performing
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inpact.
IMTRODUCTION

Advanced composite materials have
tecone attractive alternative caterials
for critical high strength aerospace
structural applicaticns due to their high
strength-to-weight ratio. Perhaps the
largest drawback to the straightforward
application of such materials is lack of
knowledge and experience concerning how
such naterials behave upon dynazic
mechanical loading conditions in a wide
range of environmental conditions, and how
the materials fail. One particulary
troublesome property of graphite epoxy
composites is significant decrease in
strength which can be caused by mechanical
impact loading. The most popcular nodel
of composite mechanics states that damage
associated with the impact event results
in localized material weakness that may
lead to failure. 1In the future, replacing
rather than repairing large coaposite
parts will be more economical; therefore,
a damage monitor which provides danage
location and severity could prove very
nelpful in determining the usefulness of
the darmaged composite. However, few if
any, rethods exist to analyze impact-
danaged composite materials in which the
Aamage level is not catostrophic.

This paper describes a simple
inexpensive optical fiber method which
yields informaticn concerning impact
danage location and severity. The damage
assessment system consists of an array of
nultimode optical fiber waveguides which.
are imbedded between successive layers of
the composite during prepeg ply lay-up.
Light is coupled into all of the fibers
using a novel one-to~-nineteen fused
bicaonical tapered coupler. The output
fiber ends are arranged in a two
dimensional array of nineteen rows 'and
nineteen columna. Bv observinag either the
changes in individual fiber output powers
irmediately after the material is
subjected to mechanical impact loads or
dynamically measuring differential modal
nodulation spectral reflections using
modal domain tests, the location of the
impact and its approximate amplitude may
be determined.

“The imbedding and curing processes

= Akla s meclamts ama awmlalnaad
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The nechanical boundary conditions between
the optical fibers and the conposite
ratrix material are considered. The
experimental procedure is described and -
the results using output power readings
and modal domain testing are presented.

OPTICAL FIBERS IMBEDDED IN COM
MATERIALS

The objective of this experiment is
to imbed optical fibers between the layers
of a graphite epoxy cross-ply laminate to
measure the damage location and severity
produced by mechanical loading. First, the
properties of the composite and optical
fibers need consideration.

Our composite contains six adjacent
12.5 cn X 12.5 cnm prepeg layers, each
containing parallel graphite fiber rows
across the full length of the layer.
Between each graphite fiber and each layer
lies epoxXy resin that, when cured, bonds
everything together. Each layer is
oriented such that its graphite fibers are
perpendicular to the graphite fibers in
the adjacent layers to provide greater
strength to the composite.




Composite materials are intrinsically
.z-plicated inhomogencous and anisotropic
~¢lia. Imbedding optical- fibers inside
carposites may further complicate the
structure by introducing local
perturbations in the region near the
ticer. Ideally the epoxy resin matrix
will cure completely around the fiber as
shown in Figure la. Examination of
sections of composites containing fibers;
‘however, indicates a structure more like
'that of Figure 1b in which a void region
\is shown directly adjacent to the fiber.
Such a void precludes the continuity of
jbeth particle displacement and stress at
‘the local fiber-conmposite interface, thus
‘reducing the effectiveness of the sensor
at determining impact event
characteristics,

OPTICAL FIBRR

LAYER 1

FIGURE la.

-

voiD

Fiauge to.

In our experiment two different
layers of optical fibers were imbedded
between the layers of graphite epoxy
prepeg prior to curing. The first layer
consists of nineteen multimode fibers
oriented in the zero degree direction
between the second and third laminae. The
second fiber layer consists of nineteen
rultimode fibers laid in the 90 degree
direction between the fourth and fifth
ianinae. Each set of fibers is coupled
using a fused bioconical tapered coupler
(3ee Figure 2).
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The above prepeg configuration was
curad for five hours in a heated platen
press. In preliminary experiments we
found that the optical fibers at the
points of entering the composita becane
brittle and tended to break. To prevent
such fiber breakage, wae extended the

. curing cloth over the edge of the

composite to trap the melted epoxy thus
protecting the fibers from breakage.

XPERIMEN

The damage monitor system (inbedded
fiber composite) was nounted on a 1.9 ¢n
thick aluninum block (See Figure 3).

Laser light was coupled into each fiber in
the imbedded array and output power was
measured using an optical detector and
power meter. The compesite was then
inpacted with a steel ball as shown, and
the output power was measurcd again after
impact.
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Tdeally the monitoring system would Modal domain tests also were
produce a threc-dimensional view of * performed on the composite. The composite
inpact. Using the optical fiber array as was impacted at the same spot many times;
a yrid pattern, we could see, as in Figure each time a different fiber's,signal was
4, that fibers X and Y were perturbed monitored on the oscilloscope. utput
most, with the fibers farther away waveforms were produced by all fibers
cuffering less power loss. A measured, indicating fiber continuity.
two-dimensional system could alsoc be used. The fibers closer to the impact spot

displayed higher attenuation than those
-~ located farther away. The grid of these
attenuation results is shown in Figure 5
and the actual waveforms of two of the
fibers are shown in Figure 6. Due to
limited equipment, the modal domain
nodulation signal from only one fiber
could be measured at a time: therefore,
vBATICAL Fi8ERS only two-dimensional grids can be
displayed here. ©e
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This could be due to the inaccuracies

found in our power mater or optical

detector. - Puncturing the composite;

however, broke the optical fibers which —_— T T
produced total power loss.
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PUSUTTO_AND _ONSERVATIONS

e have observed -impact events using
an array of optical fiber wavegquides
imbedded within a graphite-cpoxy cross-ply
laminate. Determination of impact
location and severity was tried by
mecasuring residual fiber attenuation, but
was unsuccessful in our experiment. Real
time impact event signatures have been
obtained by modal fiber measurenents.

If cach fiber in the array were
connected to a detector, real time damage
could be monitored by noting the amount of
attenuation in each fiber during and after
impact. 1Ideally, the detectors could be
connected to a computer which could
present a three-dimensional image of the

rea impacted. This image would show both
grid location and amount of damaga.

Several extensions of this work are
suggested.
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ACOUSTIC FIBER WAVEGUIDE DEVICES
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ABSTRACT

Acoustic fiber waveguides are
described, and methods of determining
appropriate materials for core and
cladding are discussed. Propagation
characteristics of guided modes,
especially weakly guided modes, is
reviewed. Laboratory preform fabrication
and draw methods are discussed in detail.
Possible uses of the fabricated fiber will
be mentioned, as well as potential appli-
cations of acoustic fiber in general.

b

INTRODUCTION

Acoustic fiber wavequides were first
described in 1577 by Thurston, Doyd, and
Coldren {1]. When first invented, they
were intended for long-delay serial in-
formation storage purposes. (Due to the
performance of semiconductor devices,
however, this is no longer of interest.)
Since then, Jen, Safaai-Jazi, and Farnell
have done extensive theoretical work on
fiber acoustics. Harrold and Sanjana have
done experimental work on thin acoustic
waveguides, procedures which may be able
to be duplicated with acoustic fibers.
Recent applications of acoustic fibers
include sensing and nondestructive
testing.

Acoustic waveguides (of 1.5 mm.
diameter polyester-fiberglass rods) have
been imbedded in composites to sense
stress, strain,and external impact, to
locate sites of impact, and to monitor
cure processes {2]. These rods are sensi-
tive to viscosity changes in the composite
in which it is imbedded. They can also be
used in the "listening mode" as an
"internal microphone." 1In this manner,
acoustic emissions from both external and
internal events can be detected.

BACKGROUND

Acoustic fiber waveguides are similar
to optical fiber waveguides in that they
consist of a long cylindrical core of one
material, coated by a long cylindrical
cladding of another material. These two
materials differ only slightly. The outer
diameter of the acoustic fiber, however,
is much larger than that of the optical
fiber. This is, in part, so that it is
possible to couple acoustic energy into
the fiber from a relatively large
transducer.

The two waveguides differ in that
optical fibers transmit electromagnetic
waves and acoustic fibers transmit mechan-
ical waves. For optical fibers, we need
be concerned with the index of refraction,
n. In acoustics, we are concerned with
the shear velocity, V., the longitudinal
velocity, V., and the density £ ; or the
2mé constants Aand M, and the density f
21
L

mode (one which stays in the core), where

Vg = [(A+ 2u)/p)%
V.= (m/p)%, and
Vv o=w/p. (4]

"Weakly gquiding" acoustic fibers have
small differences between V., Vs, , and 7,
where i = 1,2 refers to the core and
cladding [(5]. The conditions for weak
guidance are as follows:

€g= }Vsz- V5|'/ Vs, << 1
€, = ‘VLL- Ve |/ Vo, << 1, and
€= |F - ﬂl/ P,

<< 1.

(3]

When these conditions hold, the fibers
require a larger core diameter for single
mode operation, a thicker cladding, but
have more bend loss and less dispersion
(6}.
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The exact analysis of acoustic fibers
is complex. The conditions of weak guid-
ance allow for an approximate analysis of
waveguide properties. - Therefore, the weak
guidance conditions will be assumed here.
Also assumed is that the cladding has an
infinite thickness and that the acoustic
fields have the form exp j(wt -Hz ),
where w is the radian frequency and & is
the axial propagation constant [7].

In weakly guiding acoustic fibers,
there are two sets of modes. In shear-
type modes, the axial component of the
particle displacement vector has a
negligible contribution to the power flow.
These modes may be radial, flexural, or
torsional. They propagate with shear
velocities less than Vs,, and are basical-
ly independent of longitudinal velocities.
In longitudinal-type modes, the power is
carried by the axial component of the
particle displacement vector. These modes
are leaky (P is complex, and they lose
power as they propagate) and travel with
phase velocities such that V., <V < V,_,.
They attenuate as they propagate unless
Vg, = Vs, and ¢, = f, (5].

The cutoff frequency of a guided mode
in an acoustic fiber is the frequency

L List Lo wmade basmamas Aatachad from
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the core [7].

In acoustic fiber with infinitely
thick cladding, cutoff occurs when V =
Vs, . Cutoff in fiber with finite cladding
thickness is called core-mode cutoff,
below which most of the power is in the
cladding. This is found from the general
form of the dispersion equation, f(w,8) =
0, with V—Vs, (8].

The first flexural mode, the F,, mode,
has a zero cutoff frequency. This is the
first mode that can be excited, and is the
dominant one [4]. This is the prevalent
node when the fiber is in single mode
operation.

Group velocities of modes are obtained
from the definition

_o
vy = A"; (4]

with the dispersion equation again gener-
alized to f(w,p) = 0. -

WAVEGUIDE FABRICATION
AND MEASUREMENT

Before attempting to fabricate a true
acoustic fiber, we practicad "pulling
f.ber" from glass rods. The main idea is
t5 heat the rod until it is soft enough to

pull, using a pair of pliars, into a
fiber. Originally we had problems: (1)
The movement of the flame of the oxy-
propane torch we used was unpredictable.
The torch needed to be held steady until
the rod was soft enough to pull. Once the
rod became soft, the torch had to be moved
upward very slowly so that the rod would
not melt through and so that the rest of
the rod would stay at a constant softness.
(2) The draw rate was not constant. This
was because the draw speed depended upon
the movement of the flame, which was
previocusly stated as unpredictable. If
the torch was not moved upward at a
constant rate, the rod could not be pulled
down at a constant rate since then the
glass would not be continuously soft
enough to pull.

To overcome these problems, we used
the apparatus shown in Figure 1. We added
a metal bar, in which to place the glass
rod, across the bottom of a micrometer and
added a clamp to the turning mechanism of
the micrometer. By manually spinning the
clamp at a constant rate, the slab of the
micrometer (and thus the glass rod) is
lowered at a constant rate. Since the rod
is now being lowered, there is no need to.
move the flame upward. Therefore, we
maunted the tAarrh as shawn. As a result.
the draw rate could be controlled to a
certain degree.
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We were successful at pulling several
2.2 m. sections of fiber with this method.
Note that the diameter of the fiber was
not constant throughout its entire length,
but there were sections where several feet
were of uniform diameter.

Using the criteria previously
described, Corning glass 7070
(Vg = 3128 m/s, V. = 5221 m/s) was chosen
for the core, and Corning glass 7740 (Vg =
3420 m/s, V. = 5585 m/s) was chosen for
the cladding of our fiber.




Wwe had to make a preform out of these
glasses before we could pull any fiber. .
To do this, we needed to collapse a 7740
tube onto a 7070 rod. _The apparatus we
used is shown in Figure 2.
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FIGURE 2.

We placed the rod inside the tube and
placed this assembly into the preform
lathe. As the lathe (in this case, a
drill) spun, we moved the torch up and
down the length of the rod and tube. When
they were warm, we moved the torch very
slowly down the length of the rod and
tube, trying to collapse the tube onto the
rod. This attempt was not totally suc-
cessful. There was an air pocket notice-
able in the end product.

The next step was to try to transmit a
signal through the fiber. Light propa-
gated through the fiber very nicely, but
sound did not. 1In fact, there was minimal
transmission. This, we believe, is due to
the following problems:

(1) The transducer we used to excite
the fiber was very large compared to the
size (cross-sectional area) of the fiber.
Thus, it is likely that not much of the
acoustic energy from the transmitting
transducer was coupled into the fiber.
Also, 1t seems that even a smaller amount
of this energy (due to attenuation and
loss as it travels the length of the
fiber) will be detected by the receiving
transducer. The receiving transducer also
has a larger area than the ‘fiber. If any
signal did propagate through the fiber, it
would probably be so small that this
transducer could not detect it anyway.

(2) The air pocket and inconsisten-
sies in the diameter of the fiber are
sources of loss or attenuation.

Since we were unable to make a "good"
preform, we took some of the 7070 rod and
7740 tube to ITT Electro-Optical Products
Division in Roanoke, VA. People there
used an acetylene torch to collapse the
tube onto the rod. We now have a “"good"
preforn about 20 cm. long. The only
foreseeable problem with this preform is
that the thickness of the core is much
greater than that of the cladding; thus,
any fiber we pull from this preform will
have the same characteristics.

We were able to construct an acoustic
coupler from some of the fiber we drew.
We hope to be able to input acoustic
energy into one fiber and have an output
in two fibers. See Figure 3.

FiGUuRrRe 3.

CONCLUSION

We were able to fabricate some
acoustic fiber in the laboratory. Minimal
transmission of acoustic signals was
observed, but we believe this was due to
transduction problems. We constructed a

similar to the manner in which optical
fiber couplers are made. Hopefully, we
will be able to use this coupler to divide
a signal propagating through the fiber.
Scientists at ITT made us a preform, which

will allow us to pull fiber with uniform
dimensions.

Once the fabrication and transmission
processes are perfected, we nope to be
able to construct acoustic sensors. For
exanmple, and interferometer-type sensor
(in which we would use the coupler) to
detect temperature and strain and stress.
Or perhaps imbed the fiber in a composite
and sense changes in material properties.
Since acoustic waves are sensitive to
changes in the viscosity of the medium in
which they are travelling, it should be
feasible to detect changes in material
properties during a cure process. An
imbedded acoustic fiber should also be
able to sense an applied bending stress.

Acoustic fiber will allow materials to
be examined internally, which could
provide more accurate information about
defects and locations of defects than
could external examinations. Another
application is in signal processing, due
to the relatively slow speed of acoustic
waves. This slow speed may allow a wave
in an acoustic fiber many meters long to
be sampled and interacted with at a number
of locations, thus permitting high
precision convolution, correlation, and
other processing functions to be realized.
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REM WAVEFORM PROCESSING PROGRAM
' THIS PROGRAM IS DESIGNED TO TRANSFER DATA ON THE IEEE488
' BUS. METROBYTE CARD IE-488 MUST BE INSTALLED IN THE PC.
' THE PROGRAM READS™ AND WRITES DATA TO A PERIPHERAL AND PLOTS
' WAVEFORM DATA ON THE SCREEN. IT CAN ALSO BE USED TO STORE
' DIGITIZED WAVEFORM POINTS ON DISK.
'DIM DAT.ARY(2048),D%(2048),VARS(2)
KEY OFF
GOSUB 230
) KEY (1) ON : KEY (2) ON : KEY (3) ON: KEY (4) ON: KEY (5) ON
) KEY (6) ON
) ON KEY (1) GOSUB 230
) ON KEY (2) GOSUB 1950 ' SAVE WAVEFORM
) ON KEY (3) GOSUB 440 ' READ WAVEFORM FRM DISK
) ON KEY (4) GOSUB 2380 ' READ WAVEFORM FROM SCOPE
) ON KEY (5) GOSUB 3300 ' FIND PEAK TO PEAK AMPLITUDE
) ON KEY (6) GOSUB 3490 ' PLOT WFM IN PC MEMORY
KEY (1) ON: KEY (2) ON: KEY (3) ON
KEY (4) ON: KEY (5) ON: KEY (6) ON
GOTO 200 -
1]

hkhkkkkhkkikkhkhkhkhkhkhkhhhkkhkhkhhkhkhhkhkdkhkhkhhhkhkkkhkkhhhhkkkkhkkkkkk

1

' x*x*k%* SUBROUTINE MENU *%*%%

' THIS ROUTINE SETS UP THE WAVEFORM PROCESSING MENU

I kkhkkkhkhkhkhkkkhdkkhhkhkhkkhhhhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhhhhkkkkk
D SCREEN 0,1

COLOR 15,1

WIDTH 80

SCREEN 0,1 : CLS

PRINT: PRINT: PRINT

PRINT TAB(20); "WAVEFORM PROCESSING PROGRAM"

PRINT: PRINT

PRINT TAB(15); "PRESS FUNCTION KEY FOR DESIRED ROUTINE"

PRINT

PRINT TAB(20); "F1-PRINT MENU"

PRINT TAB(20); "F2-SAVE WAVEFORM ON DISK"

PRINT TAB(20); "F3-READ WAVEFORM FROM DISK"

PRINT TAB(20); "F4-READ WAVEFORM FROM SCOPE"

PRINT TAB(20); "F5-CALCULATE PEAK TO PEAK AMPLITUDE"

PRINT TAB(20); "F6-PLOT WFM IN PC MEMORY"

RETURN

1

khkhkkkkkhkhkhkkhkhhhkkhkhhkhkhhhkhkdhhhkdkxhhhhhkkhkkhkhhrdbhthkkdhrdtd

1

' *%%%% SUBROUTINE RDWFM.DSK ***%%*

' THIS ROUTINE READS WAVEFORMS FROM DISK

1 kkkkkhhkhhkkhhkhkhkkkkkhkkkhhdkkhhkhkkhhhhkrkhrkhrkhkkk
CLS

PRINT:PRINT: PRINT

PRINT TAB(22): PRINT "ENTER THE DATA FILE NAME TO BE READ"
PRINT TAB(22): PRINT "NAME MUST END WITH . ": PRINT
PRINT TAB(30): INPUT FILES: PRINT

PRINT TAB(22): INPUT "IS DATA FILE NAME CORRECT? (Y OR N)";ANSS
IF ANS$="N" THEN 470

' %% CALL READ DATA FILE

GOSUB 690

' RETURN FROM SUBROUTIN RDDATFIL W/ WFM DATA IN DAT.ARY

' NORMALIZE DATA FOR PLOTTING AND SCALE SCREEN

'*% CALL SCALE

GOSUB 1070




PLOT DATA

~ '%%x CALL PLOT

GOSUB 1790

KEY OFF

LOCATE 25,2 -

PRINT "ENTER F1 FOR MENU, F2 TO SAVE WAVEFORM";

RETURN
. )

kkkhkkhkkkhkkhkkhkhkhkhkhkhhkhkhhkhdkhkhkkhkhkhdkdhkrhkhhhhkhkhkhdk

*%%%x% SUBROUTINE READ DATA FILE ‘**%#**

THIS ROUTINE READS THE WAVEFORM DATA FROM DISK
hkkkhkkkkkkhhkkkkhrkkhkhhhhhkhhhhhhhkhkkkhkhdhhrhkkkkkdkk

FILEX$="A:"+FILES$+"DOC"
OPEN "I", #1,FILEXS$

'** CALL READ DOC
GOSUB 930
FILEX$="A:"+FILES$+"DAT"
OPEN "I",#1,FILEXS

*% CALL READ DATA

GOSUB 830
RETURN
1

khkkkhkkhkhkhkhkhkkkhhkdhkhkhkhhhhkhkhkkhkkkkhkhhhkhkkkhkhkhkkkkkkk

*%%*% SUBROUTINE READ DATA **%%*
THIS ROUTINE READS WAVEFORM POINTS FROM DISK

FOR I= 1 TO NPTS
INPUT #1,DAT.ARY(I)
NEXT I

CLOSE #1

RETURN

1
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**%x%% SUBROUTINE READ DOC **%#%%*

THIS RCUTINE READS WAVEFORM DOCUMENTATION FROM DISK
hkkhkhhhkhkhhkdhhhdkhhkhkhhkhhhhdhhhhhhhhhkrdkhdhhkhhhdhk

IF LOF(1) > 25 THEN 1010 ELSE 970

UNDOCUMENTED DATA FO

INPUT #1,NPTS,VNORM, HNORM

CLOSE #1
RETURN
' DOCUMENTED DATA FILE
0 INPUT #1,NPTS,VNORM,HNORM,TITS,STITS,TIMS,DAS,XLBLS, YLBLS
0 CLOSE #1
RETURN
o ! .
0 t *************************************************
o *k%x*x* SUBROUTINE SCALE ***%%
0 ' NORMALIZES DATA & SETS UP SCREEN FOR PLOT
(0] 1 kkkhkhkhkhkhhhkhkkhhhhkhhkhrhkhkhkhhkkhkhkhkhxhhkkkkkhkhkikhkhkkhkhkhtx
0 'FIND MIN AND MAX OF DATA
0 MIN=DAT.ARY (1)
0 MAX=DAT.ARY (1)
0 FOR I=2 TO NPTS
0 IF DAT.ARY(I)> MAX THEN MAX=DAT.ARY(I)
0 IF DAT.ARY(I)< MIN THEN MIN=DAT.ARY(I) RLGinAL PACT 73
0 NEXT I
0 ' SETUP SCREEN SCALE OF POOR QUALITY
0 IF MAX=MIN OR MIN > 0 THEN MIN=0
0

YSCAL=ABS (150/ (MAX-MIN))




IF MIN < O THEN OFFST=ABS (MIN*YSCAL) ELSE OFFST=0
XSCAL=536/NPTS

' PLOT COORDINATE AXES

SCREEN 2:CLS

LINE (79,34)-(79,184)

IF OFFST=0 THEN ZRAX=184 ELSE ZRAX=184-ABS (MIN*YSCAL)
LINE (79,ZRAX)-(615,2ZRAX)

' CALCULATE AND PLOT AXES TICS

IF ZRAX > (184-75) THEN 1290 ELSE 1450

FOR I= 5 TO 11

IF I*15/YSCAL => MAX THEN J=I-1 ELSE 1320

I=20

NEXT I ORIGINAL PAGE IS
PROW=0 , OF POOR QUALITY

FOR I=0 TO 9

TIC=ZRAX~-15% (J-1I)

LINE (75,TIC)-(83,TIC)

' PRINT TIC LABELS

LBL=( (184~OFFST-TIC)/YSCAL) *VNORM
ROW=CINT ( (TIC+1)/8)

IF ROW-PROW <= 1 THEN ROW=ROW+1
PROW=ROW

LOCATE ROW,1

PRINT USING "##.%#AAAA";1BL;
NEXT I: GOTO 1600 '30

FOR I= 5 TO 11 '20

IF I*15/YSCAL > ABS(MIN) THEN J=I-1 ELSE 1480
I=20

NEXT T

PROW=0

FOR I=0 TO 9

TIC=ZRAX+15% (J-I)

LINE (75,TIC)~-(83,TIC)

LBL=( (184-0OFFST-TIC)/YSCAL) *VNORM
ROW=CINT( (TIC+1)/8)

IF ROW-PROW <= 1 THEN ROW=ROW+1
PROW =ROW

LOCATE ROW,1

PRINT USING "##.,44AAAAN ;1 BL;
NEXT I

FOR I=0 TO 5 '30
TIC=79+I%107

YLOC1=ZRAX-2 : YLOC2=ZRAX+2
LINE (TIC,YLOC1l)-(TIC,YLOC2)
LBL=( (TIC-79)/XSCAL) *HNORM
COL=INT( (TIC+1)/8)-5

LOCATE 24,COL

PRINT USING "#4#.##AArAn.TBI;
NEXT I

IF TITS$="" THEN RETURN
LOCATE 1,1: PRINT TITS:
LOCATE 1,65 : PRINT DAS:;
LOCATE 2,1 : PRINT STITS;
LOCATE 2,65 : PRINT TIMS;
LOCATE 4,10 : PRINT YLBLS;
LOCATE 25,65 : PRINT XLBLS;
RETURN

]

1 okkkkdkkkhhkkhhkkrhkkhhhkhhhhkrkrkhkdhhhhkhhhkkkhkkkdrhk
' *%x%%% SUBROUTINE PLOT **#*%%
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' THIS ROUTINE PLOTS DATA FROM ARRAY DAT.ARY
f khkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkrkhkhkhkhkkhkhkhkkhkhhkkkkhkhkk
YPNT1=184- (OFFST+YSCAL*DAT.ARY (1))
XPNT1=79+CINT (XSCAL)
IF NPTS=>512 THEN-STP=4 ELSE STP=1
FOR I=2 TO NPTS STEP STP
YPNT2=184- (OFFST+YSCAL*DAT.ARY (I))
XPNT2=79+CINT (XSCAL*I)
LINE (XPNT1,YPNT1)-(XPNT2,YPNT2)
YPNT1=YPNT2

XPNT1=XPNT2

NEXT I

RETURN

1]

dhkkkhkhkdkhkhkhkhkkhkhkhkhkkhhhhhhkhkhkhkhhkhkhhkhhhkkhkkhkkdkkkhkhkhkhkdkkk

*%%%% SUBROUTINE SAVE WFM ON DISK ****
THIS ROUTINE WRITES WAVEFORM DATA AND DOCUMENTATION TO DISK
1 khkkkhkdkRkhhkrrkhkhhkkkhdkhhkhkhkhhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkkhkkhkkkkkk
SCREEN 0,1: CLS
COLOR 0, 4
SCREEN 0,1: CLS
PRINT: PRINT
PRINT TAB(28): PRINT "WAVEFORM DOCUMENTATION" : PRINT
COLOR 15,4: PRINT
PRINT TAB(5) ;
INPUT "ENTER A FILENAME FOR THE WAVEFORM DATA (MUST END WITH
PRINT
PRINT TAB(5) :PRINT "ENTER A TITLE FOR THE WAVEFORM."
PRINT TAB(5): INPUT TITS
PRINT
PRINT TAB(5) :PRINT "ENTER A SUBTITLE, IF DESIRED."
PRINT TAB(5): INPUT STITS
PRINT
PRINT TAB(5) :PRINT "ENTER A Y AXIS LABEL."
PRINT TAB(5): INPUT YLBLS
PRINT :
PRINT TAB(5) :PRINT "ENTER A X AXIS LABEL."
PRINT TAB(5): INPUT XLBL$
PRINT

- - = -

y";FILES

PRINT TAB(5): INPUT "IS ENTERED DOCUMENTATION SATISFACTORY? (Y OR N)";ANSS

IF ANSS$="N" THEN GOTO 1950: CLS
DAS=DATES

TIMS=TIMES
FILEXS="A:"+FILES+"DOC"

OPEN "O",#1,FILEXS-

PRINT #1, NPTS,VNORM, HNORM
WRITE #1, TITS,STITS,TIMS,DAS,XLBLS,YLBLS
CLOSE #1

' OUTPUT DATA
FILEXS="A:"+FILES+"DAT"

OPEN "O",#1,FILEXS

FOR I=1 TO NPTS

PRINT #1,DAT.ARY(I)

ORICINAL PAGE IS
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CLOSE #1

GOSUB 230

RETURN

T okkkkkhkhhhhhkdhrrhhhkkrhhkkhkkrkkkhhhkkhkk

'  *x%%%%* SUBROUTINE READ FROM SCOPE ***%*




00000000000 O0

' THIS ROUTINE READS WAVEFORM DATA FROM THE DIGITAL SCOPE

! kkkkkhkhkhkhkhkkhkhhkhhkkhkhhhhkhhkhkhhkhhkhkkkhkkkhkhk

' %% CALL INITIALIZE

GOSUB 2810

' ** CALL READ NORMALIZATION
GOSUB 2930

' %% CALL INITIALIZE

GOSUB 2810

OPEN "O",#1,"C:DUMDAT."
DATS$S="D3D2"

DAT1$=" "

CMDCL$="CLEAR 14,15"

CMDOP$="OUTPUT 15([$]"

CMDIP$="ENTER 14 [WD,1,2048]"

I=1

CALL IE488 (CMDOPS$,DATS,FLGS,BRDS) ORIGINAL PAGE 15
IF FLG%<>0 THEN PRINT HEXS (FLG%) , AT
VARS (1) =&HFFFF OF POOR "%
VARS (2) = (VARPTR (D% (1) ) +1)

CALL IE488 (CMDIPS,VARS(1),FLG%,BRDS)

FOR I=1 TO 500

NEXT I

FOR I=1 TO NPTS

PRINT #1, D%(I)

NEXT I

CLOSE #1

CALL IE488 (CMDCL$,DAT1$,FLGS,BRD3)

'IF FLG%<>0 THEN PRINT HEXS (FLG3)

OPEN "I",#1,"C:DUMDAT."

' %% CALL READ DATA

GOSUB 830

' %% CALL SCALE

TITS=""

GOSUB 1070

' %*%*CALL PLOT

GOSUB 1790

LOCATE 25,2

PRINT "ENTER F1 FOR MENU, F2 TO SAVE WAVEFORM";

RETURN

]

| kkkhkkkhkkkhkhhkhhhhhkhhhhhhhhkkhhhhhkhkhhhkkhhhkhhhkk

' *%%%%* SUBROUTINE INITIALIZE ***%%

' THIS ROUTINE SENDS INITIALIZATION COMMANDS TO IE-488
| okkkkkkdkkkkkkkdkk ke khkhhkhhhhkdkkkkhhhhrhhhhhkerk
DEF SEG = &HCO000

CMDIN$ = "SYSCON MAD=3, CIC=1, NOB=1, BAO=&H300"

IE488 = 0

A3 =0 : FLGS = 0 : BRD% = O

CALL IE488 (CMDINS, A%, FLG%, BRDS)

IF FLG%<>0 THEN PRINT "INSTALLATION ERROR"
RETURN
1

khkkkkhkkhkhkhkhhkkhkkhkhkhhkhkkrhhhhhhkkhkhhkhhkhhkhkhhkikdrhix

!

' ***x%* SUBROUTINE READ NCRMALIZATION *#***%*

' THIS ROUTINE READS NORMALIZATION DATA FROM THE SCOPE
! o kkkkhkhkhkhkhkhkhkhdkhkhhkhhhkhhkhkhhhkhkhhkhkhkhkhkhkkkhkkkkhkkhkkkxkkd
DOCS$=SPACES$ (27)

FLG%=0 :BRD%=

DAT$="NO"

DAT1$="



CMDCL$="CLEAR 14,15"

CMDOP$="OUTPUT 15[$]"

CMDIPS$="ENTER 14([$#]" e,
CALL IEEE (CMDOP$,DATS$,FLG%,BRD%) Chlrlian ez
IF FLG%<>0 THEN PRINT FLG% OF POOR QUALITY.
CALL IE488(CMDIP$,DOCS$,FLG%,BRD%)

IF FLG%<>0 THEN PRINT HEXS$ (FLG%)

CALL IE488 (CMDCL$,DAT1$,FLG%,BRD%)

IF FLG%<>0 THEN PRINT FLG%

DUM$=MID$ (DOC$, 3, 1)

MEM=VAL (DUMS$)

'IF MEM<>1 THEN 2840

PRINT
PRINT
PRINT
PRINT
PRINT
INPUT

"NUMBER OF POINTS MUST CORRESPOND TO MEMORY SETTING ON SCOPE"
"ENTER 2 FOR 2048 POINTS"

"ENTER 4 FOR 1024 POINTS"

NUM

IF NUM=MEM THEN 3230

PRINT
PRINT

"IF YOU ARE SELECTING ONLY SOME POINTS FROM THE ORIGINAL"
WENTER 2 FOR A REDUCTION BY HALF"

PRINT "ENTER 4 FOR A REDUCTION BY QUARTER"
INPUT REDN

DUM$=MIDS (DOCS, 14,7)

VNORM=VAL (DUMS)

NPTS=4096/NUM

DUM$=MIDS$ (DOCS,21,7)

HNORM=VAL (DUMS ) *REDN

RETURN

]
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' **%*SUBROUTINE PEAK TO PEAK AMP#%*%

'DETERMINES PK TO PK AMPLITUDE OF WFM WINDOW
Thkhkkhkhhkhhhdkdkhhhhdhhdkhhdhhhhdhhhkdhhkhhkhkhhhkdhhdrkn

CLS

PRINT: PRINT : PRINT

PRINT TAB(2C): INPUT "ENTER STARTING POINT OF PEAK SEARCH";PKSTRT
IF (PKSTRT+512)>2048 THEN PKEND=2048 ELSE PKEND=PKSTRT+512
PKMAX=DAT.ARY (PKSTRT)

PKMIN=PKMAX

FOR I=PKSTRT+1 TO PKEND

IF DAT.ARY(I)>PKMAX THEN PKMAX=DAT.ARY(I)

IF DAT.ARY(I)<PKMIN THEN PKMIN=DAT.ARY(I)

NEXT I

VPK=HNORM* (PKMAX-PKMIN)

PRINT: PRINT TAB(20): PRINT "PEAK TO PEAK VOLTAGE=";VPK

PRINT: PRINT: PRINT TAB(20); "ENTER F1 FOR MENU, F6 FOR WAVEFORM"
RETURN

GOSUB 1170

GOSUB 1790

RETURN

:LIST 3000 -

CMDCL$="CLEAR 14,15"
CMDOPS$="OQUTPUT 15[$]1"
CMDIP$="ENTER 14[S$#]"

CALL IEEE (CMDOPS$,DATS$,FLG%,BRD%)

OO 00






