CONTROLLING FLEXIBLE MANIPULATORS, AN

EXPERIMENTAL INVESTIGATION

A THESIS
Presented to
The Faculty of the Division of Graduate Studies
By

Gordon Greene Hastings

In Partial Fuifillment
of the Requirements for the Degree
Doctor of Philosophy in the

School of Mechanical Engineering

Georgia Institute of Technology

August, 1986



CONTROLLING FLEXTBLE MANTPULATORS, AN

EXPERIMENTAL INVESTIGATION

Approved:

TN e

Wayne J. é ok, Chairman

foe Z vy

-~
JOAn F. Dorsey, E.%E//

//% vt s

Jerry H. Ginsberg, M.E.

W%

Benson H. Ton e, M.E.

/=

James I. Crai

Date Approved by Chairman (/ 8/ 8 (¢




ii

DEDICATION

This thesis is dedicated to the memory of John R.
Colston, September 27, 1930 - November 27, 1985, friend,
mentor, engineer. This thesis 1is a direct result of his

impact on my life.



iii

ACKNOWLEDGEMENTS

I wish to thank my family and parents Robert Francis,
and Susan Jane Hastings for their encouragement and support
throughout this undertaking. I also wish to acknowledge the
efforts made by the members of my committee in preparing me
for this work, and for their input to this thesis, most
notably Dr. John Dorsey for the material on model order
reduction contained in chapter 4. I would additionally like
to express special thanks to Dr. wWayne Book, my advisor for
his insightful guidance, and friendship over the course of

this work.

This work was supported in part by the National
Science Foundation wunder grant no. MEA-8303539, and the
National Aeronautics and Space Administration under grant .

NAG-1-623.



iv

TABLE OF CONTENTS

DEDICATION....... g ceeses e .oii
ACKNOWLEDGEMENTS. ¢ ¢ c e s scsseessassoecsessssssoscssssosssssssosiidl
TABLE OF CONTENTS .. e cecseososccccossoscnscs S A
LIST OF TABLES . st ectococrsocsssccassesscssoascascsssncsssssosess Jix
LIST OF FIGURES:uceeeeccossscsoassssssessssssscnsssasssssssXi
ABSTRACT . e cetevseosseaccsasssosssssnsessssasssssscsessss XvViii
Chapter
I. INTRODUCTION. ¢« e ceveesscssssssssesassssosssscnsssssssssel
1.1 Organization and Readers Guide....cccveeeeoeaal
1.2 Background. .. .coceeeeaescsccccaranosscccssasaceasd

1.3 Problem Statement....cceoeececscecssscesssosssll

1.4 Contribution...ceceeeeeeereeneeeceaccsnasasaall
IT. EXPERIMENTAL SYSTEM..v¢ccaeececnscsosocencsasssnssnssall
III. VERIFICATION OF A LINEAR DYNAMIC MODEL...:.seseeesssalb
3.1 Model Generation................................15'
3.2 Mode Selection and Frequency Determinant........18
3.3 Parameter and Program Verification..............20
3.4 Dynamic Response Comparison.....................22
3.5 SUMMAIYeeeeeesnscoassssesscsasssascsssscscccsosccscseeldl
Iv. MODEL ORDER REDUCTION. ¢ :¢ecesocccccasoccoscscscscsccsell
4.1 Order Reduction of Static SystemS......ceeeee...30
4.2 Singular Value Decomposition Applied
to Dynamic SyStemS...cceeceececscccssssscccsssasesld3

4.3 Application to Flexible Manipulator Model.......38



Hl
.

VII.

MEASUREMENT AND RECONSTRUCTION OF FLEXIBLE
VARIABLES..."....l'.......'......l..'.. ....... ..0.040
5.1 Measurement and Reconstruction.....ceceeceeeonen 40

5.2 Strain RelationshipS.cceeeecececccecccccocnsacesadl

5.3 Sensor Placement.ccceececeecccccsacosccsoscasscaanss 44
R—'DU—Eﬁ ORDER OBSERVERS.............Q.'IO...... ..... 46
6.1 Observation of the State of a Linear System.....46

6.1.1 Error DYyNamiCS.ceceeseecrsecnsssssscaans 49
6.1.2 Separability.ccceeccececcnccnnsesaensaadl
6.2 Luenberger Reduced Order Observers..............51
6.2.1 Adaptation for Implementation..........54
6.3 Application of Reduced Order Observers

to Single Link Flexible AIMS...cceceesvtenaceacaaadD

6.3.1 Specification of the Measurement
Gain Lueeeeeecooeeeosocsansossossssassnsaead?
6.4 Pole Placement and Robust Observers.............58
6.5 Experimental Investigation..eeeeeecereceoceceessn9
6.5.1 Control Algorithm......c00ce.e.e B <10
6.5.2 Measured Performance.........cceeees...60
6.6 SUMMAILY ¢ eseesssssssscsasssessssssssasacsscnscssbbd

OPTIMAL REGULATOR: ¢ ¢ cecceececcccocssssccsosccscsscssebl

7.1 IntrodUCtion.cecieeeeeseeovscoccosvccsccosncesab?
7.2 Two Flexible Mode SysteM...cceecerecaan P 1
7.2.1 Controller Design....cieeeeccoscoconanns 68

7.2.2 Implementation.cceeeeeeeesecececeaaaes .08

7.2.3 Experimental ResUltS...ccoeeerceececeacell



VIII.

IX.

vi

7.2.4 Disturbance Rejection and Robustness...80
7.2.4.1 Distrubance Impulse Response..80
7.2.4.2 Payload Sensitivity...........86

7.3 Single Flexible Mode SystemM....cceeeeccae ee..91

7.3.1 Design and Implementation.....c¢cecee...91

7.3.2 Experimental Results, Prescribed

Degree of Stability........g...........91

7.3.3 Experimental Results, Pole Placement..1l00

7.3.4 Disturbance Rejection and Robustness..l1l1l0
7.3.4.1 Disturbance Impulse Response.ll0

7.3.4.2 Payload Sensitivity..........113

7.4 SUMMALY - essesoeasssssesssssssssessssssscscacsssllB

KALMAN FILTER..-.oo..o.oooooo.cccoo--ooooooo-0-0000118

8.1 Introduction....eieeeeeeeeeeeevecncacaaeesaall8
8.2 Implementation.....ceeeieiceecrssosnsscnsaneealld
8.3 Measurement NOiS€....ceeveeeeeesnsacessnssssal20
8.4  FLilter DeSitM.s.eeeeevseneencnenaeneneennn.124
8.5 Experimental ReSUltS...cceecececonncanssaeaald?
8.6 SUMMAYY e e svecececocosoossonsossassossasssssassssl3l

CHRONOLOGY AND ADDITIONAL EXPERIMENTAL

OBSERVATIONS..cccecotocsesssscscssssnsoscscassscssssl3d
9.1 Experimental Chronology...cceeceeeeeeaeeessal3’
9.2 Phase Sensitivity..cceeeeieeeeecrsneennceeaaalld9
SUMMARY AND RECOMMENDATIONS. ... euveuvenennennsens. 146
10.1 SUMMALY . ¢ cseveveosaasasccaasssccosscsasancscsssldb

10.2 DiSCUSSIiON.e .t eeeecetscocsasscoasesas sesaee.150



10.3

Appendices

A

vii

RecommendationsS. co v e eeeeeeeeeeooencesooeses 153

DYNAMIC MODEL GENERATION...:cececeeceessccsaccsossesld

A.l

>
[N

b\ o]
e D

CoOrAinateSeeceeeeeeecessssssssessassccecessldB
Kinetic and Potential Energy.cceceseeeececessal57

| PG IP I - [ VL - .
DAYl allye O DUUALLOIIS s e s s s s 06 e 000000000 ceese « s LOV

BERNOULI-EULER BEAM. . :eceeseseacesccacsnssnsssnesssalb2

B.1
B.2
LINEAR
c.1
c.2
C.3
C.4
C.5
C.6
KALMAN
D.1

D.2

Differential Equation..;....................162
Frequency Determinant...cccceeccecscescceccess.l64
QUADRATIC REGULATOR. . cveeseecascccccsssacssoslb?
Continuous SysStem..cceeeesacssceosscaseasseeaealb?
Modification for Solution.....cccceeeeeee...169
Sweep Method. et eeeeeecasssscesssnsennnesalll
Prescribed Degree of Stability...cceeeeeea..171
Sampled Data SyStelMe.ecceeessssocsasossseseeslll
Ricatti Equation Solution.......ccceeveee...177
FILTER...........................;..........178
Governing EqUuationsS..ccececeececccacsccesacsssl78

Solution Method"‘....'.'...................183

EXPERIMENTAL APPARATUS AND CONNECTION DIAGRAMS.....185

E.l
E.2

Flexible ManipulatoOr.cceeeeeecosssscesccsesss 186
SEeNSOLS. .cieceeeosrsasesosscsssssssssssasnsesssl87
E.2.1 Joint Angle SenNSOr..sccesseccccssssseal87
E.2.2 Joint Velocity Sensor.....cceeeeeeeees.187
E.2.3 Strain GagesS...eceeeeeecssscaseasasssssl89

Torque Motor/Amplifier....ceiieeieineeeeeesesal9l



viii

F CONTROLLER SOFTWARE. ¢ v v it vt s e e eececesecacccsanocecns 194
F.1l Software Development....cceeesoeecccscacess cee..194
F.2 Hardware FeatUreS. .. ceeeccecccnseossasscscacesassosllB

F.3 IBM series/l...'."......O... .......... .l.'....197
F

>

Deterministic Regulator..cieeeeeencescosasssesal99

Program Genera CilOMeeeeeeeteoceeeoonanncnanssassall0

Lzh ]
tn
N
(o
Cl
e
H
=
G
a
[
-
@
|
f
cl

F.5.1 Routine LUENEDX.:e:.eeseecessscossosssd0l
F.5.2 Routine CONV.....eeeeeeeooccecaesesss209
F.5.3 Routine UPDATE.....ccceccasoscasssssa2l0
F.5.4 Routine CNTRL.:..ceessesessccscasssesa2ll
F.5.5 Routine EST.....ceceescecesccesnasssal

Bibliography...«.... .



Table
Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table’

3-1.
3-20
3—30

7-7.

7-8.

ix

LIST OF TABLES

System ParameterS..cccecescscscsscacascssssssaadld
Comparison of Modal Frequncies.....ccceeeseea.2l

Comparison of Frequencies Determined by
Stiffness Computations..........c.cccceeeeca...22

Natural FrequenCieS..ceeeececcceccccaccns R <10

Relationship Between Flexible Modes and
Observer POleS.cessecceccccccosocasasssaasssosssbld

Design Results, Stability Matrix, Gain Vectors
Closed Loop Eigenvalues for Figures 7-1,2.....70

Design Results, Stability Matrix, Gain Vectors
Closed Loop Eigenvalues for Figure 7-3........76

Design Results, Stability Matrix, Gain Vectors
Closed Loop Eigenvalues for Figures 7-5.......79

Design Results, Stability Matrix, Gain Vectors
Closed Loop Eigenvalues for Figures 7-14,15...96

Design Results, Stability Matrix, Gain Vectors
Closed Loop Eigenvalues for Figures 7-16,17...98

Design Results, Stability Matrix, Gain Vectors
Closed Loop Eigenvalues for Figures 7-18.....100

Design Results, Gain Vectors, Closed Loop
Eigenvalues for Figures 7-19....c¢ceeeeeeeesa.101

Design Results, Gain Vectors, Closed Loop
Eigenvalues for Figures 7-20...ccccteeacaasssal03

Design Results, Gain Vectors, Closed Loop
Eigenvalues for Figures 7-21......... S N 0

7-10. Design Results, Gain Vectors, Closed Loop

Eigenvalues for Figures 7-22....cceeeeeesasaal05



Table

Table

Table
Table
Table
Table
Table

Table

7-11. Design Results, Gain Vectors, Closed Loop

8-1.

8-2.
8-3.
9-1.
E-1.
E-2.

F-1.

Eigenvalues for Figures 7-23....ccccedeee...108

Noise Variance Extimates Based on Autocorrelation
MeasSUremMeNtS. e eeeeeesoecocsscssscosssscsssesosesslld

Kalman Filter Design Results........ ceesesesaal2B
Closed LOOP POleS.ciiteectsccccsoasssosaassnsssaldd
Transfer FUNCLiONS. ..t ieteteiseeeneesananenns 143
Physical Properties of the Beam and Paylocad...l187
Hardware Identification....... cececssscensssssll2

Series/]l Configuration...cveeeecseeececaces cees+198



Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure

Figure

Xi

LIST OF FIGURES

1-1. Single Link Manipulator.....cceeeeaas S I X

2-1. Graphic Configuration of the Experimental
Apparatus.l'.'......'..O.'..........0‘...0..‘.13

3-1. Flexible Manipulator..ceeeeeeeeoccsscassonsoeslh
3-2. FrequencCy ReSPONSE.c.ccetcsccecacsccscsccscosasassdl
3-3. Measured Step RESPONSE...cieeesscscsscansasaeeld
3-4. Simulation, Five Clamped-Mass ModeS...........25
3-5. Simulated Response, Two Clamped-Mass Modes....26
3-6. Simulated Response, Five Pinned-Mass Modes....26
4-1, Power System Model...ceeeevresscasscoccesnnoaeasld
4-2. Manipulator Model.. .. ceeeecececearsansccocecess30
4-3. Relationship Between SUbSpPaCeS...cseeeecesesaa3l
4-4. Aggregation Level...i.iieeeerrsesccsccnssasennessl9
5-1. Moment Diagram...ceccececesccccecssssssscosecesdd
6-1.'Open Loop Observation.ceeeeseeeesssccaaccsaasead?
6-2. Observation'with Measurement Updat€..ceeeee...48
6-3. Reduced Order ObServVer:....cccececcesaseassosesad2

6-4. Observer with Measurement, and Measurement
DerivativVesS.ceeeieeeceecscescscsossccccosoasnsss 54

6-5. Adaptation for Implementation......eceeeeeesaad6
6-6. Implementation Block Diagram...cceeeeeeeceeecen 58
6-7. 500Hz Collocated Controller.....cceeoseeseceessab2
6-8. 178Hz Collocated Controller....ceeeeeeoocecsas 62
6-9. Step Response, Case l...icieeenccnnncans ceeessb3

6-10. Step ReSPONSE, CASE 2¢cictteecssscoccaascoccssabd



Figure

Figure

Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

6-11.
7-1la.

7-1b.

7-1b.

7-3b.

7.4a.

7.4b.

xii

Step Response, Poles 10 x Mode....veeeeeennnn 65

Collocated Controller, a = diag{2.50 2.50 .2
2.50 2.50 .2], Joint Angle/Motor Current Step
REeSPONSE . i vt eetesoscscscsaonsosscscsssssassanes

Collocated Controller, Strain at Base/Midpoint
Step RESPONSE.::teeeteesstsescssssossssccssosns 73

Collocated Controller, Strain at Base/Midpoint
Step RESPONSE .t et ereoscssassosssssssasancccsss 73

. Modal Controller, a =diag[2.50 2.50 .2 2.50

2.50 .2], Joint Angle/Motor Current Step
RESPONSC.evtennsesas cecseccss et sacnneons ceeeas 74

Modal Controller, Strain at Base/Midpoint Step
Response........ ceeessecscccanns ceeesetsssans 74

. Modal Controller, a = diag[3.25 3.25 .2 3.25

3.25 .2}, Joint Angle/Motor Current Step
RESPONS . it veeroesscesoscasscsessasascssssscsasns 75

Modal Controller, Strain at Base/Midpoint Step
Response...cceeee ceeecccseasesescacssncennas 75

Modal Controller, Large o,a = diag[3.25 3.25
.2 3.25 3.25 .2], Joint Angle/Motor Current
Unstable Step RESPONSE. .. cevescctsoscesssnsssese 77

Modal Controller, Large o, Strain at
Base/Midpoint Unstable Step ReSpPONSE€......... 77

7.5a."Best" Modal Controller, a = diag{3.25 ? .2

7.5b.

3.25 ? .25], Increased Modal Amplitude Gain,
Joint Angle/Motor Current Step Response...... 78

"Best" Modal Controller, Increased Modal
Amplitude Gain, Strain at Base/Midpoint Step
REeSPONSE . ctveerosonstsoscnscsorsssosssssscansscnscss 78



Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
- Figure
Figure
Figure
Figure
Figure

Figure

7-6a.

7-6b.

7-7a.

7-7b.

7-8a.

7-8b.

xiii

Collocated Controller, Disturbance Impulse,
Joint Angle/Motor Current ReSPONSE....sceees.82

Collocated Controller, Disturbance Impulse,
Strain at Base/Midpoint ResponsS€.....seeeeeee.82

Modal Controller, Disturbance Impulse,
Joint Angle/Motor Current Response..... ceeaen 83

Modal Controller, Disturbance Impulse,
Strain at Base/Midpoint Respons€.......ces...83

Large o Modal Controller, Disturbance Impulse,
Joint Angle/Motor Current Respons€...........84

Large o Modal Controller, Disturbance Impulse,
Strain at Base/Midpoint Response......ccc... .84

7-9a."Best" Modal Controller, Disturbance Impulse,

Joint Angle/Motor Current Respons€...........85

7-9b."Best" Modal Controller, Disturbance Impulse,

7-10a.

7-10b.

7-1la.

7-11b.

7-12a.

7-12b.

7-13a.

Strain at Base/Midpoint Respons€.............85

Collocated Controller, 4 Times Payload,
Joint Angle/Motor Current ResSponse€..........87

Collocated Controller, 4 Times Payload,
Strain at Base/Midpoint Response....... ceee.87

Modal Controller, 4 Times Payload,
Joint Angle/Motor Current Response€..........88

Modal Controller, 4 Times Payload,
Strain at Base/Midpoint Responseé............88

Large a Modal Controller, 4 Times Payload,
Joint Angle/Motor Current Respons€..........89

Large a Modal Controller, 4 Times Payload,
Strain at Base/Midpoint Response............89

"Best" Modal Controller, 4 Times Payload,
Joint Angle/Motor Current Response...... «e..90



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Xiv

7-13b."Best" Modal Controller, 4 Times Payload,

7-14a.

7-14b.

7-15a.

7-15b.

7-16a.

7-16b.

7-17a.

7-17b.

7-18a.

7-18b.

7-19a.

Strain at Base/Midpoint Response€......ceeee. 90

Collocated Controller, a = diag[2.5 2.5 2.5
2.5], Joint Angle/Motor Current Step
RESPONSE. it ctaececassscsssssscsessasasssscsss 93

Collocated Controller, Strain at Base/Midpoint
Step REOSPONSE . cieeesresossssscssscssssssssena 93

Modal Controller,a = diag[2.50 2.50 2.50
2.50], Joint Angle/Motor Current Step
RESPONS et ceesocorsoscsssssnssescsssssascccccccs 94

Modal Controller, Strain at Base/Midpoint Step
Response...cceeeeeves R R R ceacseanene 94

Tighter Collocated Controller, a = diag[3.0
3.0 3.0 3.0], Joint Angle/Motor Current Step
Response...ccececeeeccns s e cescsscesessaanoss 95

Tighter Collocated Controller, Strain at
Base/Midpoint Step ReSPONSE€..ccecevsase ———

Tighter Modal Controller, a = diag[3.0 3.0 3.0
3.0], Joint Angle/Motor Current Step
RESPONSE .ttt eeeteessasacsesascsosssossasssoscsssss 97

Tighter Modal Controller, Strain at
Base/Midpoint Step ReSPONSE..ctcetceescosscs 97

Large a Modal Controller, a = [3.75 3.75 3.75
3.751, Joint Angle/Motor Current Step
Response.icecacses ce oo eses st ecesscsecanaco e 99

Large a Modal Controller, Strain at
Base/Midpoint Step RESPONSE.cteeecccnsscccas 99

Modal Controller, a = diag[2.75 3.5 2.75
3.25], Joint Angle/Motor Current Step
RESPONSe .ttt essrtaseassscasessonsssccssenss 102



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

7-19b0

7-20a.

7-20b.

7-21a.

7-21b.

7-22a.

7-22b.

7-23a.

7-23b.

7-243..

7-24b.

7-25a.

7-25b.

7-26a.

XV

Modal Controller, Strain at Base/Midpoint Step

LResponse---...................-............102

Increased Modal Damping, Modal Controller,
Joint Angle/Motor Current Step Response....l104

Increased Modal Damping, Modal Controller,
Strain at Base/Midpoint Step Response......104

High Stiffness,Modal Controller,
Joint Angle/Motor Current Step Response....l1l06

High Stiffness, Modal Controller,
Strain at Base/Midpoint Step Response......106

Modal Damping Only, Modal Controller,
Joint Angle/Motor Current Step Response....l1l07

Modal Damping Only, Modal Controller,
Strain at Base/Midpoint Step Response......l107

Large Modal Damping, Modal Controller,
Joint Angle/Motor Current Step Response....1l09

Large Modal Damping, Modal Controller,
Strain at Base/Midpoint Step Response......l109

Large a Modal Controller, Disturbance Impulse
Joint Angle/Motor Current Response.........1l1l1

Large a Modal Controller, Disturbance Impulse
Strain at Base/Midpoint Response...........1l1ll

Increased Modal Damping,Mocdal Controller,
Joint Angle/Motor Current Disturbance
RESPONSE.iveeeeecsesessssccsassssscsssssssasall?

Increased Modal Damping, Modal Controller,
Strain at Base/Midpoint Disturbance
RESPONSE. i vseesescasssossscsaseasassssseeseall?

Large a Modal Controller, 4 Times Payload,
Joint Angle/Motor Current Respons€.........1l1l4



Figure

Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure

7-26b.

7=27a.

7-27b.

xvi

Large a Modal Controller, 4 Times Payload,
Strain at Base/Midpoint Response...........114

Increased Modal Damping, Modal Controller,
4 Times Payload, Joint Angle/Motor Current
Response............O'...'....Q...'I..l.'l'lls

Increased Mcdal Damping, Modal Controller,

4 Times Payload, Strain at Base/Midpoint
Response..........'.......‘.O......O.'..‘..lls

8-1. Kalman Filter Block Diagram............:.....118

8.2a. Joint Angle Noise Power Spectrum............122
8.3b. Strain at Base Noise Power Spectrum.........122
8.3a. Joint Angle Noise Autocorrelation Function..123
8.3b. Strain at Base Noise Autocorrelation

FUNCtioN.. i veeeereeeeccesecscsansanoansssssaldl
8-4a. Collocated Control Law, Joint Angle,

and Motor Current ReSPONSE...cceseeesecsesssal28
8-4b. Collocated Control Law, Strain at Base,

Strain at Midpoint ReSpoONS@..cceecececesesss 128
8-5a. Modal Control Law, Joint Angle,

and Motor Current ReSpPONSe...ccceeeveecsese..130
8-5b. Modal Control Law, Strain at Base,

Strain at Midpoint Respons€......ceceeeeese.130
8-6a. Modified Measurement Gain, Joint Angle,

and Motor Current ReSPONSE@..cccceescececcesssl3l
8-6b. Modified Measurement Gain, Strain at Base,

Strain at Midpoint Response......ceeees. eee.131
9-1. Time Response, Experimental Beam.............141
9-2. Time Response, Passively Damped Beam.........l1l41
9-3a. Open Loop Transfer Function Model...........142



Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

xvii

9-3b. Collocated Transfer Function Model.......... 142

9-4.
9-5.
A-1.
D-1.
E-1.
E-2.
E-3.
E-4.
E-5.
E-6.

Collocated Root Locus, Torgque Motor...... .e.a145
Collocated Root Locus, Four Pole Filter...... 145
Coordinate Definition....... e -1
Kalman Filter Block Diagram......ceeeeeeeeeesl79
Manipulator with Sensors....cc.ceeeesececececss.186
ANgle SeNSOf.:cescescsossssssssssscassesnsesssl88
Measured Tachometer Performance.............. 188
Strain Gage Implementation..ceceeeeeeeeeeesaa191
Bridge/Amplifier ReSpONSE.....cceveeeceesessal9l

Motor/Amplifier Current Mode Configuration...193




xviii

ABSTRACT

Lightweight, slender manipulators offer faster
response and/or greater workspace range for the same size
actuators than traditional manipulators. Lightweight
construction of manipulator 1links resulﬁs in increased
structural flexibility. The increased flexibility must be
considered in the design of control systems to properly
account for the dynamic flexible vibrations and static
deflections. This thesis experimentally investigates real-
time control of the flexible manipulator vibrations.

Models intended for real-time control of distributed

parameter systems such as flexible manipulators rely on

modal approximation schemes. A 1linear model based on the
application of Lagrangian dynamics to a rigid body mode and
a series of separable flexible modes 1is examined with
respect to model order .requirements, and modal candidate
selection.

Balanced realizations is applied to the 1linear
flexible model to obtain an estimate of appropriate order
for a selected model.

Describing the flexible deflections as a 1linear
combination of modes results in measurements of beam state,
(position, strain etc.), which vyield information about
several modes. To realize the potential of linear systems

theory, in particular to implement full state feedback,



ix

knowledge of each state must be available. Reconstruction of
the time varying modal amplitudes form strain measurements-
is examined. Reduced order observers are utilized to obtain
estimates of the modal velocities, from the reconstructed

modal amplitudes. State estimation is also accomplished by

State feedback control laws are implemented based upon
linear quadratic regulator design. Specification of the
closed 1loop poles 1in the regulator design process is

obtained by inclusion of aprescribed degree of stability in

the manipulator model.



CHAPTER I
INTRODUCTION

This thesis presents the results of an investigation
into the control of a flexible manipulator. The
investigation focuses on real time control experiments
examining dynamic models, and control strategies proposed by
past researchers. Analytical work performed was primarily
conducted to adapt the models and controllers to the
experimental system, and resolve discrgpancies between the
experimental results, and expected results.

Documentation is provided for the experimental
hardware utilized in the experiment, as well as the software
generated to implement the controllers. Some tutorial is
given in the appendices to bridge the gap between the

various topics involved in this work.

1.1 Organizatioh and Readers Guide

The purpose of this section is to present the
reasoning behind the 1layout of the thesis, and provide a
short topical description of each section as an aid in
finding material of interest to specific readers.

The main body of the work focuses on presenting
experimental observations, and comparison of these results

to analytical predictions. The appendices contain long



derivations, programs , etc. which may be useful and
informative, but are not c¢entral to the objectives of the
thesis effort.

The first chapter introduces the thesis topic,
discusses the organization, and identifies pertinent
defining the specific
problem considered for this investigation.

The second chapter, "Experimental Apparatus", briefly
identifies the major components of the experimental systeﬁ,
and provides graphic representation of their interplay.
Detail information on the hardware components, and
electrical connections are identified in Appendix E.

The third chapter, "Verification of the Linear Dynamic
Model", roughly outlines the process for generating the
dynamic model wused in the controller design algorithms.
Experimental observations conducted to evaluate the model
are presented and compared to digital simulation. A detail
account of thé modelling process is contained in Appeﬁaix A.

The fourth chapter discusses analytical estimation of
required model order. The method of balanced realizations is
introduced and applied to the model. This provides

quantitative substance to the qualitative results of chapter

3.
The fifth chapter, "Measurement and Reconstruction of
Flexible Variables", discusses reconstruction of the

flexible variables, and selection of locations for strain



measurement from which the variables are obtained.

The sixth chapter, "Reduced Order Observers'", reviews
the concept of state observation, and the fundamentals of
reduced order observers. Application of reduced order
observers to the estimation of modal velocities is discussed
including specification of the measurement update gain to
obtain robust implementation. Pole placement of the observer
poles is evaluated experimentally.

Chapter seven, "Optimal Regulator", addresses the
performance of a deterministic optimal regulator design for
the flexible manipulator. Various degrees of stability are
prescribed in the design process, and the resultant

performance recorded. Models with with one and two modes are

examined.
Chapter eight, "Kalman Filter", discusses the
experimental determination of measurement noise, and

presents the closed ioop performance based on the Kalman
Filter estimates of the states. The amount of plant noise is
varied to obtain a robust filter.

Chapter nine discusses several additional results, and
observations which had significant impact on the experiment,
but do not fit in the other sections.

Chapter ten summarizes the major contributions and
results of this work, and identifies future work.

Appendix A gives a detailed account of the dynamic

model generation.



Appendix B derives the frequency determinant for a
Bernoulli-Eulér beam.

Appendix C generates the necessary equations, and
solution technique for the Optimal Quadratic Regulator.

Appendix D embraces the Kalman filter origins.

Appendix E gives manufacturers data, results from
tests conducted to verify component performance, and
electrical connection diagrams.

Appendix F documents the software routines generated

for the micro-processor controller.

1.2 Background

A large body of analytical research applicable to the
modeling and control of flexible manipulators has
accumulated over the last two decades. The following
paragraphs briefly chronicle the most pertinent efforts, and
highlight major contributions.

All physical systems can be described as continuous in
space, and/or t;me, however, many systems are adequétely
described ﬁsing simpler lumped models. To provide
responsive, accurate control of flexible manipulators the
distributed nature of the mass needs be included in the
dynamic model.

The dynamics of distributed systems has been under
investigation for many years, and F.T. Brown [Il], 1964,

classified the general character of these systems, and at



the same time drew physical analogies between the
distributed parameter systems of several fields. Shortly
afterwards, this material started appearing in aerospace
literature with respect to stabilizing flexible vehicles.
For example, work by R.E. Andeen [I2], 1964, applied these
ideas to the stabilization of rockets.

Modal control of a distributed parameter systems was
discussed as early as 1966 by Lasso [I3], and again by Lasso
and Gould [I4], 1966. Lasso and Gould described control law
development using classical techniques, and discussed
determination of modal gquantities from measurements. The
modal analysis technique, discussed by Lasso and Gould, is

similar in concept to the reconstruction concept used for

this study. Wykes, and Mori [IS5], 1966, reported on the
applicability of this approach to the control of flexible
modes in aircraft.

Vaughan [I6], 1968, applied wave propagation concepts
to thé control of bending vibrations. Vaughan was interested
in determining impedance matches for a passive endpoint
attachment. Vaughan obtained transfer matrices to describe
the dynamic <character of a flexible beam. The transfer
matrices were similar to those latter developed by Book [I9]
to describe the dynamics of flexible manipulators.

Komkov [I7] discussed optimal control of a transverse
beam oscillations in 1968. Mirro [I8], 1972, was perhaps

the first to discuss the feedback control of a flexible



manipulator. Mirro examined the usefulness of optimal
regulatofs as applied to this problem. This was followed by
Book [I9], 1974, who examined the wusefulness of transfer
matrices in the modeling and control of flexible
manipulators. In addition, Book drew conclusions about the
response of flexible manipulators to feedback contrdllers,
and discussed design of the flexible member. Neto [I1l0],
1974, examined the application of modal analysis and

Lagrangian formulation of the dynamic system to the analysis

and control of flexible manipulators.

Schaechter [Ill], 1974, examined the control of
flexible vibrations aimed at large scale space structures,
and included some experimental investigations. The apparatus
was a free hanging truss structure, with actuation suitable
for . space applications. The paper served to document the
apparatus, associated hardware, and modeling difficulties.

Martin [Il2], '1978, anélytically investigated the
control of flexible mechanical systems, and specifically
considered the performance of both collocated and non-
collocated controllers. This work was aimed at large space
structures, and paralleled the work of both Mirro, and Book.
Balas [I13], 1978, discussed modal control of large space
structures and focused on the impact of controller designs
and implementations based on truncated models. The control
concepts intended for flexible space structure control

usually consider multiple actuators distributed over the



lengths of open truss structures to control the undesired
vibrations.

Book, Majette, and Ma [Il4], 1979, continued to
develop frequency domain techniques for the control and
analysis of serial manipulators with multiple flexible
links. Hughes [I15], 1979, developed complete, general
dynamic relationships for flexible chain systems applicable
to flexible manipulators. Balas [Il6], 1980, continued to
contribute to the field of space structure control with an
investigation of modeling based on finite element
techniques. The model, although suitable for small amplitude
vibrations about an equilibrium configuration, did not
properly account for rapid gross motions typical of
manipulator applications.

Fujii [I17], 1980, developed functional observers for
distributed parameter systems in recognition of the
computational requirements of state observers. Truckenbrodt
[I18], 1981, concentrated on modelling a fixed base flexible
manipulator that was similar to Netofs. earlier work.
Truckenbrodt, additionally compared the performance of the
model to a simple test device and found reasonable agreement
for the frequencies of the first four vibratory modes.

Balas [I19], 1982, discussed a need for more practical
control concepts satisfying constraints which arise in
implementation. Sunada, and Dubowsky [I20], 1982, developed

finite elements for flexible manipulators which incorporated



the dynamic effects of gross motions encountered in robotic
applications.

Cannon and Schmitz [121], 1983, discussed
characteristics of a very flexible manipulator with open
truss construction, and in further work [I22], 1985,
investigated end-point positicn contrcl. The end-point
position was measured by an optical sensor external to the
manipulator system. Zalucky and Hardt [I23], 1984, examine
compensation for static deflections occuring in flexible
members using an optical sensor to measure deflections.

Turic and ‘Midha [I24], 1984, obtain generalized
equations of motion for elastic systems using finite
elements. Turic, Midha, and Bosnik [I25], experimentally
examine the ability of the finite element technique of the
previous reference to predict the motion of a four bar
linkage. Weeks, [I26], presents solution of the boundary
value problem describing control of flexible structures by
use of integral transforms. Weeks recognized that for real-
time implementation the Greens functions could be
approximated by expansions of selected eigenfunctions. Bodde
n and Junkins [I27], 1984, discussed optimization of the
eigenvalues for structural controllers. Junkins [I28], 1985,
continued to examine the flexible structure eigenvalue
placement problem using optimal 1linear quadratic regulator
design.

Meirovitch and Baruh [129], 1984, consider the



application of modal filters to reduce model order
requirements in control of flexible structures.
Sangveraphunsiri [([I30], 1984, applied optimal control
methods to obtain controller designs for a single link
flexible manipulator. Deterministic and stochastic steady-
'state regulators, as well as time optimal bang-bang
controllers were simulated with linear, and nonlinear
models. Major and Shain [I31], 1984, consider the control of
a flexible truss suitable for space applications, and go on
to discuss experiments on a single truss section in 1985
[132].

Book [I33], 1984, presented the "Bracing Strategy" to
achieve higher effective stiffness for flexible manipulators
in performance of certain robotic tasks. Lane and Dickerson
[I34], 1984, considered the application of visco-elastic
damping materials to achieve passive control of flexible
vibrations. Alberts et. al., [I35], experimentally evaluated
passive dampiﬁg treatments applied to a single link flexible
manipulator. Major and Maples [I36], 1985, considered force
control of manipulators with flexible structural elements.
Naganathan and Soni [I37], 1986, examine non-linear
kinematic formulations of flexible manipulators using finite

element techniques.
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1.3 Problem Statement

The following section defines the specific physical
configuration, and problem addressed in this investigation.
A flexible arm limited to motions 1in the horizontal plane
via rotation about a fixed joint is depicted in figure 1-1.
The arm is constructed from a single continuous beam. The
only control actuation available to the system is a torque
delivered at the single rotational joint. The following
measurements of the state of the system are available:

1. Joint rotation angle
2. Joint rotational velocity
3. Strain at least two locations

A control torque u, is determined that will rotate the
flexible beam from one arbitrary orientation to another
specifiable orientation quickly and accurately. This
function utilizes the measurements to provide information on
the state of the system.

Since the proposed investigation relies heavily on
experimental investigatioﬂ, the performance of physical
components add complexity to the problem. Linearity, and
responsiveness of the torque source, coulomb and viscous
friction of the joint, and measurement noise are'but a few

of the factors impacting the problem.
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1.4 Contribution

The major contributions of this thesis 1lies 1in the
evaluation of truncated models for wuse in the control of
flexible manipulators. Chapter 3 1identifies the importance
of mode selection and model order. Chapter 4 proposes a
method for apriori estimation of the required model order.
Chapter 5 presents a measurement scheme for the time varying
modal variables. Chapter 6 develops a reduced order observer
for modal velocities. Chapters 7, and 8 evaluate the
performance of controllers based on these models. Chapter 9
contains additional information gleaned from the series of
experiments. All this information forms the foundation for

further work in controlling distributed parameter systems.
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Figure 1-1. Single Link Manipulator
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CHAPTER II
EXPERIMENTAI, APPARATUS

This section of the thesis introduces the experimental
manipulator system. The graphic configuration of the major
subsystems and their major functions are identified in this
section. This is done to establish a point of reference for
the following chapters, and to set the physical scale of the
experiment. Manufacturers, specifications, experimental
measurements made to assure the performance parameters of
key components, and detail diagrams identifying the actual
electrical connections are identified in Appendix E.

The experimental hardware is separated into three
major subsystems:

. Micro-Processor System
. Manipulator
. Signal Conditioning

Figure 2-1 graphically depicts the system hardware.
The micro-processor subsystem consists of a high speed
sixteen bit micro-processor with floating point hardware,
mass storage, and sensor I/0 for data acquisition and
control.

The manipulator subsystem consists of the flexible
link, torque motor, payload, and sensors. The link sets the

scale for the experiment. The arm is a four foot aluminum
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beam oriented so that axis of increased flexibility is in
the horizontal plane. Four feet 1is longer than lengths of
many '"pick and place" industrial robots, yet significantly
shorter than proposed scales for flexible manipulators [IIl-
2]. A commutated DC torgque motor provides the motive power
for the link.

The payload is provisioned for the addition of weights
to allow investigation of the systems sensitivity to payload
mass. Several sensors are attached to the flexible
manipulator in order to provide information about the state
of the link. A potentiometer is mounted to the top of the

actuator shaft to measure the rotation of the joint. A

SIGNAL CONDITIONING g
g§§§§§§ Strain Gage
Bridges vl Series/1
. AR , E=
Filters- %12 "le ®1e 1 °le "y . @ /
—|-Amplifiers
o2 a8 ]
Power >3 \_/
Amplifier” . .
7]
FLEXIBLE ARM 4
——w— —{]

CONTROL PROCESSOR

Figure 2-1. Graphic Configuration of
the Experimental Apparatus
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tachometer located under the motor housing is wused to
measure the angular velocity of the joint. Strain gages,
mounted at the base and midpoint of the 1link, provide
measurements of the beam deflections.

The signal conditioning subsystem provides interface
electronics for the strain gages, angle sensor, tachometer,
and torque motor. The strain gages require bridge circuitry
and amplification. The angle sensor and tachometer require
buffer amplifiers to isolate them from the line loads and
provide analog scaling. Four band pass filters are also
provided. The torque motor is driven by a large DC servo-

amplifier configured to provide currents proportional to the

input voltage.
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CHAPTER III

VERIFICATION OF THE LINEAR DYNAMIC MODEL

The material in this section of the thesis describes
the linear model which formed the basis for most of this
investigation into the control of £flexible manipulators.
The initial sections discuss the modeling process, and steps
taken to verify system parameters and algorithm
implementation. The latter section compares simulations of

the model to experimental measurements.

3.1 Model Generation

This sub~section describes the formation of a linear
state space model for the flexible manipulator. The process
for forming the model will be outlined in this section; a
detailed description is contained in appendix A. The first
step of the process 1is to ‘describe the position of every
point-along the flexible manipulator. A linear combination
of vibratory modes to describe flexible deflections, and a
rigid body motion of the center of mass is selected. A
manipulator with a rigid body rotation and flexible
"clamped-mass" mode is depicted in figure 3-1.

The flexible deflections are described by an infinite
series of separable modes. Separability in this instance

refers to describing the flexible deflections as a series of
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assumed modes [IIIl1] which are products of two functions,
each of which is a function of a single variable: one a
function of a spatial variable, and the other a function of

time. This is noted as:

wix,t)= 2¢i(x)qi(t) , for i=1,2...n (3.1)

This separability is important in later phases when the
model is formed in terms of time varying variables only.
Next the kinetic and potential energies are derived.
The distributed character of the flexible manipulator is
taken into account via integral expressions over the mass of
the entire system in forming the energy expressions. The

integral for calculating the kinetic energy, KE, has the

v X
-~

RIGID BODY ROTATION
p POSITION VECTOR

FLEXIBLE DISPLACEMENT

1

8 ROTATION ANGLE

\

Figure 3-1. Flexible Manipulator
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following form;

KE = 3 J R-Rdm | (3.2)
where R, the absolute velocity vector, and mass, range over

the entire system. The potential energy, PE, of the system
is stored in the flexible modes and can be attributed to
"modal stiffnesses", Ki' which are evaluated by integrals
over the 1length as shown in equation A.12. Lagrange's

equations of motion can be formed from the energies;

d
dt

oKE

_3PE _
aéi

(3.3)
38, 1

where the Ei are the coordinates, and Qi are the generalized
work terms associated with each coordinate. Turning the
computational c¢rank on the various differentials and
integrals as carried out in appendix A results in a coupled

set of second order dynamic equations with familiar form;

M] z + (K]z = [Q] (3.4)

z = [8,q,(t),q,(t),....,q,(E)] (3.5)

M is a mass matrix, K represents stiffness, and Q the input.
The dynamic equations are easily organized into a state-
space model as shown in equation (3.6). The motor torgque at
the joint, and the generalized work terms, Qi' are then
related to the rotation of the joint with each variable.
Examination of the form of the model reveals the expected

result that the coupling between the modes, and the rigid
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body motion occurs from inertial terms of the mass matrix.
Equation (3.6) depicts a 2(n+l) order linear model
where n is the number of included modes. Non-linear terms
arise from the evaluation of equation (3.2) for the kinetic
energy, and the specific assumptions employed to cbtain a

model containing only linear terms is discussed in Appendix

A.

8 8

él 0 I q 0

g, g,

: I R e N B |u| (3.6)
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3.2 Mode Selection and Frequency Determinant

The remaining task in generating a trial model is the

selection of the flexible modes to be used in forming the

constant mass and stiffness matrices.

The path chosen in this work is to select admissible
functions as candidates which are solutions to closely
related problems. These solutions are eigenfunctions for

selected "clamped-mass", and '"pinned-mass" boundary value
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problems. Clamped describes a boundary condition where the
joint is fixed against rotation, pinned describes a joint
with motor inertia free to rotate, and mass describes the
condition of the payload at the other beam boundary. The
admissible functions will then satisfy the differential
equation, the essential or geometric boundary conditions,
and the natural boundary conditions of the free vibration
problem.

Appendix B describes the development of the
differential equation for a Bernoulli-Euler beam and the
solution of selected boundary value problems. The problem is
formulated in terms of a frequency determinant for the
determination of the eigenfunctions and the associated
Vfrequencies.

The experimental apparatus introduced in Chapter 2 was
used to examine the model's performance. Table 3-1
identifies the important parameters of the beam which were

used as inputs to the modeling process.

Table 3-1. System Parameters

Flexible Beam -

Material - Aluminum 6061-T6

Form - Rectangular 3/4 x 3/16in
Length - 48 in

Moment of Inertia - 4.12E-4 in2

EI Product - 4120 1bf-in*
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3.3 Parameter and Program Verification

This section describes experiments conducted to verify
system parameters and program implementation of the model
generation process. Initially the frequencies determined via
the Bernoulli-Euler beam equations with clamped-mass, and
pinned-mass boundary conditions are compared to measured
eigenvalues of the beam. This examines beam length, modulus,
and density parameters, as well as the suitability of the
chosen boundary conditions.

Figure 3-2 shows a measured transfer function from
random torques input by the motor to strain at the base of

the beam. The peaks correspond to "clamped-mass" modes, as

‘r
Freq. 2.08Hz 13.92Hz ' 41.38 81.18Hz
Response
Db
—
10.01Hz
— 33.45M2 70.56H2z
L. ] ] { ! { ] | { 1 |
0.0 Hz 100.

Figure 3-2. Frequency Response
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the clamped boundary condition results in modes having
maximum moments at the base of the beam. The valleys are
associated with '"pinned-mass" modes, as this boundary
condition results in modes which have small moments which
rotate the motor inertia. Martin [ITII2] discusses
measurement zeros which occur in flexible structures.

The vibratory modes were additionally calculated by
the frequency determinant described in Appendix B. Table 3-2
compares the measured modal frequencies to those computed
using the Bernoulli-Euler Beam. The application of the
Bernoulli-Euler formulation to the "clamped mass" case
agrees very well with the measured frequencies, however, the
"pinned-mass" conditions were not as accurate.

The poorer agreement for the pinned case is attributed
to the friction found in the joint hardware; this is a
difficult condition to model and may have a significant
effect for the small amplitude motions used during the

tests.

Table 3-2. Comparison of Modal Frequencies(Hz)

Clamped-Mass Pinned-Mass
Mode Measured Calculated Measured Calculated
1 2.08 2.096 10.01 9.732
2 13.92 13.989 33.45 31.608
3 41.38 41.524 70.56 62.683
4 81.18 81.225 148.768
5 136.352 216.048
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The next step checked the model generation algorithm.
Normalization of the modal masses allows the checking of the
computations by examining the diagonal components of the
stiffness matrix. The stiffnesses should be the square of
the modal frequencies input to the process.

The algorithm was checked for both the clamped-mass
modes and the pinned-mass modes. Table 3-3 presents a
comparison of the modal frequencies input to the modelling
process. The results are very good, however it was

necessary to use higher precision computations for the

higher modes.

Table 3-3. Comparison of Frequencies Determined
by Stiffness Computations

Clamped-mass Pinned-Mass
Input ' Stiffness‘l/2 Input Stiffnessl/z
2.096 Hz  2.096 9.732 Hz  9.732
13.989 13.989 ’ 31.608 31.608
40.552 40.524 62.683 62.683
81.225 81.225 148.768 148.768
136.352 136.344 216.048 214.621

3.4 Dynamic Response Comparison

The previous section provides confidence that the beam
parameters have been properly identified and modeled by the

Bernoulli-Euler beam. The computational procedure has
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additionally been checked. The major guestions concerning
the model can now be investigated:

. Choosing the Modal Candidates
. Required Model Order
. Is a Linear Model of the Coupling Adeguate

The following paragraphs describe simulations and
experiments conducted to gain insight into the answer to
these questions. The simplest and best understood controller
for flexible arms 1is a collocated controller, that is, a
control system where the measurement and actuation 1is
located at the same point. A collocated controller was
implemented for the experimental system which applied a
position gain to joint angle measurements, and a rate gain
to angular velocity measurements.

The position gain was selected to provide the rigid
body mode with a characteristic time of one second. The rate
gain was selected to provide a damping ratio of 0.7. Higher
gains couid be selected which stress the impact of
flexibility on the control stfategy, however the chosen
gains -provide a good starting point well within the
operating parameters of the system.

Figure 3-3 displays the measured response of the
experimental system to a step change in desired joint angle.
Strain measurements presented in the figure, while not used
in the controller, provide an indication of the relative

modal amplitudes.
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The dynamic model was discretized, and simulated for
the step éngle change. Small amounts of damping, (typically
damping ratios ranging from .007-.010, based on transfer
function measurements using an impulse hammer as the input

and strain at the base as the output [III3]) were introduced

into the model €for the flexible mocdes. Additicnally,
hysteretic joint friction was modeled as coulomb friction
[III4] and included in the digital simulation. Inclusion of
modal damping and hysteresis in the simulations improved the
agreement of the models especially in the time interval
after the large initial transients had occurred.

Figure 3-4 shows the results for a model implemented
with five clamped-mass modes, while figure 3-5 presents a
model using two clamped-mass . modes. The last case simulated
used five pinned-mass modes as inputs to the modeling
process. This is presented in figure 3-6.

The simulations based upon clamped-mass modes agree
the best with measured responées. Surprisingly the model
implemented with only two clamped-mass modes agrees almost
as well if not better than the higher order model. The
poorer agreement of the higher order model is probably due
to poor estimation of the damping by use of the impulse
hammer measurements. Additional damping in the higher modes
from the joint is likely when the joint is in motion. Should

the actual manipulator exhibit the higher amplitude
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vibrations in the higher fregquencies, as shown in figure 3-
4, larger models including the higher flexible modes would
be required. This presentation maybe somewhat misleading as
better determination of damping for the higher modes could
provide better results. It is apparent that a dominant

portion of the response 1is adequately characterized by as

few as two modes.

3.5 Summary

A modelling process to generate a linear model for use
in controlling flexible manipulators was presented, and
compared to experimental measurements for a position, and
rate feedback controller. The model agreed favorably with
the measured response for a selection of clamped-mass
assumed modes. The dominant parts of the transient response
were characterized by inclusion of as few as two assumed
flexible modes.

The selection of appropriate assumed modes must
consider the feedback law, as the applied torgque dominates
the boundary condition at the basé of the beam. Clamped-mass
modes vielded good results for the simple collocated
controller, however this may not prove true for more

sophisticated controllers.
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CHAPTER IV
MODEL ORDER REDUCTION

Truncation of the modal series is required to achieve
a model suitable for implementation in real-time. Based on
initial estimates of computational speed a model treating
two flexible modes was targeted for this study. While
verifying the linearized model, as discussed in the earlier
chapter, the two mode model was found to characterize the
major portion of the response. This process was completely
arbitrary, and satisfactory performance of the controller
was in no way guaranteed. It was therefore desirable to seek
an analytical means to estimate the required model order,
especially when looking forward to research on multi-link
systems.

Professor Dorsey, Electrical Engineering Dept./
Georgia Tech., suggested éhe use of balanced realizations as
a method for providing the model order estimate. Balanced
realizations is based upon singular value decomposition of
linear systems [IV1]. This suggestion was based upon the
similarity of the model wused in this work to one he was
familiar with 1in power systems research. The linearized
version of a power system model is shown in figure 4-1. The
states are the A§ variation in angles, and Aw variation in

speeds for the generators. M represents the inertial matrix
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of the generators, Yy represents damping. T represents the
change in electrical power with respect to the angle-
variations A§, and L depicts the change in electrical power
with respect to the load power.The linearized model for the

- manipulator 1is repeated in figure 4-2. The structural

similarities are readily

Adl Adl
A62 0 I A62
A63 A63
: N : +
Awl Awl
sz 1 bw,
. M™T -vI
Aw3 Aw3
0 0
----------------- [u]
M1 min

Figure 4-1. Power System Model.
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apparent between the two types of systems. Additionally, Dr.
Dorsey had robust software machinery evaluating the power
system models. Troullinos, and Dorsey [IV2] wrote an
introductory paper on model order estimation with this
method, and that material 1is presented next to familiarize
readers with the method before discussing its application to

the flexible manipulator.

) : )
él 0 I qq 0
9; q;
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q & M1l
I 1 1
MK 0 .
q; 2

Figure 4-2. Manipulator Model.

4.1 Order Reduction of Static Systems

The basic motivation for balancing linear dynamic

systems is rooted in linear algebra. Given the system

Yy = Tx (4.1)

where T is an n x m matrix, an intuitive, geometric

interpretation of the potential redundancy of the system's
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variables can be achieved using spaces R(T), R(T') and their
respective orthogonal complements Ker(T'), and Ker(T).
Ker(T) is the nullspace of T, the subspace spanned by all
vectors X such that Tx=0. T' is the transpose of T. Figure
4-3 summarizes the relationships between these four
subspaces.

Assume that m<n. Any m-dimensional vector Xx can be
represented as the sum of its projection X,., on R(T') and
Xy, on Ker(T). That is x = X, + X Similarly any n-
dimensional vector y can be represented as y= yr+yk, the sum
of its projections on R(T) and Ker(T'). Then Yo = Tx = T(xr
+ xk) = Txr + 0 = TX,. Thus, effectively, T can be thought
of as an invertible transformation from R(T') to R(T). The
inverse transformation that takes Tx back to x is called the

psuedo-inverse [IV3].

Figure 4-3. Relationship Between Subspaces.
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The subspace decomposition described above provides an
elegant and intuitive picture of linear transformations. The
necessary complement to this theoretical picture is a robust
computational method of decomposing the matrix T. Every n X
m matrix T can be factored as T = UIV' with Uannxn

orthogonal matrix, V anm X m orthogonal matrix and Z an n x

m matrix that has the special form

. (4.2)

where the o; are the nonnegative square roots of the
eigenvalue of the matrix T'T. If T is of maximum rank, then
all the o's will be non-zero. If the rank of T is r<m, then
only the first r diagonal entries will be nonzero, in which

case T can be written as

.0 1 [V
T = (U, Uk][ r ] { .r} (4.3)
0 0 Vie .

where Er = diag(ol,cz,-o-,cr) and Ur’Uk’Vr’ and Vk are
orthogonal matrices which span R(T), Ker(T'), R(T), and
Ker(T), respectively.

The singular values have the crucial property that if
T is perturbed slightly to -TA = T + AT, then the singular

values of TA will be '"close" to the singular values of T.

Thus if T 1is of r<m then the decomposition of the
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transformation T, would yield

I, 0 v
— rA raA

0 Zpad L Vga

where the singular values of zkA would be small compared to

the singular values of ZrA‘ Thus T =U_,2Z

1
rA rAVrA would be a

good approximation of the original transformation T =

UrZrVQ. Even in the case where T 1is known exactly, if the

singular values can be segregated into two groups where the
members of one group are much smaller than the members of

_ . , .
the other, then the matrix UrAerVrA may still be a useful

approximation to the matrix UrZrVL. It is this latter point

of view that is exploited in the next section.

4.2 Singular Value Decomposition Applied to Dynamic Systems

Given the linear time invariant system

x(t) = Ax(t) + Bu(t) ' (4.5)
y(t) = Cx(t) | (4.6)
two transformations are of interest. One is the

transformation Tc(tl) from an 1initial state, x(to), to a
subsequent state, x(tl), under the influence of an input
u(t). The other is the transformation To(tl) from an initial
state x(to) to a subsequent output y(tl), with no input. The
first transformation provides information about the

controllability of the system, while the second,
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information about the observability of the system. If the
system has uncontroilable or unobservable states then the
state space can in a sense be interpreted as degenerate, or
not of full rank.

The linearized model for the flexible manipulator is
assumed to be controllable and observable; this was checked
in the computations. What is of interest are states that are
nearly uncontrollable or unobservable. As in the static case
these estimates can be obtained using singular value
analysis for the system [IV4]. wWith to = 0, the

transformation from a given initial condition x(to) = Xgr

with input u(t) to x(tl) is described by [IVS];

t
1
x(t;) = eAf1 x, + J P17 Bu(1)dr (4.7)

0

For the special case where x(to) = 0, and u(t) = 6(t)q,
where U is a vector of impulse magnitudes,

Atl
x(tl) = e BU (4.8)

It can be shown [IV6] that R[Tc(tl)] = R[wc(tl)] where

t
1 '
Wo(ty) = [ eATBBre® Tyu(1)dr (4.9)
0

Similarily for the unforced case

Y(tl) = Ce Xy (4.10)
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Thus Ker[TO(tl)] = Ker[wo(tl)] where

t

1,

Wolty) = J P TorcePTar (4.11)
0

wc(tl) and wo(tl) exhibit the same robustness found in the

static case [IV7]. Thus if a singular value decomposition of

Wc(tl) yields

1 0 Vll
W (ty) = [U] U,] , (4.12)
0 : v
2 2

where the singular values of 21 are much larger than the
singular wvalues of 22, then the number of nearly
uncontrollable states 1is the dimension of 22. A similar

argument holds for wo(tl).

One more step, that of balancing the system, is
required. The size of the singular values can be interpreted
as the."strength" of the individual states. That is, the
singular-values measure the extent to which a state is
influenced by inputs and initial conditions. It can happen
that a particular state will appear strong from the
controllability perspective and weak from the observability
perspective. A given state may, for instance, be strongly
amplified by the B matrix and equally attenuated by the C
matrix, or vice versa. Balancing the system is a method of
equalizing the controllability and observability "ratings"

of a state. That is, assuming that the system (eqns 4.5-6)
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L]

is minimal, balancing is achieved by finding a

transformation, x(t) = Tz(t) such that for the system
z(t) = Az(t) + Bu(t) (4.13)
y(t) = Cz(t) (4.14)

the controllability grammian Wc(tl) and the observability
grammian Wo(tl) are  identical. Noting that the
controllability and observability grammians of equations

(4.5-6) and (4.13-14) are related by

-2 - ‘l 2 ‘1 [}
wc(t 3_- T wc(tl)('r ) (4.15)

‘2 ] 2 !
wo(tl) T Wo(tl) T (4.16)

the desired transformation T can be obtained as follows. Let

2 2 '
Wc(tl) Uc(tl)Ec(tl)Uc(tl) (4.17)

2 2 '
Wo(tl) Uo(tl)Zo(tl)Uo(tl) (4.18)

be singular value decompositions of the two grammians of the

unbalanced system. Define
H(t ) = Zo(tl)Uo(tl)Uc(tl)Zc(tl) (4.19)
with singular value décomposition

H(tl) = UH(tl)ZH(tl)Vé(t ) (4.20)

and choose

1
- -1 2 -
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1

22
U (t) I (8 )V (e ) Ep(t])

It is then a straightforward calculation to show that

1
Wilty) = [s2(evieEt e us(e))] (4.22)

(Ut )2 (UL (E] [U (e ST (£ IV () E2(E)]
= 5(t,) = WA(t,)
1t 0(ts

By rank ordering the singular values of H(tl), i.e. the
diagonal elements of ZH(tl), the balanced mcdel can be
divided into two subsystems, one associated with the larger
singular values and one associated with smaller singular

values as
z A A z é 1
[ .1} - { 1l 12 } { 1] + { -1j u (4.23)
2o LAy Ay Zy B,
_ o z
y =[cy C,1 [ z%] (4.24)

The reduced order model is the subsystem associated with the

large singular values:

z, = All Z + B,u (4.25)

y = C1 zq (4.26)
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4.3 Application to Flexible Manipulator Model

Using modeling software developed for this thesis a
model was generated including one rigid mode, and nine
flexible modes. A small joint angle position gain, 50, and
velocity gain, -10, was introduced with small amounts of
modal damping, (damping ratios of .007-.010), to insure that
all eigenvalues had negative real parts before executing the
analysis software.

To evaluate the contribution of each mode, and thus
infer the required model order, requires some measure of
performance. The selected performance index is that proposed
by Moore[IV8]. For the manipulator model with N/2 = 10
modes, one rigid and nine flexible, the singular values are
rank ordered from the smallest to the 1largest. Then a

performance index of the form:

p(i)= 1EL (4.27)

is evaluated for i = 1,2,..., N-2 since the singular values
occur 1in complex conjugate pairs. The numerator and
denominator of p(i) represent, respectively, the square root
of the sum of the squares of the singular values associated
with the aggregated and unaggregated modes. Each mode

aggregation reduces the number of singular values by two,
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and hence at an aggregation level of (N-4)/2, the entire
manipulator model has been reduced to one rigid and one
flexible mode.

The linear model for the flexible manipulator was
evaluated with the above process by Dr. Dorsey with software
he had crea;ed for analysis of power systems. The result of
the computations are presented graphically in figure 4-4,
and agree well with the gqualitative results presented in
chapter3. As can be seen from figure 4-4, the curve makes a
sharp change in slope after an aggregation level of six, and
the performance level quickly rises. This indicates that
most of the model is represented by three modes, one rigid

and two flexible, at an aggregation level of (N-6)/2 or 7.
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£ ] /
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Aggregation Level

Figure 4-4. Aggregation Level
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CHAPTER V
MEASUREMENT AND RECONSTRUCTION OF FLEXIBLE VARIABLES

This section describes the approach used to determine
the state variables associated with flexible deflections.
The position of any single point along the beam can be
described as a combination of the rigid body motion, and
flexible deflections. The approach taken in this work is to
describe the flexible deflections by a modal series. This
means that the flexible deflection 1is a linear combination
of variables, and any single measurement of beam state,

position, or strain etc., vyields information about several

modes.

To realize the potential of linear systems theory, in
particular to implement full state feedback, knowledge of
each state must be available to the control law. The task
then is ‘to gain information about each flexible state

variable from the measurements.

5.1 Measurement and Reconstruction

Joint angles, and Jjoint rotational speeds can be
measured directly as for rigid manipulators, however for
state feedback control of manipulator flexibility it is
desirable to make direct measurements of the modal

variables. Three types of measurement are currently
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receiving attention for experimentally controlling
flexibility in manipulators: optical measurement of end
point position ([V1-2], optical measurement of deflection
[V3], and measurement of strain on the 1link ([V4]. The
measurement selected for this work is strain. Strain
measurement has the following beneficial aspects:

. Isolates beam variables from rigid motions.

. No restrictions on work envelope or
positioning.

. High compatibility with harsh industrial
environments subjecting the sensors to process
sprays of oils, solvents, and dispersed solids.

. Low cost sensor and driving electronics with
simple technology base.

Additionally, the concept presented here can be
-applied almost directly to optical measurements of
deflection. Measurement zeroes observed in end-point
position measurements [V1] by sensors mounted external to
the manipulator may adQersely affect application of

reconstruction to this means of measurement.

5.2 Strain Relationships

The moment at any location along the beam is related

to the curvature of the beam:

M = EI3°w(x, t) (5.1)
2

9xX

The stress of the fibers along the surface of the beam due
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to bending can be determined from the moment:

g = Mc A (5.2) -

(5.3)

The strain can now be given in terms of the beam deflection

wix,t):

e(x,t) = cdwi(x,t) (5.4)

Assumed mode representation of the flexible deflections can

be expressed by:

wix,t) = Z¢i(x)qi(t) (5.5)

The strain can then be represented in terms of the assumed

modes as:

e(x,t) = chi(t)dzgi(x) (5.6)

dx2
Equation (5.6) <can be expanded to <c¢learly show the
contributions of each flexible mode to the measurement of

strain at a location x = a on the beam.

ea,t) = cld®s, (a)q; () + @%p,(a)g,(t) + (5.7)
dx2 dx2

2
ce g (a day(0)]
dx

For strain measurements at several 1locations a, b, ...,m
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this relationship can be presented in matrix form:

e(a,t) cd®s;(a) cdlp,(a) +-+ cdls_(a)|[q,(t)
dax? dx? dax?
(b, t) cd?, () cdp,(b) +-+ cdlo ()] |ay(t)
= dx2 dx2 dx2
: : : : q4(t)
2 2 2
e{m,t) cd¢,(m) cd"¢,(m) +-+ cd¢ (m) :
ax® dx? dx® '
| q,(t)

(5.8)

The relationship depicted above relates the flexible
variables to the strain measurements, and can be expressed
as a variable transformation T T.

€ = T-lq (5.9)

The desired form of the transformation is to "reconstruct"
the flexible mode amplitudes from the strain measurements.

q = Te ' (5.10)

The number of strain measurements m, is practically a small
number, (2, 4 etc.), while the number of modes, n, typically
used to characterize vibration is large, (10, 20 etc.). This‘
would result in a rectangular matrix, and direct inversion
to obtain the desired reconstruction matrix T would not be
possible. In the case of more measurements than modes to be

determined, a least squares weighting may be appropriate.
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Based upon previous experimental results, discussed in
chapter 3, it was decided to investigate a model based upon
two assumed modes with reconstruction accomplished from two
strain measurements. This case results in a square matrix
T-l. Sensor locations for this case can be selected which

provide independent measurement of the two modes assuring

that T exists.

5.3 Sensor Placement

The next problem to be addressed is the placement of the two
strain sensors. The' specific type of sensor, and bridge
arrangement to reduce sensitivity to temperature, axial, and

transverse stresses is discussed in appendix E.

0.5
1

e

i

Moment (x) / Moment (0)
0
1

-0.5
P

i

0 ' " 025 050 075 S
Normdiized Length (x/L)

Figure 5-1. Moment Diagram.
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The location of the sensors should be selected to
provide measurement of significant signal 1levels, and yet
enhance discrimination between the measured modes. Figure 5-
1l presents moment diagrams for the first three clamped-mass
modes.

All the clamped mode shapes had a peak at the end of
the beam attached to the joint. It was decided to place one
of the two sensors at the base of the beam to insure
measurement of the £first mode. Further examination of the
moment diagram shows that the. second mode moment has a peak
just past the midpoint of the beam. Additionally, note that

the third mode moment has a 2zero close to the midpoint of

the beam.

It was decided to place the second set of strain gages
at the midpoint of the beam. This provides good measurement
of the second mode, vet avoids measurement of the third
flexible mode. The sign change in the second mode moment, as
opposed to the first moment should help the reconstruction

algorithm to discriminate between the modal measurements.
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CHAPTER VI
REDUCED ORDER OBSERVERS

The main thrust of this section is to describe the
application of reduced order observers to the control of a
flexible robot arm. Specifically, estimation of the
unmeasured modal velocities via the application of a
Luenberger [VI1l] reduced order observer is presented.

This section begins with a brief section on estimation
of state vwvariables with full order observers and the
associated error dynamics followed by a discussion of the
motivation for using a reduced order observers.

The general relationships for reduced order observers

is then developed including expressions for the error. The
’reduced order observer is then applied to the control of a
flexible arm. Design freedom and robustness of the observers

concludes this section.

6.1 Observation of the State of a Linear System

Luenberger(VI2] is recognized as pioneering much of
the work on the observation of linear systems, however the
following derivation is a compilation of the works by
Luenberger, Gopinath(VI3], and Fortmann[VI4]. Egquations
(6.1-3) provide a state space description of a forced linear

system with state feedback.
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X = AX + Bu (6.1)
y=¢Cx, C =1 (6.2)
u = Ky (6.3)

For such a system knowledge of the initial state Xg s
and input history are sufficient for determination of the
state at any later time. However, many times the measurement
matrix C is not an identity matrix, and alternate schemes
must be utilized to realize the desired state controls.

Figure 6-1 depicts an open 1loop observer for estimating the

states of a linear system. The subscript m designates

U—0 | . AP

e

B. X C. ¥

ni--
C

Figure 6-1. Open Loop Observation
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modeled elements, while the subscript p refers to elements
of the actual physical plant. Unavailability of information
regarding initial states and modeling errors make open loop
observation of the state variables impractical for most
control applications. Figure 6-2 graphically depicts an
observer utilizing measurements of the plant to improve the
observation and reduce the sensitivity of the estimates of
the to modeling errors, and initial states.

For the closed 1loop observer of figure 6-2 the

estimated, or observed state z is described by;

z = Amz - LC(x~2) + Bmu (6.4)

K"

Y

I
ni—=

&
0

U—"'(j Ap

wmi—

. —
B, @fx —5——0—J_C:_Pj—é—yp

Figure 6-2. Observation with Measurement Update
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and the plant state dynamics as;

X = Apx - Bpu (6.5)

6.1.1 Error Dynamics

Subtracting equation (6.4) from (6.5) yields and

expression for the time rate of change of the error;

X-2z =»Apx - Amz - LC(x-2) + (Bp-Bm)u (6.6)
Accurate modeliné of the plant dynamics and input dependence

results in a simpler form of the error expression;
e = (A-LC)e (6.7)

where;

e =X -z (6.8)

Examination of this expression for the error dynamics
shows that a proper selection of the measurement gain matrix
allows an arbitrary specification of the rate at which the
error decays. Luenberger [VI1] .proved this to be true as
long as the system was completely observabie,_i.e. the pair
AC was observable. Additionally, the error dynamics
described by equation (6.7) will dominate the behavior even
when some modeling errors exist, as long as measurement gain
L provides the major contribution to the negative real parts

of the eigenvalues.
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6.1.2 Separability

The composite system can now be written in the

following form;

X A 0 X
L= JL) -]
z LC A-LC z

for systems without feedback, and for systems with feedback

based upon the estimated states;

N I (AR

The eigenvalues of the composite system can be examined more

readily after a simple transformation T 1is applied to the

description.
_ I 0
T=[ I -1 ] (6.10)

Premultiplication by T and postmultiplication by 1

transforms the systems described by equations (6.9a) and

(6.9b) into the following forms;
x' A 0 X' 51
e 1]+ [ (610
z'd 0 a-nc dlz B '

For systems without feedback this system obviously has the
eigenvalues of both the plant, and the observer error

dynamics. For systems with feedback based upon the estimated

states;

N B | N
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This system possess the closed 1loop poles of the plant in

addition to the eigenvalues associated with the error. This

the

separability allows for of the

design observer as a

separate task from that of determining the state feedback.

6.2 Luenberger Reduced Order Observers

Direct measurement and

reconstruction provides joint

angle, joint velocity, and modal amplitude data for the

controller. A reduced order observer can be designed to

estimate the missing modal velocity amplitudes. The main

advantage of a reduced order observer

over full state

estimation lies in computational savings; this translates

into higher sampling frequencies during implementation.

The £following th WOk

~ anlm -
£y MATE Vi

Luenberger[VI1l], and Gopinath[VI3], reviewing the

development of the equations which describe the behavior of
reduced order observers. The system represented by (6.1-3)
can can be partitioned into measured and unmeasured states

as follows;

X A A X B
‘7; I Lt ‘-; RS (6.13)
) Ay Al 1% B,
c = | 0] (6.14)
X, are the m measure states while X, are the unmeasured

states to be estimated. Figure

6-3 presents a block diagram
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of a reduced order observer which is described by;

z = A22z - Lc(xz-z) + Alel + B2u (6.15)

2 is the estimate of the states Xy The error dynamics for
this system can be obtained by subtraction of equation

(6.18) describing the unmeasured states from the estimation

equation (6.15).

e, = (Ay, - LA ,)e, (6.16a)

e, = X, - 2 (6.16Db)

This estimate depends directly upon the measurement of the
states it is desired to determine. The dependence on

measurements of X, can be eliminated wvia substitution of

(6.20) with the following result;

zZ = (A22-LA12)Z + Lxl - LAllx1 + (BZ-LBl)u (6.17)
A.r
X 1
— B O 1
X1 _I_:_Q
y — 160
All
| Bz Z s l —C> - Z
z LS| 2
A22

Figure 6-3. Reduced Order Observer
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This result, although direct, allows little insight and may
cause some confusion. The following derivation follows a

more heuristic path, and provides more insight into the

derivation process.

To accomplish this, £first cull the expressions for the

unmeasured states from equation (6.13);

Xy = A22x2 + Azlxl + B2u (6.18)

The gquantity,

A21x1 + B2u (6.19)

which appears in equation (6.15) can be considered as a
known input as it contains only measure and computed
quantities. Next, the expressions for the measured state

velocities can be separated and reorganized as;

Xy - Allxl - Blu = A12x2 (6.20)

The terms to the left side of the equal sign;

X, - A%, - Byu (6.21)
-contain only measured quantities, their derivatives, and the

computed inputs u. Combining equation (6.18), and (6.20)

results in an estimation equation;

zZ = (A22-LA12)z + A21x1 + L(xl-Allxl-Blu) + B2u (6.22)
Equation (6.22) provides an observation of the unmeasured
states, based on state measurements, the time derivative of

the measurements, and the inputs. Additionally, the
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measurement gain L appears to have the ability to specify
the error dynamics. This equation is represented in block

diagram form in figure 6-4.

6.2.1 Adaptation for Implementation

The resultant observation equationn (6.22) meets the
objective of controlling the rate at which the error
converges, and eliminates the sensitivity to initial states
as the process proceeds. The equation does, however, require
the time derivative of the measured states. The time

derivative of the measured states may be the variables it:'is

A:
X 1 X,
B. X S C
C
u—e ]
L Ax—LA,,
1
B, —-LB, -—
L 7 S Z
An—LA,;

Figure 6-4. Observer with Measurement, and Measurement

Derivatives
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desired to estimate. This is 1indeed the case for the
flexible arm.

Figure 6-5 depicts an estimation system which does not
require knowledge of the time derivative of the state
measurements. This is accomplished by wutilizing the

following substitution.
Lxl = (AZZ-LAlz)Lx1 (6.23)

Insertion of this result into the estimation equation (6.22)

yields:;
W= (AZZ—LAlz)w + [(AZI-LAll) + (A22-LA12)L]x (6.24)
+ (BZ'LBl)u
where,

zZ =w + Lx1 (6.25)

The motivation for this substitution is made more apparent
by noting the adjustments made to'figure‘6-4 in deriving the
obser?er shown in figure 6-5. This adjustment effectively
pushes the time derivative of the measurement through the
integration block. Gopinath(VI3] showed that the error

dynamics remain unchanged.

6.3 Application of Reduced Order Observers to Single Link

Flexible Arms

This section describes the application of the general

reduced order observer to the single flexible manipulator.
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Reconstruction of the modal amplitudes is treated
separately, and the following development considers these
quantities as inputs for the estimation of the modal
velocities.

Following the earlier partitioning scheme for
measured, Xy and unmeasured, Xy states the state vectors
for the flexible manipulator can then be organized as;

T —- [
X" = [e,ql,qz,..,qn,e] (6.26)

XZT = [él’éZ""én] (6.27)

where the requirement is to form an estimate z of the modal
velocities contained in the X5 state vector. This form is

directly compatible with the state space formulation derived

| A,
X 1 X,
B. r 3 C
Yy—e L
r/u
1
5, -ua, | —Ef—— { O—
w V4

An—=LA;;

Figure 6-5. Adaptation for Implementation
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in the dynamic modeling section. A conversion of the
continuous estimation equations developed above to digital
form appropriate for implementation in a micro-processor is

accomplished by zero order hold equivalence.

6.3.1 Specification of the Measurement Gain L

The actual selection of the measurement gain matrix L
for the flexible arm system is not as direct as that implied
by a casual glance at the error dynamic equation (6.16). The
estimation equation for the modal velocities of an n mede

series is depicted in equation (6.28).

w= [Flw + [L']x, + [B']u (6.28a)

F = AZZ-LA12 (6.28b)

L'= (A21-LA11)+(A22-LA12)L (6.28¢c)

B' = BZ-LB1 (6.284)

z =w + Lx, (6.28e)

Where 'F the estimator dynamic matrix is

nxn.Specification of estimator dynamic matrix F in equation

28a above results in n2 equations. The measurement gain

matrix L', however, is nx(n+2) and will have n2

+2n terms.
Thus, a specification of the error dynamics does not
completely determine the elements of L. This will occur
whenever more state measurements are made than there are

states to be estimated. This allows significant freedom to

the designer, and use of this freedom to improve system
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robustness will be discussed next.

6.4 Pole Placement and Robust Observers

The design freedom mentioned earlier can be used to
increase the robustness of the observer system. By examining
figure 6~-6, a block diagram of the control implementation,
it is apparent that the observer utilizes commanded torque
as opposed to the actual torque. If the depicted system is
broken at node A, which would correspond to the servo-amp
for the motor turned off, the earlier discuséion of poles
for the combined observer/plant system does not apply. The

poles are no longer separable, and the observer displays

X X
A? Plant C ‘
g U- Computed Torque
K' +
Z L’
Observer

Figure 6-6. Implementation Block Diagram
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"closed loop" poles described by;

A22- LAlz-(LBl-Bz)K2 (6.29)
K2 is a gain vector associated with modal velocities. These
poles are not identified in the earlier discussion for
observer design. Initial disturbances are readily available
to this system via state measurement, and unstable poles
quickly result in estimates which saturate the system. This
results in an experimental system with a "hard start"
behavior.

Problems of a similar nature were discussed by Doyle
[VI5S], and the reduction of sensitivity to this problem was
termed an increase in robustness. The equations for the
closed loop observer poles are combined with the equations

for the observer dynamic matrix for determining the elements

of the measurement gain matrix L.

6.5 Experimental Investigation

Real-time experiments were conducted to investigate
modeling assumptions, and observer design performance. The
major issues arising during implementation result from the
truncation of the modal series made to achieve a low order
model, and hardware performance. Balas [VI6] considered the
possibility of control "spill-over" into the higher
neglected modes having deleterious effects. Also, the
proximity of the flexible poles to the imaginary axis makes

the system intolerant of unmodeled phase terms introduced by
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hardware{VI7].

6.5.1 Control Algorithm

A linear quadratic steady state regulator with a
prescribed degree of stability was designed and implemented
for a two mode model. The controller design was executed for
a sample and hold system. An optimal regulator design was
selected with gains large enough to contrast the step
response performances of the different observer dynamic
specifications. At low gains stability is hardly a problem,

and at very 1large gains, component performance begins to

cloud the observations.

6.5.2 Measured Performance

The first issue investigated was the impact of the

cycle time of the controller. The reconstruction,
observation, and control algorithm executed at roughly 178
Hz, more than ten times the flexible frequency to be
controlled, yet only twice the fourth modal frequency and
four times the third. The first four ciamped modes of the

system are presented in table 6-1.

Table 6-1. Natural Frequencies(Hz)

Mcde Measured Calculated
1 2.08 2.096
2 13.92 13.989
3 41.38 41.524
4 81.18 81.225
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The effect of the controller cycle time was examined
by considering the step responses of a collocated controller
(sensor and actuator at the same location) wusing joint
angle, and joint velocity executing at ©500Hz, as shown in
figure 6-7, and at the speed of observer/controller, 178Hz,
shown in figure 6-8. The joint angle, and strain at the base
of the beam were used to characterize the time response. The
gains utilized were the same as for the joint angle and
joint velocity of the optimal regulator. The longer cycle
time associated with the 178Hz controller resulted in a
noticeable increase in the excitation of the third flexible
mode. The amplitude of the flexible vibration is not as
dramatic as the strain response.

Next, a zero order hold equivalent observer was
designed with the discrete poles equivalent to negative real
poles two and a half times the frequencies of the flexible
poles being examined. The relationship between the flexible
modes and the observer poles 1is shown in table 6-2. The
result for this observer is. shown iﬁ figure 6-9. The

controller was most sensitive to the modal velocity
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Table 6-2. Relationship between Flexible Modes
and Observer Poles

Modal Frequency Equivalent Continuous Pole
Case 1(2.5x) Case 2(5.0X)
2.08Hz -5.2 -10.40
13.92Hz -34.8 -69.60

gains produced by the observer. The instabilities did not
occur in the modes which were being treated by the truncated
model, but in the modes truncated for the model. The fourth
mode at 81Hz also had an increased response although this is
not apparent in the response. This is due to measurements

and control torques aimed at the first two frequencies

"spilling" over into the higher modes.
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The measurement was repeated for an observer with
poles at five times the flexible. mode being treated. The
relationship between the poles and the flexible modes is
presented in table 2. The response for this
observer/controller combination is shown in figure 6-10.
This controller does a very good job of controlling the
first two flexible modes, reducing the amplitude of the
strain and quickly damping the vibration. The untreated
third mode however is still noticeably excited, and the
power spectrum indicated an increased excitation of the

fourth mode.
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At higher gains, especially modal velocity gains even

results in the higher modes,

this obseryer yvielded unstable
were consistently well damped.

though the controlled modes

to push the observer poles farther

The indicated trend is
Placing the faster observer pole

and farther to the left.

ten times the second flexible mode's pole

equivalent to
results in characteristic times for the observer approaching
The response for this

the cycle time of the controller.
depicted in figure 6-11.

observer/controller combination is
in significant excitation of the

first time a dramatic response in

and most

This combination resulted

third mode, and for the

the fourth mode. This is counter to the trend,

.500 [
r?‘g: .= _Joint Angle
HE y "~ . ;

-~

Joint N
Angle
Strain :
at Basel ‘ Strain at BaseJ

-500
L | |

ue
-.500 I |
rads —1SS8m

Figure 6-11. Step Response, Poles 10 x Mode



66

likely represents a fatal combination of increased noise
sensitivity as the observer poles are pushed father to the

left, and aliasing resulting from the controller cycle rate.

6.6 Summary

Reconstruction and observation of flexible variables
for use in controlling a single 1link flexible arm has been
successfully demonstrated. The results indicate that the
negative real parts of the observer poles must be placed at
least five times the magnitude of the flexible mode's
frequency being estimated, and possibly faster for higher
gains. Control spill-over was observed 1in several of the
cases investigated, and was aggravated by slow observers to
the point of unstable responses for some designs. A dominant
factor in the design of high performance observers/
controllers for flexible systems appears to be the response
of the higher modes. The application of paSsive damping
[VI7], treating the neglected highér modes, may reduce the

performance requirements of the observer/control system.
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CHAPTER VII

OPTIMAL REGULATOR

7.1 Introduction

This section discusses the results of implementing an
optimal linear state feedback controller based on quadratic
criteria for the experimental arm. A steady state, or
regulator, design with prescribed degree of stablility was
investigated expefimentally. The control 1law K for the

linear system described by,

X = AxX + Bu (7.1)

u = K'x (7.2)

is selected so as to minimized the quadratic performance

index of equation (7.3)

PI = %J[XTQX + uTRu]dt . (7.3)

over the process. The steady state gain solution is'sought.
The formulation and solution to this problem with a
prescribed degree of stability, a, is discussed in detail in
Appendix C, including modification for the discrete sampled
and hold implementation.

The regulator 1is implemented for two models which
include a single flexible mode, and two flexible modes in

addition to the rigid mode. Inclusion of more flexible modes
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hopefully increases the model accuracy and controller
performance. Increasing the model order has a significant
cost in cycle speed of the digital controller. The regulator

which treats two flexible modes is discussed first.

7.2 Two Flexible Mode Svystem

Based on initial estimates of computational
capabilities, and initial experimental results examining
model performance discussed in chapter 3, a base design
treating the rigid motion, and two flexible modes associated
with clamped-free vibration modes was selected. This
selection of model order was supported by work which is
recorded in chapters 3 and 4. The performance of a regulator
based on this model is discussed in this section.

7.2.1 Controller Design

The parameters available to the designer affecting the
performance of the LOR controller are the elements of the
weighting matrices and the prescribed degree of stability.
The initial weighting matrices utilized were taken from
Sangveraphusiri's[VIIl] earlier design and simulation work.
Varying the elements of the weighting matrices as a tool for
achieving performance improvements of the controller was
extremely difficult. There 1is not a direct or intuitive
approach to modification of the elements of the matrices
which relates to performance goals, except in a broad sense.

Gains are easily increased by reducing penalties on
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actuation, but selectively altering velocity, or position
state penalties had strange impacts on performance.

The most useful method for altering the performance
was found to be obtained by varying the prescribed degree of
stability. This proved to result in consistent trends,
compatible with design intuition.

7.2.2 Implementation

The controller was implemented in software described
in appendix F. A cycle time of 5.9 milliseconds was achieved
for the two flexible mode controller. The controller results
are 1inexorably 1linked to the performance of the modal
velocity observer. The implemented observer was that
presented in chapter 6 with error dynamics five times faster
than the open 1loop poles being estimated. Good results,
predicted from controller designs based on the truncated
model, were often not realized in experiment. The
Aexperimental system was extremely sensitive to the second
flexible modé damping gain as discussed in chapter six.

This 1limitation - on damping in the second mode,
apparently due to available computationél speed, prevents a
rigorous examination of this controller. Controller design
by the use of a prescribed degree of stability can be
extended to act as a pole placement algorithm. Specification
of the diagonal elements of the stability matrix associated
with the each of the states of a specific mode, the minimum

degree of stability for each mode can be affected
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independently. The stability matrix, resultant gains, and
closed loop system eigenvalues for the first case to be
discussed are presented in table 7-1.

Use of the prescribed degree of stability as a pole
placement algorithm allowed for evaluation of the "best"
combination for the two mode controller. The second flexible
mode was made to have as great a degree of stability as
possible without introducing instabilities into the higher
modes as noticed in the observer evaluation. The performance
of the system was then evaluated as the degreé of stability
for the rigid, and first flexible mode was increased
independently of the second flexible mode.

7-1. Design Results, Stability Gain Vectors,

Closed Loop Eigenvalues for Figures 7-1 and 7-2

Stability Matrix
a = diag[ 2.50 2.50 .2 2.50 2.50 .2]

Continuous Gains

F(collocated) = 111.2E+4 0. 0. 474.1 O. 0.
F(modal) = 111.2E+4 -406.7 =-291.6 474.1 15.7 -6.40
Continuous Eigenvalues
Collocated Controller Modal Controller
-3.239 3.053E-16 -4.95 -4.78E-12
~11.98 -3.026E-15 ~-5.04 4.86E-13
~4.246 +/-15.11 -4.99 +/- 18.97
-.3071 +/-88.99 -.401 +/- 89.06
Discrete Gains
F(collocated) = 871.9 0. 0. 373.1 0. 0.
F(modal) = 871.9 -297.8 177.4 373.1 11.7 -5.3
Discrete Eigenvalues
Collocated Controller Modal Controller
.962 9.497E-18 .969 -.112
.975 -5.002E-15 .969 112
.969 +/-9.539E-2 .976 +/-.0112

.863 +/-5.009E-1 .863 +/-.5008
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7.2.3 Experimental Results

The first expefiment conducted in this stage of the
work was to compare a collocated controller to a modal
controller by implementing the same joint variable gains in
each case. A step response in joint angle was commanded, and
the response measured. The response figures all contain two
parts, part a depicts joint angle time response and motor
current, part b presents strain measurements from the base
and midpoints of the beam. The current represents torque
applied at the joint, and the strain is a measure of the
bending due to the flexible modes.

The degree of stability was the parameter varied for
this test. The prescribed degree of stability was increased
by increments of .25 until the stability of the collocated
controller. started to degrade, as shown in figure 7-1
(degraded response being an increase in the flexible mode
response). The closed . loop eigenvalues for the collocated
case and modal controller are shown in table 7-1. Further
increases of the prescribed degree of stability resulted in
instabilities of the third flexible mode, for the collocated
controller.

A modal controller with the same prescribed degree of
stability in the rigid and first flexible mode, with limited
stability in the second flexible is shown in figure 7-2.

The increased stability of the higher mode 1is readily

apparent in the strain response. After the large initial
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transient, the torque response tries to actively control the
flexible vibration. Note however that the flexibility is not
fully controlled; this is thought to be due in part to
hysteretic friction of the joint.

The degree of stability was increased for the rigid
and first flexible mode, resulting in higher gains which
would hopefully overcome the joint friction. The step
response is repeated as shown in figure 7-3. The addition of
the modal controller allows higher gains on the joint
variables than was allowed for the collocated controller
alone with this cycle time. The gains, and eigénvalues from
the design process are shown in table 7-2. Note the

increased damping of the
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Table 7-2. Design Results, Stability Gain Vectors,
Closed Loop Eigenvalues for Figure 7.3

Stability Matrix
a = diag[ 3.25 3.25 .2 3.25 3.25 .2]

Continuous Gains
F(modal) = 1964.9 -699.1 -318.4 668.1 31.6 -1.83

Discrete Gains '
F(modal) = 1523.2 -494.8 -34.5 520.8 23.6 -1.68

Continuous Eigenvalues Discrete Eigenvalues
Modal Controller . Modal Controller
-6.44 -7.49E-12 .961 -.113
-6.55 7.31E-12 .961 .113
-6.50 +/- 18.99 .969 +/-.0144
-.399 +/- 89.06 .863 +/-.5008

flexible mode in the response. This controller implemented
with this prescribed degree of stability, however, appeared
to be sensitive to noise and would often go into a steady
vibration of limited amplitude. A second step command or
touch of the hand would often stop the vibration, but
marginal stability had been achieved in the fourth flexible
mode at roughly 83hz. Once the beam vibration was stopped by
use of the hand, it would remain motionless until perturbed.
VThis change is most likely caused by a change in the joint
damping from viscous friction, (when it is in motion), to
coulomb friction as it stops. The step response is captured
again for a case where this steady vibration is sustained
over the interval in figure 7-4.

Further increases in the prescribed degree of

stability yielded similar instabilities in the higher
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flexible modes. The parameter observed to cause this affect
was the damping gain on the first flexible mode. Trial and
error indicated that higher modal amplitude gains resulted
in a more stable response for the same modal damping gain.
This trend of modal stiffness gain increasing system damping
is supported by work done in the single mode section.

The modal amplitude gain was increased until a "best"
(most stable with respect to disturbances) response was
obtained for the same first flexible mode damping gain. This
response is shown in figure 7-5, and the design parameters
presented in 7-3. Further increases in modal amplitude gain

resulted in higher 1levels of excitation 1in the untreated

modes.

The modal controllers did improve the response of the
flexible mode, and in the latter cases did vyield
satisfactory control over the first flexible mode.

Additionally, with the modal controller larger gains could

Table 7-3. Design Results, Stability Gain Vectors,
Closed Loop Eigenvalues for Figure 7-5

Stability Matrix
a = diag[ 3.25 ? .2 3.25 2 .2]

Discrete Gains
F(modal) = 1523.7 -900.0 34.5 520.8 23.5 -1.68

Discrete Eigenvalues
Modal Controller

.970 -.303E-17
.976 .175E-17
.969 +/-.0884

.908 +/-.4137
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be applied to the joint variables than was possible with the
collocated controller. The next gquestion to be addressed is
the robustness of these control 1laws. The next section
investigates the noise sensitivity, and payload sensitivity.

7.2.4 Disturbance Rejection and Robustness

In the preceding section control 1laws were selected
which yielded faster settling times in the design process by
effectively moving the continuous closed loop poles farther
and farther into the 1left half plane using thé prescribed
degree of stability. This results in larger and larger gain
values. This section will investigate the disturbance
rejection and robustness of the control laws, examining
what, if any, penalties are incurred with the higher gain
values. First disturbance impulses will be applied to the
experimental system, and then changes in payload mass from

the design value will be examined.

7.2.4.1 Disturbance Impulse Response

An impulse hammer was used to apply a disturbance to
the beam at the payload. This would correspond to the arm
making contact with a work piece or bracing surface. The
amplitude of the 1impulse was selected to cause a peak
disturbance of roughly five to six inches at the payload.
The time domain response of the beam was found to be the
most revealing measurment, though frequency domain results

could be obtained from the hammer impulse signal. Though the
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signal from the hammer was not utilized in these
measurements, the design of the hammer still enhanced the
operators control of the impulse delivered to the beam. The
response of the collocated control law of 7-1 above is shown
in figure 7-6

The beam was additionally struck at random locations
along its length with similar responses. The response of the
modal control law with the same prescribed degree of
stability on the joint and first mode state variables is
shown in figure 7-7.

The response of modal control 1law which achieved the
highest prescribed degree of stability, (design data in
table 7-2), is shown in figure 7-8.

The modal control law with a high degree of prescribed
stability, and the "best" control law, while able to control
the flexible vibration had large peaks and a good deal of
activity in the impulse fesponse. This indicates that the
tighter 4control laws with large gain wvalues are more

susceptible to disturbances.
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7.2.4.2 Pavylioad Sensitivity

The ability of the controller to tolerate variations
in payload mass is of interest in real applications where a
variety of objects must be handled. The paylocad was
increased to a total of four times the design payload, and
the step response observed again. Responses for the control
laws are shown in figures 7-10, through 7-14.

The additional payload mass resulted in increased
overshoot of the joint angle, and modal variables typical of
the expected reduction in damping ratio. Additionally, the
response of the higher untreated flexible modes was greatly
reduced in all cases, even the case of the modal controller
with a large prescribed degree of stability. This is due to
increased separation of the higher frequencies due to the
variation in boundary condition at the payload end of the

beam.
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7.3 Single Flexible Mode System

Computational speed, and not model order, appeared to
be the limiting factor in many of the experiments conducted.
Therefore the design and implementation were repeated for a
system model comprised of the rigid mode, and one flexible
mode. The first clamped-mass mode. shape was selected for
inclusion in the model.

7.3.1 Design and Implementation

Once again the prescribed degree of stability proved
to be the fastest and most flexible method for placing the
system poles. However the 1low frequency of the first
flexible mode and increased computing speed allowed for a
placement of the single observer pole egquivalent to ten
times the frequency of the modal velocity being estimated.

The modal reconstruction/observer/control law
combination for the single mode case operated at a cycle
time of 4.8 milliseconds.

7.3.2 Experimental Results, Prescribed Degree of Stability

The first experiment conducted 1in this stage of the
work was t§ compare the performance of the collocated
controller operating at the frequency of the faster one mode
controller to the earlier collocated response. The same
collocated gains as those used for the controller with two
flexible modes was applied to the single flexible mode

system. The step response is shown in figure 7-14.
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There is a marked reduction in the excitement of the
third flexible mode when . compared to the collocated
controller operating at the slower cycle time of the two
mode system. A single flexible mode contfoller with the same
prescribed degree of stability as the collocated case was
implemented, and the step response 1is shown in figure 7-15.
The single mode controller achieves a smoother more damped
response over the two mode controller primarily because of
the increased speed of the observer and sampling frequency.

The prescribea degree of stability for the collocated
controller operating at the speed of the faster single mode
controller could be increased significantly over that of the
slower two mode system before the same amount of excitement
was observed in the third flexible mode. Additionally at
the higher gains more damping was observed after the initial
step transient in the first flexible mode. This is thought
to result from the higher .control actions overcoming the
hysteretic friction of the 3joint. The response for this

collocated controller is shown in figure 7-16.



93

225 -
< rads
15.0
Amps

Joint Angle’/
Joint
Angle

Motor
Current

Motor Current

-10.0
Amps

.225 1 1 ] i 1 | L ] ] ]
rads -S0O0m Sac 3. S8

Figure 7-14a. Collocated Controller,
a = diag[2.5 2.5 2.5 2.5],
Joint Angle/Motor Current Step Response
200["

Strain at Base

Micro-
strain

-400

| | A 1 | ] i ] I 1
—-S00m Seac 3. 58

Figure 7-14b. Collocated Controller,
Strain at Base/Midpoint Step Response



94
.225 —
‘rads
15.0 [
Amps
. /
Joint Angle
Joint
Angle
Motor - )
Current v \\\ o
Motor Current
-10.0]
Amps
.255 | | ] | | i | | | J
rads —SQ0m Sec 3. 39
Figure 7-15a. Modal Controller,
a = diag[2.50 2.50 2.50 2.50],
Joint Angle/Motor Current Step Response
200
Strain at Base
Micrg-
strain | Strain at Midpoint
—400 ! 1 | | ! ! 1 | l |
-S00m Sac 3. 59

Figure 7-15b. Modal Controller,
Strain at Base/Midpoint Step Response



95

.225 —
. rads
15.0
Amps|[ ////
_ Joint Angle
Joint[™
Angle
Motor
Current|_ e
| Motor Current
-10.0F
Amps )
.225 ] ] 1 1 1 1 I 1 | |
rads —-sSG0Om Sac 3. 538
Figure 7-16a. Tighter Collocated Controller,
a = diag[3.0 3.0 3.0 3.01],
Joint Angle/Motor Current Step Response
200"
——Strain at Base
Micrq-
strain | Strain at Midpoint
—400 | 1 L1 L L1 1
-500m Sac 3. 538

Figure 7-16b. Tighter Collocated Controller,
Strain at Base/Midpoint Step Response



96

A modal controller for the first flexible mode was
implemented with the‘same prescribed degree of stability in
both the rigid and flexible mode as that for the collocated
controller. This response 1is shown in figure 7-17. Note
again the success of the modal controller at reducing the
excitation of the first flexible mode, and the higher
flexible modes, not treated by the model until the amplitude
gets very small. The design data for the controllers of
figures 7-14,15,16,17 is presented in tables 7.4-5

Table 7-4. Design Results, Stability Gain Vectors,
Closed Loop Eigenvalues for Figures 7-14 and 7-15

Stability Matrix
a = diag[ 2.50 2.50 2.50 2.50]

Continuous Gains
F(collocated) = 1112. 0. 474.1 0.

F(modal) = 1112. -406.7 474.1 15.7

Continuous Eigenvalues
Collocated Controller Modal Controller
-3.215 -3.306E-16 -4.434 2.305E-15
-12.45 1.669E-16 -5.744 -3.199E-15
-4.333 +/-15.11 - =5.203 +/=-19.01

Discrete Gains
F(collocated) = 871.9 0. 373.1 0.

F(modal) = 871.9 -297.8 373.1 11.7

Discrete Eigenvalues
Collocated Controller Modal Controller
.967 1.536E-18 .959 +/=.152
.981 -1.570E-28 .992 +/=-.106

.975 .0778
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Table 7-5. Design Results, Stability Gain Vectors,
Closed Loop Eigenvalues for Figures 7-16 and 7-17

Stability Matrix
a = diag[ 2.75 2.75 2.75 2.75]

Continuous Gains
F(collocated) = 1346.4 0. 527.0 0.

F(modal) = 1346.4 -470.9 527.0 21.1

Continuous Eigenvalues
Collocated Controller Modal Controller
-3.327 -3.341E-16 -5.50 +/=-.0065
-16.11 2.435E-15 -5.50 +/-19.13

-4.065 +/-14.388

Discrete Gains
F(collocated) = 1294.3 0. 509.7 O.

F(modal) = 1294.3 -419.2 509.7 19.2

Discrete Eigenvalues
Collocated Controller Modal Controller
.928 9.380E-18 .970 +/-.320E-16
.983 -7.735E-19 .969 +/-.089

.976 +/-.0684

The prescribed degree of stability was increased by
increments of .25 until until the largest degree resulting
in a stable response was achieved. The response for the
resulting contrél law is presented in figure 7-18. This
controiler results in large applied torques during the
initial transient and an increased level of noise throughout
the response in the torque and strain traces. The stability
and damping of the first flexible mode is definitely
increased, however the settling time for the system has not
been significantly increased. The large torques applied to
slew the joint variables at high gains causes large flexible

deflections which, although highly damped, require time to
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settle out. The design results for this case are shown in

table 7-6.

Table 7-6. Design Results, Stability Gain Vectors,
Closed Loop Eigenvalues for Figure 7-18

Stability Matrix
a = diag[ 3.75 3.75 3.75 3.75]

Continuous Gains
F(modal) = 2668.0 -840.3 806.2 47.7

Discrete Gains
F(modal) = 2528.3 -758.4 770.2 43.3

Continuous Eigenvalues Discrete Eigenvalues
Modal Controller Modal Controller
-7.50 +/- .0049 .958 +/-.149E-17
-7.50 +/- 19.13 .960 +/~-.0877

7.3.3 Experimental Results, Pole Placement

Increasing the prescribed degree of stability by equal
amounts for both the rigid and flexible modes did not
achieve the desired result of improving the settling time
for the system. Although 1large amounts of damping was
successfully introduced into the flexible mode the overall
settling time did not consistently improve. Large overshoots
of joint angle were necessary to reduce the excitement of
the flexible mode, and the 1large gains associated with high
degree of stability introduced noise into the system.

This indicated that better results might be obtained
if more stability was prescribed for the flexible mode than
the rigid mode. A prescribed degree of stability for the

joint angle was selected which achieved a rapid slew rate in
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the earlier experiments, yet which did not tend excite the
flexible mode as much as the largest degrees of stability
prescribed for the joint wvariables. The stability for the
flexible mode was then moved as far left as would allow for
a stable response. This result 1is shown in figure 7-19, and

the design data in table 7-7.

Table 7-7. Design Results, Stability  Gain Vectors,
Closed Loop Eigenvalues for Figure 7-19

Stability Matrix
a = diag[ 2.75 3.50 2.75 3.50]

Continuous Gains
F(modal) = 1372.0 ~-736.4 553.1 14.2

Discrete Gains
F(modal) = 1306.8 -664.1 529.1 11.6

Continuous Eigenvalues Discrete Eigenvalues
Modal Controller Modal Controller
-5.22 +/-1.00 .961 +/-.089

=7.27 +/- 19.46 .974 - +/-.0042
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An interesting result of this design procedure is that
samller amounts of modal damping are required to move the
flexible pole to the 1left than when both the rigid and
flexible are moved to the 1left 1in equal amounts. However,
the resultant trace shown in figure 7-19 does not show the
predicted damping. The modal damping was 1increased to
observe its effect, and this result is shown in figure 7-20.

Table 7-8. Design Results, Gain Vectors,
Closed Loop Eigenvalues for Figure 7-20

Discrete Gains
F(modal) = 1306.7 -664.0 529.9 43.2

Continuous Eigenvalues Discrete Eigenvalues
Modal Controller Modal Controller
-4.56 +/-1.61 .978 +/=7.40E-3
-3.88 +/- 21.96 .976 +/-.104

The additional damping resulted in a wvery nice
response, with the shortest settling time and least
overshoot of all the designs. The resultant design
paraﬁeters are contained in table 7-8. Two additiénal
conditions are thought to be of interest in the identifying
the behavior of this combination. One case is the largest
possible stable combination of amplitude and rate gain on
the flexible mode. The second case 1is the application of
modal velocity gain alone to the flexible mode. The case

where large modal gains are coupled with moderate joint
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variable gains is depicted in figure 7-21. This is seen to

result in excitement of the second flexible mode.

Table 7-9. Design Results, Stability Gain Vectors,
Closed Loop Eigenvalues for Figure 7-21

Discrete Gains
F(modal) = 1306.7 -2000.0 529.9 50.0

Continuous Eigenvalues Discrete Eigenvalues
Modal Controller Modal Controller
-2.71 +/-2.53 .969 +/.1364
~-4.91 +/-28.62 .976 +/-.012

Two cases of modal velocity gain only on the flexible mode
coupled with reasonable joint variable gains were selected.
Figure 7-22 depicts the response for a large amount of
damping gain which achieved a stable response. Note that the
first flexible mode while damped, is not damped as well as
when coupled with some amplitude gain.

Table 7-10. Design Results, Gain Vectors,
Closed Loop Eigenvalues for Figure 7-22

Discrete Gains
F(modal) = 1306.7 -0.C 529.9 40.0

Continuous Eigenvalues Discrete Eigenvalues
Modal Controller Modal Controller
-3.41 3.6E-16 .951 1.33E-18
-9.95 1.70E-17 .984 -1.76E-19

-2.13 +/- 18.36 .985 +/-.087
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The second case of damping gain only on the flexible mode

coupled with moderate gains on the joint variables is shown
in figure 7-23. This time the modal damping gain was

increased over the last case, and a pinned-free vibration

mode was excited.

Table 7-11. Design Results, Gain Vectors,
Closed Loop Eigenvalues for Figure 7-23

Discrete Gains
F(modal) = 1306.7 -0.0 529.9 -50.0

Continuous Eigenvalues Discrete Eigenvalues
Modal Controller Modal Controller
-3.13 2.12E-17 .851 -8.67E-19
-2.94 0.0 .985 -9.37E-19

-3.29 +/- 10.7 .983 +/-.050
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7.3.4 Disturbance Rejection and Robustness

Two of the modal controllers from the previous section
attained results consistent with the aims of the design
process. The modal controller with the high prescribed
degree of stability in both the rigid mode and the flexible
with step response shown in figure 7-18 is examined in this
section. Additionally, the controller with a larger
prescribed degree of stability in the flexible mode (and
higher damping gain than from the design process) with step
response figure 7-20 is examined here.

7.3.4.1 Disturbance Impulse Response

An impulse hammer was used to apply a disturbance to
the beam at the payload. This would correspond to the arm
making contact with a work piece or bracing surface. The
amplitude of the impulse was selected to cause a peak
disturbance of roughly five to six inches at the payload.
The time domain response of the beam was found to be the
most revealing measurment, though frequency domain results
could be obtained from the hammer impulse signal. Though the
signal from the hammer was not utilized in these
measurements, the design of the hammer still enhanced the
operators control of the impulse delivered to the beam. The
disturbance response of the modal controller with a large
and equal amount prescribed stability is shown in figure 7-
24, and the disturbance response of the controller with a

larger degree of prescribed stability in the flexible mode
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is shown in figure 7-25. The large gains associated with
prescribing a large degree of stability reduces the

disturbance rejection of the system, as seen in the trace.

7.3.4.2 Pavload Sensitivity

The payload was increased to a total of four times the
design payload. Responses for the two cases are shown in
figures 7-26, through 7-27. The increased mass results in
the expected overshoot of the rigid mode. The response of
the unteated higher‘flexible modes was generally reduced in
the experimental observations. This 1is thought to result
from the increased separation of the modal frequencies. The
higher modes approach clamped-pinned shapes while the lower

modes do not change significantly.
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7.4 Summary

Control laws designed as 1linear quadratic regulators
did successfully damp and control the vibratory modes
included in the system model. The controllers were even
successful in the presence of joint friction and measurement
. noise.

Using the prescribed degree of stability in the
regulator design process allowed for rapid and direct
placement of the model poles.

Attaining a rapid cycle time for the digital control
implementation by neglecting the second flexible mode
resulted in an improved response over the inclusion of the
second mode.

Even small amounts of modal feedback resulted in more
stable systems than collocated controllers, though the
stability was added to untreated modes.

Attempts to obtain very short settling times for the
system by prescribing large degrees of stability were
ineffective. Though the rigid and flexible modes appeared to
individually achieve tighter control, coupling between the
modes caused the overall time to remain roughly the same.
Fast joint rotations caused large modal amplitudes to be
occur, and the large modal gains resulting from the large
degree of stability required additional joint angle

rotations to damp the mode.
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The higher gains resulting from large prescribed
degrees of stability also resulted in excitation of the
higher untreated flexible modes, and poorer disturbance
rejection. The best combinations resulted from placing more
stability in the flexible mode, than the rigid mode.

Large gains always resulted in the appearance of
untreated flexible modes. It was anticipated that trying to
move the flexible poles far from the modeled poles would

result in reductions of model accuracy. This was indeed the

observed result.
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CHAPTER VIII

KALMAN FILTER

8.1 Introduction

This section discusses the application of a Kalman
Filter to estimate the modeled states. The estimated states
are then used to generate control torques for the
experimental arm based on a LQR state feedback law.

For a linear system subject to white noise plant

disturbances w(t) and white measurement noises v(t),

xi+l = Axi + Bui + wi (8.1)
Y; = Cx, + vy (8.2)
R
u; = K'xy (8.3)
Plant CTTTTTTTTS
N i E
1 x(i+1) (i+1)
PR - Ax(i) + Bu® : C g
uG+1) (i+1) X
[ KT z “KZ\’ L Z

-~

------- - Ai(l) + BU(')

Estimotor

Figure 8-1. Kalman Filter Block Diagram
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a filter can be designed with the structure shown in figure
8-1 which minimizes the mean error.

The task is to determine a steady state filter gain, L,
which minimizes the performance index,

-~

- - T,.-1 _ T, -1 _
PI = 1/22 [ei M e, + (yi Cxi) R, i(yi Cxi)] (8.4)

M is the covariance of the filter error between the updated
estimate, and the plant. RV is the covariance of the
measurement noise. The formulation and solution to this

problem is discussed in detail in Appendix D.

8.2 Implementation

The Kalman Filter discussed above was implemented for
a model with a rigid mode and one clamped-mass flexible
mode. Software for the IBM Series/l executed at a cycle time
of 5;85 milliseconds, slightly faster than that for the two
mode observer yet significantly slower than the single mode
observer. One of the reasons for the favorable speed
compared to the two mode observer 1is the removal of the
reconstruction algorithm. The measurement matrix include the
strain measurements directly as shown in equation (8.5).

vy =1 0,e(x=0),e(x=1/2),6 ] (8.5a)

x=1[0,q,8,q ] (8.5b)
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1.0 0.0 0.0 0.0

c= lo.0 c3%4(0) 0.0 0.0
)

32 (8.5¢)

0.0 c3%4(.5) 0.0 0.0
2
n

0.0 0.0 1.0 0.0

8.3 Measurement Noise

The measurement gain, L, for the Kalman Filter depends
entirely on knowledge of the covariances of the measurement,
and plant disturbances. It is difficult to gain a thorough
knowledge of the disturbances to the plant, especially in

this case where it 1is hoped that unmodeled plant dynamics

may be treated as disturbances. Information about the
measurement noise is easier to gain and forms the étarting
point for this investigation.

. The power spectrums for the joint anglg, joint angle
velocity, strain at the hub, and strain at the midpoint of
the beam were captured using a Hewlett Packard 3562A
spectrum analyzer.

The noise was thought to be bandlimited by a
characteristic time of 1less than two seconds. The noise
variance can be determined to within 10 percent by taking

autocorrelation measurements over sampling intervals of at
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least 100 seconds as given by;

[
o

T=1. (8.6)

where the .1 represents the needed accuracy, and B8 the
limiting time. This is an approximation for Gauss-Markov
correlation functions [VIII1l].

The joint angle and beam tip were fixed to prevent
rotations and vibration, and the power spectrums averaged
over ten periods. Additionally, the sampling time was
doubled to avoid wrap around, as suggested in the operating
manual for the spectrum analyzér [VIII2]). This required

roughly thirty minutes of data collection for each

measurement.

The resultant power spectrums were 1inverse Fourier
transformed to obtain the autocorrelation function, ahd
estimate of the variance. The power spectrums for the joint
~angle, figure 8.2a, and strain at the base, figure 8.2b, are
presented as examples of the noise spectrum._ The
corresponding autocorrelation functions are sﬁown in figures

8.3a, and 8.3b.
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The estimates of the measurement noise variances based on

the autocorrelation functions are shown in table 8.1.

Table 8-1. Noise Variance Estimates Based on
Autocorrelation Measurements

Measurement Variance Estimate
Joint Angle 1.1E-6 radz/sec
Joint Velocity 238E-6 radz/sec3

Strain at Base 141E-9 Strainz/sec
Strain at Midpoint " 936E-9 Strainz/sec

8.4 Filter Design

The parameters available to the Kalman Filter designer
are the measurement noise specifications, the elements of
the disturbance noise distribution matrix, G, and the matrix
of disturbance noise intensities I shown in equation (8.6).
The covariance of the noise Wy for the digital
implementation is determined from the distribution matrix,

G, and the continuous noise, w(t) with intensities I, as

shown in equation (8.7).

X = AX + Bu + Gw (8.6)
T at T
g, = eMto At | ATargTeA Tyq (8.7)
Kk k-1
0

The character of the distribution matrix, G, and
intensity matrix, I, are often extremely difficult to

determine [VIII3]. The untreated modes couple to the system
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through the mass and stiffness matrices, as well as the
control inputs by corrupting the strain measurements.

Attempting to model the untreated modes as noises, and
selection of an appropriate distribution matrix, G, for this
case results in a tremendous parameter space to search. The
following strategy [VIII3] has been suggested as one method
for tackling the Kalman Filter design problem, and was
partially utilized by Schmitz [VIII4] in his experimental
work. A state estimator robust with respect to errors in
modeling plant parameters can be obtained. The first step is
to assume that the disturbances to the plant are caused by
the control and are distributed by the input matrix, B.
Next, the covariance of the plant disturbance is assumed to
be much greater than the covariance of the measurement
noise. This results in a robust state estimator with poles
close to the poles of the plant. This strategy was examined
experimentally. The parameters and design results are
contained in table 8-2.

The control laws resulting from LQR design were oupled
with the Kalman Filter estimates of the states to form a
closed loop system. Separation of the poles is assured, as
shown for the state observer 1in chapter 6. Use of these
control laws additionally provides a point of comparison

with the reduced order observer/reconstruction controller

discussed in chapter 7.
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Table 8-2. Kalman Filter Design Results

State Vector x; = [ 6, q, 6, q ]

Measurement Vector y; = [ 8, €(0), (.5), 8 ]

Measurement Matrix (strain measured in micro strain)

1.0 0.0 0.0 0.0
C = 0.0 1530.0 0.0 0.0
0.0 630.0 0.0 0.0
0.0 0.0 1.0 0.0

Measurement Noise Covariance Matrix
Vv = diag[ 1.09E=-6 .145 .939 2.37E-4]

Plant Noise Covariance
Q = 1.0E+6

Measurement Gain

4.318E-2 -4.238E-5 -2.621E-6 1.914E-3
— |-3.552E-5 2.412E-4 1.491E-5 -8.4341-3
4.142E-1 -2.178E-3 -1.346E-4 9.492E-1

-1.322 9.902E-3 6.122E-4 -4.416

Discrete EZigenvalues (A-LC)
.2386

.4231

.9773 +2.42E-2

.9773 =2.42E-2
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8.5 Experimental Results

Initially the collocated control 1law of table 7-1 was
applied to the Kalman Filter state estimates. This control
law was stable for the two mode controller whose cycle time
was roughly the same. Coupling this c¢ontrol law to the
Kalman Filter resulted in growing oscillations of the third
flexible mode during experiments with this control law.

Another control law was designed with a reduced degree
of prescribed stability and applied to the estimated states.
The step response for this contrél law is shown in figure 8-
4. The closed 1loop feedback back poles are identified in
table 8-3 for the collocated, and modal control law.

Note the slow decay of the 43Hz oscillation, and the
overshoot of this controller. The process was repeated with
a modal conﬁroller with the same prescribed degree of
stability. The response for this case is shown in figure 8-
5. There is very little alteration of .the response; the
Kalman Filter is obviously not tracking the states of the

system very well.
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From experience it was apparent that the overshoot
could be reduced by forcing the Kalman Filter to track the
joint angle more quickly. The element of the gain matrix
L(1,1) which is the wupdate of joint angle estimate due to
joint angle measurement was increased ten fold. The step
response was repeated with the modified measurement gain.

The result is recorded in figure 8-6.

Table 8-3. Closed Loop Poles.

Collocated Feedback Law
F=1[ 667. 0. 349, 0.]

Modal Control Law
F=1{ 667. -220. 349. 9. ]

Discrete Eigenvalues

Collocated Control Law Modal Control Law
.957 3.323E-18 .973 -1.086E-18
.983 -4.381E-18 .978 +3.782E-20

.969 +/-9.700E-02 .970 +/-1.100E-01
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The results of this intuitive change in the measurement gain
is readily apparent. It much more difficult to cause this
type of change through creating "fictitious" noise values in
the measurement covariance.

Several other plant covariance values were examined,
with similar results. It quickly became apparent that this

was not a suitable approach to estimator design.

8.6 Summary

Comparison of the experimentally determined noise
covariances to the levels of periodic excitations caused by
the truncated higher flexible modes indicates that the
control problem 1is dominated by truncation effects, as
opposed to stochastic noise. The experimentally determined
noise covariances result 1in expectations of very small
errors from the these sources. This is particularly true in
light of the measured content of the ﬁntreated flexible
modes during the control experiments conducted in chapter 7.
Some strain traces presented in chapter 6 contained periodic
amplitudes due to the higher flexible modes on the order of
100 microstrain. The joint angle trace in many responses was
also significantly corrupted by the higher modes. Thus the
impact of the unmodeled modes in the system is far more
important than a consideration of the system noise.
Additionally, approximation of the impact of the distinct

modal frequencies on the system by white noise covariance
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estimates is extremely questionable.

For some systems, such as airplanes, modeling flutter
of 1lift surfaces as stochastic disturbances to the craft is
more appropriate. The flutter can be measured or rationally
approximated, as well as the manner in which the disturbance
propagates through the system dynamics. Additionally, the
aircraft disturbances are typically. at much higher
frequencies than the characteristic eigenvalues of the craft
[VIII5]. This is not the case for the flexible manipulator.

Work done in chapter 6 indicated that observer poles
for the estimation of the modal velocities needed to be much
faster than the system poles being estimated. The Kalman
Filter design process results in relatively slow poles close
to those of the plant being estimated. This is reasonable,
as the filter was intended to minimize the mean estimate
error when the plant and measurements are subject to white
noise. The speed of these poles results in slow convergence
to the actual states for initial errors in state estimates
and disturbances caused by the untreated modes.

Schmitz[VIII4] had limited success in dealing with
this problem by using a higher order model, and generating
fictitious estimates of the measurement noises. The
fictitious noise estimates were parameterized, and the
parameter space examined using root_ locus techniques to

obtained a usable measurement gain, L, for the Kalman
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Filter.

Use of the covariance values as a pole placement
algorithm was not as direct or successful as the traditional
method discussed in chapter 6 for the state observer design
process. Use of the Kalman Filter design process to obtain
pole placement is also thought to be impractical for future

applications because:

.+ As measurements are added, as in this experimental
work or in future multi-link systems, the parameter
space becomes extremely large.

+ The model is not diagonal, and parameter variations
are coupled, thereby making the search of the
parameter space even more difficult.

In view of what has been learned form this exercise,
direct pole placement techniques, and. traditional state
observer design methods appear more suitable to the flexible

arm problem at its current level of sophistication.
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CHAPTER IX

CHRONOLOGY AND ADDITIONAL EXPERIMENTAL OBSERVATIONS

The work contained in the body of this dissertation
chapters 1-8 follows a logical, cohesive path that is not
completely representative of the course of work required to
accomplish these results. This chapter discusses the
sequence in which the experiments progressed, and additional
interesting experimental observations regarding scftware,
and hardware impacts on the experiments. The narrative and
observations would interupt the flow of earlier chapters
without adding insight to the results of a particular
section yet they may be of interest and assistance to

future researchers.

9.1 Experimental Chronology

Once the experimental apparatus had been assembled and
verified a winding and broken path through the work
described in this thesis began. This section tries to
chronicle the sequence of events and comment on matters of
possible interest to future investigation which might
otherwise go unrecorded.

Initial experiments focused on implementation of a
functional observer instead of the observer/regulator

combination and the Kalman Filter discussed in earlier
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chapters. A functional observer estimates a function of the
states, for example a control law, instead of individual
states. Functional observation can result in significant
computational savings over state estimation, and then
computation of the control. The computational savings
associated with the functional observer was the source of
the early attraction.

Unfortunately, implementation of the functional
observer vyielded unsatisfactory results and dramatically
demonstrated the negative aspects of functional observation
when applied to a system with many uncertainties. In trying
to analyze the source of the discrepancies between
prediction and observation, the functional observer was

proved intractable experimentally.

The thesis effort took a dramatic turn at this point,
trying to identify clear, functional divisions in the
experimental apparatus and control system. Additionally,
questions arose concerning fhe model and methods for it's
evaluation. This led to functionally segmenting the system
into a reconstruction algorithm, state observation
algorithm, and controller as distinct elements.

Following analysis and design of the individual
functional elements, the experimental process was initiated
again with the observer/optimal regulator combination. Some
useful results were obtained, but stability and performance

observations were far from expectation. This led to the
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sequence followed in the rest of the thesis, closely aligned

with the chapter titles;

1. Examination of the Model

2. Examination of the Reconstruction Algorithm
3. Examination of the State Observation

4. Examination of the Optimal Regulator

5. Examination of the Kalman Filter

This evolved into an iterative process of analysis,
experiment, and comparison of the two. 'The process was
repeated until confidence was gained that hardware, design
software, and controller software bugs had been eliminated.
The work reported in the body of thesis could then be
conducted.

Often the hardware, and software problems were not
easily examined with the state space structure utilized for
selecting control laws. As will be discussed in the next
section, transfer function analysis was used in assessing
the impact of many of the components.A

As the work progressed, ﬁsually meaning the
implementation of higher gains in a specific control design,
more faults or problems became apparent. The most
aggravating and recurrent problems came from sixty hertz AC
power noise picked up by the measurements, measurement phase
lag introduced by the Butterworth filters, and short life of
the potentiometer. The final 1limitation to evaluation the
proposed control schemes with this experimental system

appears to be computational speed.
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Sixty hertz noise repeatedly halted progress. It
appeared as a distinct harmonic disturbance which at times
excited modes in the 40Hz and 80Hz ranges.The sixty hertz AC
noise was removed in phases by carefully assuring that the
commons for all the signal conditicning devices were the
same. Instrumentation methods of grounding and shielding the
signal leads were implemented.

Instabilities which were not predicted by the analysis
techniques in use at earlier phases of the research were
particularly hard to resolve. Analysis discussed in the next
section using transfer functions identified the Butterworth
filters as the culprit. The filters were implemented
initially to act as band pass and band reject devices in the
hopes of improving separation between modes. Eventually,
after many unsuccessful attempts to compromise between the
performance and phase introduction, the filters were
removed.

The mounting. of the potentiometer wused to measure
joint angle rotations was a particularly troublesome
component. A rubber grommet interfaced the potenticmeter
shaft to the motor hub. The grommet would wear and loosen,
allowing slippage between the motor and potentiometer. The
relative slip was of extremely small amplitude, and not
noticed from observation of the endpoint position.

The typical onset of the slipping condition was

noticed by a reduction in stability of the controller under
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observation. The gradual onset of the slipping condition,
coupled with the fact that the work was almost always
progressing towards a tighter control law or new
implementation, made the identification of this problem
extremely difficult for the first few occurrences of this

malady. The remedy was to replace the grommet.

9.2 Phase Sensitivity

The instabilities introduced by the four pole
Butterworth filters were not easily identified by the state
space structure used for control law design. At the time the
instabilities were occurring, the source of the difficulties
was unknown. The model and controller were suspect, as well
as the hardware components. To 1investigate the problem, a
simple and thoroughly analyzed collocated controller [IX1-3]
was implemented. This would hopefully allow for separation
of the hardware issues from the modeling issues.

Perhaps one of the most useful pieces of information
available for resolution of the problem came from companion
results for the unstable case with a passively damped beam.
The passively damped beam showed an increased degree
stability, and resultant analysis could be tested against
the two cases. Figure 9-1 shows a time response for the
experimental beam with collocated gains resulting in
unpredicted instabilities. Surprisingly the instabilities

are occurring in the second flexible mode. The measurement
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is repeated with a passively damped beam, and this time the
same gains do not result in instabilities 1in the second
flexible mode as depicted in figure 9-2.

Many components of the system were considered as
sources of unmodeled, and hence uncompensated dynamics.
These included samplelrate (partially analyzed by sample and
hold discretization), digitization, torgque motor/amplifier
dynamics, Butterworth filters, and tachometer. These factors
were examined individually and cumulatively for their effect
on system performance.

These components as well as the beam were modeled as
transfer functions, and assembled into an open loop transfer

function, as shown in figure 9-3a, and a collocated feedback

function as seen in figure 9-3. The transfer function, T(s)
of Figure 9-3b, 1is the open loop function of 9-3a. The
transfer function of the beam was common to the work of
several researchers [IX4,5]. .

The collocated controller was also implemented in
analog hardware. to eliminate the questions regarding

digitizing.
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The various transfer functions utilized in the analysis are

identified in table 9-1.

Table 9-1. Transfer Functions

A(s) Amplifier Transfer Function,
Voltage In to Voltage Qut

E(s) Motor Electrical Transfer Function,
Voltage Applied to Current

Vis) Beam Transfer Function,
Hub Torque to Joint Velocity

Kg Motor Back Emf Cornstant

Kt Motor Torque Constant

b Amplifier Gain

Vd Desired Torque

Rs Current Sense Resistor

KV Velocity Feedback Transfer Function
Kp Position Feedback Gain

The resultant closed loop transfer function from
commanded joint angle to joint angle could then be examined
for varying gaigs by monitoring the closed 1loop pole
locations. Evaluation of the torque motor/amplifier transfer
function did not <change the expected stable result for
collocated feedback shown in figure 9-4.

Analysis of the discretization effects by a sample and
hold model did have a slightly destabilizing effect, but did
not significantly alter the earlier result for the torque

motor amplifier combination, even when examined together.
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Inclusion of a four pole low pass Butterworth filter
used to filter commutation noise generated by the tachometer
did have a drastic effect on the stability results. The
drastic change in the departure angle from the open loop
poles is depicted in figure 9-5. The analysis is repeated
approximating the effect of the passive damping applied to
the beam with modal damping values determined from frequency
responses of the open loop beam. The plot is also depicted
in figure 9-5.

It is apparent from figure 9-5 that the second mode
goes unstable at sufficiently large gains. Additionally the
frequency at crossover closely approximates the frequency of
the instability determined from measurements shown in figure
9-1. This provides some confidence that the transfer
function analysis employed is accurately modeling the
observed phenomena.

The dramatic effect of the filter poles being driven
into ﬁhe right half plane, even though they are ét a
frequency roughly 30 times the modal fregquency, emphasizes

the proximity of the flexible poles to the real axis.
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CHAPTER X

SUMMARY AND RECOMMENDATIONS

10.1 Summary

This section briefly summarizes the important
observations and results of the various sections by topic.

+ Linearized Model - The 1linear modeling technique
was implemented based entirely upon manipulator design
parameters. The responses predicted agreed well with
measurements when coupled with appropriate selection of
modal candidates and model order. The linear modeling
technique was readily adapted for computer generation of
models with different modal candidates and orders. The model
predicted increased responses of the higher modes than was
experimentally observed. The increased response predicted by
the model is attributed to inaccurate determination of the
damping for the higher modes.

+ Mode Selection -~ The application of feedback
control laws to the flexible manipulator strongly impacts
the resultant flexible vibration modes. It is extremely
important to consider the control action in selecting modal
candidates. The flexible manipulator's beam exhibits pinned-
mass modes without control acticon, and as seen in chapters
3, 7, and 8 may exhibit clamped-mass, or pinned-mass modes

under the action of control laws. Clamped-mass modes were
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used in the LQR control implementation.

+ Model Order - The response of the flexible arm was
dominated by the rigid and first flexible modes. The
application of 1large feedback gains and the effects of
discretization had a significant impact on the required
model order. The faster the cycle time, the 1less the
response of the higher modes. A change in cycle time from
5.8 milliseconds, to 2.0 milliseconds resulted in almost
complete elimination of the third flexible mode from the
strain traces recorded for step responses obtained with
collocated controllers. The speed was even more important
than the inclusion of the second mode in the LQR controller.

+ Model Order Reduction - The application of the
method of balanced realizations to the evaluation of model
order agreed well with the gqualitative evaluation made in
chapter 3. Aggregation of the seven highest flexible modes
of the ten mode médel, (an aggregation 1level of six),
resulted in only a 6.7% increase.the performance index used
to estimate model order requirements. The inclusion of the
first two flexible modes and the rigid body mode brings the
performance index to its maximum wvalue of 100%. The method
is based upon examining the strengths of the singular values
of the 1linear model being evaluated. Therefore, in this
application the method cannot evaluate the accuracy of the
model in describing the physical problem. The method does

provide a satisfactory estimate of appropriate order for a
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selected model.

+ Measurement and Reconstruction - This technique was
particularly successful when utilized for the single mode
model. The evaluation for the two mode model is less certain
due to experimental 1limitations. Measurement of strain due
to the vibrations of the higher flexible modes truncated
from the model was a particular problem. Measurement of the
higher modes definitely contributed to the control actions
exciting the third clamped-mass mode at 41Hz when large
gains were applied.

+ Reduced Order Observation - The modal observers
were successfully applied to the flexible manipulator. The
most significant factor in the design process was to insure
that the estimator was fast enough to accurately track the
flexible mode amidst initial offsets and measureménts of the
higher modes. Slow observers, while successfully providing
an estimate of the velocity, tended to excite the higher
modes truncated from the model when used in feedback control
laws.

+ Linear Quadratic Regulators - The application of
LQOR controllers to the control of vibratory modes occurring
in flexible manipulators was successful in damping the
vibratory modes of the system, as well as control the rigid
orientation. The modal controllers were successful even in
the presence of measurement noise and hardware

imperfections, such as joint friction.
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The joint friction makes collocated controllers
ineffective for precise control of the maﬁipulator. Once the
joint is close to the desired final state the applied
torques become smaller than the torque required to overcome
friction. At this point the system becomes uncontrollable
for the collocated controller. Additionally, the beam
vibrates in cantilevered modes without joint rotation and
the vibratory modes are unobservable by the joint
measurements.

The fastest settling times were achieved with the
single flexible mode controller designed with high modal
damping. The settling times achieved with this design were
on the order of one second for step changes in the desired
angle of .35 radians. This settling time corresponds to
roughly twice the period of oscillation of the first
clamped-mass flexible mode. The quickest closed loop poles
indicated by the model for the single‘mode LOR controller
with a high” prescribed degree of stability were -7.5 +/-
.005i and -7.5 +/-19.131i radians/sec. If each of these pole
pairs were considered as separate second order systems they
would both correspond to a settling time,(to within 2% of
the final states), of .533 sec.: The prescribed degree of
stability design technique yielded poles with the same
negative real parts. The response for the total system with
these eigenvalues, settling times of 1.2-1.3 sec., was

roughly twice the the time for the individual poles.
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Experimental attempts to shorten the settling time by
increasing the prescribed degree of stability in the control
law design vyielded instabilities 1in the flexible modes
truncated from the model.

+ Kalman Filter - The application of Kalman Filters
is not recommended for design of estimators to be used in
controlling flexible manipulators. Estimates of the noise
covariances yielded expectation of noise signals in the
strain traces 40-50 Db below the strains caused by the
neglected modes.

The Kalman Filter designs yielded estimator poles
close to those of the plant poles being estimated, much
slower than indicated by the earlier results on modal
velocity observation. Placement of the estimator poles by
creating "fictitious" noise estimates and input distribution
matrices was difficult and 1less direct than traditional

methods.

10.2 Discussion

The most éppropriate work for comparison is that
conducted by Schmitz [X1] at the Guidance and Control
Laboratory associated with Stanford University. This section
will compare the experimental equipment, and results for the
two efforts.

Schmitz experimentally examined endpoint position

control of a flexible manipulator structure. The endpoint



151

position of the experimental manipulator was sensed by an
optical sensor mounted external to the manipulator which
viewed the intended objective for the endpoint motion.

Schmitz employed a manipulator constructed with
sidewalls made from aluminum sheets Jjoined at regular
intervals along the length by braces. The construction
employed by Schmitz 1is similar to the light.weight truss
structures favored by aerospace engineers [X2-3]. The first
three cantilevered modes of the manipulator structure were
0.554, 2.781, 7.468Hz. Schmitz experimentally determinedv
damping ratios for these modes in the range of .015-.020.
The manipulator structure was complex, and difficult to
model. Schmitz assumed a decoupled modal form for the system
dynamics and then executed identification algorithms
experimentally.

The aim of the work presented in this thesis was to
construct a modal controller which determined and controlled |
the vibfatory modes of the system, as well as the
orientation in space. The objective of the sensor system
implemented in in this study was to not require apriori
knowledge of the final configuration of the manipulator. The
controller and sensor system can be active over the full
range of motions insuring control over the quality of motion
and peak stresses.

The continuous beam  used for this thesis 1is

representative of lightweight manipulators receiving
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attention for industrial [X4] and aerospace [X5]
appiications. The first three cantilevered modes of the beam
are 2.08, 13.92, 41.38Hz with measured damping ratios in the
range of .007-.015.

Schmitz achieved better agreement between his model
and experiment, than was obtained in this work. This is not
suprising as Schmitz used a higher order model, (three
flexible modes and a rigid mode), and experimentally
identified all the parameters of the system.

Schmitz obtained endpoint position step responses with
settling times of one second roughly half the period of
oscillation of the first cantilevered mode. This compares
favorably to the rough guideline established by Book [X6].
Book limits the upper response of a collocated controller to
half the-first cantilevered mode. The modal controller in
this work obtained modeled settling times of .533 for each
state, roughly thé period of oscillation~of the clamped-mass
mode. The controlier which tried to regulate both states
with a single'control input was half as fast.

Part of Schmitz success 1in obtaining gquick responses
is attributed to  use of endpoint position as the primary
control. Additionally, the computation speed required by
Schmitz is roughly one third that required in this work
based on the ratio of flexible mode frequencies. The
additional damping found in Schmitz's structure increases

the stability of the system, as was found with the passive
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damping treatment discussed in chapter nine.

Schmitz considered that the upper time response limit
attainable with endpoint control was caused by non-minimum
phase zeroes associated with a time delay observed in his
experiments from when torque is applied until tip motion
occurs, (roughly 120 milliseconds for his apparatus). The
modal controller developed in this work obtained strain
measurements from the base of the beam and observed strain
responses were effectively instantaneous with respect to the
applied torques. The primary limitation encountered in this
work was computational speed which limited model order.

These two works are not contradictory, or mutually
exclusive, and in most phases they are complimentary. The
observed trends in stability and difficulties of obtaining a
good dynamic model in the two efforts were in complete
accord. The selection of approach for future work might well
be driven by the chosen application, or even hybrid schemes
investigated, (the possibilities for hybridization was also

recognized by Schmitz).

10.3 Recommendations

It appears clear at this point that the selection of
the flexible vibratory modes 1is extremely important in
generation of a useful model. Additionally, identification
of the manipulator structure is not the answer, as the

application of feedback control laws alter the modes
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observed 1in <closed 1loop form of the system. It seems
appropriate, then, that methods be sought which incorporate
the feedback law into the modeling process, (Majette [X7]
considered this problem for manipulators with small motions
about an equilibrium). These methods are thought to come
from iterative processes between beam solution techniques
and Lagrangian dynamics.

Future flexible manipulators consisting Qf serial
links and complex geometrical configurations will require
the inclusion of many more modes in the model. These modes
arise from torsion and bending in more than one plane for
each link. Models including modal series consisting of a
large number of terms may never be realizable in available
real-time controllers. Based on this experimental history it
is doubtful that blind truncation of model order will yield
successful results when high performance of the manipulator
is ;eqUired.

Methods need to be adapted‘ which account for the
higher mode's responses even when designing for a lower
order controller. Frequency domain methods [X8] promise to
accommodate the feedback boundary conditions in the model as
well as robust controller design. The research issues facing
the frequency domain approaches 1lie in merging the physical
measurements with the frequency domain description and

computational requirements of practical implementations.
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Balas [X9] proposed phase-locked 1loop filtering for
the rejection of the untreated higher modes from the control
or the measurement. Filters which remove information about
the truncated modes from the measurement is still an
appealing technique for research, although the attempt in
this work with analog butterworth filters, as discussed in
chapter 10, was. disappointing.

Design of structures which inherently reduce the
response of the higher modes should be pursued. This type of
structure would greatly reduce the contreol problems
encountered in this work. Combining attempts at designing
"lossy" joints, and beams, such as passive damping [X3]

treatments, may result in successful high performance hybrid

active/passive schemes.
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APPENDIX A

FORMULATION OF DYNAMIC EQUATIONS

This section describes the generation of a dynamic
model via application of Lagrange's equations to the

flexible system [Al,A2].

A.l1 Coordinates

The first step in this process is to select a suitable
set of coordinates. The approach utilized selects one rigid
body coordinate associated with the joint rotation, and
flexible transverse displacements from a set of axes

attached to the joint. This is depicted in figure A-1. Then
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Figure A-~1. Coordinate Definition
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a position vector R to every point of the system can be can

" be constructed;

-

- -

R = xi + w(x,t)j (A.1)
The absolute velocity of the position vector;

R = 3R + 8kxR (A.2a)
at
R = xi + 3w(x,t)j + 8xj-fw(x,t)i] (A.2b)
at

A.2 Kinetic and Potential Energies

The kinetic energy of the system KE, can then be
computed by integrating this expression over the entire mass

of the flexible system Ms;

KE = % J R-Rdm : (A.3a)
. ° _ 2 * ’2 2 2
ReR = [3w(x,t)]" + 2083w(x,t)x +6°[x" + w™(x,t)] (A.3b)
ot "3t
KE = % {[aw(x,t)]2 + 283w(x,t)x + (A.3c)
2 | 3¢ 3t

52[x° + wz(x,t)]}dx

Next, introduce the assumed mode series representation for

the transverse deflections w(x,t);

w(x,t)=2 ¢i(x)qi(t) , for i=1,2...n (A.4)
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where n = x/L a normalized length variable. Substitution for

the transverse deflections results in;

1
KE= 3 {2¢-(n)d .(t)2¢-(n)d (t) + (A.5a)
ZJ A TS AMMOAS N TS

28n) 05 (n)da; (6) + 870Em)? + Jo; (n)q;(8))o5 (0)a (6 Dam

This integral can be separated into three integrals over the
primary components of the beam, joint mass, beam mass, and
payload. Evaluation of equation A.5a over the joint mass

results in;

1 .2
KE_ = 2 J.[)d¢, (0)dg, (t))de.(0)dg, (t) + &2] (A.5b)
m~ 2 Vot ght R Ry g

Evaluation of equation (A.5a) over the mass of the beam

results in;
KE = L. 82+ia Lr{ﬁ¢ (mda. () 6. (n)da. (£) +  (A.5¢)
b~ 2°b 2prZi”—9dti Zj”—gdtj .

2énLE¢i(n)%gi(t)}dn
_ t

Notice that in evaluating;

1 +2 2

2AprJ[6 n? + Jo; (ma;(e))s5(niay () lan (3.6)
the squared flexible deflections was assumed negligible
compared to the axial dimension squared. This linearization
step can be postponed to until the equations of motion are

formed, but this results in applying the same assumption to
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multiple terms. Finally the integral is evaluated over the

mass of the payload as;‘

_ Loy 1245 1524 1
KE, = 30u 1243 16% 2Mp§¢i(l)%%i(t)2¢j(l)%%j(t) + (A.7)

1/2J M _1 (n)_gl(t) _gj(n)_g (t)
an* an

Next, it is convenient to introduce an orthonormal condition

on the spatial mode functions.

1
: prJ ) s (Mg (#)) 05 (ndgy (¥) + (a.8)

1 MPZ¢1(1)%%i(t)Z¢j(1)%%j(t) ¥

2 o} pz_‘ll(n)%ql(t)xi (T])j (t) = é_

The potential energy, PE, for the system is evaluated by the

following integral expression;

PE = %EIJ[ZQEii(n)qi(t)Zgiij(n)qj(t)]dx (A.9)
dx* dax? :

Applying the orthogonality condition on the mode functions,

and substituting the normalized length variable yields;

[

PE = EEI'{Z[ s (n)1%q, (£)3dn (A.10)
13

Notation in the following sections can be greatly simplified

if the following definitions are made for a '"modal

stiffness", Ki’ for equation (A.10), and "moment of modal
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mass", wi, for the last integrand in equation (A.5b) as;

K, = lg;{v[d 5. (n)1%n (A.11)
i 2 3}L 51
L dn
W, = %AprJnLZ¢i(n)dn (A.12)

The kinetic energy for the system can be expressed as;

_ 1:2 2 .
RE = 382[3q+a M L?] + GZ%%i(t)[wi+LMp¢(l) +  (A.13)

1 2
LI$(1)] + ZZ[g_Ei(t)]

A.3 Lagrange's Equations

To generate the dynamic equations the Lagrangian of

the energy expressions are formed, where the 'qi are the
coordinates, and Qi represents the work done by the input
torque at the 3joint by each coordinate. The resultant

equations can then be organized in matrix form;

4 |3KE) _ 3EE _ 0, (A.14)
dt|ag; g
[(M] ; + [Klz = [Q] (A.15)

z = [e,ql(t),qz(t),----,qn(t)] (A.16)
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M = | (A.17)
+ * 2 .
Yo% Jp * an " L"n’l(l’ * Jpﬁﬁx(l’ v+ L"p’z“’ ¥ Jp%ﬁz‘l)
'1 + anol(l) * Jp_:_sx(l) 1 ]
Wy ¢ Uey(1) » Jp%gz(l) 0 1
n
K - . . . . Q = 1
c K, 0 - de, (0)
(A.19)
0 0 K ) di (0)

This system is easily organized into a linear state-space

model as shown in figure A-2.

8 )
q, 0 I qq| 0
9; q;
: = | mmececccccccccccc e —- : ‘+ ----- !ul
8 8
q q M 1lg
11 -1 1
M K 0 .
q; 93

Figure A-2. State SpacebRepresentation.
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APPENDIX B

BERNOULLI-EULER BEAM EQUATIONS

This section describes the development of a frequency
determinant from Bernoulli-Euler beam theory which was used
to derive candidate mode frequencies and the associated
shapes. The homogeneous differential equation is presented
first, followed by a discussion of the boundary conditions

utilized. Lastly the frequency determinant is derived.

B.1 Differential Equation

The transverse displacement of the beam, w(x,t), shown
in figure A-1 is a function of both the spatial variable
along the beam, and time. Following the analeis attributed
to Bernoulli and Euler gives rise to following fourth order

partial differential equation.

Eratw(n,t) - atfa%win,t) = o (B.1)
3n4 8t2
where: n=x/L The next step applies the separability of

equation (1) to obtain the following result;

Exde(n)a(t) -ea LY (n)da(t) = 0 (B.2)
dn4 dt2 '

Searching for periodic time functions of the form g(t)= elut

leads to the following formulation;
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EIlde? (n) -pL4Ab¢(n)m2]q(t) = 0 (B.3a)
dn

This implies that the term in brackets must be equal to zero

for all time t. This is expressed as:

asd(m - gtem = o (B.3b)
dn

where the new parameter,

84 = pL4Abw2 (B.4)

has been substituted. This is readily solved for ¢(n):

¢ (n)=Asin(Bn)+Bcos(Bn)+Csinh(Bn)+Dcosh(Bn) (B.5)

The solution for the spatial mode function ¢(n) requires
four independent boundary conditions be provided. The first
and most obvious results from noting that there cannot be
transverse displacement at the pinned joint, this takes the
form;

¢(n) =0, for n =0 (B.6)

The second condition is provided from a moment balance at

joint, this is expressed as;

a%s(n) = -g,8%de(n) for n =0 (8.7)
dn2 pAbL3dn

where the following substitution was made to eliminate the

dependence on the frequency;

w® = B'EI (B.8)
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Using this boundary condition results in pinned mode
shapes for small joint inertias. Additionally, clamped mode
shapes can be determined by inputing very large joint
inertias. This provides more programming versatility than
supplying one formulation of the frequency determinant for
each type of boundary condition. The third boundary
condition is derived by resolving the shear force at the end
of the beam against the inertial forces of the payload mass.

This takes the following form;

a3e(n) = M g%(n) , for n =1 (B.9)
4 3 3
n pAbL

The last boundary condition arises from a moment balance

against the angular inertial forces of the payload.

a®g(n) = -38lde(n)  forn =1 (B.10)
dn2 pAbL3dn

B.2 Frequency Determinant

Application of the boundary conditions to the solution
for ¢(n) will result in a frequency determinant for the
eigenvalues B. Application of the first boundary condition
for transverse displacement at the joint relates two of the

constants in the solution;

B=-D (B.11)

The second boundary condition balancing the moment at

the joint forms a relation between three of the of the
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constants;

2DJ;, =-pAbL3B3(A+C) | (B.12)

The shear force balance at the paylocad relates all the

constants of the solution;

A(M _Bsinf-cosB) + B(sinB+M_BcosB) + (B.13)
AbL AbL
c(M @::2§B+cosh8) + D(sinhg+M @;:ihB) =.O

The moment balance at the payload forms a similar relation;

. 3 3.
-A(sinB+J_B cosB) + B(J_B sinB-cosB) + (B.14)
A L3 AL
b b
. 3 3 .
C(sinhg-J_g coshp) + D(-J_B sinhB+coshp) = 0
ALl a3
b b

The expressions (B.ll- B.14) involve only the constants from
the solution for the mode function and the parameter B. This
can be configured in matrix form as;

A

F(B8) =0 (B.15)

D
Fll=sing+sinhp + Jp*B3(cosB-coshB) (B.16)

Fl2 = sinB-sinhf + 2coshp +Mp*B(cosB-coshB) + (B.17)'
Toxb’

2sinhpB
3
T B

F2l=cosB+coshp - Mp*B(sinB-sinhB) (B.18)



F22 = -cosB - coshp + 2sinhf + JP*B3(sinhB-sinB)- (B

2J_,coshB
P 3
JO*B
Where the starred subscri
appropriate area and le
frequency determinant

characteristic values for

associated frequencies W -

3
JO*B

pts 1indicate modification by

ngth terms.
det[F(Bi)]

the mode

The roots of

= 0

functions

yield
¢i(n),
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APPENDIX C

LINEAR QUADRATIC REGULATOR

This appendix discusses the design and implementation
of deterministic Linear Quadratic Regulators (LQR). The
first section formulates the governing equations for the
continuous case and applies the sweep method to obtain the
Ricatti equation. This presentation is a compilation of the
material contained in Bryson and Ho's text [Cl] on optimal
control. The section discussing controller design with a
prescribed degree of stability follows Moore [C2]. The last
section considers the necessary adaptations required for the

experimental sampled data system.

C.1l Continuous System

The earlier sections discussed the development of the
state-space equations for the flexible manipulator system.

This system can be represented by the general expression;
x = £(x,u,t) (C.1)

The model for the flexible manipulator does not require
explicit expression of the time variable and f(x,u,t) has

the following linear form;

X = f(x) = Acx + Bcu (C.2)
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The goal of the process is to determine a gain vector
, KT, which determines the input function, u(t), as a linear
combination of the states, x(t), in an optimal manner. The
gain vector, KT, will be '"optimal" in the sense of a
specific performance measure. The measures of performance

are called Performance Indices (PI), and for LQR controllers

the PI is defined in the following manner;

PT = %J[XTQX + uTRuldt (c.3)

Q and R represent weighting matrices which selectively
penalize the various states, x, and input, u, during the
process. The next step is to adjoin the system dynamic
equations (C.2) to the performance 1index by the use of the

time varying functions A(t);

T

or <L [T SO
== |{x"Qx + UWRu + A [f - x]}dt (C.4)

NI

-integrating the adjoined performance index by parts yields;

t
£
. T

PI = ATx| %J[XTQX + uTRu + A f + iTx]dt (c.5)

0
Notation can be simplified by defining a "Hamiltonian'"[C1l]
function H(x,u) for the system as;

T

H(x,u) = XTOx + uTRU + ATf (C.6)

Substitution into equation (C.5) yield the more compact

expression;
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e

+ %J[H(x,u) + iTx]dt (C.7)
0

PI = xTx

t

To find the minimizing functions, variational principles are
applied to the performance index. Small perturbations about

the optimal solution are considered;

T

t
f
§PI = A78x| + %J{[gg(x,u) + XT]dx + SHSuldt (C.8)

9xX X
%

The optimal solution x(t), u(t) is an extremum for the PI
and therefore the variations must be 2zero. The task is now

to find the functions x(t), u(t) which satisfy this

condition.

C.2 Modification for Solution

Solving the set of equations (C.8) can be simplified
by noting that for a regulator the initial and final states

are known, and choosing the multiplier functions 4 ;

§x = 0 , for t=t,, and t=tf (C.9)
At = 3H (C.10)
axX
The variation in the PI can now be expressed as;
SPI = | gHsudt (C.11)
su

The variation in the performance index must be zero for

arbitrary variations in the control function u. This can
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only be true for;

SH=0 (C.12)
au
Equations (C.9,10,12) are known as "Euler-Lagrange

Equations"[Cl] for the system.

C.3 Sweep Method

The "sweep method" will be presented in the next
section as one approach to obtain the Ricatti equation.
First a solution, S(t), relating the states, x(t), to the
multiplier functions, A(t), with the following form is
assumed;

AT = sx (C.13)

Substitution into equation (C.10) yields;

a(sx) = -(Qx + XTAC) (C.1l4a)

it

or carrying out the indicated partial differentiation, and

substituting'equation (C.13) for i;

dx + Sx = -(0x + ACTSX) (C.14b)

Next, the differentiation indicated in equation (C.12) is

carried out, and the resulting expression examined in more

detail;

=0 =uR+ A Bc (C.15)

This can be formulated for the input function u(t) as;
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u = -R™¥BTA (C.16)

This result can be substituted into egquation (C.2) to

obtain;

X = AX - BRY B sx (C.17)

Equations (C.14,17) can be combined to form the "Matrix

Ricatti Equation" for the system.

($ + sa_ - seR™18Ts + o + ACTS]x= 0 (c.18a)

This expression must hold true for arbitrary x, therefore

the expression inside the brackets must be zero;

S + SA, - SBR'lBTs + Q + ACTS =0 (C.18Db)

The "sweep method" 1is so named because the usual
solution fechnique for this problem is to sweep backward in
time from the final condition to the start. Regulators are
~designed by finding the steady state solution, dsS/dt equals
zero, by finding the solution matrix S of;

-1.T T

SAc- SBR "B"S + Q + Ac S =0 (C.19)

C.4 Prescibed Degree of Stability

In this section modification of the LQOR regulator
problem to include specification of minimum stabitility in
the design process. The objective of this modification is to

design the optimal control law in such a was that the closed
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loop eigenvalues have negative real parts less than a value
(=a). This technique was first studied by Anderson and
Moore [C2], and discussed for application to flexible

manipulators by Sangveriphusiri [C3].

The modification starts by considering the following

definitions.

x'(t)= e 2% x(t) (C.20)

u'(t)= e 2% u(t) (C.21)

From these definitions, it 1is <c¢lear that x't) and

u'(t) will be stable (i.e. x'(t) or u'(t) » 0 as t » =) only

if x(t) and u(t) decay faster than e'at. This is equivalent

to requiring the closed 1loop system to have a degree of

stability of at least =-a.

Differention of equation (C.20) yields,

x' = a e3tx + 3% ' (C.22)

Substituting equation the linearized form of the state
space model, equation (C.2), for =x(t) into eguation (6.20),

the modified system equation can be written as follows:

x' = (A+al)x' + B u’ (C.23)
The function inside the integral sign of the cost
function is modified to

u'T Ru'+ x'T Q x' =e2at(uTR u+xTQ X) (C.24)
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Instead of solving the previous regulator problem,
equation (C.2), one solves the modified system of equation
(C.23) with the following modified performance index is

t
J (x'T 0 x'+u'T R u')dt (C.25)
0

A similar form of solution will be expected. The
control u'(t) is the linear function of state, i.e.
u'’ =-KX' (C.25)

and the matrix-valued function, K, can be evaluated from

k =R"I18T g (C.27)

where S is the solution of the RicEati equation.

Next, it can be shown that a feedback control law for
the modified problem readily vyvields a feedback control law
for the original problem. Substituting the definitions of
equations (C.20) and (C.21) into equation (C.26),

u =-e u'=fe-atK(eatx) ==K x (Cc.28)

So that, the optimal feedback gain of the modified regulator
problem can be selected as the control law of the original

problem and the closed 1loop system of the original problem

will have a degree of stability of at least -a.

C,S Sampled Data System

This section discusses translating the continuous LQR
design problem to the sampled data case which approximates

the digital implementation employed for the experiments.
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The approach taken will be transform the dynamic equations
and the weighting matrices to the discrete domain and then
reformulate the problem for solution.

Inputs to the plant from the micro-processor
controller are "held" constant between cycles of the
controller. This type of sampled data control system has an
equivalent discrete dynamic equation to the continuous plant
dynamic equation (C.2) which 4is the solution for continuous
equation over the time interval.The solution is given by;

X, = A

i+1 a*i + Bdui (C.29a)

where the subscript i indicates a particular sampled time,

and i+l indicates the next, and;

Ay = exp(AcAt) (C.29Db)

Bd = J exp(Act)Bcuidt (C.29¢)

The goal of this process is to design a feedback control Kd

which determines the input sequence u; as a function of the

state vector sequence xi;

u; = Kd Xy (c.294)

The performance index expressed by equation (C.3) is
transformed from an integral into a sequence of responses

over the sampling interval At.

PI = Z[{[exp(Acr)xi + (Jexp(Aca)Bcui)dEJTQ (C.30)

C-5
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[exp(ACT)xi + (Jexp(Acg)Bcui)dS]) + uiTRui}dT

This expression can be formulated with almost a direct

correspondence to the terms of equation (C.3);

PI = Z(xiTdei + xideui + uiTRdu ) (C.31a)

where;
Q = Jexp(Acg)TQexp(Acs)dg (C.31b)
Wy = 2Jexp(Acr)TQ[Jexp(Acg)BCui)dg]dr (c.31c)

Ry = J{R + [Jexp(Acs)Bcui)dE]Q[Jexp(AcE)Bcui)dS] }dr
(c.31d)

Without the cross terms associated with Wy in Equation
(C.31la) the sampled data representation would be directly
analogoﬁs to equation (C.3). A pre-filter gain F can be
chosen to eliminate the cross terms;

_1.-1
F —2R Wd (C.32)

Another input sequence can be defined utilizing the pre-

filter gain F as;

v, = in + u, (C.33)
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such that;
oy = AgK + Bgv (c.34a)
where;

Ad = Ad - BdF (C.34b)

Making one last transformation for the state penalty matrix

Qd;

vields the desired equivalent form of the performance index

for the sampled data system.

'
= T

The solution of this problem subject to the dynamics of
equation (C.34a) will yield a solution vector Ké which
coupled with the pre-filter gain F yields the desired gain

vector Kd for the original sampled regulator;

4 + F (C.37)

The variational approach, and Sweep- Method presented
for the cohtinuous case carry through for the sampled data
regulator by direc£ analogy using sequences instead of
continuous functions. The process is extremely
straightforward and will not be presented here. The
resultant form of the steady state Ricatti equation for the

sampled data regulator is;
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' -1 T ' '"Te _
SqAg ~ SgBgRg B3 Sq * Qg * Ay4'S4 = 0 (C.38)

C.6 Ricatti Equation Solution

The Newton-Raphson, and other methods have been
formulated for this problem repeatedly, and software is
readily available. Two implementations were wutilized for
this work to provide cross checking. Routines extracted from
the ORACLS[C4], and Control-C[C5] software packages were

executed on the flexible arm model.
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APPENDIX D
KALMAN FILTER DEVELOPMENT

This section discusses the development of a Linear
Quadratic Gaussian Regulator (LQGR) this is more commonly
referred to as a Kalman Filter [D1-2]. The basic relations
. and solution technique will be discussed as was done in
appendix C for the deterministic regulator. For brevity only

the sampled data case will be developed here.

D.1 Governing Equations

Consider the dynamic equations for the system now

subject to the introduction of a zero mean gaussian noise Wi

to the plant and vy to the measurement Yy-

b4 = Axi + Bui + W, (D.1)

i+l i

y; = Cxi + v : (D.2)
The noises are uncorrelated and have covariances given by;

Ty, _
E[wiwj ] = Rw (D.3)

T. _
E[vivj ] = R, (D.4)

The objective of this formulation is to select the
measurement gains for the full state observer depicted in
figure D-1 in an optimal manner.

Many notational definitions are required to form a

tractable formulation of the Kalman Filter equations [D3].
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The definitions are summarized in table D-1 for easy

reference.

Table D-1. Summary of Kalman Filter Notation

Symbol Comment
X Plant state vector
X Estimate of the Plant state

with measurement update

X Estimate of the Plant without
) measurement update
e Error betyeen plang state and
~ estimate e = (x - X)
e Error betyeen plang state and
estimate e = (x - X) _
M Covarig.~ e of error e
M = E[ee™] )
P Covarigg@e of error e
P = E[lee] .
Plont Pl
N i E
(1+1) i+
m————— o Ax¢y + Bum L C yaen
U("*") KG+1) s
E ! ! i
)
eccee— - o Az + Buwm — C ,
X(l+1)
Estimator

Figure D-1. Block Diagram for Kalman Filter
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Consider the error € for an estimator constructed with

actual plant dynamics;

-~ -~

©i41 T Xjy1 T Xjgep T AglR; - X5) + Bgwy (D.5)
Then the covariance of the error without the measurement

update Mi+l is;

- -

- T, T T
M;yy = E[Ageje;"Aq" + Byw;w; 7] (D.6a)
Or in more compact notation;
- T T

Consider a performance index for the system with the

following form;

~ -~

_ Ty -1 e (T -1 _
PI = l/ZZ[ei M i + (yi Cxi) R, i(yi Cxi)] (D.7)

The task is again to find the sequences which minimize the
performance index, therefore, we wish to find the conditions
which will vyield the sequences. Examining the effect of

small arbitrary variations in the state vector Xi5
_ -1 7 T..~-1 _ ;
§PI = Gxi[M i®i + C RV i(yi Cxi)] | (D.8)

For the sequences to minimize the index the coefficient of
‘the variation must vanish;

-1, 2 T, -1 - -
M (xi xi) + C'R,, i(yi Cxi) =0 (D.9)

This can be organized in terms of the plant state;

-1 T, -1 —

-1 T, -1
iX + C RV .Y,

1Yy (D.10)
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forming the the feedback grouping yi-cii results in;

-1 T, -1 _ -1 T, -1 -
T, -1 -
C RV (yi Cxi)
Dividing through by the coefficient of the state, Xy

provides a relation between the estimate without update, ii,

the measurement, and the state which minimizes the

performance index.

X; = Xy + Li(yi-Cxi) (D.12a)

where a Kalman gain, L, has been introduced;

T, -1 -1.7, -1
Rv iC) C™R, 7 (D.12b)

- -1

1

Thus an optimal estimate, =X of the state can be formed

il
using the measurement, Yy and the estimate without update,

~

Xy, which satisfies the same conditions;

X, =Xy + Li(yi-Cxi) (D.13)

It is of interest to separate the terms forming the Kalman
gain as;
L. =P .CR . (D.1l4a)

where the grouping;

. "1 4cTg "1 )" (D.14b)

has been formed. It will now be shown that the grouping
shown in equation (D.14b) is in fact the covariance matrix,
Pi‘ The error for the estimate with wupdate, &, can be
written as;
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-~ -

%* T -1 ~ )
P jCR, "jlvy=Clxy-x;)]

Rearranging terms, and using the notation éi for the error

before measurement update;

-

*
ei=(I+PiC

T TRv‘l.v. (D.15b)

_1C" + *
R, "jCle; + P ;C ivi

Then the expected values can be determined;

_ * T -1 * T, -1 T T
Next, consider the inverse of equation (D.14b);
* -1 _ -1 T, -1

Premultiplication of equation (D.17) by P*i, followed by

postmultiplication with Mi vields;

=p, +p.cR_"1.cm 18
Mi = P i P iC R, ~;CM; (D.18a)
or;
+p*.cTr "L, c)mM, = p" D.18b)
(IR jCRy 73Oy = Py » (D.
The result, equation (D.18b) can be substituted into

equation (D.1l6) to eliminate the Mi term;

_ ¥ * T 1 T T

i Ry

This can be regrouped using equation (D.l4a) for the Kalman

gain twice;

T 1 T

(D.20a)

P, = L (I+L.0)T + (P.cC
g =B (I i

R, "1)Ry3Ly

,finally after some simplification;

o ¥ AT T * T T
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This yields the needed result;

*
Pi =P i (D.20¢)
Now the Kalman gain, Li’ can be expressed in terms of the
covariance Pi;
_ T, -1
Li = PiC RV i (D.21)

This completes the derivation of necessary Kalman Filter
equations. The next section will discuss a method for

solution of the steady state gain gain L.

D.2 Solution Method

Iterative solutions using expressions for Pi and Mi+l
converge very slowly for discretizations of the plant for
short time intervals. Formulation of the problem into a
Ricatti equation suitable for the same Newton-Raphson
algorithm employed for the deterministic regulator covered
in appendix C 1is very desirable in terms of convergence

properties and software usage.

To achieve this goal, equation (D.1l5) is rewritten;

ei+l = (Ad-LiC)e + Livi + B.w, (D.22)

d'i

The expected value can then be determined;
_ _ - T T T
Piyp = (AgLiCIP; (AgLiC)" + LR L™ + B4R By

q (D.23)

Steady state is reached when Pi+l is the same as Pi’ this

gives the necessary form;

_ ) o T T T
P = (A4~L;C)P;(A4-L;C)" + L;R L.~ + B,R By (D.24)
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Combining this with expression (D.21) for the Kalman gain

completes the process.
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APPENDIX E
EXPERTIMENTAL APPARATUS

This section of the thesis describes the the
experimental manipulator system. Manufacturers,
specifications, experimental measurements made to assure the
performance parameters of key components, and detail
diagrams identifying the actual electrical connections are
presented.

The experimental hardware 1is separated into five
functional areas, and identification and description of the
hardware components will proceed segquentially through the
functional groups. Electrical schematics for components will
be given presented in the functional groups, but
interconnections for subsytems will conclude the appendix.

The following list identifies the functional hardware

groupings:
. Flexible Manipulator
. Sensors/Signal Conditioning
. Analog to Digital Conversion
. Micro-Processor System/Digital to Analog

Conversion
. Torque Motor/Servo-Amp
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The microprocessor is discussed in appendix F with the

controller software.

E.l Flexible Manipulator

The first piece of hardware to be discussed is the
actual flexible link, and paylocad. This component sets the
scale for the experiment. The arm 1is a four foot aluminum
beam with the section oriented so that axis of increased
flexibility is in the horizontal plane. The manipulator
mounted in its base with sensors is shown in figure E-1.

The payload is provisioned for the addition of weights
giving it a range of five to one 1in increments of one
quarter of the base amount. Table E-1 1lists physical

properties, and dimensions for the beam, and payload.

TORQUE MOTOR

///FLEIIBLE MEMBER

PAYLOAD

—0

0P VIEW

/JOINT ANGLE SENSOR

___—— TORQUE MQTOR

FLEXIBLE BEAM
=l TACHOMETER /

— —— —

A STRAIN GAGES/

PAYLOAD
MOUNTING BASE

Figure E-1. Manipulator with Sensors.
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E.2 Sensors

The manipulator and base are equipped with several
sensors to obtain information about the state of the
flexible system. This section discusses the individual
measurement systems.

E.2.1 Joint Angle Sensor

Rotation of the jdint is measured by the use of a
‘rotational potentiometer connected to a high impedance
signal amplifier. This is depicted in figure E-2. Ninety
degrees of rotation is scaled to +/-5 volts DC by use of the
signal amplifier.

E.2.2 Joint Angle Velocity

An Inland motor tachometer 1is utilized to measure the
angular velocity of the joint. The tachometer 1is also
connected to a signal amplifier, this provides analog signal
scaling and isolates the tachometer from line loads, as well

as reducing noise.

Table E-1. Physical Properties of the Beam
and Payload

Beam
Length = 48 in.
Section: 3/16 x 3/4 in. EI Product= 4120

Material:Aluminum Alloy: 6065-T6
Payload
Material: Aluminum Alloy: 6065-T6

Diameter= 1.25 in. Thickness= .75 in.
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The manufacturers specifications for the tachometer
are listed in table E-2. Measurements were made of the
tachometer to verify the manufactures voltage/speed
constant. The joint was rotated at a constant velocity for
several revolutions, the output voltage measured, and the
velocity computed. The data is presented in figure E-3.
Computation of the slope provides a constant,.9volt-

sec/radian, relatively close to the specified amount,

1.0volt-sec/rad.

E.2.3 Strain gages

State feedback using modal variables obtained from
reconstruction (chapter V), and estimation (chapter VI) is
based on measurement of strain due to bending at the

surface of the beam. Strain at a point on the surface of the
beam has contributions from axial stress, torsional stress,
and out of plane bending. Additionally, strain gages
generate low level signals, and are sensiti?e to
temperature.

The specific implementation for this experiment
consisted of a four active element bridge commonly used to
measured planar bending of beams [El]. This configuration is
much less sensitive to stresses due to torsion, extension,
transverse bending and provides higher signal levels in

bending than an individual gage. Temperature is also

compensated.
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Figure E-4 depicts the mounting arrangement for the
active gages in the bridge at a single measurement point.

The performance of the bridges was examined by locking
the joint and deflecting the endpoint in fixed increments.
The result is shown figure E-5. This result was compared
against linear elastic theory, allowing for calibration of
the bridge, and amplifiers in one step.

The gages are driven by a constant voltage bridge
control circuit (Honeywell Accudata 105), and the resultant
change in output 1is amplified (Honeywell Accudata 122)

before being connected to the by the analog to digital

converter.
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Device

Potentiometer

Amplifier

Tachometer

Amplifier

Strain Gage

Bridge

Amplifier

Motor

Power Amp

Resistor

Function

Joint Angle Sensor
Scaling/Isolation

of Joint Angle Signal

Joint Angle Velocity
Sensor

Scaling/Isolation
Joint Velocity

Dynamic Strain
Measurement
Drive Strain

Gage Bridge

Scaling Strain
Signal

Joint Torque

Motor Current

Motor Current
Sense

Hardware Identification

Table E-2

Manufacturer

Bourns
Part no. 658-5-1-502

KEPCO
Model no. BOP36-15M

Inland Motor
Model no. TG-2139A

Hewlett Packard
Model no. 6823A

Micro-Measurement
Systems

Part no. EA-13-250-350W

Honeywell

Model no. Accudata 105

Honeywell

Model no. Accudata 122

Inland Motor
Model no. T-5730-M

KEPCO
Part no. BOP15-20M

Ohmite

Specifications

5 kohm, 1 turn, Cermet
resistive element

2.0amp, 36 volt
Unity gain crossover 300khz

.9 volt-sec/rad
max speed 77 rad/sec

lamp, 20volt

Two gages per element,
250 ohms, solder tabs

Four active element, 5-10
volts DC excitation '

Variable gain,
.02-5000

Peak torque = 85 in-lbs,
peak current= 15 amps

20amp, 15 volt
300khz crossover

Variable Resistor,
.0-.5 ohms.

Z61
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E.3 Torque Motor/Servo-Amp

The digital to analog converter denerated voltage
signals proportional to the desired motor torque. The
commutated DC torque motor was driven by a servo-amp
configured in current mode. This meant that a current was
driven through the amplifier load (DC torgque motor)
proportional to the input voltage. This implementation uses
a sense resistor on the output terminal of the motor to
monitor current. The connections and configuration for this

mode of operation are shown in figure E-6.

t SENSFE LINE

+ TORQUE " /

IMpuT o AN

vy~

\
o— / )

\ _~ TRQUE
DC SIMVe- NP MOTQR

OMMON SEU'SE

OMMoN
INPUT

CRRENT SENSE RESISTR —m—mm——— | ——

Figure E-6. Motor/Amplifier Current Mode Configuration.
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APPENDIX F

CONTROLLER IMPLEMENTATION

This section covers the 1issues and structures of the
real time controller implementation, key hardware elements,
and software. Specific features, and methods written into
the software which were particularly useful for this system
are discussed. Additionally, the actual code utilized on the
IBM Series/1l to implement the LQR controller designs of
chapter 7 in real time is presented here as an example for
future programmers. The basic system structure and utilities
are described as well as the process required to compile,

link, and execute the software.

F.1l Software Development

The software évo;ved over the course of the éontroller
implementations into a compromise between initial
objectives, and performance requirements. Throughout the
software design the following goals were used as guides:

» Intelligibility - easily understandable source

code, high level of documentation, High level
language.

+ Modularity - Separation of code into distinct
functional modules, subroutines etc., common

to multiple controllers.

+ Operator Input/Output - Terminal supported

parameter adjustment.
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+ Speed - Fast execution times, resulting in short
cycle times which reduce the impact of
discretization

Applying these goals to a real-time implementation can
not be accomplished in an abstract form. Specific features
of the hardware, and available software compatible with the
hardware become extremely important in making software
generation.

Initially the controllers were implemented in Fortran,
this is a high 1level 1language familiar to most engineering
students. Difficulties were encountered by the vary system
transparency afforded by a high 1level 1language. System
overhead primarily due to provisions for multi-level, multi-
tasking options resulted in execution speeds far short of
processor capabilities. Additionally special features of the
analog input and output, and terminal devices were not
easily accessed. The combination of these factors led to
abandonment of Fortran as the language for implementation.

The second generation ofb control software was written
in IBM's system language, Event Driven Language (EDL). EDL
is a moderately high 1level language providing IF-THEN, DO-
WHILE structures, as well as subroutines support, vyet
closely resembles assembly language statements. EDL is also
tailored to the specific hardware elements providing full
use the device features. The difficulty encountered in this

iteration of the controllers was primarily speed of
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execution. Although EDL provided better access to the
hardware devices, system overhead was still extensive and
execution times were still much slower than indicated by
summing processor instruction times.

The third generation of software was a hybrid of EDL
and Assembly languages. EDL was utilized for controlling .the
system interfaces, and the computations were executed in
assembly language routines. The execution times for this
software hybrid came close to realizing the capabilities of
the processor. This compromise leaned more to the
performance requirements and modularity goals for <the
software, and less toward the intelligibility goal. However,
with alot of annotation, the time required for

familiarization is minimized.

F.2 Hardware Features

Special hardware functions were. found to be extremely
helpful in implementation of the control laws. Hardware
floating point computations were used throughout the
controller implementations. Depending upon the control law
design procedure and the input quantities being investigated
at any one time, the state gains varied a full order of
magnitude. Use of floating point instructions avoided
extensive rescaling required with integer computations to
retain high accuracy and resolution.

Another feature found to be extremely useful in
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investigating control strategies, was static screen support
for menu driven parameter adjustment using the terminal.
Many parameters needed to be input to the system and updated
for the various controllers. Static screens supported menu
type data entry providing easy access, and verification of

the memory locations holding key parameters.

F.3 IBM Series/1

The IBM Series/l1 utilized for the experiments is a
micro-processor based computing system supporting several
processors, and a wide variety of peripheral devices. For a
complete list of processors, cards, and subsystems supported
refer to "Series/1 Digest"[Fl]. Only the specific
configuration used in the experiment will be discussed here.

There are several unique features to the Series/l1l in
addition to the floating point hardwa;e and terminal support
mentioned above. These additional features were not required
for the sequential implementation of the controlle;s, but
will be mentioned to provide reference to the available
resources. The processor has separate I1I/0, and memory
channels, 213 programable interrupts from the I/0 channel,
and four hardware 1levels for rapid execution interrupt
processes.

The capabilities, and hardware of the Series/1

utilized for the experiments are summarized in table F-1.
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Table F-1. Series/l Configuration

Micro-processor Model 4955-F, 16 bit
Cycle Time 220 nano-sec
Instruction set 160 basic set
Storage 512 kilo-byte
Floating Multiply 19 micro-sec
I/0 Channel 256 addressable, 1.65 mega-

byte/sec throughput.

Mass Storage Model 4964
Hard Disk 64 mega-byte
Floppy 256 kilo-byte

Input and Output Sensor I/0 no. 4982

Analog Input
Solid State
16 differential points, 9600
samples/sec
Reed Relay
8 differential points, 200
samples/sec

Analog Output
Solid State
2 differential points,
20 micro-sec settling time.

Digital I/O
Isolated, 16 points
Non-Isolated, 16 points

Communications
Serial Async. 8 ports, ASCII, EBCDC

F3.1 Utilities and Program Preparation

The Series/1 supports an IBM programming
language/operating system called the Event Driven Executive,
which refers to its ability to identify and service
interrupt requests. This comes with a lot of useful utility
programs for system generation, diagnostics, and data

management. Additionally, editing, compiling, linking, and
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interactive debugging is well supported.

All the utility programs can be executed individually
using the relocating 1loader routine $L, or a "mothering"
program, $SMMAIN, which provides menu driven interfaces
with  which the utility routines can be invoked.
Documentation on the utility programs and there use is
contained in "Operator commands and Utilities
Reference"[F2]. An example of the procedure for compiling
will be given with each program, and a linking procedure

will follow the source codes for each controller.

F.4 Deterministic Regqulator

The source code for the regulator is broken into
several assembly language subroutines joined together.by a
driver/initialization routine written in IBM's Event Driven
Language EDL. The routines, their names, and functions are

summarized below:

LUENEDX (EDL) Drive parameter initialization menus,

¢]

all the assembly level subroutines,
provide interrupt capability

CONV(ASM) onvert input values, reconstruct
modal variables.

UPDATE(ASM) Update state estimate.

CNTRL (ASM) Execute control law and convert
output

EST(ASM) Estimate state variables.
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F.5 Program Generation

This section discusses the process required to
generated executable code for the Series/l. These steps are
straightforward, typical of all processors, but may be less
transparent on the Series/l than some programmers are
familiar with. The steps consist of source code generation
using a 1line or screen editor. The Series/l provides a
reasonable screen editor $FSE which can be loaded directly,
or via the system manager. Fortran, EDL, and Assembly code
source code can all be generated with this editor. The
source modules must be compiled individually into object
code. The system is provisioned with compilers for all three
languages, $FORT for Fortran, $EDXASM for EDL, and $S1ASM
for the Assembly source code which can again be invoked
directly at the system prompt, or with the session manager.

The compiled objects must be linked with each other,
and system library files 1into a relocatable module fpr
execution. The modules are linked with the utility program,
$EDXLINK, which as with the other system utilities can be
loaded directly or with the session manager.

The program generation sequence is summarized in table
F-2, for the case of the deterministic regulator. The source
files, temporary holding files set aside for the object

modules, and linking instructions are included.
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Table F-2. Program Generation Segquence

Step 1. Generate Source Code Modules (Editor - $FSE,EDX003)
Event Driven Language Driver - LUENEDX, GORDON
Assembly Code Modules - CONV1,GORDON

- UPDATE , GORDON
- CNTRL, GORDON
- EST, GORDON

Step 2. Assemble Object Modules
Event Driven Language Modules (Compiler - $EDXAS
M,EDX003) '
. Compile LUENEDX,GORDON to ASMWK1l,GORDON
Assembly Language Modules (Compiler - $S1ASM,EDX003)
Compile CONV1,GORDON to ASMWK2,GORDON

UPDATE , GORDON ASMWK3 , GORDON
CNTRL, GORDON ASMWK4 , GORDON
- EST,GORDON ASMWK5 , GORDON

Step 3. Link Executable Module (Linker - $EDXLINK,EDX003)
Assembled Object Modules
Include ASMWK1,GORDON
Include ASMWK2,GORDON
Include ASMWK3,GORDON
Include ASMWK4,GORDON
Include ASMWKS,GORDON

Access System Library
Autocall $AUTO,ASMLIB

Perform Linkage
Link EXEC,GORDON Replace End

Step 4. Execute Program

At System Prompt Utilize Relocating Loader on

Executable Module
$L EXEC,GORDON

Then Provide Input, and Output Data Files at Prompts
IN10,GORDON ,
IN10,GORDON (Write Modifications to Same
File)

F.5.1 Routine LUENEDX

This file can be compiled using the utility routine
$EDXASM. This routine is most easily accessed through the
program preparation facility of $SMMAIN. One word of
caution, destination files for the compiled objects must be
aliocated prior to compilation, or the object will not be
stored. To avoid generation of excess object files on the
hard disk, ASMWK1l on volume CONTROL was allocated as the
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typical destination for the compilation of LUENEDX.
(START OF FILE LUENEDX)

RS2 R EE R R SRR RS ER Rt s Al i Rt b Ak S Rt R ERE RS,

* % g KK * %
* EDX DRIVER PROGRAM WITH INITIALIZATION ROUTINE,AND I/OQ ***
* % d Kk * Kk K

% e K J K de de ke K de de ke Kk de Kok de T g de Je g Kk Ko e do de e Je Je de e de de do kK de g de K g de e ke ke ke ke ke ke de ke ke ok de ok koK
*

REDOO PROGRAM START,DS=((INPUT,??), (OUTPUT,??)),FLOAT=YES
*

* KEYBOARD INTERUPT ROUTINE DEFINITION TC STOP CONTROLLER
*

ATTNLIST (X,QUIT)

QUIT MOVE FLAG, 1
ENDATTN
EXTRN EST, CONV, UPDATE , CNTRL
EXTRN $IMOPEN, $ IMDEFN , $ IMPROT
TERM I0CB SCREEN=STATIC
%*
Je % Je Je g Je Je de g e Je g g de Je do g e Je de de K Je ke Jo de de e e Je de g Je Je Jo de K K K de Ko e de de de e Je de do K ke KoKk Kok ok kKK
* DEFINE THE ANALOG INPUT AND OUTPUT PORTS
* THETA , STRAIN1, STRAIN2 , VELOCITY
k2RSSR SRR R R i i, R ,ASSSSEESEE S S
*
* ANGLE SENSOR
%*
IODEF AIl,ADDRESS=63,POINT=0,RANGE=5V
* STRAIN GAGES
*
IODEF AI2,ADDRESS=63,POINT=1,RANGE=500MV
IODEF AI3,ADDRESS=63,POINT=2,RANGE=500MV
*
* VELOCITY SENSOR
* - -
IODEF AI4,ADDRESS=63,POINT=3,RANGE=5V
*
*. THE DESIRED END POINT INPUT
*
IODEF AIS,ADDRESS=63,POINT=4,RANGE=5V

* DITHER SIGNAL

IODEF AI6,ADDRESS=63,POINT=5,RANGE=5V
*
* THE TORQUE OUTPUT A/D DEVICE
*

IODEF AOl,ADDRESS=64,POINT=0

* SIGNAL OUTPUT PORT
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IODEF AQ2,ADDRESS=64,POINT=1

¥*

J % Je Jo Je d Je Kk Jo K de ke de de de Kk de de e e e Kk kg de e de sk e de e K de de K de K de e e e de K ek de de e de ke Kk ke K de ke de e e e Kk
*

* MAIN MENU DRIVER
*

% % J g Je de de Kk K J Kk K dk de e e de de de ke e de Kk e ke gk K de Kk ke ke Kk e K sk Kk K ke e e de de Kk de de ke ke de ke ke ok ke ke ok Kk
*

* CALL THE PREPARED SCREEN IMAGE

*

START  EQU *

LMENU  CALL $IMOPEN, (DSNAME1) , (DISKBUF) , (TERMTYPE)
ENQT TERM
CALL $IMPROT, (DISKBUF) , (FTABLE)

TERMCTRL DISPLAY
* READ THE SELECTION INTEGER CHOICE
PRINTNUM Z2ERO,FORMAT=(1,0,I),LINE=16,SPACES=26

PRINTEXT LINE=16,SPACES=26
TERMCTRL DISPLAY

WAIT KEY
GETVALUE  CHOICE,FORMAT=(1,0,I),LINE=16,SPACES=26
IF (CHOICE,EQ,1),GOTO, LINPUT
IF (CHOICE,EQ,2),GOTO, LGAIN
IF (CHOICE,EQ, 3),GOTO, LOBSVR
IF (CHOICE,EQ,4),GOTO,LINCOEF
IF (CHOICE,EQ,5),GOTO, LUPDATE
IF (CHOICE,EQ,6),GOTO, LZERO
IF (CHOICE,EQ,7),GOTO, LOUTPT
IF (CHOICE,EQ,8),GOTO, LXQT
IF (CHOICE,EQ,9),GOTO,LEND
GOTO LMENU '
%*
* ROUTINE TO INPUT DATA SET OF PARAMETERS
* CALL THE PREPARED SCREEN
*
LINPUT CALL $IMOPEN, (DSNAME3) , (DISKBUF) , (TERMTYPE)
ENQT TERM
CALL $IMPROT, (DISKBUF) , (FTABLE)

TERMCTRL DISPLAY

* READ THE INPUT DATA SET NAME AND VOLUME

READ Dsl1,DATBUF, 2
MOVE FN,DATBUF, (256 ,BYTES)
GOTO LMENU

ROUTINE VIEW/ALTER GAIN VECTOR
* CALL THE PREPARED SCREEN
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*

CALL $IMOPEN, (DSNAME2) , (DISKBUF), (TERMTYPE)
ENQT TERM

CALL $IMPROT, (DISKBUF), (FTABLE)

TERMCTRL DISPLAY

FILL IN THE DEFAULT VALUES

PRINTNUM

FN+56 ,FORMAT=(12,6,E) ,TYPE=F, LINE=3,SPACES=40

PRINTNUM FN+60,FORMAT=(12,6,E),TYPE=F,LINE=5,SPACES=40
PRINTNUM FN+64,FORMAT=(12,6,E),TYPE=F,LINE=7,SPACES=40
PRINTNUM FN+68,FORMAT=(12,6,E),TYPE=F,LINE=9,SPACES=40
PRINTNUM FN+72,FORMAT=(12,6,E),TYPE=F,LINE=11,SPACES=40
PRINTNUM FN+76,FORMAT=(12,6,E),TYPE=F,LINE=13,SPACES=40
*
* POSITION THE CURSOR,WAIT FOR THE ENTER KEY, GET THE
* VALUE
*
PRINTEXT LINE=14,SPACES=33
TERMCTRL  DISPLAY
WAIT KEY
GETVALUE FN+56,FORMAT=(12,6,E),TYPE=F,LINE=3,SPACES=40
GETVALUE FN+60,FORMAT=(12,6,E),TYPE=F,LINE=5,SPACES=40
GETVALUE FN+64,FORMAT=(12,6,E),TYPE=F,LINE=7,SPACES=40
GETVALUE FN+68,FORMAT=(12,6,E),TYPE=F,LINE=9,SPACES=40
GETVALUE FN+72,FORMAT=(12,6,E),TYPE=F,LINE=11,SPACES=40
GETVALUE FN+76,FORMAT=(12,6,E),TYPE=F,LINE=13,SPACES=40
GOTO LMENU
*
* ROUTINE TO VIEW/ALTER OBSERVOR PARAMETERS
*
LOBSVR  ENQT TERM
TERMCTRL  BLANK
DEQT
CALL $IMOPEN, (DSNAME4) , (DISKBUF) , (TERMTYPE)
ENQT TERM
CALL $ IMPROT, (DISKBUF), (FTABLE)
TERMCTRL  DISPLAY
PRINTNUM FN,FORMAT=(12,6,E),TYPE=F,LINE=7,SPACES=4
PRINTNUM FN+4,FORMAT=(12,6,E),TYPE=F,LINE=7,SPACES=21
PRINTNUM FN+24,FORMAT=(12,6,E),TYPE=F,LINE=7,SPACES=49

PRINTNUM
PRINTNUM
PRINTNUM

PRINTNUM

PRINTNUM
PRINTNUM
PRINTNUM
PRINTNUM
PRINTNUM
PRINTNUM
PRINTNUM

FN+28,FORMAT=(12,6,E) ,TYPE=F,LINE=9,SPACES=4
FN+32 ,FORMAT=(12,6,E) ,TYPE=F,LINE=9,SPACES=21
FN+52 ,FORMAT=(12,6,E) ,TYPE=F,LINE=9,SPACES=49
FN+8 ,FORMAT=(12,6,E) ,TYPE=F,LINE=13 ,SPACES=8
FN+12 ,FORMAT=(12,6,E) ,TYPE=F,LINE=13 ,SPACES=25
FN+16 ,FORMAT=(12,6 ,E) ,TYPE=F,LINE=13, SPACES=42
FN+20,FORMAT=(12,6,E) ,TYPE=F,LINE=13,SPACES=59
FN+36 ,FORMAT=(12,6,E) ,TYPE=F,LINE=15,SPACES=8
FN+40,FORMAT=(12,6,E) ,TYPE=F,LINE=15,SPACES=25
FN+44,FORMAT=(12,6,E) ,TYPE=F,LINE=15,SPACES=42
FN+48 ,FORMAT=(12,6,E) ,TYPE=F,LINE=15, SPACES=59
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PRINTEXT LINE=19,SPACES=30
TERMCTRL DISPLAY
WAIT KEY A
GETVALUE FN,FORMAT=(12,6,E),TYPE=F,LINE=7,SPACES=4
GETVALUE FN+4,FORMAT=(12,6,E),TYPE=F,LINE=7,SPACES=21
GETVALUE FN+24,FORMAT=(12,6,E),TYPE=F,LINE=7,SPACES=49
GETVALUE FN+28,FORMAT=(12,6,E),TYPE=F,LINE=9,SPACES=4
GETVALUE FN+32,FORMAT=(12,6,E),TYPE=F,LINE=9,SPACES=21
GETVALUE FN+52,FORMAT=(12,6,E), TYPE=F,LINE=9,SPACES=49
GETVALUE FN+8,FORMAT=(12,6,E),TYPE=F,LINE=13,SPACES=8
GETVALUE FN+12,FORMAT=(12,6,E),TYPE=F,LINE=13,SPACES=25
GETVALUE FN+16,FORMAT=(12,6,E), TYPE=F,LINE=13,SPACES=42
GETVALUE FN+20,FORMAT=(12,6,E),TYPE=F,LINE=13,SPACES=59
GETVALUE FN+36,FORMAT=(12,6,E),TYPE=F,LINE=15, SPACES=8
GETVALUE FN+40,FORMAT=(12,6,E),TYPE=F,LINE=15,SPACES=25
GETVALUE FN+44,FORMAT=(12,6,E),TYPE=F,LINE=15,SPACES=42
GETVALUE FN+48,FORMAT=(12,6,E),TYPE=F,LINE=15,SPACES=59
DEQT
GOTO LMENU
LUPDATE ENQT TERM

TERMCTRL  BLANK

DEQT

CALL $IMOPEN, (DSNAMES ) , (DISKBUF) , (TERMTYPE)

ENQT TERM

CALL $IMPROT, (DISKBUF) , (FTABLE)

TERMCTRL  DISPLAY
PRINTNUM FN+148,FORMAT=(12,6,E), TYPE=F,LINE=13,SPACES=8
PRINTNUM FN+152,FORMAT=(12,6,E),TYPE=F,LINE=15,SPACES=8
PRINTNUM FN+156,FORMAT=(12,6,E),TYPE=F,LINE=13,SPACES=25
PRINTNUM FN+160,FORMAT=(12,6,E),TYPE=F,LINE=15,SPACES=25
PRINTNUM FN+164,FORMAT=(12,6,E),TYPE=F,LINE=13,SPACES=42
PRINTNUM FN+168,FORMAT=(12,6,E),TYPE=F,LINE=15,SPACES=42

PRINTNUM
PRINTNUM
PRINTEXT
TERMCTRL
WAIT '
GETVALUE
GETVALUE
GETVALUE
GETVALUE
GETVALUE
GETVALUE
GETVALUE
GETVALUE

DEQT

*
*
*

GOTO

ROUTINE

LINCOEF ENQT

FN+172,FORMAT=(12,6,E) ,TYPE=F,LINE=13,SPACES=59
FN+176 ,FORMAT=(12,6 ,E) ,TYPE=F,LINE=15,SPACES=59
LINE=19,SPACES=30

DISPLAY

KEY

FN+148 ,FORMAT=(12,6,E) ,TYPE=F,LINE=13,SPACES=8
FN+152 ,FORMAT=(12,6,E) ,TYPE=F,LINE=15,SPACES=8
FN+156 ,FORMAT=(12,6,E) ,TYPE=F, LINE=13,SPACES=25
FN+160,FORMAT=(12,6,E) ,TYPE=F,LINE=15,SPACES=25
FN+164,FORMAT=(12,6,E) ,TYPE=F,LINE=13,SPACES=42
FN+168,FORMAT=(12,6 ,E) ,TYPE=F,LINE=15,SPACES=42
FN+172,FORMAT=(12,6 ,E), TYPE=F,LINE=13,SPACES=59
FN+176 ,FORMAT=(12,6,E) ,TYPE=F,LINE=15,SPACES=59

LMENU
TO VIEW/ALTER INPUT COEFFICIENTS

TERM
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TERMCTRL BLANK

DEQT

CALL $IMOPEN, (DSNAMEG6) , (DISKBUF) , ( TERMTYPE)
ENQT TERM

CALL $IMPROT, (DISKBUF), (FTABLE)

TERMCTRL DISPLAY

FILL IN THE DEFAULT VALUES

%*
*
*

LOUTPT

PRINTNUM FN+80 ,FORMAT=(12,6,E) ,TYPE=F,LINE=5,SPACES=25
PRINTNUM FN+84 ,FORMAT=(12,6,E) ,TYPE=F,LINE=7,SPACES=25
PRINTNUM FN+88 ,FORMAT=(12,6,E) ,TYPE=F,LINE=9,SPACES=25
PRINTNUM FN+92,FORMAT=(12,6,E),TYPE=F,LINE=11,SPACES=25
PRINTNUM FN+96,FORMAT=(12,6,E),TYPE=F,LINE=13,SPACES=25
PRINTNUM FN+100,FORMAT=(12,6,E) ,TYPE=F,LINE=15,SPACES=25
PRINTNUM FN+104,FORMAT=(12,6,E),TYPE=F,LINE=17,SPACES=25
PRINTNUM FN+108,FORMAT=(12,6, E) TYPE=F,LINE=19,SPACES=25
PRINTEXT LINE-Zl SPACES=34
TERMCTRL DISPLAY

WAIT KEY
GETVALUE FN+80,FORMAT=(12,6,E) ,TYPE=F,LINE=5,SPACES=25
GETVALUE FN+84,FORMAT=(12,6,E),TYPE=F,LINE=7,SPACES=25
GETVALUE FN+88,FORMAT=(12,6,E) ,TYPE=F,LINE=9,SPACES=25
GETVALUE FN+92,FORMAT=(12,6,E),TYPE=F,LINE=11,SPACES=25
GETVALUE FN+96,FORMAT=(12,6,E),TYPE=F,LINE=13,SPACES=25
GETVALUE FN+100,FORMAT=(12,6,E) ,TYPE=F,LINE=15,SPACES=25
GETVALUE FN+104,FORMAT=(12,6,E),TYPE=F,LINE=17,SPACES=25
GETVALUE FN+108,FORMAT=(12,6,E) ,TYPE=F,LINE=19,SPACES=25
TERMCTRL BLANK
DEQT

GOTO LMENU

ROUTINE TO OUTPUT SELECTED PARAMETERS

ENQT TERM

TERMCTRL BLANK

DEQT

CALL $IMOPEN, (DSNAMES) , (DISKBUF), (TERMTYPE)
ENQT TERM

CALL $IMPROT, (DISKBUF), (FTABLE)
TERMCTRL DISPLAY

MOVE DATBUF ,FN, (256 ,BYTES)
WRITE DS2,DATBUF, 2

DEQT

GOTO LMENU

LS R A EEE RS RS EERE RS ERSEREaR Rt tRRa A ot R

Je Je K % K K
% % % % % %k
% K % % K %

SYSTEM INITIAL ZEROING ROUTINE

% Je Je Je de Je K de de K Jo e K de de de de K de e v Fe Kk Je e de e Jeo v e de ok e d de K e do e dde ke de e ok e e ke de e ke e de ke ke ke ke

LZERO

CALL

$IMOPEN, (DSNAME7) , (DISKBUF) , (TERMTYPE)



ENQT
CALL
TERMCTRL
2222 SBIO
SBIO
SBIO
SBIO

*

USER
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TERM

$ IMPROT, (DISKBUF), (FTABLE)
DISPLAY

AIl,AN

AI2,AN+2

AI3,AN+4

AI4,AN+6

CALL THE CONVERSION ROUTINE TO TRANSFORM THE INPUTS

CONV,PARM=(AN,FN)

PRINTNUM FN+112,FORMAT=(12,6,E),TYPE=F,LINE=4,SPACES=30
PRINTNUM FN+124,FORMAT=(12,6,E),TYPE=F,LINE=6,SPACES=30
PRINTNUM AN+2,FORMAT=(6,0,I),LINE=8,SPACES=30
PRINTNUM AN+4,FORMAT=(6,0,I),LINE=10,SPACES=30

PRINTNUM
PRINTEXT
TERMCTRL
WAIT
GETVALUE
IF
GOTO
LXQT DEQT
STRCN CALL
ENQT
CALL
DEQT

2ERO,FORMAT=(1,0,I),LINE=12,SPACES=31
LINE=12,SPACES=31

DISPLAY

KEY
ZM1,FORMAT=(1,0,I),LINE=12,SPACES=31
(2M1,EQ,1) ,GOTO,LMENU

2222

$IMOPEN, (DSNAMES) , (DISKBUF) , (TERMTYPE)
TERM

$IMPROT, (DISKBUF), (FTABLE)

% Je K e de e e e e e o Jo Je o Je de e Jo Je de Je Je K de gk e e e e e de de de Je Ko de de Je K de Je Je Je e e Je de de de de Fe de de g de de e de K

% J J X X

***** REDUCED DYNAMIC ORDER LUENBERGER OBSERVER/CONTROLLER

& % % J X

% Je s e Je Ko K e Jo de Je K Kk K ke K Je de Ko g e Je kK Kk e de de de K e d de e ke de g de de e e de K de ke ke de g de de e ke ok de ok ke ke ke ke

*

* THE SECTION WHICH READS THE ANALOG INPUT VALUES
%* .
LOOP1  SBIO AIl,AN
SBIO AI2,AN+2
SBIO AI3,AN+4
SBIO AI4,AN+6
SBIO AIS5,AN+10
SBIO AI6,AN+12
*
* CALL THE ASEMBLER VERSION OF THE ESTIMATOR AND THE
* CONTROLLER
%*
USER CONV, PARM= (AN, FN)
USER UPDATE, PARM=( AN, FN)
USER CNTRL, PARM=( AN, FN)
SBIO AOL,AN+8
USER EST, PARM=(AN,FN)
IF (FLAG,NE, 0) ,GOTO, RTN



RTN

LEND
*

GOTO
SBIO
MOVE
ENQT
TERMCTRL
GOTO
PROGSTOP

LOOP1
AOl, ZERO
FLAG, 0
TERM
BLANK
LMENU

208

% d kg e K de de Kk koK ke de ke de K de K dede do ek K ke ok Je de ke de e e de Je de de de e e o de de de ek de Je K ode K de de kK K ke e K

*

OBSERVER VELMOD1l DEPENDENCE LAST
" "

"
"
1
"
"

LMOD2 DEPE

1"

1"
"

JOINT ANGLE GAIN
MOD 1 AMPLITUDE GAIN
MOD 2 AMPLITUDE GAIN
JOINT VELOCITY GAIN
MOD 1 VELOCITY GAIN
MOD 2 VELOCITY GAIN
JOINT ANGLE INPUT CONVERSION
STRAIN 1 MOD1l INPUT CONVERSION
STRAIN 2 MOD1l INPUT CONVERSION
STRAIN 1 MODZ2 INPUT CONVERSION

FLAG DATA F'0!'
ZERO DATA F'0'
CHOICE DATA F'0
ZM1 DATA F'0’
INL DATA F'0'
AN DATA 12r'0"
INSC DATA F'125"'
*JOINT EQU AN
*STRAIN1 EQU AN+2
*STRAIN2 EQU AN+4
*VEL EQU AN+6
*TORQ EQU AN+8
*DESANGLE AN+10
*DITHER SIGNAL AN+12
* AM+14
FN DATA 64E'0.0'
*F11 EQU FN

*F12 EQU FN+4 "
*Gll EQU FN+8 "
*Gl2 EQU FN+12 "
*Gl3 EQU FN+1l6 "
*Gl4 EQU FN+20 "
*B1l EQU FN+24 "
*F21 EQU FN+28 OBSERVOR VE
*F22 EQU FN+32 "
*G21 EQU FN+36 "
*G22 EQU FN+40 "
*G23 EQU FN+44 "
*G24 EQU FN+48 "
*B2 EQU FN+52 "
*K1 EQU FN+56

*R2 EQU FN+60

*K3 EQU FN+64

*K 4 EQU FN+68

*KS5 EQU FN+72

*K6 EQU FN+76
*CONV1 EQU FN+80
*CONV2 EQU FN+84
*CONV3 EQU FN+88
*CONV4 EQU FN+92
*CONVS EQU FN+96

NDENCE LAST
"

VELMOD1
VELMOD?2
ANGLE
MOD1
MOD2
JOINTVEL
TORQUE
VELMOD1
VELMOD2
ANGLE
MOD1
MOD2
JOINTVEL
TORQUE

STRAIN 2 MOD2 INPUT CONVERSION



*CONV6
*CONV7
*CONVS
*FTHET
*FMOD1
*FMOD?2
*FOMEG
*ESTV1
*ESTV2
*TORQ

*QUTPT
*ZERO

*

% % % % % % ¥ %

%*

DATBUF
BDS
DISKBU
FTABLE
RDAT1
INSET
OUTSET
DSNAME1
DSNAME2
DSNAME3
DSNAME4
DSNAMES
DSNAME6
DSNAME7
DSNAMES
DSNAMES
TERMTYP
MEAS

(END OF FILE LUENEDX)

209

EQU FN+100 TACHOMETER INPUT CONVERSION
EQU FN+104 TORQUE OUTPUT CONVERSION
EQU FN+108 INPUT SIGNAL CONVERSION
EQU FN+112 JOINT ANGLE FLOATING POINT
EQU FN+116 AMPLITUDE MODEl FLOATING POINT
EQU FN+120 AMPLITUDE MODEZ2 FLOATING POINT
EQU FN+124 JOINT VELOCITY FLOATING POINT
EQU FN+128 ESTIMATED MODl VELOCITY FLOATING POINT
EQU FN+132 ESTIMATED MODZ2 VELOCITY FLOATING POINT
EQU FN+136 TORQUE FLOATING POINT
EQU FN+140
EQU EN+144
EQU FN+148 UPDATE GAIN L1
EQU FN+152 " " L2
EQU FN+156 " " L3
EQU FN+160 " " L4
EQU FN+164 " " L5
EQU FN+168 " " L6
EQU FN+172 " " L7
EQU FN+176 " " L8
EQU FN+180
EQU FN+184
BUFFER 256,BYTES
BUFFER 258 ,BYTES
BUFFER 1024,BYTES
BUFFER 15,WORDS
BUFFER 512,BYTES,INDEX=INDX1l
TEXT LENGTH=20
TEXT LENGTH=20

TEXT '"MENUSCR, GORDON'

TEXT ' GAINSCR, GORDON'

TEXT ' INPUTSCR , GORDON''

TEXT 'OBSVRSCR, GORDON''

TEXT 'UPDATSCR , GORDON''

TEXT ' COEFSCR, GORDON'

TEXT ' ZEROSCR , GORDON''

TEXT ' OUTPTSCR,GORDON''

TEXT ' LUENSCR, GORDON''
E DATA C'4978'

DATA 4F'0’

ENDPROG

END

F.5.2 Routine CONV

This routine is compiled using the utility routine $S1ASM.

The program preparation facility accessed via $SMMAIN is the

easiest method for its execution. The file ASMWK2 on volume
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CONTROL of the harddisk was reserved as the destination file

for the compiled object.

(START OF FILE CONV)

Je Je Je J¢ Je de de Je do Je e de de K de de de Je Je Je Je de Kk de v e e de de de e de e de T de do Fe e Je de de K Je de Je de K K de v K ke ke e e ke Kok

* %k Kk kK
% % % Kk X

INPUT CONVERSION/RECONSTRUCTION ROUTINE

LEEE SRR RS RR R e Xt ot et et LS

%* % % % %
START
EXTRN RETURN
ENTRY CONV

CONV EQU *
FMVC 2(R1,0)*,FR3
FM 84(R1,2)*,FR3
FMVC 4(R1,0)*,FR2
FM 88(R1,2)*,FR2
FA FR2,FR3
FMV FR3,116(R1,2)*
FMVC 2(R1,0)*,FR2
FM 92(R1,2)*,FR2
FMVC 4(R1,0)*,FR1
FM 96(R1,2)*,FR1
FA FR1,FR2
FMV FR2,120(R1,2)*
FMVC (R1,0)*,FR1
FM 80(R1,2)*,FR1
FMV FR1,112(R1,2)*
FMVC 6(R1,0)*,FR1
FM 100(R1,2)*,FRL
FMV FR1,124(R1,2)*
ABI 4,R1
B RETURN
END

(END OF FILE CONV)

F.5.3 Routine UPDATE

:STRAIN1
:CONV2*STRAIN1
: STRAINZ2
:CONV3*STRAINZ2
¢:MODE1

:SAVE MODE1l

: STRAIN1
:CONV4*STRAIN1
: STRAIN2
:CONV5*STRAIN2Z
:MODE2

:SAVE MODE2
:THETA
:CONV1*THETA
¢:SAVE FTHETA
:OMEGA

: CONV6 *OMEGA
:SAVE FOMEGA

This routine is compiled using the utility routine $S1ASM.

The program preparation facility accessed via $SMMAIN is the

easiest method for its execution.

The file ASMWK3 on volume

CONTROL of the harddisk was reserved as the destination file

for the compiled object.



(START OF

FILE UPDATE)
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2 X R TR ERX LR REER SRR SR R R R RRRERERERRERRRRERRRERER SRR ERESS R RS

% Kk K X %
* %k kK
% % Kk %k %k

UPDATE FOR LUENBERGER OBSERVER

L2 222222222 2R RR R RRRRRRRRRRRRRRRARRRERRESRRERREEEREESEEE]

UPDATE
*

** UPDATE

*

*

START

EXTRN RETURN
ENTRY UPDATE
EQU *

ESTIMATE OF MODE ONE VELOCITY

FMV 112(R1,2)*,FR3
FM 148(R1,2)*,FR3
FMV 116(R1,2)*,FR1
FM 156(R1,2)*,FR1
FA FR1,FR3

FMV 120(R1,2)*,FR1
FM 164(R1,2)*,FR1
FA FR1,FR3

FMV 124(R1,2)*,FR1
FM 172(R1,2)*,FR1
FA FR1,FR3

FA 128(R1,2)*,FR3
FMV FR3,128(R1,2)*

+FTHETA
:UPDATE
+FMODE1l
:UPDATE
:ADD TO
:FMODE2
:UPDATE
:ADD TO
: FOMEGA
:UPDATE
:ADD TO
:ADD EST

:DISPLACEMENT LISTING IN M2SO

L1*FTHETA

L3*FMOD1
UPDATE 21

L5*FMODE2
UPDATE 21

L7*FOMEGA
UPDATE 2Z1
VEL MODEl

:SAVE UPDATE 21

** BEGIN UPDATE ESTIMATE OF MODE TWO VELOCITY

*

FMV 112(R1,2)*,FR3
FM 152(R1,2)*,FR3
FMV 116(R1,2)*,FR1
FM 160(R1,2)*,FR1
FA FR1,FR3

FMV 120(R1,2)*,FR1l
FM 168(R1,2)*,FR1
FA FR1,FR3

FMV 124(R1,2)*,FR1
FM 176(R1,2)*,FR1
FA FR1,FR3

FA 132(R1,2)*,FR3
FMV FR3,132(R1,2)*
ABI 4,R1

B RETURN

END

F.5.4 Routine CNTRL

:FTHETA
:UPDATE
:FMODE1
:UPDATE
:ADD TO
:FMODE2
:UPDATE
+:ADD TO
:FOMEGA
: UPDATE
:ADD TO
:ADD EST

L2*FTHETA

L4*FMOD1
UPDATE 22

L6*FMODE?2
UPDATE 22

L8*FOMEGA
UPDATE 22
VEL MODEl

:SAVE UPDATE 22

This routine is compiled using the utility routine $S1ASM.

The program preparation facility accessed via $SMMAIN is the
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easiest method for its execution. The file ASMWK3 on volume
CONTROL of the harddisk was reserved as the destination file
for the compiled object.

(START OF FILE CNTRL)
% e e e e 3 d Je ke e de K K e e de e ek e K e ok ok e e e ok e ok o v e S K ke ke ok ok e K ok o ok ke ok e e ok e ke e e
Kk KKK

falakadole CONTROL LAW FOR LUENBERGER/KALMAN FILTER ---

* XKk kk
% e Je Jo Je K K de Je K Jo e Je Fe K K K de Jodo Je de de K J Je K de de K de A de K d de Kk ke K dedk ke k ok ode ke de ko dede Kk de ke ok ok Kk

START
EXTRN RETURN :DISPLACEMENT LISTING IN M2SO
ENTRY CNTRL

CNTRL EQU ok
FMV 112(R1,2)*,FR3 : FTHETA
FM 56(R1,2)*,FR3 :K1*FTHETA
FMV 116(R1,2)*,FR1 : FMODE1
FM 60(R1,2)*,FR1 :K2*FMOD1
FA FR1,FR3 :ADD TO CONTROL
FMV 120(R1,2)*,FR1 : FMODE?2
FM 64(R1,2)*,FR1 :K3*FMODE2
FA FR1,FR3 :ADD TO CONTROL
FMV 124(R1,2)*,FR1 : FOMEGA
FM 68(R1,2)*,FR1 :K4 *FOMEGA
FA FR1,FR3 :ADD TO CONTROL
FMV 128(R1,2)*,FR1 :EST VEL MODE1
FM 72(R1,2)*,FR1 :KS*EST VEL MODE1
FA FR1,FR3 :ADD TO CONTROL
FMV 132(R1,2)*,FR1 :EST VEL MODE2
FM 76(R1,2)*,FR1 :K6*EST VEL MODE2
FA FR1,FR3 :ADD TO CONTROL
FMVC 10(R1,0)*,FR1 :DESIRED ANGLE
FM 108(R1,2)*,FR1 :SCALE ANGLE
FA FR1,FR3 :ADD
FMV FR3,136(R1,2)* :SAVE TORQ
FMVC 12(R1,0)*,FR1 :DITHER SIGNAL
FM 108(R1,2)*,FR1 : SCALE
FA FR1,FR3 :
FM 104(R1,2)*,FR3 : CONVERT TORQ
FMVC FR3,8(R1,0)* :SAVE INTEGER TORQ
ABI 4,R1
B RETURN
END

(END OF FILE CNTRL)

F.5.5 Routine EST

This routine is compiled wusing the utility routine $S1AsM.
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The program preparation facility accessed via $SMMAIN is the
easiest method for its execution. The file ASMWK4 on volume
CONTROL of the harddisk was reserved as the destination file
for the compiled ocbject.

(START OF FILE EST)
T e T R R T T R R T L
XkKKK

* %k %k % LUENBERGER OBSERVOR FOR MODAL VELOCITIES ====-==--=

* Jo Je d Xk
Je Je J¢ Je Je Je % Je Jo % de Je e K e K K Je ke e e ke ke K de de b K K e vk d e e e de e vk e e e K de Fe ek d K e Kk Kk K Kk ke e ke ok

START
EXTRN RETURN :DISPLACEMENT LISTING IN
* LUENEDX
ENTRY EST
EST EQU *
FMV 128(R1,2)*,FR3 :START EQN1 GET VELMOD1
FM 0(R1,2)*,FR3 :F11*VELMOD1
FMV 132(R1,2)*,FR2 :GET*MODE2
FM 4(R1,2)*,FR2 : F12*MODE2
FA FR2,FR3 :SUM TERMS FOR EQN 1
FMV 112(R1,2)*,FR2 :GET FTHETA
FM 8(R1,2)*,FR2 :G11*FTHETA
FA FR2,FR3 :SUM TERMS FOR EQN 1
FMV 116(R1,2)*,FR2 :GET MOD1
FM 12(R1,2)*,FR2  :G1l2*MOD1l
FA FR2,FR3 :SUM TERMS FOR EQN 1
FMV 120(R1,2)*,FR2 :GET MOD2
FM- 16(R1,2)*,FR2  :GLl3*THETA
FA FR2,FR3 :SUM TERMS FOR EQN 1
FMV 124(R1,2)*,FR2 :GET FOMEGA
FM 20(R1,2)*,FR2  :Gl4*FOMEGA
_FA FR2,FR3 :SUM TERMS FOR EQN 1
FMV 136(R1,2)*,FR2 :GET FTORQ
FM 24(R1,2)*,FR2  :B1*TORQ
FA FR2,FR3 :COMPLETE EQN 1
FMV 128(R1,2)*,FR2 :START EQN2 GET VELMOD1
FM 28(R1,2)*,FR2  :F21*VELMOD1
FMV 132(R1,2)*,FR1 :GET*MODE2
FM 32(R1,2)*,FR1  :F22*MODE2
FA FR1,FR2 :SUM TERMS FOR EQN 2
FMV 112(R1,2)*,FRl :GET FTHETA
FM 36(R1,2)*,FR1  :G21*FTHETA
FA FR1,FR2 :SUM TERMS FOR EQN 2
FMV 116(R1,2)*,FR1 :GET MOD1l
FM 40(R1,2)*,FRl  :G22*MOD1
FA FR1,FR2 :SUM TERMS FOR EQN 2

FMV 120(R1,2)*,FR1 :GET MOD2



FM
FA
FMV
FM
FA
FMV
FM
FA
FMV
FMV
ABI
B

END

(END OF FILE EST)

44(R1,2)*,FR1
FR1,FR2
124(R1,2)*,FR1
48(R1,2)*,FR1
FR1,FR2
136(R1,2)*,FR1
52(R1,2)*,FR1
FR1,FR2
FR3,128(R1,2)*
FR2,132(R1,2)*
4,R1

RETURN

:G23*THETA

:SUM TERMS FOR EQN 2
:GET FOMEGA
:G24*FOMEGA

:SUM TERMS FOR EQN 2
:GET FTORQ

:B2*TORQ

: COMPLETE EQN 2
:SAVE EST VEL MODEl
:SAVE EST VEL MODE2

214
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