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Abstract

We discuss here the implementation on the
MPP of a barotropic quasigeostrophic model
of ocean circulation. The mathematical model,

including scalings and boundary conditions is
discussed. The numerical scheme, which

uses compact differencing is also discussed.
The implementation of this model on the MPP
is then presented. Finally, some performance
results are given and compared to results
obtained using the VPS-32 and one processor
of a CRAY-2.

Introduction

A central problem in the physics of ocean
circulation is that of understanding the
interactions of the spectrum of scales present
in these motions. At the long wavelength end

of the spectrum are the planetary scale
motions, typified by the thermohaline gyre
circulation, and the wind driven basin

circulation. These dynamical features are
reasonably quasisteady and are the
background and, presumably, the forcing
functions for the synoptic scale dynamics.

The synoptic scale motions are, roughly, on
the scale of the radius of deformation and

range from the meanders in the western
boundary currents (one to two hundred
kilometers), eddies (fifty kilometers), and
fronts (ten kilometers or less) to the small
scale eddies (one kilometer or less) which

appear to be in the dissipation range. These
motions would seem to be generated by
instabilities in the large scale gyre circulation

which results in the transfer of either kinetic or

potential energy from the gyre to the synoptic
scale motion. From both a theoretical and

practical point of view, an understanding of
the synoptic scale dynamics appears to be of
major importance.

The fundamental force balances of the ocean

are hydrostatic in the local vertical and
geostrophic in the horizontal. All interesting
ocean dynamics are the results of the small
deviations from these balances. Numerical

simulations of these dynamics in terms of the
"primitive" variables, velocity, pressure, and
density, are difficult because, among other
problems, of the required high accuracy of the
solutions in order to separate the time varying
dynamics from the quasistatic geostrophic and
hydrostatic balances. However, a complete
prediction of the dynamics, including the
density field, requires the use of the primitive
system (Bryan, 1975). The primitive variable
general circulation models are the only ones
which can give a complete prediction of the
dynamics, including, especially, the density
field. Currently available computer resources
are not sufficient to allow fine horizontal and
vertical resolution models to be used for

routine parametric experiments with these
models.

The standard approximation used to effect the
separation is the quasigeostrophic model. In
this approximation the dynamical variables are
.the horizontal velocity components and the
vertical component of the vorticity. The
density field appears only in the depth varying
Brunt-Vaisala frequency. This approximation
is extraordinarily rich in phenomena,
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containing, for example, wind driven basin
circulation dynamics, Rossby waves,
barotropic and baroclinic instabilities, as well
as eddies. Within the quasigeostrophic
approximation there is much physics whose
effects should be studied in detail; in some

cases the physics has been explicitly built into
the models while in others it is parameterized.
Examples of the former are topography and
irregular basin geometry, wind forcing and
surface thermal forcing, both of which should
be time dependent; the outstanding example of

the parameterized physics is that of the
dissipation mechanisms, or more generally,
the effects of sub-grid scale turbulent motions.

The fundamental physics of the wind driven
large scale ocean circulation were deduced by
Sverdrup (1947), Stommel (1948) and Munk
(1950). Analytic models such as these are
limited by the complexity of the nonlinear
dynamics. Further progress in understanding
required the use of numerical models. Some
examples of the early use of numerical models
are provided by the work of Bryan (1963),
Veronis (1966) and Holland (1967). More
recently Bretherton and Darweit (1975),
Bryan (1975), Haidvogel, Robinson, and
Schulman (1980), Robinson and Haidvogel
(1980), Haidvogel (1983), Holland,
Harrison, and Semtner (1983) and Miller,

Robinson, and Haidvogel (1983), among
others, have developed numerical models of
quasigeostrophic flow and used them to study
ocean dynamics.

In their most general form these models
require very large amounts of computation
time on the fastest computers available.
Despite the fact that the most powerful
existing vector processors can perform at peak

rates of hundred of MFLOPS, they are
inadequate for many applications. In part this
inadequacy is because it is generally rather
difficult to fully use the vector capabilities of
these supercomputers. In practice, average
processing rates for many codes are in the
range of 10 to 20 MFLOPS (see, for example,
Dongarra, 1984). An alternative way of
achieveing greater processing power is to use
computers consisting of multiple (hundreds or
thousands) processing elements; each

processing element has only a modest
processing power and storage. However, a
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complete multiple processing system can have
a very large processing capability. If these
multiprocessor computers can be used
effectively, very large gains in overall
processing power are possible.

In this paper we report on the implemenation
of a quasigeostrophic potential vorticity model
on the Massively Parallel Processor (MPP).
In section 2 we give the scalings, basic
assumptions, equations, and boundary
conditions. The numerical scheme is outlined
in section 3. Section 4 contains a discussion

of the implementation of this model on the
MPP. Finally, in section 5 the preliminary
results of this research are given and some
conclusions are drawn.

Equations

The scaling of the variables and the derivation
of the quasigeostrophic equations follows the
development of Pedlosky (1979). The x axis
is positive eastward and the y axis is positive
northward. The coriolis parameter is
approximated by the beta plane
approximation.

4: = 2-(2- s,'_, _ _ 4:. +-(3. if, (2.1a)

with

4, - 2...f'L s,_ q(,,,, (2.1b)

tao = (Z .CI. / to) c.os _6,, (2.1c)

where.fijs the rotational frequency of the earth,

ro is the radius of the earth, andff is the

dimensional distance northward of the latitude

_o (see Figure 1). A lateral length scale, L,

and a vertical length scale, D, are used. It is
assumed that D/L is much less than unity.
The horizontal velocity components, u to the
East and v to the North are scaled by U. The

time is scaled by U_ L where

i_ = (_o _ /U. (2.2)



Expanding the solution in powers of the
Rossby number(U/foL), the equations of the
quasigeostrophic model.for the depth averaged
horizontal velocity /.Z =(u,v) and vertical
component of the vorticity,'y are:

(_'X 4- _ "-0

Vx - u_r =T

5 ---p-,, r ,- (2.5)

dimensionless bottom friction coefficient and

_is the surface wind stress. The wind stress is
dimensionless and its magnitude,2_, has been

scaled to one by tm_ng

U -- _/'p' O/_,, L. (2.6)

Finally the Reynolds number, Re, is defined
by

R¢ = UL/A, (2.7)

with A a horizontal eddy viscosity. In this
derivation it was assumed that the density was
constant, that.the bottom was flat and that the
wind stress, 77, was applied to a rigid lid on
the surface.

If these equations are applied to the flow in a
closed basin the boundary conditions are quite
simple, _=0 on the boundary. This implies

that the vorticity on the boundary is equal to
the normal derivative of the velocity on the
boundary.

For application to flow in basins which are
partly or completely open, inflow and outflow
boundary conditions must be imposed. This
is a subject of continuing research and will not
be discussed further.

It should be noted that this formulation of the

barotropic quasigestrophic equations is in
terms of velocity and vorticity. This is in
contrast to most other formulations in which a

stream function is introduced to satisfy
equation (2.3). Among the few to use the

velocity-vorticity formulation in numerical
calculations are Dennis, Ingram, and Cook
(1979), Fasel (1980), and Gatski, Grosch,
and Rose (1982). The velocity, vorticity
formulation of the Navier-Stokes equations
has certain advantages over more conventional
formulations, particularly with respect to
setting boundary conditions. For example, it
is quite easy to incorporate the generation of
vorticity at solid boundaries, and at outflow
boundaries to use a vorticity flux condition
(Halpern, 1985) to ensure that no vorticity is
artificially reflected back into the
computational domain.

Numerical Scheme

The numerical method used is based on

compact differencing schemes. These
schemes require the use of only the values of
the dependent variables in and on the
boundaries of a single computational cell.
Compact difference methods have been
discussed by Keller (1974). Malik, Chuang,
and Hussaini (1982) used a fourth-order,
compact, difference scheme to solve the
compressible linear stability equations, and
Gatski, Grosch, and Rose (1982) applied
second-order compact schemes to the
numerical solution of the incomprehensible,
two-dimensional, time-dependent Navier-
Stokes equations. This code was later
extended to three dimensional time-dependent
flows and used to study some complex flow
fields (Gatski and Grosch, 1985a,b). The

original ocean circulation code was developed
as a serial algorithm by Spence and Grosch
(1985).

In order to apply the compact differencing
scheme we must write the vorticity equation as
a first order system. Define

_= 3"x (3.1a)

tfl= 3"c_ (3.1b)

then (2.5) becomes

(3.2)
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The velocity and vorticity at time levels,A_and
(,'A'_neare located on the boundaries of and in a

cell as shown in Figure 2.

The centered difference and average operators

are defined on a cell by

gx U'_- ( U2+'h,l-U"'-'/,,,/)/eax_ (3.3)

.,_x U" =- [ U,:",,h,/ + O__,/;,q) /2. (3.4)

With these definitions the, equations (2.3),
(2.4) replaced by

&U* ÷ = (3.5)

,/z,,× U" 5_ U" , (3.6)
-.,.._,), U = o., (3.7)

V" = (3.8)
The vorticity transport system, equations
(3.1a), (3.1b), and (3.2) are replaced by

[ oc_ ÷ S [/W_ U_ b"x (3.9)

T"= (,,_x-fax_-(oa)ocx) _bl (3.10)

_'" : (,/_-_ ax _-(Oj) gc_) 5b'; (3.11)

-.'_'e 3"" _./_,¢ 3" "=/.z,,_, T'_ (3.12)

and

(_) --" c,,_-,4 a - ,/_9_ (3.13)
with

e,_ = .S U" /P.c Ax/z, (3.14)

Oj = S" V" 8e .,',c_,//2.., _.L15)n.
the cell Reynolds numbers. Note that i lS
the cell averaged curl of the wind stress at'_ime

The boundary condition for the velocity

equations (3.5) to (3.8) are that the normal
component is zero on a solid boundary. This
produces a nonzero tangential component on
the boundary, which in turn gives the
boundary condition for the vorticity equations

(3.9) through (3.15); enough vorticity is
produced at the wall so that the tangential
velocity is brought to zero.

Implementation on the MPP

In order to map the data onto the MPP, it is
convenient to introduce auxiliary or box
variables to represent the velocity field.
Referring to figure 2, we introduce the box
variables P and Q at the comers of the cells.

These are defined so that the average of two
adjacent P's is equal to the U on the included
side and similarly for the Q's and V. We then

map this cell onto the array so that each comer
of the cell "corresponds" to a processor and
holds a P and a Q value. Again referring to
Figure 2, if one considers the processor at the
upper left hand comer of the cell the value of
the vorticity at the center of the cell and on the
left hand and bottom sides, as well as the

corresponding values of,_and _/ , are stored
m that processor. Thus, the array with 128 by
128 processors is mapped onto a 127 by 127
array of cells.

It is easy to see that, expressing U and V in
terms of the P's and Q's, equations (3.7) and
(3.8) are satisfied identically. One must then
solve (3.5) and (3.6) with given and the
boundary condition that the normal component
of the velocity is zero on the boundary of the
domain. This is done using a cell relaxation
scheme in which all the values of P and Q on
the corners of a cell are updated
simultaneously, for details see Gatski, et al.
(1982). It is obvious that the values of P and

Q at the comer of any cell are updated four
times in a sequential sweep across the domain.
Thus, this method is a four "color" scheme. It
is quite simple to update each of the "colors"

in parallel and four updates are required for a
complete update of all the points in the
domain. The relaxation scheme is equivalent
to an SOR method.

Once a solution for the P's and Q's has been
found, the next step in the solution procedure
is to calculate the boundary values of the
vorticity. This is done by computing the
vorticity required to be added at the boundary
so that the tangential component of the
velocity is reduced to zero. This is done using
equation (2.4).



Once the values of the vorticity on the
boundary are known, one can proceed to
solve the vorticity equations(3.9) through
(3.15). Using equation(3.12) thevorticity at
timeleveln+1/2canbeeliminatedfrom (3.9).
This, togetherwith theotherequations,gives
animplicit systemfor thevorticity attime
This systemis solvedusing anADI methoci
which requires the solution of tridiagonal
systemsof equationsin, alternately,all rows
and all columns. This is donein parallel on
the array using the cyclic elimination
algorithm. Once the vorticity at time is
knownaswell asat (n-l/2) , equation(3.12)
canbeusedto computethe vorticity at time
(n+l/2) Finally, variousnorms, thetotal
energy and so on are computed. The
mathematical details of this algorithm are
describedin Gatskiet al. (1982).

Results and Discussion

The algorithm described above has been coded
in MPP Pascal and run on the MPP. The code

is moderate length; between 1300 and 1400
lines. This can be compared with the serial
FORTRAN version which is about 2000 lines

long. The code for the four color relaxation is
simple and highly structured. In contrast the
code for the ADI vorticity solver is much more
complex and less structured, it also uses about
20 temporary parallel matrices. There are
procedures to calculate an approximation to
the q function, equation (3.13) and to solve
tridiagonal equations over the rows and
columns. Despite this complexity, the time
used by the ADI solver is only equal to ten or
so iterations of the velocity solver. When the
wind stress is varying in time or there are
Rossby waves propagating in the basin the
velocity solver requires a few hundred
iterations per time step and, thus, uses most of
the computational time. Therefore the

performance of the parallel relaxation routing
largely determines that of the entire code.

Processing rates, usually expressed in
megaflops, are one measure of the
performance of an algorithm on a computer.
Comparison of the processing rates of the
same algorithm on different computers can be
misleading because of the differences in the
basic cycle time of the machines and because
the same algorithms may require different

numbers and kinds of operations when
optimized for different architectures.

Neverhtless, cross comparisons are useful
when a comparison is also made with the
maximum theoretical processing rate of the
computers. This kind of comparison shows
how well, or poorly, a particular algorithm
has been adapted to each of the architectures.
Such a comparison is shown in Table 1.

The relaxation algorithm, in addition to being
programmed for the MPP, has been
programmed in CDC Vector FORTRAN for
the VPS-32, and in FORTRAN for the
CRAY-2. The programs were run on each of

these machines and timings were obtained.
These, together with the operation counts
from the codes permitted the arithmetic
processing rates to be determined. These
together with the theoretical maximum rates

are given in Table 1 for a 128 x 128 grid point
problem.

The scalar rates shown in this table were
obtained when standard FORTRAN codes

embodying a serial version of the algorithm
were run through a vectorizing compiler.
None of the code was vectorzied. The vector

performance on the VPS-32 and the CRAY-2
was obtained after the FORTRAN codes were

rewritten, explicitly using the four color
structure of the algorithm. In addition, the
explicit Vector FORTRAN was used for the
VPS-32 code and the CRAY compiler had to
be told to ignore apparent vector
dependencies.

This relaxation algorithm mapped well onto
the MPP. This is because it can be set up as
nearly all matrix operations. There are
relatively few shift operations and these are all
to nearest neighbors. There are no vector

operations and only two scaler operations per
iteration.

In contrast this algorithm does not vectorize as
well. Because of the color structure, the
longest vectors are one-half of the maximum
dimension; in this case 64. This contrasts
with N-1/2 value of 110 for the VPS-32. The

structure of the algorithm also requires that the
data be accessed with a stride of 2 and this

requires the extensive use of COMPRESS and
MERGE functions. This adds a considerable



overhead. Increasingthe problem sizewill
improvethevectorlengthproblembutwill not
removetheoverheadassociatedwith theslow
COMPRESSandMERGEfunctions.

On the CRAY-2 the strideof 2 is a source of

major difficulty. All of the inner loops of the
rewritten code vectorized, but the major

problem was loading the data from the main
memory to the local memory or the registers.
Here the stride of 2 caused bank conflicts.

A perhaps more realistic way of measuring
performance is to consider the time required to
solve a given problem. Table 2 contains a
listing of the measured time required to
complete one iteration of the 128 x 128
problem on the MPP, the VPS-32, and the
CRAY-2. The execution time for the CRAY

is about 30% less than that of the MPP, while
that of the VPS-32 is nearly 2.5 times greater
than that of the MPP. We also note that we do

more operations on the MPP than on the
CRAY.

A crucial question in using the MPP is
whether or not a problem will fit on the array
or is oversize. Each of the major procedures
in this code requires 20 to 25 arrays of
floating point numbers. Many of these are
temporary arrrays, but these together with
other storage require that we move various
arrays in the out of the staging memory even
when we have a 128 x 128 problem.
Therefore, we must partition these oversize
problems and use the staging memory as a
backup. We have modified the algorithms so
as to be able to handle oversize algorithms, the
details will appear elsewhere. A total of seven
data swaps between the stager and the array
are required for each sheet of data. The
swapping adds 11.5 msec to the time for each
iteration; thus one iteration on a sheet requires
25.1 msec. Some results for oversize

problems, both measured and extrapolated,
are given in table 2.

In summary we have found that it is possible
to adapt a barotropic quasigeostrophic
potential vorticity code to the MPP. We have
been able to use the MPP's considerable

processing power to solve the computationally
intensive flow problems of ocean circulation.
For problems which fit on the array, one

iteration requires about 14 msec; this is about

30% more than that required on one processor
a CRAY-2, and only about 40% of the time
required for the same calcualtion on a
VPS-32. For oversize problems, 2, 3 ..... ,
10 times the array size there is an overhead for

transferring the data to and from the staging
memory. This reduces the efficiency of the
MPP, but not drastically. It is still competitive
with the other supercomputers.

The problems which we have encountered in
using the MPP have not been major. With
regards to software, MPP Pascal as currently
implemented, does not permit operations on
vectors. This is awkward when dealing with
boundary conditions. The major hardware
problem is that the PE memory is only
marginally large enough for our applications.
We really need 4K to 8K bits per PE for the
barotropic code and 32K bits per PE for a
baroclinic model. Finally, input/output is
somewhat clumsy.

Despite these problems, we believe that the

MPP is a useful tool for running ocean
circulation models and we will continue using

it to study the effects of temporal and spatial
variation in the wind field.
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MPP VPS-32 Cray-2 (*)

Theoretical

Maximum Rate 210 200 488

Measured Vector

or Array Rate 175 48 102

Measured

Scalar Rate -- 7 30

(* Using one processor)

Table 1. Theoretical and measured processing rates, in Megaflops, using the relaxation
algorithm on a 128 x 128 grid.

Problem Size

128 x 128

128 x 255

128 x 509*

128 x 1017"

(* Computed by extrapolation)

MPP VPS-32 Cray-2

13.6 33.4 10.4

50.2 47.9 20.7

100.4 73.6 41.4

200.8 124.0 82.6

Table 2. Execution time, in milliseconds, for one iteration. One processor the CRAY-2
was used.
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Figure 1. Coordinate System

Figure 2. Mesh cell and location of variables.
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