
Report No. UIUCDCS-R-86-1303 UILU-ENG-86- 17 68 I 
I 
I 

/bJ-&G 

6w73 
Benchmarking Hypercube Hardware and Software 

by 

Dirk C. Grunwald and Daniel A. Reed 

November - 1986 I 



c 

REPORT NO. UIUCDCS-R-86-1303 

BENCHMARKING HYPERCUBE HARDWARE AND SOFTWARE 

by 
Dirk C. Grunwald 

Daniel A. Reed 

November 1988 

DEPARTMENT OF COMPUTER SCIENCE 
1304 W. SPRINGFIELD A W .  

URBANA, IL 61801 
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN 

This work was supported inpart by NSF Grant Number DCR 84-17948, 
NASA Contract Number NAG 1-813 and by the Jet Propulsion Laboratory. 



1 

Benchmarking Hypercube Hardware and Software 

DIRK c. GRUNWALD* AND DANIEL A. REED* 

The most constant difficulty in contriving the engine has arisen from the desire to reduce the time 
in which the calculations were executed to the shortest which is possible. 

Charles Babbage (1837) 

Abstract. It has long been a truism in computer systems design tha t  balanced systems achieve 
the best performance. Message passing parallel processors are no different. T o  quantify the bal- 
ance of a hypercube design, we have developed an experimental methodology and applied the as- 
sociated suite of benchmarks t o  several existing hypercubes. The benchmark suite includes tests 
of both processor speed in the absence of internode communication and message transmission 
speed as a function of communication patterns. 

Introduction 
The appearance of a new computer system always raises many questions about its perfor- 

mance, both in absolute terms and in comparison to other machines of its class. In addition, re- 
peated studies have shown tha t  a system’s performance is maximized when the components are 
balanced (Le., there is no single system bottleneck) [DeBu78]. Message passing parallel processors 
are no different; optimizing performance requires a judicious combination of node computation 
speed, message transmission latency, and operating system software. For example, high speed 
processors connected by high latency communication links restrict the classes of algorithms that  
can be efficiently supported. Although the interaction of communication and computation can be 
examined analytically [ReSc83], time varying behavior and the idiosyncrasies of system software 
can only be captured by observation and measurement. Consequently, we began a benchmark 
study of hypercubes, with three primary goals. 

Because the performance of any system does depend oa a combination of hardware and 
software, our first and primary goal was determining the performance of both the underlying 
hardware and the fraction of that  performance lost due to poor compilers and operating system 
overhead. Second, we wished to characterize the balance of processing power and communication 
speed. With these parameters, algorithms can be developed tha t  are best suited to  the machine 
[SaNN86]. Finally, we are developing a high-performance, portable operating system for hyper- 
cubes, called Plcasso, that  provides dynamic task migration to  balance workloads and adaptive 
routing of data  to  avoid congested portions of the network. To meet these goals, it must be pos- 
sible to rapidly transmit small s ta tus  ’messages. Thus, we sought performance da ta  to tune 
Picasso’s algorithms for each hypercube. 

Overview 

Because any hypercube computation combines both communication and computation 
[Heat86, ReFuSb], a single number (e.g., MIPS, MFLOPS, or bits/sec) will not accurately reflect 

~~ ~ ~~ ~ * 
Department of Computer Science, University of Illinois, Urbana, Illinois 61801. This work was supported in 

part by NSF Grant Number DCR 84-17948, NASA Contract Number NAG-1-613 and by the Jet Propulsion Labora- 
tory. 



2 

the interplay between communication and computation. Thus, computation speeds and message 
transmission rates both have hardware and software components (Le., a fast processor can be 
coupled with a poor compiler, or slow communication hardware can be coupled with efficient 
communication software). T o  isolate the effects of hardware and software, and to explore their 
interaction, we have developed a hypercube benchmark set and associated methodology. This 
benchmark set includes four components: 
0 simple processor benchmarks, 

0 synthetic processor benchmarks, 

0 simple communication benchmarks, and 

0 synthetic communication benchmarks. 
The simple processor benchmarks are, as the name implies, simple enough to highlight the in- 
teraction between processor and compiler, including the quality of generated code. In turn, the 
synthetic processor benchmarks reflect the typical behavior of computations and provide a ready 
comparison with similar benchmarks on sequential machines. 

Communication performance is closely tied t o  system software. Some hypercubes support 
only synchronous communication between directly connected nodes; others provide asynchronous 
transmission with routing. In both cases we use the simple communication benchmarks to meas- 
ure both the message latency as a function of message size and the number of links on which each 
node can simultaneously send or receive. For systems that  support routing and asynchronous 
transmission, we have developed synthetic communication benchmarks that reflect communica- 
tion patterns in both time and space. 

The remainder of the paper examines the processor and communication performance of two 
commercial hypercubes, the Intel iPSC [Ratt85] and Ametek S/14, and the Mark-I11 prototype 
developed by the NASA Jet  Propulsion Laboratory (JPL). We begin with a brief comparison of 
these machines. 

Hypercube Comparisons 

Three of the hypercubes tested are based on the 16-bit Intel 80286 microprocessor. The 
fourth uses the 32-bit Motorola 68020 microprocessor. Table 1 shows the salient features of each 
sys tem . 
JPL Mark-111 

This machine is the latest in a series of hypercubes developed by the California Institute of 
Technology and JPL. During our tests, a four-node prototype of the Mark-111, running the 
CrOS-I11 operating system, was used. CrOS-I11 provides synchronous, single-hop communica- 
tion primitives. The communication primitives used during testing included: c w r l t e  t o  send a 
message to adjacent nodes, c r e a d  to read a message from a n  adjacent node, exchange  to imple- 
ment an indivisible read and write operation pair, and b r o a d c a s t  to send a message t o  all other 
nodes. All test programs were compiled using the Motorola 68020 C compiler provided on the 
Counterpoint host processor. 

Intel iPSC 
For all tests, we used a 32-node iPSC system running NX Beta Version 3.0, the latest ver- 

sion of the operating system. This iPSC operating system is derived from the Cosmic Environ- 
ment (Seit851 and is functionally equivalent t o  that system. The communication primitives used 
during testing were: s e n d  to  asynchronously send a message to  any node while program execu- 
tion continues, sendw to send a message to  any node and wait for message transmission to 



Processor 
Floating Point 
1/0 Processor 
Minimum Memory 
Maximum Memory 
Channels per Node 
Peak Bandwidth 

Intel iPSC 

8 MHz 80286 
6 MHz 80287 

none 
0.5 Mbytes 
4.5 Mbytes 

7 
10 Mbits/s 

3 

Ametek S/14 Ametek S/14 B 
8 MHz 80286 
8 MHz 20287 
10 MHz 80186 

6 MHz 80286 
6 MHz 80287 
8 MHz 80186 

1 Mbytes 1 Mbytes 
1 Mbytes 1 Mbytes 

8 8 
3 Mbits/s 3 Mbits/s 

Table 1 Hypercube Hardware Characteristics 

Mark-III 
16 MHz 68020 
16 MHz 68881 
16 MHz 68020 

4 Mbytes 
4 Mbytes 

8 
13.5 Mbits/s 

complete, recv to asynchronously receive a message while program execution continues, recvw 
t o  receive a message and wait for it to arrive. Operations equivalent to  exchange can be com- 
posed from send and recv operations. The broadcast operation is performed by specifying a 
special destination address. Programs were compiled using the L-model of the Microsoft C com- 
piler provided with Xenix, the operating system on the hypercube host. 

Ametek S/14 

A 32-node S/14 system running XOS Version D [Amet86] was used. XOS has capabilities 
similar to those of CrOS-111. The  message primitives used during testing were: wtELT to  send a 
message to an adjacent node, rdELT to receive a message from an adjacent node, exchELT to  in- 
divisibly exchange messages between two nodes, and brELT to broadcast a message to all other 
nodes in the system. All programs were compiled using the L-model of the Lattice C V3.1 com- 
piler. 

Ametek S/l4 /3 
A beta-test version of the S/14 system was used. This machine is functionally equivalent t o  

the S/14, although the processor clocks are slower, and XOS Version 1.1 was used. Programs 
were compiled using the D-model of Lattice C V2.14 compiler. 

In contrast to the Intel iPSC operating system, both CrOS-I11 and XOS are derived from 
the Crystalline Operating System developed by the High Energy Physics group [FoOtS4] a t  the 
California Institute of Technology, and do not provide any message routing or multi-hop capabil- 
ities. 

Processor Benchmarks 
The simple processor benchmarks were based on programs used to  evaluate other micropro- 

cessors [PaSe82]. The synthetic benchmarks, Dhrystone [Weic84] and Whetstone [CuWi76], were 
designed to represent typical systems programs and test floating point speeds, respectively. All 
the benchmarks were written in the C programming language, the only language available on all 
the machines studied. Unfortunately, this precluded using such standard numerical benchmarks 
as Linpack [DoBM79].' Table 2 describes the tests, their characteristics, and the features they are 
each designed to test. Table 3, in turn,  shows the results of the benchmarks. 

For both variations of the Dhrystone benchmark, the results are given in Dhrystones, a nor- 
malized measure of Dhrystone performance. Likewise, the Whetstone benchmark results are 

'With the availability of Fortran compilers for most hypercubes, we are now augmenting the benchmark set 



4 

Whetstone 

Table 2 Hypercube Processor Benchmarks 

The Whetstone synthetic benchmark. 
General test of Boating point performance, including tri- 
gonometric functions, multiplications and divisions. 
The Dhrystone synthetic benchmark without register optimiza- 

Simple Benchmarks 
10 repetitions of a 1,000,000 iteration null loop. 
Tests loop overhead 
100 repetitions of finding the primes from 1 to 8190. 
Tests loops, integer comparison, assignment. 
20 repetitions of finding Fibonacci(24). 
Tests recursion, integer addition, parameter return. 
Solve the Towers of Hanoi problem with 18 disks. 
Tests recursion, integer comparison. 
14 repetitions of quicksorting a 1000-element array of random 
elements. 
Tests recursion, comparisons, array references, multiplication and 

Loops 

Sieve 

Fibonacci 

Hanoi 

sort 

tion. 
Tests general integer scalar performance with ‘typical’ instruction Dhrystone (no registers) 

The Dhrystone synthetic benchmark with register optimization. 
Tests availability and effects of register variables Dhrystone (registers) 

given in Whetstones, the normalized measure of W‘hetstone performance. All other results are in 
seconds. In all cases, the 95 percent confidence interval was less than 5 percent of the stated 
mean. 

For those benchmarks involving many procedure calls, in particular the Fibonacci, Sieve 
and Hanoi tests, the Ametek S/14 provides the best performance of the Intel 80286-based hyper- 
cubes. However, all other benchmarks, even the highly recursive Sort test, favor the Intel iPSC. 
Most notably, the Intel iPSC is 4.4 times faster on the Dhrystone synthetic benchmark. 

Because the processor architectures for the Intel iPSC and the Ametek S/14 are identical, 
these dramatic differences must be due to software. To  investigate these differences, the Loops 
program was compiled using both the Microsoft and Lattice C compilers and then disassembled. 
The Intel 80286 provides a 16-bit ALU, while the innermost loop bound in Loops requires a 32- 
bit integer. The Lattice C V2.14 compiler used with the Ametek SI14 ,L? machine invokes a sub- 
routine for 32-bit comparison on each loop iteration. In contrast, the Lattice C V3.1 compiler 
for the Ametek S/14 expanded the procedure call in-line, providing better performance. Finally, 
the Microsoft C compiler for the Intel iPSC transformed the innermost loop into two loops, each 
of which tested a 16-bit integer. The outer loop tested the high-order 16-bits of the loop 

I 



5 

Mark-III Intel iPSC Ametek S/14 
Loops 8.8 65.6 164.3 
Fibonacci 10.0 39.2 21.3 
Sieve 6.4 21.5 19.3 
sor t  11.8 42.3 83.0 
Hanoi 4.4 12.5 6.9 
Puzzle (subscript) 45.5 87.6 97.9 
Puzzle (point e t )  20.2 112.5 491.7 

684,463 102,637 185,874 
t 3472 724 165 

Whetstone’ 
Dhrystone (registers) I 

Dhrystone (no registers)+ 3322 7 17 167 

7 

Table 3 Hypercube Processor Comparison 

Ametek S/14 /3 
263.8 

32.7 
35.0 

- 
- 

164.3 
792.4 
7367 

107 
108 

- 
,These tests could not be run due to  stack size limitations. 
+Performance figures in Whetstones or Dhrystones. 

counter while the inner loop tested the low-order 16-bits. 
T o  further corroborate our view that compiler technology was dominant performance deter- 

minant, the Dhrystone benchmark was compiled and disassembled using both the C compiler pro- 
vided with the Ametek S/14 p machine and an Intel 80286 compiler developed by AT&T. The 
resulting lines of disassembled instructions, shown in Table 4, support the theory that  quality of 
generated code is the major contributing factor t o  the performance differences observed. 

Additional conclusions can be drawn from Table 3. The Puzzle benchmark exists in two 
variations. The first variation uses arrays; the second was “optimized” by using explicit pointers 
and pointer arithmetic rather than implicit array subscript calculations. On machines with 32- 
bit integers and pointers, the pointer version typically executes faster because the compiler can 
more easily optimize the code. On the JPL Mark-I11 this is the case. With the Intel 80286-based 
systems, pointer arithmetic is more expensive tha t  array subscript calculations because the form- 
er requires 32-bit operations. In contrast, array indexing normally requires only 16-bit quanti- 
ties. 

Similarly, the two variations of the Dhtystone benchmark show that ,  for the 80286-based 
systems, “optimizing” the program by using register variables does not improve performance. 

Table 4 
Intel 80286 Compiler Comparison (Dhrystone Benchmark) 

C o m  iler Lines o Assembl Code 
Lattice C V2.14 
AT&T SysV C (unoptimized) 
AT&T SysV C (opt.imized) 



6 

Precisely the opposite statements can be made for the J P L  Mark-111. 
The floating point performance of the  Ametek S/14 is greater than tha t  of the Intel iPSC, 

primarily due to  the faster floating point unit. The Lattice C compiler for the Ametek S/14 ,O 
machine uses procedures to implement floating point operations, hence the dramatic performance 
reduction. 

Finally, Table 3 shows that the JPL Mark-I11 is clearly superior t o  all machines based on 
the Intel 80286 microprocessor.2 Based on the Dhrystone tests, a Mark-111 node is approximately 
five times faster than a node based on the Intel 80286. Because of the large performance 
differential between the Mark-111 and the Intel 80286-based hypercubes, i t  is difficult t o  compare 
them. In addition, while identical benchmark programs were used on all machines, the bench- 
marks are not identical. The Mark-111, based on the Motorola 68020, always manipulates 32-bit 
quantities, while the Intel 80286 operates on both 16-bit and 32-bit items. Thus, those bench- 
marks tha t  can be executed using only 16-bit quantities are unfairly biased toward the Intel 
80286-based hypercubes. Similarly, some of the C compilers used during the tests convert 32-bit 
floating point numbers to  64-bit double floats before performing floating operations. 

Simple Communication Benchmarks 
T o  provide a small set of benchmarks that  test all link-level characteristics, we have 

derived five operations that reflect a broad range of common single-link communications. In all 
the simple communication benchmarks, the programs were structured t o  provide maximal com- 
munication concurrency, using the appropriate idiom in each hypercube operating system. In 
particular, the Intel iPSC versions use the asynchronous send  and r e c v  operations where possi- 
ble, and the CrOS-I11 and XOS implementations use such special operations as exchange  or ex-  
chELT. As with the processor benchmarks, all results are the means of 95 percent confidence in- 
tervals, and all intervals are less than 5 percent of the corresponding mean. Figure 1 illustrates 
the communication patterns tested by each of the simple communication benchmarks. 
Simple Transfer 

The first test measures transmission speeds across a single link between two processors. 
Figure 2 compares the four different hypercubes. As with the simple processor benchmarks, the 
JPL Mark-I11 is significantly faster than any of the systems based on the Intel 80286. In addi- 
tion, the Intel iPSC transmission time for small messages is much smaller than tha t  for earlier 
versions of the iPSC operating system [SaNN86]. 

If the messages transmitted between nodes are not broken into packets, message transmis- 
sion time t can be modeled as 

t = t, + Nt, ,  (1) 

where tl is the communication latency (Le., the startup time for a transmission), t, is the 
transmission time per byte, and N is the number of bytes in the message. Statistically, the 
linear model in (1) is a good fit t o  experimental data  obtained for single link transmissions on all 
hypercubes we tested. Table 5 shows the result of a least-squares fit of the data  to  this linear 
model. Although the measured bandwidth for the J P L  Mark-I11 is higher than the rated peak 
bandwidth (see Table l), this anomaly is likely due to the use of a prototype system. The 
Ametek S/14 has a lower latency than the Intel iPSC, but the higher bandwidth of the Intel iPSC 

'Informal benchmarks suggest that a single Mark-111 node is comparable to a Sun-3/52 workstation. 



7 

Intel iPSC 
1.7X10-3 

2.83X10-6 

2.8 

Table 5 Hypercube Communication Comparison 

Ametek S/14 Ametek S/14 p 
5.5 X 1 O-* 1.3X 

9.53X10-6 1.17 X 

0.84 0.69 

Latency 
(seconds) 

Trans mission 
time (sec/byte) 

Bandwidth ~ ~ , 1 14.3 
Mbits s 

5.63 X 1 0-7 

yielded smaller total communication time for messages of more than 150 bytes. 

We emphasize that extrapolating general communication performance from single link tests 
is fallacious. Such simple tests highlight only link-level characteristics. More general bench- 
marks are needed to  investigate routing and buffering behavior; this is the motivation for the 
synthetic communication benchmarks presented in the next section. 
Send-and-Reply and Ezchange 

In the second test, a message was sent, and the sender awaited a reply, analogous to a re- 
mote procedure call. This was designed to test the minimum response time of a node as a func- 
tion of message size. 

The third test was an ezchange of data values, similar to that  in many numerical computa- 
tions, notably iterative solution of partial differential equations. If full-duplex transmission links 
were available, this test would measure their effective use. 

Comparing the first test, Figure 2, with the second test, Figure 3, shows that,  for both the 
JPL Mark-I11 and Ametek S/14, the time to complete the send-and-reply is roughly twice that  
for the simple send operation. However, for the Intel iPSC, the time for the send-with-reply is 
less than twice the cost of a simple send. Because all four hypercubes provide only simplex com- 
munication channels, this differential cannot be attributed to communication overlap. 

In the first test, the Intel iP.SC benchmark executes a (sendw) / (recvw) communication 
sequence (Le., one processor executes a sendw and the other executes a recvw primitive). In the 
send-and-reply test, the call sequence is (send; recvw) / (recvw; sendw) . Here, the processor 
executing the send has completed most of the overhead associated with a recvw call by the time 
the second processor has initiated the sendw operation, allowing the operating system to  write 
the message directly into the user’s buffer rather than a system buffer. 

This is more evident in the exchange operation in the third test; see Figure 4. Here, the In- 
tel iPSC executes a (send;recvw)/ (recv; sendw) sequence. The overlap afforded by the asyn- 
chronous send and recv calls allows the processor to establish where a message is t o  be placed 
before i t  arrives, eliminating buffer copies. Also, the processor is able to  execute the setup code 
for the next message transmission while the communication is in progress. When the data for 
the third test on the Intel iPSC is fitted to (l), and the results are divided by two to compare 
them to a simple transfer, the latency drops to 1.4 milliseconds, a 20 percent improvement. In 
contrast, the JPL Mark-I11 provides no equivalent improvement because the CrOS-I11 operating 



8 

system permits no asynchrony and executes little code during communication operations. 
N- w a y B r o ad c as t 

The fourth test is an N-way broadcast, used when every processor must disseminate a mes- 
sage to all other processors. Because multiple communication links connected t o  each node can 
potentially be simultaneously active, this benchmark tests link simultaneity. 

The intuitive implementation of this benchmark would use N broadcast operations. How- 
ever, a more efficient approach, for existing hypercubes, uses a ring broadcast where node i re- 
ceives messages from node i - 1 and sends messages to  node i + 1. This requires only O ( N )  
time. 

With simplex communication links, the time for a ring broadcast should be approximately 
six times that for a transmission across a single link. As Figure 5 shows, both the JPL  Mark-I11 
and Ametek S/14 exhibit this behavior. In contrast, the performance of the Intel iPSC is non- 
intuitive. We have not yet determined the reasons for the behavior of the Intel iPSC; one tenable 
explanation is that  the increased interrupt processing required to service two channels causes a 
significant amount of time to  be spent context switching. Because an Intel iPSC node does not 
have an 1/0 processor, the CPU must context switch to  prepare an in-coming message, switch 
back to the user program, and switch twice more when the message has completely arrived. For 
small messages, context switching overhead is a large proportion of the total transmission time. 
As the message size increases, this cost is amortized over each byte of the message, and the Intel 
iPSC broadcast time is smaller than that for the Ametek S/14 when the message length becomes 
large. 

Single Nod e Broad c as t 

The fifth and final test, shown in Figure 6, exercises the broadcast mechanism provided by 
all the operating systems. Since only a four node version of the Mark-I11 was available a t  the 
time of this study, the test is restricted to a four-node cube in all cases. As can be seen, the Intel 
iPSC performance is significantly better, relative t o  the other hypercubes, than for the N-way 
broadcast. 

Synthetic Communication Benchmarks 
Application programs can be used to study hypercube communication performance, but be- 

cause each program occupies only a small portion of the space of potential communication 
behaviors, a large number of application programs are needed to achieve adequate coverage. 
Moreover, i t  is difficult t o  separate computation from communication. To study hypercube per- 
formance under a variety of communication traffic patterns, we have developed a model of com- 
munication behavior. Each hypercube node executes a copy of the model, generating network 
traffic t ha t  reflects some pattern of both temporal and spatial locality. Intuitively, temporal lo- 
cality defines the pattern of internode 'communication in time. An application with high tem- 
poral locality would exhibit communication affinity among a subset of network nodes. However, 
these nodes need not be near one another in the network. Physical proximity is determined by 
spatial locality. 

Temporal Locality 

Our implementation of temporal locality is based on a Least Recently Used Stack -Model 
(LRUSM), originally used to  study management schemes for paged virtual memory [Denn80]. 
When used in the memory management context, the stack after memory reference r ( t )  (Le., the 
reference a t  time t )  contains the n most recently accessed pages, ordered by decreasing recency of 



9 

reference. The stack distance d ( t )  associated with reference r ( t )  is the position of r ( t )  in the 
stack defined just after memory reference r (  t -1) occurs. These distances are assumed t o  be in- 
dependent random variables such that Probabil i ty[d( t )  = i ]  = b, for all t. For example, if 
b ,  = 0.5, there is a 50 percent chance that the next page referenced will be the same as the one 
just referenced. 

In our adaptation of LRUSM to  network traffic, each node has its own stack containing the 
n nodes that were most recently sent messages. In other words, destination nodes in the network 
are analogous to  pages in address space of a process for the LRUSM model of memory reference 
patterns. Parameters to the model include the stack reference probabilities b; and the stack size 
n. 

n 

i =O 
We emphasize that the sum of the probabilities, Cbi is normally less than 1. Consequent- 

ly, i t  is possible for the condition d ( t )  > n to  occur. In this case, a stack miss occurs. This 
corresponds to a page fault in the virtual memory context. In our model, a stack miss means 
that a new node not currently in the stack is chosen as the destination of the next transmission. 
This selection is based on a spatial locality model. 
Spatial Locality 

Currently, our model provides three types of spatial locality: 
0 Uniform. Any network node can be chosen as the destination with equal probability. The 

uniform routing distribution is appealing because it makes no assumptions about the type 
of computation generating the messages; this is also its largest liability. However, because 
most computations should exhibit some measure of communication locality, i t  provides 
what is likely to be an upper bound on the mean internode message distance. 
Sphere of Locality. Each node is considered to be the center of a sphere of radius L,  meas- 
ured in hops. A node sends messages to the other nodes inside its sphere of locality with 
some (usually high) probability 6, and to nodes outside the sphere with probability 1 -4. 
This model reflects the communication locality typical of many programs (e.g., the nearest 
neighbor communication typical of iterative partial differential equations solvers coupled 
with global communication for convergence checking). 

Decreasing Probability. The probability of sending a message to  a node decreases as the 
distance from the source to the node increases. Specifically, the probability of sending a 
message 1 hops is 

@ ( l )  = Decay(d ,  lmaz) * d l ,  O < d < l  

where lmaz is the diameter of the network, d is a selected decay factor, and 
Decay(d ,  Irnaz) is a normalizing constant chosen such tha t  

Imar 

i o 1  
Decay(d ,  lmaz) * Ed' = 1. 

This model reflects the diffusion of work from areas of high utilization to areas of lower 
utilization. 

More detailed descriptions of sphere of locality and decreasing probability routing can be 
found in [ReFu861. By pairing parameters for temporal locality with parameters for spatial lo- 
cality, a wide variety of traffic distributions can easily be generated. By flushing the temporal 



10 

stack periodically, a new set of destinations is selected; this can be used to  simulate multipro- 
gramming at individual nodes. Finally, additional input parameters control the frequency of 
message generation and the distribution of message lengths. 

Ezperimental Results 
Figure 7 shows the mean time for a 16 node Intel iPSC to transmit 3000 messages whose 

length was drawn from a negative exponential distribution with a mean of 512 bytes. The hor- 
izontal line denotes the uniform message routing distribution. This provides a point of reference 
for the decreasing probability and sphere of locality routing distributions. 

In Figure 7, q5 = 1 for the sphere of locality distribution. This means tha t  all messages gen- 
erated will be sent to destinations within the radius. Thus, the expected execution time ap- 
proaches that of the uniform routing distribution as the radius approaches the network diameter. 
With the decreasing probability distribution, increasing d means that  a larger fraction of all mes- 
sages are sent to distant nodes. For large enough values of d ,  the decreasing probability distribu- 
tion is anti-local. Specifically, the mean internode distance is larger than tha t  of the uniform 
routing distribution. 

Figure 8 shows the effect of varying the temporal locality of the three spatial locality distri- 
butions, using the same number and type of messages as in Figure 7. In the figure, the temporal 
stack has depth one. This means that the number of messages sent to the node in the stack is the 
mean of a binomial distribution with parameter p ,  the probability of referencing the stack. In- 
tuitively, there are "runs" of consecutive messages sent t o  a single destination node. Figure 9 il- 
lustrates these runs for one of the spatial distributions. 

The most striking feature of Figure 8 is the small variation in time t o  complete the suite of 
message transmissions. One would expect the temporal locality and its associated message runs 
to induce transient queues of outstanding messages on one link of each hypercube node. This 
phenomenon should manifest itself as increased delays as the probability of a stack reference in- 
creases. However, the variations shown in Figure 8 are not statistically significant. Why? Sup- 
pose the rate each node generated messages were perfectly balanced with the transmission capaci- 
ty of each of the node's communications links. In this case, no message queues would form. Now 
suppose temporal locality were introduced. The presence of stack runs would induce an imbal- 
mce, a queue would form for at least one link, and messages would be delayed. This 
phenomenon does not occur in Figure 8, due to an imbalance of computation and communication 
speeds on the Intel iPSC. Nodes can generate messages faster than they can be transmitted by 
the communication links. Thus, queues develop for all links, independent of the presence of tem- 
poral locality, and these queues mask its effects. 

Observations 

Computation speeds, communication capacity, and communication patterns, both in time 
and space, interact in subtle ways. By using a synthetic benchmark that  provides a broad spec- 
t rum of communication patterns, one can systematically and formally explore these interactions. 
This knowledge can be used to guide system design. 

Summary 
We have defined a collection of benchmarks designed to test both the computation and com- 

munication components of hypercubes. These benchmarks include simple processor tests that  
permit comparison of compilers and synthetic processor benchmarks for comparison with sequen- 
tial machines. In addition, we defined a series of simple communication benchmarks and used 
them to determine the transmission latency and communication bandwidth of isolated links. 



11 

Finally, we outlined a synthetic communication benchmark for testing the communication net- 
work when presented with asynchronous, multihop messages. 

Current Work 

We are currently expanding the processor benchmark set to include the linear algebra 
benchmarks included in Linpack [DoBM79]. We believe this will provide a more realistic meas- 
ure of processor floating point performance. 

In addition, we are augmenting the benchmark set with an elliptic partial differential equa- 
tion solver, based on successive over-relaxation. Because the (square) domain of the test prob- 
lems can be divided into either a small number of large partitions or a large number of small par- 
titions, the ratio of computation to communication at each hypercube node, and the correspond- 
ing frequency of internode communication, can be varied widely. This permits determination of 
the optimal balance of computation to nearest neighbor communication for different hypercubes. 
Finally, this partial differential equation solver implements three different convergence checking 
schemes: synchronous, where a global checker receives convergence information from all nodes 
each N iterations; asynchronous, where convergence checking is overlapped with computation; 
and statistical, where the rate of change in the error between iterations is used to predict the 
next iteration for convergence checking. These convergence checking schemes will allow us to  
test communication efficiency when messages must be routed through intermediate nodes. Final- 
ly, we will be able to  test the effective overlap of computation and communication on those 
machines containing communication co-processors. 

Acknowledgments 

The Concurrent Computation Project at the Jet  Propulsion Laboratory provided access to  
the JPL Mark-111. In addition, Jack Dongarra and Argonne National Laboratory provided access 
to the Intel iPSC. Their support and help made the benchmarking study possible. 

We think there remains much detail to be worked out, and possibly some further invention need- 
ed, before the design can be brought into a state in which it would be pcjssible to judge whether it 
would really so work. 

Committee analyzing Babbage’s Analytical Engine 



[Amet86] 

[ C u W i7 61 

[Denn80] 

[DeBu78] 

[DoBM79] 

[ F oOt841 

[Heat861 

[PaSe82] 

[Rat t 851 

[ReSc83] 

[ ReF u86] 

[SaNN86] 

[Seit86] 

[ Weic841 

12 

References 

Ametek Computer Research Division, "Ametek System 14 User's Guide: C Edition," 
Version 2.0, May 1986. 

H. J. Curnow and B. A. Wichman, "A Synthetic Benchmark," Computer Journal, Vol. 
19, No. 1, February 1976. 
P. J. Denning, "Working Sets Past and Present," IEEE Transaction on Software En- 
gineering, January 1980. 
P. J. Denning and J. P. Buzen, "The Operational Analysis of Queueing Network 
Models," ACM Computing Surveys, Vol. 10, No. 3, pp. 225-262, September 1978. 

J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, "Linpack Users' 
Guide," SIAM Publications, 1979. 

G .  C. Fox and S. W. Otto, "Algorithms for Concurrent Processors," Physics Today, 
Vol. 37, pp. 50-59, May 1984. 

M. T. Heath, Hypercube Multiprocessors 1986, Society for Industrial and Applied 
Mathematics, Philadelphia, 1986. 
D. A. Patterson and C. H. Sequin, "A VLSI RISC," IEEE Computer, Vol. 15, No. 9, 
pp. 8-22, September 1982. 
J. Rattner, "Concurrent Processing: A New Direction in Scientific Computing," 
Conference Proceedings of the 1985 National Computer Conference, AFIPS Press, 

D. A. Reed and H. D. Schwetman, "Cost-Performance Bounds on Multimicrocomput- 
er Networks," IEEE Transactions on Computers, Vol. C-32, No. 1, pp. 85-93, Janu- 
ary 1983. 
D. A. Reed and R. M. Fujimoto, Multicomputer Networks: Message Based Parallel 
Processing, monograph submitted to MIT Press. 
J. H. Saltz, V. K. Naik, and D. M. Nicol, "Reduction of the Effects of the Communi- 
cation Delays in Scientific Algorithms on Message Passing MIMD Architectures," 
ICASE Report 86-4, NASA Langley Research Center, to appear in the SIAM Journal 
of Scientific and Statistical Computing. 

C. L. Seitz, "The Cosmic Cube," Communications of the ACM, Vol. 28, No. 1, pp. 
22-33, January 1985. 

R. Weicker, "Dhrystone: A Synthetic Systems Programming Benchmark," Communi- 
cations of the ACM, Vol. 27, No. 10, pp. 1013-1030, October 1984. 

VOI. 54, pp. 157-166, 1985. 

I 



13 

Figure 1 Simple Communication Benchmarks 

m-El 
Simple Transfer' 

N-way Broadcast Single Broadcast 
EeEI  
Send-and-Reply 

(11---12/ 
Exchange 

Figure 2 Simple Transfer 

Average Delay (seconds) 

0 . 0 1 5 1  1 0 Intel i p s a  ~ 

o Ametek S 14 6 MHz 
o.012 0 Ametek 14 8MHz 

X JPL/Cal echMark-I1 

0.009 

0.006 

0.003 

0.000 
0 128 256 384 512 640 768 896 1024 

Size of Transmitted Datum (bytes) 



14 

Figure 3 Send-and-Reply 

Average Delay (seconds) 

0.030 

0.024 

0.018 

0.012 

0.006 

0.ooc 

0 Intel iPSC 

0 128 256 384 512 640 768 896 1024 

Size of Transmitted Datum (bytes) 

Figure 4 Exchange 

Average Delay (seconds) 

0.030 ~ n 1 0 Intel i p s a  ~ 

o AmetekS 14 6 MHz 
o,024 0 Arnetek 14 8 MHz 

x JPL/Cal echMark- I1 

0 128 256 384 512 040 768 896 1024 

Size of Transmitted Datum (bytes) 



15 

Figure 5 N-way Broadcast 

Average Delay (seconds) 

0.08 

0.06 

0.04 

0.02 

o.oa 

' J ?  

0 128 256 384 512 640 768 896 1024 

Size of Transmitted Datum (bytes) 

Figure 6 Single Broadcast 

A e Intel iPSC 
o Ametek S 14 6 MHz 
0 Ametek 4 1 4 \ 8  M&) 

/ I  X JPL/Cal ech Mark- I1 

0.02 

0.01 

0.01 

0.00 
0 128 256 384 512 640 768 896 1024 

Size of Transmitted Datum (bytes) 



40 - 
0 

E 35 - 

30 - 

25 - 

10 

Figure 7 Spatial Communication Locality 

Seconds Spherical Distribution Radius 
1 2 3 4 

50 ’ , I 

45 

40 

35 

30 

25 

0.00 0.20 0.40 0.60 0.80 1.00 

Decreasing Probability Parameter d 

Figure 8 Temporal Communication Locality 

Time (Seconds) 

pherical D’ trib. tiop (r ius = 2, q5 
ecreasing Yistrkution r i = O . l )  

Uniform Distribution 

- 
, 

20 I 
0 10 20 30 40 50 60 70 80 90 100 

Probablity of Stack Reference 



17 

0 Number of Consecutive Stack Hits 

Figure 9 Temporal Locality Run Lengths 
Decreasing Probability Spatial Locality ( d  = 0.10) 
Single Stack Entry with Stack Hit Probability 0.90 

30 

20 

10 

0 
0 10 20 30 40 50 80 70 80 90 100 

Run Number 



llBLlOGRAPHlC DATA 11. Repon No. 12 

18. Availability Statement 19.. Security Class  (This 

20. S e c u r i m i s  
UN 

Report) 
unlimited 

PaVNCLASSIF I m  

IHEET I UIUCDCS-R-86-1303 I . Title and Subtitle 

21. No. of Pages 
20 

22. Price 

Benchmarking Hypercube Hardware and Software 

Dirk C. Grunwald and Daniel A. Reeri 

University of Illinois 
Department of Computer Science 
1304 W. Springfield, 240 Digital Computer Lab 
Urbana, Illinois 61801 

. Performing Organization Name and Address 

2 Sponsoring Organization N8me and Address 
1-National Science Foundation b.NASA Langley Research Center 
1800 G Street, NW Hampton, Virginia 23665 
Washington, D. C. 20550 c.Jet Propulsion Laboratory 

Pasadena, California 
5. Supplementary Notes 

1. Recipient's Accession No. 

i. Repon Date 
November 1986 

5. 

8 .  Performing Organization Rept. 

10. Project/Task/Work Unit No. 

No. R-8 6 -1 3 03 

11. Contract/Grant No. 
NSF DCR84-17948 
NASA NAG 1-613 

13. Type of Report & Period 
Covered 

14. 

6. Abstracts 

It has long been a truism in computer systems design that balanced systems achieve 
the best performance. 
quantify the balance of a hypercube design, we have developed an experimental 
methodology and applied the associated suite of benchmarks to several existing hyper- 
cubes. The benchmark suite includes tests of both processor speed in the absence 
of internode communication and message tansmission speed as a function of com- 
munication patterns. 

Message passing parallel processors are no different. To 

17. Key Words and Document Analysis. 17a. Descriptors 

Hypercubes 
Benchmarking 
Conmiinkation models 
Software comparison 

17b. Identifiers/Open-Ended Terms 


