
ment of Electrical and
uter Engineerin

University of Colorado
Boulder, Colorado

I.

t

Force User’s Manual

by
Harry F. Jordan

Muhammad S. Benten
N o r b e r t S. Arenstorf

a n d
A r u n a V. Ramanan

C o m p u t e r S y s t e m s Design G r o u p
D e p a r t m e n t of Electr ical and C o m p u t e r Engineer ing

Univers i ty of Colorado
Boulder , Colorado 80309-0425

Revised
J u n e 1987

This work w3s suppor ted in par t by Encore Computer Corporation, by NASA Langley Research
Center under NAG-1-640, and by t h e Office of Naval Research under NOOO14-8GK-0204.

I .

11.

I11

Iv

v

T A B L E OF CONTENTS

In t roduc t ion

Descr ip t ion of t h e Force Macros:

A. hlacros S ecifying Program S t r u c t u r e

C. Para l le l Execut ion
D. Synchroniza t ion

B. Var iab le 6 eclarat ions

Res t r ic t ions o n t h e Force h lacros

How to Invoke t h e Force

A . Flex/32 (Flexible C o m p u t e r Corp.)
B. 3 l u l t i m a x (Encore C o m p u t e r C o r p .)
C. Balance (Sequen t C o m p u t e r C o r p .)

S a m p l e P r o g r a m Listing

References

1

4

5
9

12
18

22

23

23
21
25

26

29

I. Introduction
T h e principle of global parallelism in parallel programming was intro-

duced by Jordan[l] , through a set of FORTRAV macros called the Force
macros. These macros support t he construction of programs t o be executed
in parallel by a Force of processes. T h e number of processes is left unspecified
a t compile t ime, bu t is potentially quite large. T h e Force provides a FOR-
T R . W style parallel programming language utilizing an extensive set of
parallel constructs. T h e programmer, insulated from process management, is
left free to concentrate on the synchronization issues of parallel program-
micg.

A Force module, Le., a main program or subroutine, consists of regular
F 0 R T R . W 77 statements t ha t will be executed by all processes from the first
line of the program listing, unless limited by a process synchronization con-
s t ruc t . Macros in the Force support parallel execution of DO loops using
pre-scheduled and self-scheduled algorithms. T h e Force includes constructs
to allow for mutual exclusion, synchronization, and/or sequential execution
when necessary, and constructs for d a t a based control of execution.

-4 key feature of the Force is its management of variables in an I I I I I D
environment. T h e Force maintains six classes of variables. Each class in tu rn
supports all the s tandard FORTRAN variable types: INTEGER, RE.%,
COllPLES, etc. T h e parallelism class of a Force variable determines how it
is accessed by different processes and may be Private, Shared, or Async. Each
of these three classes will also inherit from FORTRAN the storage class of
C'O\llION among program modules or local t o one module, yielding six
classes. P r i z d e variables have separate instantiations for each component
process of t he Force. Shared variables have only a single instantiation and
are accessible by all processes of t he Force. ..lsync, or "asynchronous," vari-
ables have a "full/empty" s t a t e associated with them, and are shared between
processes as well. Interprocess communication is achieved through use of
Shared or .4sync variables. T h e FORTRAN COLILION mechanism is used t o
implement Force COIIMON. T h e Force variable declarations are meant t o
supersede FORTRAN variable declarations. However, ordinary FORTRAN
declarations will normally be treated as Private, so tha t sequential FOR-
T R . U modules may be called from Force modules.

This manual will describe the Force constructs in detail. Force con-
s t r u c t s are divided into four categories: program structure , dedarat ion of
variables, parallel execution, and synchronization. T h e programmer using
the Force writes a program t h a t is to be executed simultaneously by an arbi-
t rary number of processes. This number is a run-time parameter. T h e pro-
gram may consist of many Force modules. A Force module is analogous to a
For t ran main program or subroutine, except t h a t a Force module is called
and executed by all of the processes. T h e Force constructs are summarized in
T.4BLE-I. Triangular brackets, < >, are used t o indicate required parame-
ters; square brackets, [I, are used t o indicate optional parameters. An exam-
ple of a complete Force program is shown later in this manual.

TABLE-I Force Program Constructs

Program Structure:

Force <name> of <# of procs> ident <proc id>
< declaration of variables >
[Externf < Force module name >]
<Force program>

End declarations

Inin
END

.

Forcecall <name> ([parameters])

Forcesub <name>([parameters)) of <# of procs> ident <proc id>
< declarations >
[Esternf < Force module name > 1
< subroutine body >

End declarations

RETURN
ESD

Declaration of Variables:

Private <FORTRAN type> <variable list>
Private Common /< labe l> / <FORTRAN type> <variable l is t>

Shared <FORTR.4N type> <variable l ist>
Shared Common /< labe l>/ <FORTRAN type> <variable list>

Async <FORTRAN type> <variable list >
Async Common /< labe l> / <FORTRAN type> <variable l ist>

2

TABLE-I Force Program Constructs (continued)

Parallel Execution:
Pcase on <variable>

[I'sect]

[Csect (<condition >)]

<code block>

End pcase

Scase
[C s e< t (< c o ndi t. io n >)]

<code block>

< n >

< n >

< n >

< n >

[I'sect]

End scase

Presched Do < n > <var> =I < i l > , < i P > [, < i 3 >]

End Presched Do
<loop body >

Selfsched Do < n > <var> = <i l> ,< i2>[,< i3>]

End Selfsched Do
<loop body >

Pre2do < n > < v a r l > = < i l > ,< i2> [,<i3>]; <var2> = < j l > , < j 2 > [,< j3>]

End Presched Do
<doubly indexed loop body>

SelfPdo < n > <var l > = < i l > , < i 2 > [,<i3>]; <var2> = < j l > ,< j2 > [, < j3>]

End Selfsched Do
<doubly indexed loop body>

Synchronization:
Barrier

End barrier
< code block >

Critical <lock-var>
< code block >

End critical

Void <async variable>
Produce < async variable> = <expression>
Consume < async variable> into <variable>
Copy < async variable > into <variable >
... Isfull(<async variable>) ...

3

11. Description of the Force Macros
T h e macros are divided into four groups: program structure , variable

declaration, parallel execution, and synchronization. T h e user of t he Force
macros writes a single parallel main program. zero or more parallel Force sub-
routines, and zero or more single stream subroutines t o be executed by a sin-
gle process. "hen writing the parallel main program and parallel subrou-
t ines, t he macros given in the previous Table and described below may be
used. T h e single s t ream subroutines and all of t he code except the macros in
the parallel routines a re in FORTRAN 77 and familiarity with t h a t language
is assjilmed.

T h e number of processes executing a Force program is a parameter t h a t
t he user will supply a t run time. M'hat actually happens is t h a t execution of
a Force program begins with a "driver" routine. T h e driver will determine
t h e number of processes, create these processes, and then transfer control t o
the user main program. This procedure is invisible t o t h e user and program-
mer.

Two ic: t ' !b r?re used when referring to t h e parallel execution macros.
T h es e t e r m s are " p re- s c h e d u 1 in g '' an d "s e 1 f-s c h e d u 1 in g . " P re- s c h e d u I in g ref e r s
t o a division of labor (usually based on t h e local process index) tha t is fixed a t
compile t ime and independent of the actual work being done. Self-scheduling
refers t o a dynamic, run t ime allocation of work t o processes. Self-scheduling
is more sophisticated, and regulates t he work load better; bu t it requires
gres t er over head.

\Ye have adopted the following convention: the first Force keyword t o
appear on a line must have t h e first letter capitalized with the remaining
letters in lower case. Additional keywords on t h e same line a re case insensi-
tive. For example, Battier would be recognized by t h e Force preprocessor,
bu t barrier or BARRIER would not. A pattern matching preprocessor is
used, and this convention makes confusion between Force keywords and
FORTRAN variable names less likely.

Syntactically, t he Force macros adhere t o FORTRAN standards. A few
differences between the Force macros and standard FORTRAN syntax exist;
these will be given later in the restrictions section.

I

4

I1 A. Macros Specifying Program Structure

Force
T h e Force macro declares the s t a r t of a parallei main program and has
the following syntax:
Force <name> of <nproc> i den t < m e >
T h e Force statement sets up the parallel environment. All processes
begin esecution from this point on, unti l they are terminated by the J o i n
statement. <nproc> and < m e > are both user named integer vari-
abies. with <nproc> containing the number of processes in the Force,
and < m e > containing a unique identifier for each process (between 1
and <nproc>) . <nproc> and < m e > will be declared automatically.
Values are assigned automatically to <nproc> and < m e > , b u t these
values must not be changed by the user program.
T h e Force main program ends with a Join s ta tement usually followed by
the FORTRAN E,!?D statement . T h e Join statement terminates all bu t
one of t he Force of processes. This last process will return control to the
Force driver program. An example:

Force METORCE of COUNT ident hIE-INDEX

End declarations
<declarations>

C Force body with

C COUNT - is a user named shared integer
C variable containing the number
C of processes executing the program.

C MYINDEX- is a user named private integer
C
C
C between 1 and count.

variable t h a t contains a unique
index for each process, numbered

Join
END

E n d dec lara t ions
This macro call terminates t h e declarations section of a Force module
and begins i ts executable code. It marks the place t o insert declarations
generated automatically by the macros and may generate some execut-
able code. E n d dec lara t ions must follow the last declaration s ta tement
and precede the first executable s ta tement of a Force module.
Some examples using the E n d dec lara t ions macro are given on the pages
describing the Force and Forcesub macros. Please note, every Force or

5

I
I

,

Forcesub statement must have exactly one End declarafions s ta tement
following i t at some point in the program listing for t ha t moduie.

Join
Join terminates execution of t h e parallel main program. It is an execut-
able s ta tement , b u t is listed with the macros determining program struc-
t u re because i t is, in some sense, the inverse of the Force s ta tement .
Instead of creating a Force of processes, Join will terminate all processes
except t he last one t o reach i t . This last process re turns to the Force
driver program, where it too will be terminated. So te , the non-
executable FORTRAN E”VD statemen is still necessary.

Forcesu 6
T h e Forcesub s ta tement declares the
has t h e general form:

s ta r t of a parallel subroutine and

Forcesub <name>(<paramete r l is t>) of <nproc> idenf < m e >
This s ta tement is roughly analogous to t h e F o r c e s ta tement . Each pro-
cess will maintain i ts local copy of its process index, < m e > , from the
calling module; however, this index may be renamed in the Forcesub
header. Declarations including Private, Private Common, Shared, Shared
Common, Async. or Async Common statements may come between a For-
cesub s ta tement and the following End declarations. There is no special
Force keyword to terminate a parallel subroutine. T h e For t ran
RETURN s ta tement is used to return control to the calling module.
T h e arguments passed t o a Forcesub via the parameter list should be
declared using only normal FORTRAN declarations. Such arguments
retain the parallelism class, Private or Shared, with which they were
defined in the calling module. Current implementations do not suppor t
Asynchronous variables passed as parameters. T h e following is an exam-
ple of a Forcesub:

.

6

C ------- hIATRIX MCLTIPLICATION SCRROUTINE: C=A*B ---

Forcesub MVLT(A,B,C,Nl,N2,~€1) of NPROCS ident ME
INTEGER Xl ,N2,Ml
REAL A(Nl,N2), B(N2,M1), C(N1,Ml)
Private INTEGER I, J,K
End declarations

C Initialize C ...

Pre2do 100 I= 1,Nl ; J = 1 , M l
C(1,J) = 0.0

100 End presched do

C T h e multiplication process ...

Presched DO 300 I = 1 , N l

DO 200 K = l ,N2
DO 200 J=l ,XIl

200
300 End presched DO

C(I,.J) = C(1,J) + A(I,K)*B(K,J)

RETURN
END

This parallel subroutine can be called with call s ta tement as follows:

Shsred REAL A(lOO,SO), B(50, loo), C(100,100)
Private N1, N2, M1
End declarations

Force c all M ULT(A, B , C , N 1, N 2, M 1)

Extern f
T h e syntax of this macro is as follows:
Ezternf <Force module name list>
Eztern! is used t o inform the Force compiler/preprocessor about es ternal
Forcesub modules t h a t a re called using Forcecall . "External modules"
refer only t o Force modules t h a t are not included in the same file as t h e
Force main program. Modules defined below the main Force program
(within the same file) are not required t o be declared Extern!. This
feature preserves the "separate compilation" feature of the FORTRAN
language. When a list of external module names is specified using
Erternl, names in the list should be separated by commas. Some exam-
ples:

7

Extern f INTMAT
Externf INTMAT, OCTMAT

T h e Externf s ta tement is placed in the declarations section of a Force
program. E z t e r n f may appear in any Force module tha t has itself been
declared E d e r n f . Consider the following example. Force modules A. B,
and C each appear in separate files which are perhaps to be compiled
separatelp. If t he F o r c e main program, A, calls F o r c e s v b B, which in
tu rn calls F o r c e s v b C, then .4 must declare B using E z t e r n f , and B would
Clocl~rn C ns E d e r n f . T h e point is t h a t as long as C is declared Et te rnf in
B, which is declared in A, then A need not declare C as Erternf. hiultiple
declarations, while not required, are allowed.

Forcecal l
T h e Forcecal l executable s ta tement is used t o invoke parallel subroutines
tha t have been declared as named Forcesub modules.
Forcecall (<parameter l is t>)
T h e entire Force of processes will jump to and execute the parallel sub-
routine. However, Forcecal l does not cause synchronization. Forcecal l
differs from the regular FORTRAN C.4LL only in t h a t provisions are
made to automatically pass the local process identifier < m e > . Normal
For t ran scope rules apply to Force variables. Note, Async variables may
not be included in the parameter list, b u t may be passed through an
A s y n c Common block instead.

8

I1 B. Variable Declarations
T h e implementation of t he Force as a preprocessor, which does not con-

s t ruc t a symbol table, requires t h a t all type information be included in the
Prirate or Shared declarations, so t h a t it. is available during the preprocessing
of t h s t s ta tement . I t should be noted t h a t FORTRAN IMPLICIT typing of
yari2bloG is allowed under the Force, and t h a t all implicitly typed variables
will be of Force variable class Private.

Ptirat e
Private <type> <variable list>
\\-hen a variable is declared Private, then each process of the Force main-
tains its own storage space for t h a t variable, even though the variable is
named only once in t h e main program listing.
For esample:

Pr ivate DOUBLE PRECISION X (100,100)
Private INTEGER I, J, K
Private CHARACTER*80 STRING1

Such variables are normally used for ari thmetic temporaries or index
values which have distinct values for each process of the Force.

Private Common
A Private Common variable is Private in t he sense defined above, b u t i t
may be Common between Force modules. This declaration would appear,
with the variables specified in the same order, in each of the modules
t h a t wished t o include the Common variables. T h e syntax is as follows:
Private Common /< l abe l> / < type> <variable l ist>
Unlike FORTRAN 77, Force Common variables are typed within t h e
same s ta tement t ha t declares them t o be Common. For example:

Pr ivate Common / MI-COPY / RE.4L TIhlE(15)
Private Common / MYCOPY / INTEGER POS, SPEED
Private Common / GRID / COSlPLEX X, Y

From the example, we can see t h a t variables of different type may be
combined within the same Common block, bu t this requires different
declaration s ta tements . As in FORTRAN 77, it is the programmers
responsibility, to insure that all Force modules that use a given
COMMON block, specify the variables of that COMMON block
in the proper order. Also note t h a t arrays are dimensioned on this
line. F.ORTRAN "blank COMMON" is not allowed.

Shared
\Vhen a variable is declared Shared, then only one copy of tha t variable
is maintained by all of t he processes in the Force. In this manner, multi-
ple processes may operate on and communicate through shared memory
locations. Care must be taken when multiple processes try t o modify a
Shared variable all a t once. Normally, one would modify a Shared vari-
able only within a critical section of the program. Regular FORTRAN
declarations follow the Shared keyword. T h e syntax is as follows:
Shared < t y p e > <variable list>
Fcr example,

Shared INTEGER I , J
Shared REAL A(800), B(800)

This example declares I and J to be shared integers and declares A and B
to be real vectors of the specified dimension.

Shared Common
This s ta tement has the following syntax:
Shared Common / < l a b e l > / < t y p e > <variable l ist>
A Shared Common variable is Shared between processes as defined above.
In addition, Shared Common variables may be common between Force
modules. T h a t is t o say, different processes in different Force modules
(subroutines) all have access to the same variable.
Again. as in Private Common, the type of a variable is declared on the
same line -vith the Common declaration. Variables of different type may
be combined within the same Shared Common block, bu t this will require
the use of several declaration statements. Once again, as in FORTRAN
77, it is the programmer's responsibility t o preserve the ordering of vari-
ables in a Common block. An example:

Shared Common /PENPOS/ DOVBLE PRECISION S,Y
Shared Common /PENCOL/ INTEGER COLOR(8)

-4sync
This s ta tement has the general form:
Async < t y p e > <variable list>
Asynchronous variables are shared between processes; t ha t is, they have
only one instantiation for all processes. T h e distinguishing feature of an
Async variable is its "full/empty" state. T h e use of these variables is
governed by the Produce, Consume, Copy, L'oid, and Isfull macros which
are described later. Briefly, an asynchronous variable may be Consumed
or Copied only if it is "full," and Produced only if it is "empty." Thus ,
Async variables may be used to implement da t a based synchronization.

10

For example, the following Force program fragment illustrates the
use of this macro:

Async INTEGER I
Async REAL X, Y, Z

Eild Declarations

Barrier

End barrier
Void X

Produce X = locals tuff

-4sync Common
This s ta tement has the general form:
Async Common /< l abe l> / < type> <variable list>
-4.sync Common variables have all t he properties of A s y n c variables
described above. In addition, they may be Common between Force
modules tha t include this designation.

11

I1 C. Parallel Execution
Parallel execution is specified using macros related t o the DOALL and

parallel case constructs. T h e two constructs are similar t o the extent t h a t
both involve segments of code t h a t can be executed in any order. DOALL
applies t o independent instances of the loop body for different loop index
v ~ l r i * s . The psrallel case construct applies t o different single stream code
blocks which are mutually independent. T h e distribution of work may either
be p re-sc h ed uled or self-sc hedu led.

Pcase
This s ta tement establishes a pre-scheduled parallel case construct which
s t a r t s with either of the following constructs:
Pcase

Pcase on <var>
T h e construct consists of a series of independent sections of code, each of
which is to be esecuted by a single process. T h e sections a re delimited by
a Pcase , zero or more L'sect , zero o r more Csec t and an End pease state-
ments.
T h e construct assigns i ts own private integer variable unless the variable
< v a r > is used explicitly in the second form of the construct. In such
cases i t t he programmer's responsibility t o declare < v a r > as a Private
I n t e g e r variable. In either case t h e execution of multiple cases is pre-
scheduled using this variable which will be assigned the value i during
the execution of the ith-case. T h e jth-case of a Pcase will be executed by
the process with loca l id equal to ((j-1) mod np)+1, where n p is the
number of processes.
If there a re more processes in the Force than there are code sections then
all code sections will be executed simultaneously. Otherwise some of t he
sections will be executed sequentially by t he same process. For this rea-
son care must be taken while using asynchronous variables
(producer/consumer) within a Pcase. A parallel case with only one code
section is similar to a barrier in tha t the code is esecuted by a single pro-
cess, bu t differs in t h a t no synchronization of other processes occurs.
There are slight variations in the implementation of t he parallel case
construct. An example of the simplest implementation is given below.
Here each task represents a group of regular (single s t ream) FORTRAN
77 instruct ions.

I o r
I

Pcase

Usect

Usect

End pcase

< task A >

<task B>

< task C>

12

If any of the single s t ream code sections are conditional, t he Csec t state-
ment can b e used. T h e condition is built into the Csect construct. 4 n
example when all code sections are conditional is given below.

Pcase
Csect (<condi t ion>)

Csect (<condi t ion>)

Csect (<condi t ion>)

End pcase

< task A>

<task B>

<task C >

Csect and Usect can both appear in a parallel case construct. T h e sec-
tions on Csect and Usect outline the variation in implementation of
parallel case construct.

I -s e c t
This s ta tement separates multiple single s t ream code sections of a pnral-
le1 case. \\.'hen C'sec t is used t o s t a r t a conditional case section then C'sect
is not used t o separate it from the previous code section. -41~0, C-sect is
not used if there is only one code section.

C'sect
This s ta tement begins a conditional single s t ream code section of a paral-
lel case and has the following Form:

Csect (< condition >)
where, <condition> is a FORTRPLN condition of the same form allowed
in a FORTRAN IF statement .

E n d p c a s e
T h e pre-scheduled parallel case construct is terminated by this s ta te-
ment. Note t h a t some processes may proceed past t,his point whi le por-
tions of t he parallel case are still being executed.

Scase
T h e Scase statement is an alternative to the Pcase s ta tement of a paral-
lel case construct. \:hen a parallel case is initialized by the s ta tement

Scase

the allocation of the work is done at the execution t ime rather than being
pre-scheduled. A process receives the next available case section when it
finishes the previously assigned section. T h e other aspects of a self-

scheduled parallel case construct are the same as the pre-scheduled
parallel case construct. except t h a t it is terminated by an E n d scase
s ta tement instead of EnL pcuse .
In contrast to t h e P c a s e construct, process synchronization is included t o
ensure that two instances of a self-scheduled construct, either a parallel
case o r a parallel DO loop, a re not being executed simultaneously.

I
E n d scase

':'he self-scheduled parallel case construct is terminated by this state-
ment . Although processes may proceed past this point while portions of
t he self-scheduled parallel case are still being executed, no process may
enter another self-scheduled construct (parallel case or loop) or re-enter
this one a second time before all processes have exited.

Presched D O
A pre-scheduled parallel loop is introduced by the Presched DO, which
has t h e following form:
P r e s c h e d DO < n > < i > = < i l > , < i 2 > [, < i 3 >]
This s ta tement must have a body s u c h t h a t instances of t h e body for
different values of t he local variable < i > are independent and can thus
be executed in parallel. Pre-scheduling partitions different values of
< i > evenly over processes in a manner fixed a t compile time. Pre-
scheduled loops are useful when the execution t ime of t he loop body is
fairly constant. T h e s tep size <i3> is optional and is taken as one if
missing.
T h e parameters < i l > , <i3> and <i3> must be constants or espres-
sions yielding an integer value. These values must be identical for all
processes of the Force (i.e., if P r i v a t e variables are in the expressions),
and they must remain fixed during execution of t he loop. T h e parallel
DO constructs d o not nest with each other, however they may be nested
(internally or externally) with normal FORTRAN DO loops.
An example:

Presched DO 99 J= 1,M1
C(J) = 0.0

99 End presched DO

would initialize t h e t h e first M1 elements of the vector c t o zeros. Note
t h a t M1 and the vector c are assumed to have been declared Shared or
Shared Common. Also note t h a t no process synchronization occurs -
processes may enter and leave t h e loop asynchronously.

14

< n > E n d p r e s c h e d DO
This s ta tement terminates the body of a pre-scheduled DO loop. T h e
statsi,ient number < n > must match t h a t on the P r e s c h e d DO state-
ment.

Se l f8 c h e d D 0
T h e Selfsched DO s ta tement is an alternative for introducing a parallel
loop and it has the following general form:
S c l p c h e d DO < n > < i > = < i l > , < i 2 > (, < i 3 >]
T h e behavior of the S e l j s c h e d DO loop is the same as t h a t of a P r e s c h e d
DO escept t h a t the allocation of the work is done a t execution time. A
process receives the nes t unassigned value of < i > when it finishes i ts
previous iteration. This tends to even the workload over processes when
the execution t ime of the loop varies significantly for different values of
< i > . T h e parameters < i l > , <i2> and <i3> must be constants or
espressions yielding an integer value, and this value should remain fixed
during esecution of the loop. T h e implementation generates a S h a r e d
temporary variable to handle the shared loop index. Synchronization is
provided t o ensure t h a t t he execution of different instances of self-
scheduled loops or cases is not overlapped. This means tha t the over-
head is higher for self-scheduled loops versus pre-scheduled loops.
As was the case with pre-scheduled loops, the parameters < i l > , < i2>
and <i3> must be constants or expressions yielding an integer value.
These values must be identical for all processes of the Force, and remain
fised while t h e loop is executing. T h e parallel DO constructs do not nest
with each other, however they may be nested (internally or externally)
with normal FORTRAN DO loops.
For example:

Selfsched DO 99 J = 1 ,Ml
C(J) = 0.0
IF (J/7 .EQ. J/7.0) CALL HARD\VORK(C(J))

99 End selfsched DO

would initialize the the first h l l elements of t he vector C t o zeros, and
call hardwork if J is a multiple of seven. Note t h a t b i l and the vector C
are assumed t o have been declared Sharedor S h a r e d Common. Also note
t h a t processes may enter t he loop before all have arrived and may leave
t h e loop before all have finished, bu t no process may enter another self-
scheduled loop, or re-enter this one a seccjnd t ime, unti l all have esited.
Processes may also not enter a subsequent self-scheduled case construct
unt i l this self-scheduled construct is complete.

< n > E n d sel jsched DO
This s ta tement ends the body of the self-scheduled DO loop with state-
ment number < n > .

PrcL'do
Doubly indexed DO loops are supported as separate constructs within
t h e Force. Semantic considerations dictate t h a t these be implemented
with separate constructs ra ther t han to allow nesting of the parallel DO
! x p 3 .

Pre&do < n > < i > = <i l> ,< i2>[, i3] : < j > = < j l > , < j 2 > [, < j 3 >]
Like single-index parallel DO loops, this s ta tement must have a body
where instances of t he body for different values of t he local indices < i >
and < j > are independent. Pre-scheduling partitions different pairs of
values of < i > and < j > evenly over processes in a manner fixed a t com-
pile time. S tep sizes <i3> and < j 3 > are optional, and they are taken
as one if missing. For example:

Pre2do 99 J = 1,LIM ; E;= 10,1,-1
C(J,K) = A(J,K) + B(J,K)

99 End Presched DO

Note t h a t LIhl and the vectors A, B, and C are assumed t o have been
declared Shared or Shared Common., and I and K are P r i z w f e . .Again,
note t h a t no process synchronization occurs - processes may enter and
leave the loop asynchronously.

< n > E n d presched DO

This s ta tement ends the body of t h e doubly indexed pre-scheduled DO
loop as well. < n > must match the < n > given in the PrecOdo state-
men t .

Sel j2do
T h e Selj.?do statement is a self-scheduled version of t he doubly indexed
DO loop. I t has the following form:
SeljZdo <n> < i > = <i l> ,< i2>[,< i3>] ; < j > = < j l > , < j ? > [, < j 3 >]
Scheduling of t he indices is done at execution time; processes receive t h e
"next" pair of indices available when they are ready t o perform an itera-
tion of t he doubly indexed loop. Self-scheduling regulates the workload
among processes at a cost of higher synchronization overhead. When
loop iterations require approximately the same amount of execution t ime,
then i t is more efficient to use a pre-scheduled DO loop. Once again,
there must be no d a t a dependencies between loop bodies for different

16

< i > , <j > pairs; this is the programmers responsibility.
T h e parameters < i l > through <i3> and < j l > through <j3> must
be integer constants or expressions, which remain fixed during a given
execution of the Self2do loop. Overlapping executions are prevented for
different instances of doubly indexed. as well as singly indexed, self-
scheduled loops.
An example:

SelfrZdo 100 I = 1 , M l ; J = l , M l
IF (I .XE. J) THEN

ELSE

END IF
100 End selfsched DO

C(1.J) = 0.0

C(1, J) = DTAN(DOC'BLE(J*PI/\f 1))

Processes may enter the loop before all have arrived and leave before all
have finished, b u t no process may enter a second instance of a self-
scheduled loop before all have exited.

< n > End selfsched DO
This s ta tement terminates the body of a doubly indexed self-scheduled
DO loop as well. T h e s ta tement number < n > must match tha t on t h e
Selj2do statement .

I1 D. Synchronization

Barrier
This s ta tement must be executed by all processes of the Force. When all
have reached t h e B a r r i e r statement , a single process will execute the
"horly" nf t h e Barr ie r , the body is defined as the block of code between
the B a r r i e r and the End barrier statements. After t he body has been exe-
cuted by a single process, all t h e processes of t h e Force will resume exe-
cution after t he End barrier statement , and they will have been syn-
chrcnized. Note, it is not necessary for the Barrrer t o have a body a t all,
b u t End barrier is always required.
Example:

Barrier
X = X + l

End barrier

Barrier synchronization will cause all the processes to wait at the first
B a r r i e r s ta tement unt i l the last one arrives. A single process will then
execute the body of t he Barr ie r construct, in this case incrementing S by
one. After t h e body has been executed, then all processes continue a t
once with s ta tements following the End barrier statement .
I t is t h e programmers responsibility to place Barriers where they make
sense. To place a B a r r i e r inside a Pcase causes a deadlock, since not all
processes will reach the Burrier , and those t h a t did would hang. Like-
wise, B a r r i e m within Self or Pre-scheduled DO loops should be avoided.
They would also deadlock, unless the number of processes divides evenly
in to t h e number of loop iterations.

End barrier

Paired with the previous s ta tement , this one delimits a secbion of code
executed by a single instruction stream. Synchronized parallel execution
begins after this s ta tement .

Cri t i ca l
Mutual exclusion can be accomplished by named critical sections using
t h e Cri t i ca l construct, which has the following form:
C r i t i c a l <lock-var >
T h e critical section is ended by the End cri t ical statement . Use of a C r i t i -
cal section guarantees t h a t only one process will be executing any block
of code nested between the Crit ical and End Cri t i ca l s ta tements of criti-
cal sections with the same <lock-var>.

18

T h e user must declare <lock-var> as a Shared variable, preferably of
type LOGICAL. This variable is used as a lock and should contain no
other value. Two or more critical sections may share the same <lock-
var> . Two critical sections on the same <lock-var> cannot execute
simultaneously. If one wishes to coordinate activities between Force
modules, then the <lock-var> may be a Shared Common variable,
declared in those Force modules tha t wish to use it. For example:

Shared Common /IO/ LOGICAL \C'RITER
End Declarations

10

Critical \VRITER
WRITE(6,lO) ME
FOR;IIAT(lX,"Me = ",I3)

End critical

E n d critical
This s ta tement is paired with the nearest unmatched preceding. Cri t i ca l
statement t o delimit a cribical section. Nested critical sections a re
allowed; however there is no automatic deadlock prevention employed if
critical sections are improperly nested.

P r o d u c e
Produce <async v a r > = <expr>
If t h e asynchronous variable <async var> is "empty," P r o d u c e will
assign the value of the expression <expr> t o <async va r> and mark
<async var> as "full." If <async var> is not "empty," the process
currently executing P r o d u c e will wait unti l <async va r> becomes
"empty" and then make the assignment and mark <async var> as
"full." These actions occur atomically. T h e variable <async var> must
have been declared as an asynchronous variable using the .4sync state-
ment.

19

Example:

Pr ivate RE.4L YY
Async REALXX

End Declarations

Barrier
Void LT

End Barrier

YY = 7.0*COS(A+B)
Produce ,XX = YY + 3

Consume
Consume <async v a r > i n t o <var2>
If t h e asynchronous variable is "full," then this macro routine will assign
the value of <async var> to <var2> and mark <async v a r > as
"empty." If it is not "full," Consume will wait unti l <async v a r >
becomes "full," store i ts value, and mark it as "empty." If multiple
processes are executing a C o n s u m e statement on the same <async v a r > ,
and if t he <async v a r > is "full," then only one consumer process will
succeed. T h e others will have to wait unti l <async var> is set "full"
again (by a Produce) before they will have a chance to succeed. T h e vari-
able <async var> must have been declared as an asynchronous variable.
In most applications, <va r2> will be Private . For example:

Consume XX into kY

COPY
Copy <async v a r > i n t o <var2>
This macro routine will store the value of t h e asynchronous variable
<async var> into <va r2> if <async var> is "full ," without changing
the variable's s ta tus . If t he variable is "empty," then Copy will wai t
until <async v a r > becomes "full," and then return its value, and leave
it "full:" T h e variable <async var> must have been declared as an asyn-
chronous variable. For example:

Copy k7(into EY

20

Void
Void < async va r>
This macro routine will unconditionally mark t h e asynchronous variable
<async va r> as "empty." T h e variable <async va r> must have been
declared as an asynchronous variable by the Async s ta tement . Note,
asynchronous variables are not necessarily "empty" when declared; nor-
mally one would first Void an asynchronous variable before using it in a
producer/consumer macro. For example:

1-oid Am

ISJU 11
1;ZfulI (< async var >)
This macro "function" will return the logical s t a t e of t h e asynchronous
variable < v a r > , with TRUE corresponding to "full" and FALSE indi-
cating t h a t t h e asynchronous variable is "empty." It may be used any-
wh,ere t h a t a FORTRAN logical function would b e used. T h e variable
<async var> must have been declared as an asynchronous variable by
t h e .4sync s ta tement . For example:

Async REi ILXX
Private RE.4L MYCOPY
End declarations

IF(Isfull(=)) THEN

ELSE

END IF

Consume 4Ly into MYCOPY

< d o something else>

21

111. Restrictions on the Force Macros
T h e Force macro implementations on the Flex/32, the Encore Multimax

and the Sequent Balance adhere t o almost all of t he FORTRAN s tandards
and elements of style except for the following points:
1.

2.

3.

4.

5.

6.

-
1 .

8.

Barr ie r , Forcecal l , and Join, and all of t he macros t h a t specify parallel
execution must be executed by all the processes executing the parallel
program. Skipping over these constructs by a fraction of the processes
may cause an indefinite hang up and unexpected results may be
obtained.
Branching into or out of a body of a Force construct is not allowed and
may not be detected by either t he Force preprocessor or t he FORTRAN
compiler and will lead t o unexpected results.
Except for t he s ta tements closing parallel DO loops, Force s ta tements
should not be numbered, and numbered Force s ta tements will not be
recognized by the preprocessor and will produce F O R T R A W syntax
errors. Also, Force s ta tements may not be continued on two or more
lines.
T h e Force preprocessor may generate subroutine names using a variation
on the name of a given Force module. For this reason, t he first five char-
acters of t he name of a Force module must uniquely identify t h a t
module.
Asynchronous variables cannot be passed as parameters t o other modules
or subroutines and be expected to behave asynchronously. Async corn-
mon must be used for this purpose.
FORTRAX BLOCK DATA is currently not supported and thus Shared
and Shared Common variables cannot be initialized statically a t compile
time.
T h e FORTRAN DATA statement can only be used t o initialize P r i v a t e
v 3 ria b les.
Finally, it should be noted t h a t the line numbers which are referenced by
the error messages resulting from using the "force" command refer to the
.f files and not to the .frc files.

22

IV. How to Invoke the Force
This section will discuss t h e UNIX shell scripts, force, forcerun, and

preforce, used t o invoke the Force. Implementations on three machines will
be considered: the Flex/32 (Flexible Computer Corp.) , the Multimax (Encore
Computer Corp.) and the Balance (Sequent Computer Corp.).

forcc is t he shell command t h a t is used t o preprocess, compile and link
Force source programs. T h e force command takes an argument list of files
and flags and produces a parallel executable ou tpu t program. W e will adopt
t he convention t h a t Force source files have a filename ending with a .frc
extension. Files in the argument list with a .frc extension will first be
preprocessed t o expand the Force macros. T h e resulting files along with the
Force driver program and any other files specified will then be compiled and
linked.

T h e forcerun command is used to execute a Force program. forcerun
also specifies the number of component processes t o be used by the Force pro-
y a m during t h a t run. forcerun takes two arguments: the first is t he name
of t he Force esecutable file, and the second is an integer number representing
the number of processes (processors on Flex/32) to be used for t h a t run.

T h e preforce command performs only the preprocessing steps, produc-
ing FORTRAN .f files from Force .frc files specified in the argument list.
T h e preforce shell script is intended as a debugging convenience, as the f77
compiler used by the force command will give line numbers referring to the .f
file when referencing errors.

T h e force, forcerun, and preforce commands are executable from any
directory, and we recommend tha t frequent users of the Force include aliases
for these shell scripts in their .cshrc files or links t o them in their own bins.
All three commands, when invoked with no arguments, will pr int a help mes-
sage illustrating their use. T h e sections below will describe features and
options of the commands tha t are specific to the Flex/32, the hlultimax or
the Balance.

IV A. Flex/32 (Flexible Computer Corp.)
T h e shell scripts, force, forcerun, and preforce, may be found in the

/usr/local/force directory on NASA/Langley's Flex/32.
On the Flex/32, t.he force command uses Flexible's cf77 compiling com-

mand, and the Force preprocessor will generate .cf files from .frc files in t h e
argument list. force will accept all options associated with cf77. T h e
Greenhills compiler is automatically selected by force, and cfg.18 is used as
a default if no other configuration file is specified. T h e syntax is as follows.
force (c f i i options] <filename list>

Some examples:
force matmul.frc init.frc subs.f
force -0 test.exe -h cfg.8 tes t l . f rc test2.frc

23

T h e forcerun command is used to execute a Force program. It has the
following syntax:
forcerun <execut,able file> <number of processors>

For esample:
forcerun tcst.exe 18

r3n ;he Flex/32, preforce invokes both the Flexible and Force preproces-
sors. preforce accepts files ending with an .frc or .cf extension and creates
the .f F O R T R A S equivalents. There are two options. T h e -cf option invokes
only t h e Force preprocessor, creating .cf files from .frc source files. T h e -a
option creates "all files": .cf, .f, .su.f, .sh.f, and .CF.I. When used without
options, preforce will create only .f files. The syntax is as follows:
preforce <filename> [filename, ...I

An example:
preforce thisfile.frc

IV B. Multimax (Encore Computer Corp.)
T h e shell scripts, force, forcerun, and preforce, may be found in the

/usr/local/unsupp/force directory on the University of Colorado at
Boulder's hiultimax (max). For the Multimax, force preprocesses .frc files in
the argument list producing .f files, and then uses the s tandard f77 compiler.
force will accept all options associated with f77. T h e syntax is as follows.
force [f77 options] <filename list>

-4n example:
force -0 matmul.exe matmul.frc x.f

T h e forcerun command is used to execute a Force program. It has the
following syntax:
forcerun <executable file> <number of processes>

For example:
forcerun matmul.exe 8

T h e preforce command performs only the preprocessing steps, produc-
ing FORTRAN .f files from Force .frc input files. T h e syntax is as follows:
preforce <filename> Ifilename, ...I

An example:
p re force mat mu]. frc

24

IV C. Balance (Sequent Computer Corp.)
T h e shell scripts. force, forcerun and preforce, may be found in the

lusrllocallunsupplforce directory on t h e University of Colorado a t
Boulder’s Sequent (t ramp) . For the Sequent, force preprocesses .frc files in
the argument list producing .f files, and then uses the s tandard FORTRAN
(Silicon Valley) compiler. force will accept all options associated with the
(SS32000 series Silicon Valley) FORTRAN compiler. T h e syntax is as fol-
l0.cr.s.
force [fortran options] <filename list>

An example:
force -0 matmul.exe matmul.frc x.f

T h e forcerun command is used t o execute a Force program. I t has the
following syntax:
forcerun <executable file> <number of processes>

For example:
forcerun mstmul.exe 8

T h e preforce command performs only the preprocessing steps, produc-
ing FORTRAN .f files from Force .frc input files. T h e syntax is as follows:
preforce <filename> [filename ...I

.An example:
preforce matmul.frc

25

V. Sample Program Listing

* ~ * * * * * * * * * ~ ~ * * * * * * ~ * * * ~ * * ~ x * $ * * * * * * * * * * * * * *

* Force demo program *
*
*
* final matr is .

This program normalizes a square matrix by its largest element.
-An external Force module, IXThlAT, is called to initialize the
matr is . .4nother Force module, OCTAIAT, is called t o print the

* * * * * * * * * * i * x * * * * * * * * * * * * ~ * * * * * * * *

I
I C
I

c
C
C

C
C

200
100

C

Force DE110 of NP ident hlE
Private REAL PXIXX, TEhl
Private INTEGER INDES
Shared REAL S(lOO.100)
Xsync REAL ALL3lk.X
Ex t ern f INTh f AT
End declarations

INTMAT is an esternal subroutine that will will initialize the matrix.
Forcecall INThIAT(X,100)

Now we must search the matrix for its greatest element ...
ALLXLLX holds the currunt maximum value
Initialize -4LLAI.L.X

Yoid ALLMAX
Produce ALLA1.L.X = 0

Barrier

End barrier

Preschedule rows of X among processors ...
Each processor finds the maximum of i ts row in the inner loop.

DO 200 j = 1,100
Presched do 100 I = 1,100

TEM = ABS(X(1,J))
IF (TEM .GT. PhlAX) PMAX = TEM

CONTINUE
End presched do

T h e processors communicate t o find the overall max of their local may vals.

IF (PMAX .GT. TEM) TEM = PMAX
Consume ALLMAX into TEM

Produce ALLMA)[= TEM

26

C

c

-100
300

c

10

Synchronize ...
Barrier
End Barrier

Copy ALLMLX into PMAX

IF (P5iAX .GT. 0) THEN

Sormalize the matrix, dividing the labor on the outer loop
Presched do 300 I = 1.100

S(I, J) = S(I , J) / PMAX
DO 400 J= 1,100

CONTINUE
End presched do

Barrier
End barrier

END IF

OUThI.4T will perform sequential i/o ...

Call OC'TMAT(X, 100)
Pcase on ISDEX

End pcase

.Join
END

SCBROUTINE OGTXIAT(X,N)
ISTEGER N, INDEX
REAL S (N , N)

DO 10 I = 1,X
DO 10 J = l , N

write(6,") I, J , X(I,J)

RETURN
END

.

Assume t h a t the next program listing is in a separate file. *
.

Forcesub INTMAT(MAT,N) of N P ident ME
c
c to a "test" value.

This parallel subroutine will initialize the matrix M.4T

27

INTEGER N
REAL MAT(N,S) , GEN
End declarations

Presched do 20 I = l . N
DO 30 J = l,N
'The sequential function GEN is used t o generate values.

CONTIXVUE
MAT(I, J) = GEN(1, J)

End presched do

RETURN
E S D

REAL FUNCTION GEN(1, J)

I S T E G E R I, J
,i' ((I+J) .GE. 1) T H E N

G E N = 1000.0 / (I+J)
ELSE

G E N = 1000.0
END IF
R ETL-R N

0.0 < GEN <= 1000.0

END
I .

.
I
I

28

.-

REFERENCES

PI

H. F. Jordan , "Structuring parallel algorithms in an hII\ID, shared
memory environment," Parallel Computing. vel. 3, No. 2. pp. 93-110,
hlay 1986.
€1. F. Jordan, "The force on the Bex: global parallelism and portability,"
IC=ISE Report X o . 86-54, NASA Langley Research Center. Hsmpton, Vir-
ginia. .August. 1986.
Fie .r/3 2 dl u 1 t i c o m p u t e r: System 0 c e r 29 i e u,, F 1 ex i b 1 e C o m p u t e r Corpora-
tion, Dallas, Texas, 1986.
,Ilultirnaz Technical Summary, Encore Computer Corporation, Aiarlboro,
llassachusetts, May, 1985.

29

--
~ ~ L ~ ~ G R A ~ H I C DATA 1. Report 50.
HEET ECE Tech. Rept. 86-1-4R

5. Abstracts

2. 3. Hcclpren:'s Accession No.

A methodology for writing parallel programs for shared memory multiprocessors
has been formalized as an extension to the Fortran language and implemented
as a macro preprocessor. The extended language is known as the Force, and
this manual describes how to write Force programs and execute them on the
F1exibl.e Computer Corporation Flex/32. the Encore Multimax and the Sequent
Balance computers. The parallel extension macros are described in detail,
but knowledge of Fortran is assumed.

1 itle and SuxicIe

Force User's Manual

Author(s)

Performing Organization Sam; and Address

Harry F. Jordan, Muhammad S. Benten,
Aruna V. Ramanan and Norbert S. Arenstorf

Computer Systems Design Group

University of Colorado
Boulder, CO 80309-0425

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665

Department of Electrical and Computer Engineering

2. Sponsor:ng Orgmizarion Name and Address

7. Key U'ords and Docuaenc Analysis. 170. Descriptors

5. Report Uate

June 1987
6.

8. Performing Organization Repc.

IO. Pro)ecr/Task/Uork Unir ho.

1 I . Contracc/Crant No.

CSDG 87-2

;i .4G - 1 - 640

13. Type of Report 8 Period
Covered

Interim
14.

parallel programming
multiprocessor
shared memory
Force macros
Fortran

7b. Identifiers/Open-Ended Terms

FIex/32
Encore Multimax
Sequent Balance

