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A new GaAs nlpl doping superlattlce solar cell structure is presented, which

holds promise for a high efficiency coupled with very high radiation tolerance.
This structure uses the CLEF1 process and has all contacts on the unillumlnated

side. It is different from our structure proposed at the last SPRA1 conference.

Next, design constraints are presented which this structure must satisfy in order

to exhibit high efficiency and high radiation tolerance. Finally, results of self-
consistent quantum mechanical calculations are presented which show that a viable

design of this cell would include relatively thick (NSO0 k) n and p layers which are
fairly heavily doped (2xlO 18 to 5xlOlS/cm3).

INTRODUCI ION

At the previous SPRA1 conference in 1985, we presented a GaAs nlpl doping

superlattlce solar cell structure which showed promise for high efficiency and very

high radiation tolerance (ref. l). This structure is shown in figure I. A unique

feature of this structure was that photogenerated carriers are very quickly sepa-
rated by the built-ln electric field in times ranging from lO-12 sec to lO-10 sec

and that these carriers then flow parallel to the superlattlce layers, a direction

of easy carrier flow. This is in contrast to stralned-layer and other superlattlce

solar cell structures that have carrier flow normal to the layers, a direction of
difficult carrier flow. However, it was also pointed out then that one major draw-

back of this structure was that, even after separation, the carriers could recombine

across the "indirect gap in real space" before they reached their respective selec-

tive ohmic contacts. In addition, the photocurrent flows along the length of the

thin layers between neighboring selective ohmic contacts and may lead to a severe
series resistance problem. These two facts put constraints on the minimum lifetime

of already-separated carriers across the indirect gap in real space, on the maximum

distance between adjacent selective ohmic contacts, and on the minimum two-

dimensional carrier densities in the n and p layers.

In order to calculate the lifetime across the indirect gap in real space, it

is necessary to calculate the overlap integral of the electron and hole wavefunc-

tlons over one period of the superlattlce, averaged over all the subbands of the
conduction and valence bands. This requires self-conslstent calculations between

Schr_dlnger's equation and Poisson's equation, since the potential function in the
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former equation is the solution to Polsson's equation and the charge density func-
tion in the latter depends on the solution to Schrodinger's equation. These calcu-

lations are rather difficult and time-consuming, and we had Just begun them at the

time of the previous SPRAT conference.

CELL SIRUCIURE

We have now completed these self-conslstent quantum mechanical calculations for

a large number of combinations of layer thicknesses of the n, i, and p layers and of

dopings in the n and p layers. These results have shown that our original structure

of figure l would not work efficiently. We have come up with the modified structure

of figure 2 which is based on the CLEF1 process (ref. 2) and has all contacts on the

back side, making it possible to have closely spaced contacts without having to

worry about grid shadowing.

Figure 2(a) gives a basic idea of the method of cell fabrication. Starting

with a GaAs substrate, a thin epitaxial layer of GaAs is grown as in the CLEF1

process (ref. 2). On this is grown an undoped AIGaAs layer of appropriate thickness
(0.2 to 0.5 _m); this layer will serve as a window for the finished cell. On the

AIGaAs layer is grown the GaAs nlpi superlattlce with lO periods of O.l- to 0.2 _m

each for a total thickness of l to 2 _m. V-grooves are photolithographically etched

in the superlattlce (ref. 3), and alternate grooves are ion-implanted n+ and p+
in an interdigltated fashion. The grooves are then metallized to form ohmic con-

tacts to the n+ and p+ selective contacts. A rigid backing is then applied for

structural support, leaving only the n+ and p+ bus bars exposed for external

contacts. The backing material should be a good thermal conductor but an electrical

insulator. The cell is then cleaved off the GaAs substrate by the CLEFI process

(ref. 2), and the GaAs layer above the AIGaAs window is etched off. Finally, an

antlreflectlon coating is applied over the AIGaAs window. The finished cell is

shown in figure 2(b), with light entering through the AIGaAs window.

DESIGN CONSTRAINIS

We have taken a close look at the design constraints that must be satisfied in

order for the cell to exhibit high efficiency and high radiation tolerance. We have
derived expressions for the minimum lifetime across the indirect gap in real space,

and the minimum values of carrier concentrations in the n and p layers required to

keep series resistance and recombination losses within acceptable levels. All of
the design constraints are treated in detail in reference 4. Here, we summarize

these constraints for the GaAs nlpl superlattice solar cell of figure 2(b), operat-

ing at 20 AMO, 27 °C (300 K). They are as follows:

(1) total superlattice height or thickness of at least l- to 2-_m to absorb
most of the incident photons;

(2) at least 8 to lO superlattice periods in order for our quantum mechanical
calculations to apply;

(3) a distance between neighboring selective ohmic contacts of about 20 _m;

(4) highly reflecting rear metallization;
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(5) thicknesses of n, i, p layers and dopings in n and p layers such that under
operating conditions at a forward voltage of about 1.00 V (estimated to be the maxi-
mum power voltage at 20 AMO, 300 K) the average electron and hole concentrations are
at least 5xlOl?/cm3 and the lifetime for recombination across the indirect gap in
real space is at least I0 _sec;

(6) thicknesses of the n and p layers no larger than about 600 A, so that even
after irradiation to a fluence of IxlO 16 l MeV electrons/cm 2 or IxlO 13 lO MeV

protons/cm 2, the maximum distance a carrier has to diffuse in a low-electric field

region is shorter than the carrier diffusion length.

RESULTS

Table I shows the various combinations of layer thicknesses and dopings con-

sidered. The lifetimes of already-separated carriers are plotted versus the forward

voltage in figure 3. For an open circuit voltage of l.l V and an operating voltage

(at maximum power) of about l.O V, it is seen that most combinations give lifetimes
of about lO msec or larger. Figure 4 shows the average hole concentration in the p

layers versus the forward voltage. For the CLEFI type structure of figure 2(b),

operating at 20 AMO and 27 °C, we have calculated that for a 20-_m spacing between

adjacent contacts, the required minimum lifetime of already-separated carriers is
-lO _sec and the required average hole concentration is 5xlOl?/cm 3, in order to

keep the ohmic voltage drop across the series resistance to about 20 mV at short

circuit. From figure 4, combinations l, 2, and 15 from table I appear promising,

15 being perhaps the most promising. It then appears that, in order to meet the

design constraints outlined earlier, the most convenient design of this cell would

have the n and p layers of thickness around 500 k, with relatively heavy dopings of
2xlO 18 to 5xlOIB/cm 3, and i layers may be thin or thick (-500 k). The lifetime

requirement is easily met by just about any combination of thicknesses and dopings;
the constraint on minimum carrier concentrations to minimize the series resistance

loss is the more stringent requirement.

We have not yet theoretically generated the illuminated I-V characteristics of

this device so as to give us the calculated performance parameters, both at begin-

nlng of life and after irradiation. Hence, at the present time, we cannot provide

any calculated numbers on the expected efficiency and radiation tolerance of this

device. This is an extremely difficult and laborious problem requiring 2 to 3 more

years of work. However, it is possible to argue on theoretical grounds, as we have

done previously (refs. l and 4), that this structure should exhibit a beglnning-of-

llfe efficiency that is nearly the same but somewhat smaller than that of a well-

designed conventional GaAs concentrator solar cell operating under the same

conditions and should exhibit a very high radiation tolerance. The next step is the
actual fabrication and testing of this structure.
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TABLE I. - COMBINAIIONS OF LAYER THICKNESSES AND DOPINGS

CONSIDERED FOR SELF-CONSISTENT CALCULATIONS AND USED

IN PLOITING FIGURES 3 AND 4

Superlattlce d(A) dn dp di

1 800 175 175 225

2 I000 469 469 31

3 1200 338 338 262
4 12DO 562 562 38

5 140O 656 656 44

6 1400 656 656 44

7 1400 394 394 306

8a 1400 394 394 306

9 1400 394 394 306

lO 1400 219 219 481
II 1400 394 I006 0

12 1600 450 450 350

13 13DO 750 750 50

14 2000 562 562 438

15 2000 562 562 438

16 4000 1875 1875 125

Nd

5xlO 18

2xlO 18

l .5xlO 18
IxlO 18

l .IxlO 18

8xlO l?

IxlO 18

IxlO 18

2xlO 18

2xlO 18

2xlO 18

8xlO l?

IxlO 18

5xlO l?

5xlO 18

l.6xlO l?

N a

5xlO 18

2xlO 18

l.SxlO 18
lxlOl8

1.IxlO 18

8xlO l?

lxlO 18

IxlO 18

2xlO 18

2xlO 18

6.7xi0 l?
8xlO 17

IxlO 18

5xlO 17

5xlO 18

l.6xlO 17

aSuperlattlce 8 used m_ = mA = 0.067m e.
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(a) Schematic of fabrication procedure.
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(b) CLEFT superlattlce solar cell In use.

Figure 2. - Improved solar cell structure using CLEFT process.
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Voltage-lifetime Characteristics

' t ' I

%.
- ,_,®

M

o
>

"U
_ 1.1 "
121

0

1.0-

.9
10-7

' I ' I ' I

A

'1 '1 '

l ECEAID
+#1 _#9
_#2 _#10
0#3 m#11

Q#4 _#12

0#5 e#13

"#7 -#15

,_ #8 " #16

m+

, I , I , t f I , I" _i I i I i

10 -s 10 -5 10-4 10 -3 10 -2 10 -1 10° 101

Averoge lifetime (sec)

Figure 3. - Lifetime versus forward voltage characteristics for

the superlattlces in table I.
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Voltage versus Carrier Concentration
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Figure 4. - Carrier concentration versus forward voltage for
the superlattlces In table I.
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