
N87-26559

Algorithmic Commonalities in the Parallel Environment
Michael A. McAnulty and Michael S. Wainer

Department of Computer and Information Science

University of Alabama in Birmingham

Birmingham AL 35294

ABSTRACT

The ultimate aim of this project is to analyze

procedures from substantially different application
areas to discover what is either common or peculiar in

the process of conversion to the MPP. Three areas
were identified - molecular dynamic simulation, pro-

duction systems (rule systems), and various graphics
and vision algorithms. To date, only selected graphics

procedures have been investigated. They are the most
readily available, and produce the most visible results.
These include simple polygon patch rendering, raycast-

ing against a constructive solid geometric model, and
stochastic or fractal based textured surface algorithms.

Only the simplest of conversion strategies, mapping a

major loop to the array, has been investigated so far.
It is not entirely satisfactory.

Key Words:Graphics, Stochastic Surface, Constructive
Solid Geometry, Conversion Strategy, Fractal Surfaces

INTRODUCTION

Intuitively, certain procedures appear to map
easily to an array machine, and others do not. The
latter class includes those with long stretches of

inherently single-thread code, for which even incredible

speed-ups in their parallel part will produce little net
improvement, and those whose internal communication

structure is irregular, such as highly general neural
nets. The three classes to be discussed were chosen not

for their impossibility, but rather for their prima facie

differences, as well as for their presumed availability
during this work.

lvlolecular dynamics simulates the motion of

complex macromolecules, which can be shown to exhi-
bit a quite interesting ensemble of configurations. The

simulation relies upon the locality of effects, so that
each atom interacts only with a few neighbors, and

accuracy and stability are sought by using a
sufficiently small time step. The locality of interaction
and the uniformity of the calculations for each atom

appear to make this mappable to an array machine,
albeit with some significant programming work. We

intended to use some existing code which has been vec-

torized, but this is now being marketed, and we are
still discussing the possibility of using it without

violating its proprietary nature.

Rule systems invoke a branching chain of infer-

ences using a domain rule data base suitably encoded.
A rule is activated by determining that certain facts in
a fact data base satisfy its left hand side, and it exe-

cutes by making modifications to the fact data base.
Some variant of this underlies most expert systems

currently available. As it happens, the expansion of
an inference is often a highly branched tree process.

The necessary depth of a search is the discouraging
component of the process, but this is often outweighed

by a considerable breadth as well. The major
bottleneck in production systems appears to be, in

fact, not the depth of the process, but its breadth
which is necessarily invoked in passing left hand sides

against the fact data base to detect satisfied rules, a
process termed matching. Noting that, with the
broadcast facility, an array machine may function rea-

sonably well as a large associative memory, it appears

possible that rule systems could be significantly optim-
ized in an array machine. Unfortunately we have lost
the investigator who was to have pursued this line,

using an existing production system, and it has not
been followed up yet.

The final area, graphics and vision algorithms, is
represented only in the graphics area. We may plead,

citing a fairly common observation, that in fact vision
and graphics appear to be the same process run in two
different directions between an image and its descrip-

tion (Ref. 7), but in fact they are nowhere near that in
practice. A short section will address vision issues.
The bulk of the following represents graphics issues

that have emerged during our involvement with the
MPP.

POLYGON PATCHES

The description of a scene as a collection of sim-
ple patches that together describe surfaces of solids is
perhaps among the oldest of solid models, and a dis-
cussion of its aspects may be found in several

?I:_t_EDING PAGE BLANK NOT FILMED

227

comprehensive references (e.g., Ref. 1). There is a con-

siderable leap between models with simple planar
patches and those with simple curved patches, this dis-

cussion treats only planar patches. The process of

mapping a patch to an array of display elements (pix-
els), which is termed scan-convcrMon, is relatively
straightforward, if tiresome, for planar patches, and
not nearly so for nonplanar patches.

To render (that is, display) a polygonal patch
requires projecting it to the two-dimensional display

surface, a simple scaling and shifting operation, and

then determining which pixels it in fact projects to.
This last operation, the actual scan-conversion, will

usually consist of counting from one boundary to the
next in pixel-sized increments. It is roughly as time

consuming as the number of pixels actually covered,
although there is also some overhead involved in set-
ting up the control parameters of the loops involved.

Polygons are as easily represented as a combination of
half-spaces, simple linear constraints, as they are by

vertices, and one form may be generated from the
other with comparable facility. A quite straighforward

array process for scan conversion may be described,
which consists of each array element testing its loca-

tion against the list of half spaces, and 'lighting itself
up' if it passes all the constraints. There is an added
advantage to working on the array, in that each pro-

cessor may serve as a 'z-buffer', keeping track of the
depth which its current pixel represents (if indeed it

has been filled). This can be simply calculated from
the 3-space plane of the polygon, and is useful when

patches overlap. If a new patch does project on a pro-
cessor at a nearer depth, it simply wipes out the previ-
ously stored value.

The simple (but effective) method of passing
linear constraints to the array, one polygon at a time,

is in fact no less onerous than it would be to pass

them to some other firmware scan-converter, the usual
process in the sequential world. The process is advan-

tageous if rather large polygons are involved, the
scan-generation process becomes a single 'multi-step',
but one is reminded that during this step most of the

array elements are not doing 'useful' work.

An alternative approach, to somehow load the

re'ray with patch definitions and let each scan generate
in parallel, confers both advantages and considerably
more work. The advantage is that an animated

sequence, where the collection of patches moves in

time, does not. require a sequential scan of the patch
data base for each new frame. The challenge is that
scan conversion is no longer as direct, a process on the

array may not be located in the pixel it is eventually

supposed to illuminate, and thus the values the process
generates must then be routed to the correct pixel. We

have concentrated on processes that map array ele-

ments directly to pixels, and the costs of a general
routing process remain to be more carefully considered.

It should be noted that the hidden surface problem is
still nicely addressed, as destination pixels may still
function as z-buffers.

The simple half-space approach corresponds to a
general methodology, unwrapping a controlling loop

and spreading it over a processor array. In the planar
patch model, the innermost loops that direct scan gen-

eration are the ones unwrapped. The outer loop,
which counts through the model data base exactly

once (since occlusion is handled by the z-buffer), is
totally determined. The inner loop in fact counts over

pixels, but in a piecemeal and unpredictably repetitive
fashion. An alternative approach is to count over pix-

els, hitting each exactly once, and for each pixel
traverse the model data base to see which surface, if
any, projects to that pixel. This is the control struc-

ture of the next rendering method to be discussed.

RAYCASTING SOLID MODELS

For complicated but man-made objects the con-

structive solid geometry (CSG) models are unsurpassed
for direct representation and conciseness. They are

particularly well-adapted to rendering by ray-tracing,
which is still the best method with which to exercise

full control over the lighting model, including shadow-

ing, matte and specular reflection, and refraction. (see,
for example, Ref. 10) In the single thread implementa-
tion, the major loop counts through all pixels, con-

structs a ray through each pixel, and determines its
intersection with the model. The outer loop, once per

pixel, can be mapped onto the processor array quite
easily, so that each element holds a different ray, and
the model may be broadcast one node at a time. The

model need be traversed only once (but see further),
which is of some modest advantage for CSG because

models tend to comprise components numbering from
scores to hundreds. However, for other models such as

oct-trees, where model traversal is more expensive, this
advantage increases.

The operation at each pixel, intersecting it with

the solid model, is directed by traversing the model,
formed as a tree, in preorder. Leaf nodes represent one

of a small set of primitives (cube, sphere, cone, torus),
interior nodes represent set combinations of their sub-

trees, which may be intersection, union, or subtraction,
and these are always binary. Each visit to a leaf pro-
duces a list of intersections, always in in-out pairs.

The various intersections are represented as a parame-
ter value along the ray, with larger values being

further from the viewer. The grazing phenomenon,

228

where a ray touches an object once, can always be
forced out at this level. Each visit to an internal node

produces two such lists which must then be combined
into a single list according to the operation represented
at the node.

It would be sufficient to retain only the nearest

in-out pair if it weren't for the quite powerful set sub-
traction operation- no matter how many hits one

saves, they may all be subtracted further up the tree,
and it may turn out that one needed just the ones

thrown away. It is possible to force subtraction to be
done at low levels in the model tree, which will allevi-

ate this problem, although the general control struc-

ture remains unchanged. At any interior node in a
tree, several lists of intersections from left subtrees at

higher levels may be in effect, waiting to be combined
with right subtrees, and each list may be zero or more
intersections. There will, if empty lists are explicitly

treated, be exactly the same number of stacked lists

for each ray (processor), so that a combine operation
which mixes a current right branch intersection list
with the topmost left intersection list may be done in
parallel, with processors that exhaust their left list

simply shutting off for the duration of the combine.
Because there should be no limit on tree depth, there is
thus no limit on the stack size even if we restrict a sin-

gle intersection list to two members, thus it appears
that we sha]_l require the staging memory to stack the
lists. More onerous, since a parallel reference must be

to the same address in PE memory (and by extension

in the stager as well), it appears that stack operations
should physically relocate the entire current stack.
The solution to this problem is still under considera-

tion, and may perhaps be addressed by restricting sin-
gle lists to pairs, which may have real values or dum-
mies that indicate no intersection.

The stacking problem relates only to the traver-
sal of the model. When this has been accomplished,

only the foremost intersection matters. Any further

work to be done on that pixel consists of casting
further rays from the intersection point. We may need

to cast shadow feelers to light sources, reflected rays
from specular surfaces, or refracted rays at non-opaque

surfaces. It becomes necessary, then, to include with
all intersections in the stack the physical properties of

the object being intersected, which include color,
transmittance, specularity, and the surface normal of

the object at the intersection point. More important,

we require parallel management of these further ray-
casts.

Shadow feelers, for simple shadowing, are
straightforward since every intersection must cast to

the same light sources, combining the results of the
cast with its matte reflectance and color. At this

point, non-specular and non-transmitting intersections
may turn themselves off. Those intersections which

are specularly reflective to any degree may cast only

once, unless this second ray also encounters a highly
reflective surface. For many applications we might res-
trict the number of times this might occur. A similar
consideration applies to transmitting surfaces, which

could be treated as a pair of in-out rays with a final
modulated intersection.

The extra contributions to a pixel's value from
refracted or reflected objects need to be combined in

weighted fashion to calculate the value. This applies as
well to further recursive extensions of such feelers. At

each extension, the net contribution of a particular
feeler to the ultimate value of the original pixel, its

weight, grows less and less. Thus, we may generate as
many rays as we need, attach to each its weight, and

continue generating feelers until no new feeler has a
weight above some threshold. Each new feeler results

in the stacking of weighted values, which will generally
have zero weights for dull surfaces, and eomb_- ":_'
may be a straightforward stack opera _. [! .

this results in a doubled data requir_.lent, a,, as
many extra model traversals as extra rays are gen-

erated. The anticipated speed-up of 16,000 will not be
attained, since only a small minority of the rays, in

general, require further casting, so the majority of rays
are idle (processors doing no useful work) while

reflectors and transmitters are followed, each stage of
which requires a further sequential traversal of the
model.

One might, in the case of a really fancy lighting
model offload certain rays to other processors which

are no longer propogating, but the nature of routing
such rays appears to be infeasible, and there is in fact
little paralellism in the feelers, one must generally fol-
low another.

Interim Discussion

The half-space polygon rendering model has been

implemented and run, in highly primitive fashion, on
the MPP, largely as an exercise. The CSG raycaster is
still an incomplete paper exercise. The only conversion
methodology applied in either case is the quite

straightforward unwrapping of major control loops.

The major challenge appears to be manipulation of
model elements entirely within the array. This was

alluded to in the discussion of patch models, and is
necessary for anything like real-time manipulation, in
three dimensions, of the model. Before an actual

implementation of the ray-caster is attempted, further

study of its internalization will be done.

229

While "late vision" algorithms have some relation

to graphic modelling, a major challenge at this stage is
the matching of elements of the model with the image,

an interesting problem we have yet to deal with.

Early vision procedures are of lively current interest,
and tend to be highly parallel and local computations
involved in regularization and related relaxation pro-

¢edures. (Ref. 9) These appear, intuitively, to be "easy"
procedures to map to a matrix machine. However, the

graphics .procedures we have dealt with also appear
easy in much the same sense. The initial methodology

has been to do those easy tasks and see what stum-
bling blocks in fact appear. For both patches and

CSG neither "easy" mapping has been entirely satisfac-
tory. Further, there is a strong possibility that many

algorithms may be too numerical in nature and reali-
zation, numerical computation having been our major
medium in the past. We should investigate more
efficient uses of connected bit-serial processors which
minimize arithmetic.

The final and dominant segment of this project

(Wainer) maps a different process to an array in some
detail, and has been fully implemented. The control

structure is again recursive, hut unlike the CSG traver-
sal the recursion itself, rather than a "major loop", is

mapped directly to the array. Further, some use is

finally made of the communication structure of the

array.

STOCHASTIC INTERPOLATION OF
RECTANGULAR PATCHES

Stochastic interpolation of rectangular patches as
described in (Refs. 2,3,8) is useful in generating dense
patch data from a small number of input values. In

computer graphics the method is used to create sur-
faces, textures and sky among other things (Refs. 2-

4,8). The values generated axe pseudorandom and
approximate a fractal distribution. The characteristics
of the surface are controlled by the h and scaling

parameters. Values of h near 1 give a smoother sur-
face than those near 0. The scaling parameter is used

to adjust the magnitude of the stochastic contribution
to the interpolation function. For more about frac-
tional brownian motion and its applications see refer-
ences 3 and 8.

The process begins with a parent patch whose
corner data values are given. These values may be

interpreted as altitudes or colors or some other attri-
butes which are to be interpolated across the patch.

The parent patch is repeatedly subdivided until the
child patches are of the desired resolution (ie. pixel

sized). The interpolated values are formed from the

deterministic average of neighboring data values and a

stochastic component which is determined by the
parameters and pseudorandom numbers.

A graphical depiction of the method is shown in
Figure 1. The four corners of the parent are used to
calculate the center point of the child. Side points

along an edge of the original parent use only the data
derived from the two original points which define that

edge. Side points in the interior of the original patch
use the four values from their vertical and horizontal

neighbors. By stipulating that points that lie along
the edges of the original patch depend only on the ver-
tices that define those edges, continuity between adja-

cent input patches can he guaranteed.

The stochastically interpolated values are formed

from both a deterministic and a stochastic component.

I=Idet+I, tocn (1)

Idet is the average of two or four neighboring vertices as
shown in Figure 1. The same neighbors which deter-
mine Idet are used to create a seed value for Istoch. A

pseudorandom number is selected using this seed and
is conditioned by the generating parameters h and
scale. This method of forming the seeds for pseu-
dorandom number generation assures continuity

between adjacent patches as mentioned above. To
prevent the selection of pseudorandom numbers solely

on the basis of the original parent patch's corner data
values, seed values are also provided with each original
data value. Points whose data values were given at

the start of the procedure supply seed values for I, to_h

of their dependents.

Complexity of the Process

It is easy to see that the number of patches
grows exponentially in powers of four. Even though

patches share some of the same vertices, we cannot
better the overall complexity of the process by more
than a constant factor. (Consider that each patch in

the interior has 1/4 + 1/4 + 1/4 _ 3/4 new points to
calculate: this is true in every generation. Patches on

the edge must generate 1/2 + 1/2 + 1/4 ---- 5/4 new

points.) Thus whatever sequential algorithm may be

used, its time complexity will still be at least O(4 L)
where L is the number of subdivision levels. Further-

more even though the algorithm appears inherently

parallel, the data dependencies of children on their

230

parents limits the best we can do to an algorithm
which has a time complexity proportional to the

number of subdivisions or equivalently to the log base
4 of the number of final patches. The data dependen-

cies make matters even worseLfor the sequential algo-

rithm which now becomes 0 [_ 4 i]

Mapping the Algorithm on to the MPP

First note that we can map any arbitrary rectan-
gle into a square be scaling one of its sides. For our

purposes then we treat the input patch to the subdivi-

sion algorithm as if it were a square. At each subdivi-
sion the child patches formed are also square and have
sides of length one half of their parent's side. This

geometry is ideal for the array unit which is square

and has a side length of 128 (a power of two). After
seven subdivisions the parent patch will have created

47--16384 descendants or one per MPP PE. A map-
ping using the vertices of the patches instead of the
entire patch is not so neat and after seven subdivisions

yields a 129x129 array of data values. Here we use the
mapping of patches to PEs.

Child patches must be able to obtain data from

their parents and also their siblings and sometimes
even cousins. Since a seven level subdivision will fill

each PE with a patch we will have to be able to recy-

cle PEs which were parents in earlier generations.
This may seem a lot to ask of the mesh connected
communication network of the MPP but there is a

straightforward and somewhat elegant solution.

Observe that all the child patches are dependent
solely on the algorithm's parameters and the data of

the input parent (These critters are asexual.). It is

easy to initialize all the PEs with the input patch's
data. Treat the entire array as one group of PEs

which all represent the input patch. The first subdivi-
sion will yield four new patches each of which will also

be represented by a group of PEs. Each child patch
required no communication overhead to obtain parent

data because, in reality, it already contained all of its
parent's data. Which PEs belong to which child patch
is determined by an id contained in each PE. The id

corresponds to which child patch the PE represents at
each level of the subdivision; after seven subdivisions

the id in each PE maps it one-to-one with a single
patch. Until the final subdivision, each patch is being
mapped onto a group of PEs which are redundantly

calculating the subdivision for that patch. The redun-
dant calculations are occurring simultaneously so they
incur no time cost. The benefit of this method, besides

its simplicity, is that parent data is passed onto the
children without need of the communication network.

Data routing is still used to obtain values from

neighbors. Here the term neighbor is with respect to
groups of PEs rather than individual ones. Since

groups are largest in earlier generations, communica-

tion distances are largest for them too. During the
first subdivision a routing distance across half the

array is necessary for PEs of neighboring groups to

communicate. At the final subdivision, adjacent PEs
are group neighbors so the communication distance
becomes just a single PE.

Even though the number of PE groups grows

exponentially, the number of different PE types
remains constant at four which correspond to the qua-
drants of the parent patch. Figure 2 shows how PE

groups and types map onto the array. Before subdi-
viding the first input patch, the id for each PE is
determined. This is a simple process which forms
seven 2-bit numbers from the concatenation of the row

and column indexes already present in each PE. Fig-

ure 3 identifies the PE id types with the quadrants
they correspond to. The subdivision algorithm is out-
lined in pseudocode below.

algorithm subdivide(levels:integer; h,scale:real);

Subdivide the parent patch defined by the values at its
4 corners to the number of levels given by "levels". H
and scale are the fractal h parameter and user selected

scaling factor respectively. Initializations which need
be done only once per run of the algorithm such as

valid = TRUE and the ID set up are assumed to have
already been done and are not included in this
analysis.

{ **** set up ***** }

route :-----128; { # PEs on side of PE array }

ratio :--_ 2 -h ; { from fractal h parameter }

std := scale; { user determined scaling parameter }

initflag(flag); { flag shows original (input patch data)
where true. Used in determining the
calculation of the seed for the pseudo-

random numbers used in the Ioto_h }

{ **** subdivisions **** }

FOR level := 1 to levels DO BEGIN

route := route div 2;
std := std * ratio;

center_pts(level,std);

231

9 side_pts(level,route,std);
10 END

• Analysis of subdivide

The set up statements in lines 1 through 4 are
_Xecuted once in constant time no matter what the

value of levels. Initflag, initializes a parallel array of
booleans but this uses the broadcast function and so is

not dependent upon the array size. Flag is used to

mark whether or not the corner data values were given

as input (TRUE) or derived. Vertices marked as true
forward their seed values for calculation of I, toch

Flag is updated each time new data values are ealeu-
lated since the new values may replace a value that
was marked as TRUE in the previous generation.

Line 6 determines the routing distance between
neighboring PE groups. This is halved at each subdi-
vision until it reaches one at the final subdivision.

Route is used by side_pts when obtaining information
from neighboring PE groups. At line 7, std, derived

from the h and sealing parameters, is adjusted for the
next application in the calculation of I_to_h .

The lines of most interest are 8 and 9 which

compute the subdivisions in two phases: center points

and side points. Computation of the center points is
done simultaneously throughout all PE groups without

the need for shifting data. The four corner points of
the parent patch are used and these are already con-

tained within each PE. Iaet is the average of these
point values and I, toch uses the corners in the selection
of the pseudorandom number which is adjusted by the

current value of std. The time complexity of this step
will remain constant with varying levels and array
sizes.

The computation of the side points is more com-

plicated and involves shifting data in from neighboring
PE groups. Since the size of a PE group varies accord-
ing to what level is being processed the communication
time will also vary. The algorithm as described here

uses communication for the following reasons:

a. To establish if there is a valid neighbor along

a particular side.
b. To gather data from a valid neighbor.
c. To transmit shared points to a neighbor.

In each of the above, neighbor refers to a neighboring

PE group.

Since the calculation of side points is the only

step which requires communication, we shall now shed
some more details on this process. To satisfy edge

constraints, interpolates of values along an outside

edge (the edge of the parent patch) must depend ulti-
mately, only on the two corner values of the parent

patch's edge. When this holds patches can be matched
up simply by assuring that their common edge values

and generating parameters are identical. Edges not
along the outside of the parent patch use values above
and below and right and left to calculate their values.

The deterministic interpolate is the average of its

two (when on an outside edge) or four nearest neigh-
bors. Two of the neighbors are the vertices of the side

that it lies on and the other two (when four are used)
are the just calculated center points which form a per-
pendicular bisector of the side the interpolate lies on.

A sentinel is used to easily determine if the new

vertex has a valid neighbor. Define VALID to be a
parallel array of type boolean. Using the MPP broad-

cast instruction it is easy to set each bit of VALID
contained in each PE to TRUE in constant time.

Recall that attempts to shift data in from beyond the

edges of the array, read in O's (FALSE). Thus a neigh-
bor is valid only if its VALID bit is TRUE.

Each PE group first calculates its center point

then the edge interpolates. We will first discuss only
the deterministic part of the calculations. The center

point is trivial; it is merely the average of its four

corners (plus a stochastic component). The basic algo-
rithm for the deterministic edge components is as fol-
lows.

Note that the center point has already been com-

puted and its value is now stored in the corners of the

new child patches which lie at the center of their
parent patch. There are now four different types of

patches forming. The differences are based solely on
the positions of the new patches with respect to their

parents (see Figure 3). Each type is computed con-
currently with all the others like it, thus there are four

different types of edge interpolate calculations. All
these are very similar and simply correspond to the

particular edge being computed: top, bottom, left or
right.

We can characterize the time complexity of the

side point calculation step as being composed of two

components:

T,.._.,ep= T¢_c+ Tco.,.,(t.._ _,_,_zc) (2)

In other words, the time for the side points step calcu-

lation, T,i,u_,ep , is made up of a nonvarying calcula-
tion portion, Tea c , plus a communication time, Too,,,, ,

232

The communication time is a function of what sub-

division level is being processed and of the size of the

PE array. Tcomm decreases exponentially with level

and increases by the square root with array_size.
Equation 2 can be rewritten as equation 3 by combin-
ing level and array_size to form the routing distance.

Comp (T¢:_¢)=L (6a)

Comp(Te.ee)=log(number of final patches) (6b)

Ta_._,_,p = T.a. + T.,m,. (.o,,t.) (3)

If we let ROUTE be the routing distance at the
first subdivision and we are using the array to process

a single input patch, then ROUTE is half the number
of PEs on the array side. While holding the dimen-

sions of the array constant, the execution time of the
algorithm will be a function of L, the number of subdi-
vision levels.

Let T,_ep be the combined times for the nontime
varying calculations done at each level of the subdivi-

sion. Thus T, tep includes Tcac from equations 2 and 3
plus the time to calculate the center points. Execution

time of the algorithm and its startup time are denoted

by Te_e¢ and T,_n,p respectively. Assuming that the
shift function is straightforwardly implemented and

communication time is directly proportional to the
number of bits being routed and the distance that they

cover, then communication time can be expressed by a
constant, Kcomm , multiplied by the distance data

must be routed (equation 4). Rewriting equation 4 to
remove the summation we can derive equation 5.

To be able to subdivide more levels using the
same algorithm, larger arrays of PEs must be built.

(It should be noted that the 128x128 array size of the
MPP is a reasonable size for graphics applications

which are still typically 512x512 pixels per screen.) If
we allow the array size to grow and continue the algo-

rithm to the maximum level, Lm= , that the array size

will allow, we can compute Lmax from ROUTE (equa-
tion 7).

Lmax=Ioge(ROUTE)+ 1 (7)

Using equation 7 and substituting into equation 5 with

L=Lm= we obtain equation 8. This gives the execu-
tion time as a function of L when the architecture of

the machine varies to always have one PE per ;patch
after the final subdivision.

Ze,ee=Tstart,pq-L*Tstepq-Kcomm *(2L--l) (8)

L --1 [at ROUTET_=_¢= T,t,,n,p + E Totep + K_omm 2'
o

(4)

T,:,,,= Tot,,_t,,p+L *T, tep +If, omm *(2ROUTE-I) (5)

As L grows large, the third term begins to dominate.
But the number of final patches being produced is
growing as 4L Taking the limit as L grows large

shows that the parallel algorithm is still substantially

better than the sequential one (equation 9). Recall
from earlier analysis that the sequential time algo-
rithms must be at least O(4 L} .

Since ROUTE is a fixed value for a given machine, the

time complexity is not affected by it or the other con-
stant terms. The execution time complexity of the

algorithm, denoted Cornp(Te_e¢) , is directly propor-
tional to L, the number of subdivision levels. The
complexity is log the number of final patches produced

and, due to the data dependencies inherent in the

algorithm, this is the best result that can be expected.

2L 2L 1
-- = -- ---* 0 as L ---*_ (9)

4 L 2 2L 2 L

The time complexity can be decreased below L if
the data dependencies can be eliminated. This is true
if multiple input patches can be processed con-
currently. Instead of enbedding a single patch in the

array, begin by embedding four or sixteen, etc. Each

233

patch is processed concurrently using a ROUTE which
corresponds to the number of PEs it covers. Slight
modifications to the identifier labels and the data sen-

tinel for boundary detection would be required to the
basic algorithm.

Conclusions

A parallel algorithm to subdivide rectangular
patches using stochastic interpolation was developed.
The algorithm was designed for mesh connected SIMD

computers and was implemented on the MPP at Nasa

Goddard Space Flight Center. For a fixed architecture
SIMD, the algorithm has time complexity of log the
number of final patches produced; this is the best that

can be expected due to the data dependencies imposed.

Timing data was collected for a nonoptimized
version of the algorithm using parallel pascal on the

MPP. Approximately 30 milliseconds of processing
time is required to subdivide one patch seven levels

into 16384 final patches. This figure compares favor-
ably to the 60 milliseconds required on the special pur-

pose STINT processor (Ref. 8). Figure 4, Color Plate
VI shows the evolution of the algorithm as it produces
a 512x512 pixel "sky" from 16 input patches. Figure 5,

Color Plate VII shows a scene composed of textures
generated similarly but using different parameter
values and color mappings.

A similar algorithm which recursively subdivides

triangles (Ref. 2) also maps well to SIMI) mesh con-
nected machines and is detailed in (Ref. 11). Parallel
machines such as the MPP, besides running existing

paradigms faster allow insights into ways they may be
expanded. A direction for future research is how the

generating parameters of this stochastic interpolation
algorithm may be increased to higher dimensions to

make the generic algorithm more powerful.

References

pp. 40-46, Oct 85

4. Using Stochastic Modeling for Texture Genera-

tion, Haruyama,Shinichiro, Barsky, B., IEEE CG
& A, 4(3), pp. 7-19, Mar 84

5. Fractional Brownian Motions, Fractional Noises

and Applications, Mandelbrot, B.B., Van Ness,
J.W., SIAM Review, 10(4), pp. 422-437, Oct 68

6. The Fractal Geometry of Nature Rev. ed., Man-

delbrot, B.B., W.H. Freeman and Company, San
Francisco,1983

7. Algorithms for Graphics and Image Processing,
Theo Pavlidis, Computer Science Press, Rockville

MI), 1982, pp.l-4

8. A Hardware Stochastic Interpolator for Raster

Displays, Piper, T.S. Fournier, A., Comp Graph-

ics, 18(3), pp. 83-92, Jul 84

9. Early Vision: From Computational Structure to
Algorithms and Parallel Hardware, Tomaso Pog-

gio, Computer Vision, Graphics, and Image Pro-
cessing 31:139-155 (1985)

10. Ray Casting for Modelling Solids, Scott D. Roth,

Computer Graphics and Image Processing 18(2):
109-144, Feb. 1982

11. Generating Fractal-like Surfaces on General Pur-
pose Mesh-Connected Computers, Wainer, M.,
submitted to IEEE Trans on Comp., Jan 86

Acknowledgments

Mr. Wainer's work was made possible by a

NASA Graduate Student Fellowship, Training
Grant NGT 02-002-800, and on-site sponsorship

and assistance of Dr. James Strong. Dr.
McAnulty's access to the MPP was made easier
through the cooperation of Dennis Gallagher,

ES-01, Marshall Space Flight Center, who
enabled direct access to the SPAN network at

the Space Science Laboratory.

1.

.

3.

Fundamental8 of Interactive Computer Graphics,
Foley, J. D. and van Dam, A., Addison-Wesley
Reading MA, 1983

Computer Rendering of Stochastic Models, Four-
nict', A., Fussel, D., Carpenter, L., Comm ACM,

25(6), pp. 371-384, Jun 82

Frame Buffer Algorithms for Stochastic Models,

Fournier, A., Milligan, T., IEEE CG & A, 5(10),

234

)

2

• f

Quadrant

Identifiers

Figure 3: Quadrants and their type. designations

Ist Subdivision

I
2nd Subdivision

J

0
0
0
(D

parent edge

sides of previously computed

patches

sides of child patches

previously determined data values

original input values

current center point values

current side values

Figure i: A Graphical Description of the Subdivision Algorithm

235

1st Subdivision 2nd Subdivision

PE Group 0 PE Group 30 _
PE Group 12

m----

Ist Subdivision 2nd Subdivision

 lIIr I'r
 IIlIIIHI]IIIIIIll

lIIlIIll IlllIlJll
The four subdivision types are

2_ 3_lllllIl

Figure 2 : Examples of PE groups and types mapped on to the

array. A group corresponds to a child patch. A

type corresponds to particular quadrant of the

parent patch.

236

